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Tandem queues with finite buffers have been widely discussed as basic models of
communication and manufacturing systems+ The cycle time is the important mea-
sure in such systems+ In this article, we consider finite tandem queues with com-
munication blocking and general service-time distributions+We introduce an order
on pairs of random variable sets to give effective upper bounds for the expected
cycle times+

1. INTRODUCTION

The approximate formula and bounds for expected cycle times of tandem queues
with blocking have been proposed in the literature~see@1–4, 7# , and references
therein!, because of its difficulties in analysis+ Recently, Nakade@5# derived effec-
tive lower bounds for cycle times of tandem queues with production and communi-
cation blocking+He also obtained simple upper bounds by considering synchronous
systems for tandem queues with communication blocking, but he did not discuss
which synchronous system gives the most effective upper bound+

In this article,we define tandem queues with communication blocking and con-
sider the synchronous systems to derive upper bounds for the cycle time of the
original system+ Then, we introduce an order on pairs of random variable sets+We
use the order to obtain effective upper bounds for the expected cycle times in tandem
queues with communication blocking+
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The organization of this article is as follows+ In Section 2, we define tandem
queues with communication blocking and consider the synchronous systems to de-
rive the upper bounds for the cycle time of the original system+ To make the bound
effective, we introduce an order on pairs of random variable sets in Section 3+ In
Section 4, we use the order to show effective upper bounds for the expected cycle
times in tandem queues with communication blocking+Concluding remarks are given
in Section 5+

2. TANDEM QUEUES WITH COMMUNICATION BLOCKING

We consider a tandem queuing system withK stations, numbered 1,2, + + + ,K in the
sequence, and communication blocking, in which each station has a single buffer for
a job in process+ Communication blocking means that a station begins processing a
new job only if it has already arrived at the station from the preceding one and the
buffer at the next station is empty+ Note that under communication blocking, the job
at stationk [ $1,2, + + + ,K 2 1% can move to stationk 1 1 just after the end of its
processing at stationk, because stationk11 must be empty before the beginning of
the processing+ If station k has zero processing time, then it is a waiting buffer in
front of stationk 1 1+ Thus, the model includes a system in which each station has
two or more buffers+We, however, assume that stations 1 andK have positive pro-
cessing times+We also assume that new jobs always exist in front of station 1, and
the processed job leaves the system immediately after the completion of the pro-
cessing at stationK+

We assume that, at each station, processing times are mutually independent and
identically distributed, and the sequences of processing times are mutually indepen-
dent among stations+We denote a generic random variable representing the process-
ing time at stationk by Ik+ Let the expected cycle time in steady state, which is a
reciprocal of throughput, be denoted byE @C# +

To derive an upper bound for the expected cycle time, we consider the fol-
lowing synchronous system+ Let the set of stations whose processing times are
positive beV 5 $i1, i2, + + + , im%~1 5 i1 , i2 , {{{ , im 5 K !+ We divide it into
two groups~A,B!, under a constraint that ifik11 5 ik 1 1 ~ i+e+, both stationsik and
ik 1 1 have positive processing times!, then these stations must belong to different
groups+ If ik11 . ik 1 1, then stationsik and ik11 may belong to either the same
group or different groups+ Let a set of feasible pairs of groups be

F 5 $~A,B!; A ù B 5 f, A ø B 5 V, and if ik11 5 ik 1 1, then

eitherik [ B, ik11 [ A or ik [ A, ik11 [ B%+

For example, if there are 11 stations, and stations 1, 3, 5, 6, 8, 10, and 11 have
positive processing times and stations 2, 4, 7, and 9 have zero processing times, then
stations 5 and 6~and stations 10 and 11! must belong to the different groups+

When the division of stations into two groups is given, the synchronous system
is operated in the following way+ The system first processes jobs at stations only in
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groupA+ At the time just after all stations in groupA complete their processing, only
stations in groupB begin the processing+ After the end of processing of jobs at all
stations in groupB, stations in groupA begin processing+ The above division of
stations ensures that jobs in the synchronous system can move without blocking+
Then, the expected cycle time in this synchronous system, which is the expected
time interval of successive outputs of jobs, is an upper bound for the expected cycle
time in the original system+

We denote the expected cycle time in the synchronous system with groups~A,B!
by CU~A,B!+ Then, we have the following lemma@5#+

Lemma 1:

