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Tandem queues with finite buffers have been widely discussed as basic models of
communication and manufacturing systeifise cycle time is the important mea-
sure in such systemn this article we consider finite tandem queues with com-
munication blocking and general service-time distributidfe introduce an order

on pairs of random variable sets to give effective upper bounds for the expected
cycle times

1. INTRODUCTION

The approximate formula and bounds for expected cycle times of tandem queues
with blocking have been proposed in the literat(see[1-4, 7], and references
therein), because of its difficulties in analysiRecently Nakadg 5] derived effec-
tive lower bounds for cycle times of tandem queues with production and communi-
cation blockingHe also obtained simple upper bounds by considering synchronous
systems for tandem queues with communication blogking he did not discuss
which synchronous system gives the most effective upper bound

In this article we define tandem queues with communication blocking and con-
sider the synchronous systems to derive upper bounds for the cycle time of the
original systemThen we introduce an order on pairs of random variable.3Afs
use the order to obtain effective upper bounds for the expected cycle times in tandem
queues with communication blocking
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The organization of this article is as followis Section 2 we define tandem
queues with communication blocking and consider the synchronous systems to de-
rive the upper bounds for the cycle time of the original syst@onmake the bound
effective we introduce an order on pairs of random variable sets in Sectitm 3
Section 4 we use the order to show effective upper bounds for the expected cycle
times in tandem queues with communication blockidgncluding remarks are given
in Section 5

2. TANDEM QUEUES WITH COMMUNICATION BLOCKING

We consider a tandem queuing system vidtBtations numbered P,...,K in the
sequencgand communication blocking which each station has a single buffer for

a job in processCommunication blocking means that a station begins processing a
new job only if it has already arrived at the station from the preceding one and the
buffer at the next station is emptyote that under communication blockirthe job

at stationk € {1,2,...,K — 1} can move to statiok + 1 just after the end of its
processing at statiok) because statiok+ 1 must be empty before the beginning of
the processindf stationk has zero processing timthen it is a waiting buffer in
front of stationk + 1. Thus the model includes a system in which each station has
two or more buffersWe, howeverassume that stations 1 aKchave positive pro-
cessing timesWe also assume that new jobs always exist in front of statj@nd

the processed job leaves the system immediately after the completion of the pro-
cessing at statioK.

We assume thaat each statiarprocessing times are mutually independent and
identically distributedand the sequences of processing times are mutually indepen-
dent among stationVe denote a generic random variable representing the process-
ing time at statiork by I,. Let the expected cycle time in steady statich is a
reciprocal of throughpube denoted b¥[C].

To derive an upper bound for the expected cycle time consider the fol-
lowing synchronous systenhet the set of stations whose processing times are
positive beQ = {ij,is,...,int(l =i < i, < .-+ < i, = K). We divide it into
two groups(A, B), under a constraint that if,, = i, + 1 (i.e, both stations, and
i, + 1 have positive processing timethen these stations must belong to different
groups If i 1 > i + 1, then stations, andi,.; may belong to either the same
group or different groupd_et a set of feasible pairs of groups be

®={(AB;ANB=¢, AUB=Q,andifi,.; =i+ 1, then
eitheri, € B,i,., € Aori, € A i, € B}.

For exampleif there are 11 stationsnd stations 13, 5, 6, 8, 10, and 11 have
positive processing times and stationd,%7, and 9 have zero processing timdsen
stations 5 and 6and stations 10 and 1inust belong to the different groups

When the division of stations into two groups is giydre synchronous system
is operated in the following wayl he system first processes jobs at stations only in
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groupA. At the time just after all stations in groupcomplete their processingnly
stations in grouB begin the processind\fter the end of processing of jobs at all
stations in grougB, stations in groupA begin processingrhe above division of
stations ensures that jobs in the synchronous system can move without blocking
Then the expected cycle time in this synchronous systetnich is the expected
time interval of successive outputs of joisan upper bound for the expected cycle
time in the original system

We denote the expected cycle time in the synchronous system with gl B)s
by Cy (A, B). Then we have the following lemmgb].

LEMMA 1:
E[C]= min Cy(AB), (1)
(A, B)ED
where

Cu(AB) = E[nglik] + E[maxlik].

ieB

Note that if there is no sequence of two or more successive stations with positive
processing timeghen it is clear that a divisiofx), ¢) attains the minimum on the
right-hand side of1). In the remaindemwe assume that there is a sequence of two or
more successive stations with positive processing times

Let a set of sequences of indexes of two or more successive stations which have
positive processing times be denoted by

J={(g&ig+1...,i0), k=1...,mE[lia1]=0,E[l;a] > 0, E[l;z1] > 0,
<. E[lip]>0,E[lpp,,]=0, 1< ig<iP =K},

whereE[ly] = E[lk.1] = 0 andmis the number of such sequencéé define a set
of stations whose adjacent stations have zero processing times by

J = {If’ if?""ilc; E[Iikcfl] = E[Iikc+l] =0 andE[Ilf] > 0}’

wherel is the number of such stations

3. AN ORDER ON PAIRS OF RANDOM VARIABLE SETS

To derive an effective upper boufiide., to find a pair of setA, B) € ® minimizing

the right-hand side 1)), we introduce an order on pairs of random variable.sets
We define a joint cumulative distribution function for a set of random varialtes
{X4,..., X,} by

Fa(Xx) = P<maxxi = x) forx e R,
X EA
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whereR is a set of real numberg/e set-,(x) =1 forallx € R, whereg is an empty
set In the following we abbreviateX; € A by i € A. From the definitionwhen
A, B # ¢, Fa(X) = Fg(x) for all x € R implies that mayea Xi =s;maXeg X;, where
= is a stochastic orddsee[6]).

DeriNITION 1: For four random variable sets A, B, C, and D, we say that a pair
(A, B) is smaller than a paifC, D) in a sense of a sum of joint cumulative distribu-
tion functions, which is denoted Iop, B) <; . (C, D), if it holds for all x € R

Fa(X) + Fg(X) = Fc(X) + Fp(X).
We show properties of the order in the following lemma

LemMma 2: (i) We assume that A,B,C,O S= {Xy, X,,..., X,} and A,B,C,D# ¢.
If (A,B) <j.c (C,D) and E[maxecausucup|Xi|] < oo, then

E[maxxi + maxxi] = E[maxXi + maxX; ]
ieA ieB ieC ieD

(i) Let S= {X4,X,,...,X,} be a set of mutually independent random vari-
ables, and we assume that,A,,B.,B,,Y,Y' CS,ANB,=¢, A, N B, =¢,and
(ALUB,) NY=(A,UB;) NY'=¢.Ifitholds that F (x) = F (x) and s (x) =
Fg,(x) for all x € R, then we have

(ALUB,A,UB,UYUY') <. (A;UB,UY,A,UB, UY").
Proor: Part(i) is easily shown by the fact that whén# ¢, it holds that

ieA

E[maxxi] = —fo Fa(X) dx+foo (1— Fa(x)) dx.
—o0 0

(i) Because the random variables are mutually independdm®nA, B C Sit
follows that

Faos(¥) = JI P(Xi=x) =[] P(Xi =x [] P(X =x) = Fa(X)Fa(X),

iEAUB ieA ieB

where equality in the inequality holdsAfN B = ¢. Thereforefrom the assumptian
foranyx € R,

Fa,ue,(X) + Fa,us,uvuy (X) = (Fa,us,uv(X) + Fa,ug,uv (X))
= Fa, (X)Fg,(X) + Fa,(X)Fg,(X) Fy (X) Fy/ (%)
— (Fa,(X)Fg,(X)Fy(X) + Fa,(X)Fg, (X)Fy/ (X))
= (Fa,(X) = Fa,(X)Fy/ (%) (Fg,(X) — Fg,(X)Fy(X)) =,

which provedii). [ ]
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Let S= {Xy, X5,..., X,} denote a set of mutually independent random vari-
ablesWe consider a problem for dividing it into two disjoint s€tandZ° (= S\ Z),
as(Z,Z°) is the smallest in<; ., under the following constraintf (X ,X; ) € Q,
whereQ = {(X;,,X;,); k = 1,2,...,m} satisfies{X; k = 1...,m} N {X;; k =
1,...,m} = ¢, thenX; andX; must belong to the different setd/e say that the
division (Z, Z°) is feasible if it satisfies the constraint

Let a set of random variables which are not include®ibe denoted by

{Xkl’xkz""’xh} = S\{X "Xima ley'-"xjm}-

ProposiTION 1: Suppose that X=¢ X; _for all (X;,X;) € Q, and j # j, for
k # k'. Then, for any feasible divisiofZ, Z°) of S, we have

{Xigsenos Xi Ay w s Xjs Ky w o5 Xig D) <. (Z,Z°). 2)
Proor: For any feasible divisiofiZ, Z¢) without loss of generalitywe can set
Z=A,UB,UY, Z°=A,UB,UY/ Ar={X,.... X},
A =1{X-s X 1, By ={Xi, .o s Xinhs By ={X,.0o- > Xk