E @C# # min
~A,B![F

CU ~A,B!, (1)

where

CU ~A,B! 5 EFmax
ik[A

IikG1 EFmax
ik[B

IikG +
Note that if there is no sequence of two or more successive stations with positive
processing times, then it is clear that a division~V,f! attains the minimum on the
right-hand side of~1!+ In the remainder,we assume that there is a sequence of two or
more successive stations with positive processing times+

Let a set of sequences of indexes of two or more successive stations which have
positive processing times be denoted by

J 5 $~ik
a, ika 1 1, + + + , ikb!, k 5 1, + + + ,m; E @Iik

a21# 5 0, E @Iik
a# . 0, E @Iik

a11# . 0,

+ + + ,E @Iik
b# . 0, E @Iik

b11# 5 0, 1 , ik
a , ik

b # K %,

whereE @I0# 5 E @IK11# 5 0 andm is the number of such sequences+We define a set
of stations whose adjacent stations have zero processing times by

J ' 5 $i1
c, i2c, + + + , i lc; E @Iik

c21# 5 E @Iik
c11# 5 0 andE @Iik

c# . 0%,

wherel is the number of such stations+

3. AN ORDER ON PAIRS OF RANDOM VARIABLE SETS

To derive an effective upper bound~i+e+, to find a pair of set~A,B! [ F minimizing
the right-hand side in~1!!, we introduce an order on pairs of random variable sets+
We define a joint cumulative distribution function for a set of random variablesA5
$X1, + + + ,Xn% by

FA~x! 5 PSmax
Xi[A

Xi # xD for x [ R,
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whereR is a set of real numbers+We setFf~x!51 for allx[R,wheref is an empty
set+ In the following, we abbreviateXi [ A by i [ A+ From the definition, when
A,BÞ f, FA~x! $ FB~x! for all x [ R implies that maxi[A Xi #st maxi[B Xi , where
#st is a stochastic order~see@6# !+

Definition 1: For four random variable sets A, B, C, and D, we say that a pair
~A,B! is smaller than a pair~C,D! in a sense of a sum of joint cumulative distribu-
tion functions, which is denoted by~A,B! aj,c ~C,D!, if it holds for all x[ R:

FA~x! 1 FB~x! $ FC~x! 1 FD~x!+

We show properties of the order in the following lemma+

Lemma 2: ~i! We assume that A,B,C,D# S5 $X1,X2, + + + ,Xn% and A,B,C,DÞ f.
If ~A,B! aj,c ~C,D! and E@maxi[AøBøCøD6Xi 6# , `, then

EFmax
i[A

Xi 1 max
i[B

Xi G # EFmax
i[C

Xi 1 max
i[D

Xi G +
~ii ! Let S5 $X1,X2, + + + ,Xn% be a set of mutually independent random vari-

ables, and we assume that A1,A2,B1,B2,Y,Y ' # S, A1 ù B2 5 f, A2 ù B1 5 f, and
~A1 ø B2! ù Y5 ~A2 ø B1! ù Y '5 f. If it holds that FA1

~x! $ FA2
~x! and FB1

~x! $
FB2

~x! for all x [ R, then we have

~A1 ø B1,A2 ø B2 ø Yø Y ' ! aj,c ~A1 ø B2 ø Y,A2 ø B1 ø Y ' !+

Proof: Part~i! is easily shown by the fact that whenA Þ f, it holds that

EFmax
i[A

Xi G 5 2E
2`

0

FA~x! dx1E
0

`

~12 FA~x!! dx+

~ii ! Because the random variables are mutually independent, whenA,B # S it
follows that

FAøB~x! 5 )
i[AøB

P~Xi # x! $ )
i[A

P~Xi # x! )
i[B

P~Xi # x! 5 FA~x!FB~x!,

where equality in the inequality holds ifA ù B5f+ Therefore, from the assumption,
for anyx [ R,

FA1øB1
~x! 1 FA2øB2øYøY ' ~x! 2 ~FA1øB2øY~x! 1 FA2øB1øY ' ~x!!

$ FA1
~x!FB1

~x! 1 FA2
~x!FB2

~x!FY~x!FY ' ~x!

2 ~FA1
~x!FB2

~x!FY~x! 1 FA2
~x!FB1

~x!FY ' ~x!!

5 ~FA1
~x! 2 FA2

~x!FY ' ~x!!~FB1
~x! 2 FB2

~x!FY~x!! $ 0,

which proves~ii !+ n
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Let S5 $X1,X2, + + + ,Xn% denote a set ofn mutually independent random vari-
ables+We consider a problem for dividing it into two disjoint setsZ andZc ~5 S\ Z!,
as~Z,Zc! is the smallest inaj,c, under the following constraint: If ~Xik,Xjk! [ Q,
where Q 5 $~Xik,Xjk!; k 5 1,2, + + + ,m% satisfies$Xik; k 5 1, + + + ,m% ù $Xjk; k 5
1, + + + ,m% 5 f, thenXik andXjk must belong to the different sets+ We say that the
division ~Z,Zc! is feasible if it satisfies the constraint+

Let a set of random variables which are not included inQ be denoted by

$Xk1
,Xk2
, + + + ,Xkl

% 5 S\$Xi1, + + + ,Xim,Xj1, + + + ,Xjm%+

Proposition 1: Suppose that Xik #st Xjk for all ~Xik,Xjk! [ Q, and jk Þ jk' for
k Þ k'. Then, for any feasible division~Z,Zc! of S, we have

~$Xi1, + + + ,Xim%, $Xj1, + + + ,Xjm,Xk1
, + + + ,Xkl

%! aj,c ~Z,Zc!+ (2)

Proof: For any feasible division~Z,Zc! without loss of generality, we can set

Z 5 A1 ø B2 ø Y, Zc 5 A2 ø B1 ø Y ', A1 5 $Xi1, + + + ,Xip%,

A2 5 $Xj1, + + + ,Xjp%, B1 5 $Xip11
, + + + ,Xim%, B2 5 $Xjp11

, + + + ,Xjm%,

Yø Y ' 5 $Xk1
, + + + ,Xkl

%, Y ù Y ' 5 f+

Sincejk Þ jk' for k Þ k', by the assumption,

FA1
~x! $ )

k51

p

P~Xik # x! $ )
k51

p

P~Xjk # x! 5 FA2
~x!

andFB1
~x! $ FB2

~x! for all x [ R+ Therefore,we obtain~2! from Lemma 2, because
~$Xi1, + + + ,Xim%, $Xj1, + + + ,Xjm,Xk1

, + + + ,Xkl
%! is feasible and$Xik; k 5 1, + + + ,m% ù

$Xjk; k 5 1, + + + ,m% 5 f+ n

4. AN EFFECTIVE UPPER BOUND FOR THE CYCLE TIME

We have the following main theorem from Lemmas 1 and 2 and Proposition 1+

Theorem 1: For each sequence~ik
a, ika 1 1, + + + , ikb! [ J, we define

Ck 5 $ik
a 1 2n; ika 1 2n # ik

b, n 5 0,1,2, + + + %

and

Dk 5 $ik
a 1 2n 1 1; ika 1 2n 1 1 # ik

b, n 5 0,1,2, + + + %+

We assume that for each k[ $1, + + + ,m%, either (i)

FCk
~x! $ FDk

~x! for all x [ R (3)

or (ii)

FCk
~x! # FDk

~x! for all x [ R+ (4)
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We set Ak 5 Ck and Bk 5 Dk for case (i) and Ak 5 Dk and Bk 5 Ck for case (ii). We
also define

DA 5 ø
k51

m

Ak and DB 5 V\ DA 5Sø
k51

m

BkD ø J '+

Then, we have

E @C# # CU ~ DA, DB! 5 min
~A,B![F

CU ~A,B!+

Proof: Any feasible division~Z,Zc! [ F must satisfy that either~Ak , Z and
Bk , Zc! or ~Bk , Z andAk , Zc! for eachk [ $1,2, + + + , n% because adjacent stations
with positive successive times must belong to different groups+ Fork51, + + + ,m, let

Y2k21 5 max
i[Ak

Ii and Y2k 5 max
i[Bk

Ii +

We also define

V' 5 $Y1, + + + ,Y2m, Ii1
c, + + + , Iil

c% and Q' 5 $~Y1,Y2!, ~Y3,Y4!, + + + , ~Y2m21,Y2m!%+

We associate each feasible division~Z,Zc! of V with one division~U,U c! of V'

under constraintQ' as follows: Y2k21 [ U if and only if Ak , Z, andXik
c [ U if

and only if ik
c [ Z+ We denote a division ofV' associated with~ DA, DB! by ~ EU, EU c!+