YUY =X s X, YN Y =g,

Sincejy # j for k # k', by the assumptign
p P
Fa,(X) = [T P(X,, =% = [] P(X,, = %) = Fa,(x)
k=1 k=1

andFg (x) = Fg,(x) for all x € R. Thereforewe obtain(2) from Lemma 2because
(X Xi b X X, s Xigs -0, Xy D) Is feasible and{X;; k = 1,...,m} N
{Xi;k=1,...,m} = ¢. [ ]

Tk
4. AN EFFECTIVE UPPER BOUND FOR THE CYCLE TIME
We have the following main theorem from Lemmas 1 and 2 and Proposition 1
TueoreM 1: For each sequencgd,i2 + 1,...,iP) € J, we define
Co={ig+2mig+2n=if,n=0,12,...}
and
D,={ig+2n+1i2+2n+1=i2,n=0,1,2,...}.
We assume that for each&k {1, ..., m}, either (i)
Fc (X) = Fp, (x) forallx € R 3)
or (i)

Fe (X) = Fp (x) forallx € R. (4)
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We set A= C and B, = D, for case (i) and A= Dy and B, = C, for case (ii). We
also define

m m
A=JA. and B=O\A= (U Bk> uJd.
k=1 k=1
Then, we have

E[C]=Cy(A,B)= min Cy(AB).
(A B)ED

Proor: Any feasible division(Z,Z°) & ® must satisfy that eithefA, C Z and
B, C Z°) or (B, C ZandA, C Z°) foreachk € {1,2,...,n} because adjacent stations
with positive successive times must belong to different grobipsk=1,...,m, let

Yor—1 = maxl; and Y, = maxl;.
iEA, 1EBy

We also define
Q' ={Y,...,Yom, lig,.., Ll and Q' ={(Y1,Y2),(Y3,Ya), ..., (Yom_1, Yom)}.

We associate each feasible divisiGa Z¢) of Q with one division(U,U ©) of Q'
under constrain@Q’ as follows Y, ; € U if and only if A, C Z, andX;c € U if
and only ifi¢ € Z. We denote a division of)’ associated wittiA, B) by (U,U°).
Then

(05 G C) = ({Yl’Y3, e ’Y2m—1}7{Y2,Y4, cee ,Y2m7 Iif’ ceey |i|°})'

SinceYay—1 = Yok for k=1,...,m, by Proposition 1 we havéJ,U°) <; . (U,U°)
for any division(U, U ©) of Q' under constrain®’. Therefore by applying Lemma 2
we have

E[rpeal\xli] + E[maéxli] = E[maxx] + E[ ma X]

ie xeU xeyg®

= E[maxx] + E[ maxX]
Xeu Xeu*©
for any division(U,U ¢), whereX is a random variable representigor |;c. Since

each(A, B) € @ is associated with a division 6f underQ’, we obtain the theorem
[ ]

Note that the assumption of the theordB) or (4), is satisfied in the following
cases

L If lig =gtlipr1 =st -+ =stlip, then the sequendg?, id + 1,...,iP) satisfies
(4). Note that if the number of stations in the sequemfe- i2 + 1, is odd
then the number of stations Iy is smaller than that ifC, and we have
Fp (X) = Fc (x) forall x € R.
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2. If lig=gligr1 =stligr2 <st - =stlip, li #st1j for somei, j € {ig,...,iRyand
i —i2+ 1is eventhen the sequence satisfigs.
3. I lia=gtlipi1 Ssiligrz =st -+ =atlipandl; #1; for somei, j € {ig,....ie},

then the sequence satisfi@s.

In Table 1 we show numerical exampled/e assume that the processing times
at stationk have a uniform distribution with its interv@kE[1],2E[I,]]. The ex-
pected cycle timeB[ C] are computed by simulatipwhich is run 20 times and each
includes 20000 cyclesThe mean value and their 95% confidence interval for each
simulation are shown in Table 1

As shown in Table 1the upper bounds have5~185% relative errorsln par-
ticular, if it holds that either the number of elementsAnare 2 or the expected
processing times at stations Anare smaller than those at the other stations with
positive processing timeshen the bounds show good performantable 1 also
shows that the upper bound is good if there is a long sequence of successive stations
with positive processing time3he reason seems that jobs in such systems behave
as those in the synchronous systeieste that wherA = {4,7,9}, B = {1,3,5,8,11}
in Example a of Table 1Cy (A, B) is 258333 which is greater thaiCy (A, B) in
Example aThis illustrates the result of Theorem 1

5. CONCLUDING REMARKS

In this article we show effective upper bounds for cycle times in tandem queues
with communication blocking by considering the synchronous systems and intro-
ducing the order on pairs of random variable s&tds method for deriving upper
bounds seems to be able to be applied for queuing networks with communication
blocking
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