Then,

~ EU, EU c! 5 ~$Y1,Y3, + + + ,Y2m21%, $Y2,Y4, + + + ,Y2m, Ii1
c, + + + , Iil

c%!+

SinceY2k21 #st Y2k for k 5 1, + + + ,m, by Proposition 1 we have~ EU, EU c! aj,c ~U,U c!
for any division~U,U c! of V' under constraintQ'+ Therefore, by applying Lemma 2
we have

EFmax
i[ DA

Ii G1 EFmax
i[B

Ii G 5 EFmax
X[ EU

XG1 EFmax
X[ EU c

XG
# EFmax

X[U
XG1 EFmax

X[U c
XG

for any division~U,U c!, whereX is a random variable representingYk or Iik
c+ Since

each~A,B! [ F is associated with a division ofV' underQ',we obtain the theorem+
n

Note that the assumption of the theorem, ~3! or ~4!, is satisfied in the following
cases:

1+ If Iik
a 5st Iik

a11 5st {{{ 5st Iik
b, then the sequence~ika, ika 1 1, + + + , ikb! satisfies

~4!+ Note that if the number of stations in the sequence, ikb 2 ik
a 1 1, is odd,

then the number of stations inDk is smaller than that inCk and we have
FDk

~x! $ FCk
~x! for all x [ R+
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Table 1. Upper Bounds for Expected Cycle Times in Tandem Queuing Systems

Example ~E @I1# , + + + ,E @I11# ! E @C# CU~ DA, DB! DA DB

a ~1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1! 2+213386 0+00124 2+52380 $4, 8% $1, 3, 5, 7, 9, 11%
b ~1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1! 2+180436 0+00092 2+58333 $4, 7, 10% $1, 3, 6, 8, 11%
c ~1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1! 2+256916 0+00114 2+58333 $4, 6, 9% $1, 3, 5, 8, 11%
d ~1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1! 2+366966 0+00116 2+60714 $4, 6, 8% $1, 3, 5, 7, 9, 11%
e ~1, 0, 2, 1, 2, 0, 2, 1, 2, 0, 1! 3+418666 0+00178 3+76574 $4, 8% $1, 3, 5, 7, 9, 11%
f ~1, 0, 2, 1, 2, 2, 0, 1, 2, 0, 1! 4+034456 0+00330 4+53912 $4, 6, 8% $1, 3, 5, 9, 11%
g ~1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 1! 3+580956 0+00161 3+84907 $4, 6, 8% $1, 3, 5, 7, 9, 11%

3
3

3
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2+ If Iik
a #st Iik

a11 $st Iik
a12 #st {{{ #st Iik

b, Ii Þst Ij for somei, j [ $ik
a, + + + , ikb% and

ik
b 2 ik

a 1 1 is even, then the sequence satisfies~3!+
3+ If Iik

a $st Iik
a11 #st Iik

a12 $st {{{ $st Iik
b andIi Þst Ij for somei, j [ $ik

a, + + + , ikb%,
then the sequence satisfies~4!+

In Table 1, we show numerical examples+We assume that the processing times
at stationk have a uniform distribution with its interval@ 1

2
_E @Ik# ,

3
2
_E @Ik## + The ex-

pected cycle timesE @C# are computed by simulation,which is run 20 times and each
includes 20,000 cycles+ The mean value and their 95% confidence interval for each
simulation are shown in Table 1+

As shown in Table 1, the upper bounds have 7+5–18+5% relative errors+ In par-
ticular, if it holds that either the number of elements inDA are 2 or the expected
processing times at stations inDA are smaller than those at the other stations with
positive processing times, then the bounds show good performance+ Table 1 also
shows that the upper bound is good if there is a long sequence of successive stations
with positive processing times+ The reason seems that jobs in such systems behave
as those in the synchronous systems+ Note that whenA 5 $4,7,9%, B 5 $1,3,5,8,11%
in Example a of Table 1, CU~A,B! is 2+58333, which is greater thanCU~ DA, DB! in
Example a+ This illustrates the result of Theorem 1+

5. CONCLUDING REMARKS

In this article, we show effective upper bounds for cycle times in tandem queues
with communication blocking by considering the synchronous systems and intro-
ducing the order on pairs of random variable sets+ This method for deriving upper
bounds seems to be able to be applied for queuing networks with communication
blocking+
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