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We consider open networks of queues with Processor-Sharing discipline and signals. The
signals deletes all the customers present in the queues and vanish instantaneously. The
customers may be usual customers or inert customers. Inert customers do not receive
service but the servers still try to share the service capacity between all the customers
(inert or usual). Thus a part of the service capacity is wasted. We prove that such a model
has a product-form steady-state distribution when the signal arrival rates are positive.
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1. INTRODUCTION

The theory of queues with signals (or G-networks) had received a considerable attention
since the seminal paper on positive and negative customers [10] published by Gelenbe more
than 20 years ago. Traditional queueing networks models are used to represent contention
among customers for a set of resources. Customers move from server to server where they
wait for service according to a scheduling discipline. Apart this competition, they do not
interact among themselves.

In a network of queues with signals, signals interact at their arrival into a queue with
the queue or with customers already backlogged. Signals are never queued. At their arrival,
they try to interact immediately. After their trial of interaction, they disappear irrespective
of their failure or success or they can migrate to another queue. Furthermore, customers are
allowed to change into signals at the completion of their service. This mechanism allows us
to model complex interaction between customers in several queues.
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Despite this deep modification of the classical queueing network model, G-networks
still preserve the product form property for the steady-state distribution of some Marko-
vian queueing networks under some technical conditions on the processes involved (Poisson
arrivals for signals and customers from the outside, exponential service times for customers,
Markovian routing of customers and signals, open topology, independence, etc.).

The first type of signal was introduced as negative customers in [10]. A negative cus-
tomer deletes a positive customer at its arrival at a non-empty queue. Positive customers
are usual customers, which are queued and receive service or are deleted by negative cus-
tomers. It must be clear that the results are more complex than Jackson’s networks. The
G-networks flow equations exhibit some uncommon properties: they are neither linear as in
closed queueing networks nor contracting as in Jackson queueing networks. Therefore, the
existence of a solution had to be proved [21] by new techniques from the theory of fixed
point equation and numerical algorithms had to be proved to solve the flow equations [5,8].
Many types of signal have been studied and they all lead to product form solution: triggers,
which redirect other customers among the queues [11]; catastrophes, which flush all the
customers out of a queue and batches of deletion [12]; resets [17]. Extensions with multiple
classes of customers have also been derived [18].

G-networks had also motivated many new important results in the theory of queues. As
negative customers lead to customer deletions, the original description of quasi-reversibility
by arrivals and departures does not hold anymore and a new version had been proposed
by Chao et al. in [2]. A different approach, based on Stochastic Process Algebra, was
proposed by Harrison [22,23]. The main results (CAT and RCAT theorems and their
extensions [1,22,23]) give some sufficient conditions for product form stationary distribu-
tions. This technique clearly has a different range of applications as it allows to represent
component based models, which are much more general and more detailed than networks
of queues.

Network of positive and negative customers were introduced to model neural networks
where neurones exchange inhibitory and exciting signals [13,16]. G-networks and Random
Neural Networks were also used in the design of the learning process for Cognitive Packet
Networks [19] or application of the Random Neural Networks to quality of service [25] or
to model the interaction between energy and the Data plane in telecom networks [14,15].
Currently there are several hundred references devoted to the subject and two books [2,20]
provide insight into some of the research issues, developments and applications in the area
of networks of queues with customers and signals.

Here we consider Processor-Sharing (PS) queues with inert customers and signals. Inert
customers were introduced by Dao Thi et al. in [3]. Inert customers are customers which do
not use the service capacity, but they stay in the queue until they interact with the signal.
More precisely, in a PS queue, the service is shared among all the customers whatever
they are usual customers or inert customers. But the inert customers do not use the server
and this part of the service capacity is wasted. The signal is a catastrophe or a disaster:
it removes all the customers (both inert or usual). Note that the arrival rate of signal
must be positive to obtain a stationary system. Indeed, the signal is the only possibility
to let the inert customers leave the queue. We depict in Fig. 1 a typical sample-path for
a queue with both usual and inert customers obtained by the simulation tool in XBorne
[6]. We will see that the queue is less and less efficient with aging until it is refreshed
by the signal.

The technical part of the paper is as follows. In Section 2, we introduce networks
with inert customers and catastrophes signals. We state that the steady-state distribution
has a product form if the chain is ergodic (the proof based on the analysis of the Kol-
mogorov equation at steady state in postpone in an appendix for the sake of readability.
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Figure 1. Sample-paths for a queue with catastrophes and customers (usual in blue, inert
in red). Parameters: λI = 0.1, λS = 0.01, λU = 1.0, μ = 1.0.

In Section 3, we prove that under some technical assumptions, the flow equations have a
solution. We present in Section 4, a more complex catastrophe signal, which only deletes
the inert customers.

2. MODEL AND PRODUCT-FORM STEADY-STATE DISTRIBUTION

We consider an open network with N PS queues and two types of customers: usual customer
and inert customers. Furthermore, the queues can receive signals from the outside or sent
by another queue at the completion of service for an usual customer (see Fig. 2).

Both types of customers arrive from the outside at queue i according to Poisson pro-
cesses with rate λU

i for usual customers and λI
i for inert ones. Usual customers receive

service at queue i with a exponentially distributed duration with rate μi. Inert customers
have a service rate equal to 0: they do not receive service. However, a part of the service
capacity of the server is given to inert customers according to the PS discipline. Therefore,
it is wasted.

At the completion of its service at queue i, an usual customer may join queue j either
as an usual customer (routing matrix P (i, j)), or a signal (routing matrix C(i, j)) or an
inert customer (routing matrix N(i, j)), or it can leave the network with probability di. Of
course, we have for all i,

di +
∑

j

P (i, j) +
∑

j

N(i, j) +
∑

j

C(i, j) = 1.
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Figure 2. Two PS queue with usual customers (white boxes), inert customers (gray boxes)
and catastrophe signals.

We also assume that there is no loop in the routing matrices: for all i

P (i, i) = 0, N(i, i) = 0, C(i, i) = 0.

Signals may also arrive from the outside following Poisson processes of rate λS
i for queue i.

A signal entering queue i deletes all the customers present in the queue irrespective of their
types. A signal is never queued. It disappear immediately after its arrival. Such a signal has
been previously studied in the literature [4,7,24]. It is a particular case of the batch deletion
of customers proposed in [12].

Note that the open topology is mandatory because in a closed queuing network with
catastrophes, the customers disappear and all the queues are empty at steady state with
probability one.

We consider an open network with N queues. The state of queue i is xi = (xU
i , xI

i).
Under the classical assumptions we have presented, (x)t = (x1, . . . , xi, . . . xN )t is a
Markov chain.

Let us first introduce some notation. Let:

• ‖xi‖ = xU
i + xI

i.
• eU

i is a vector whose all entries are equal to 0 except entry (i, U), which is equal
to 1.

• Similarly, eI
i is a vector whose all entries are equal to 0 except entry (i, I), which is

equal to 1.
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Theorem 2.1: Assume that the Markov chain (x)t = (x1, . . . , xi, . . . xN )t is ergodic. If the
following flow equations have a solution such that ρU

i + ρI
i < 1 for all i,

ρU
i =

λU
i +

∑
j μjρ

U
j P (j, i)

μi + (λS
i +

∑
j μjρU

j C(j, i))Ri
, (1)

and

ρI
i =

λI
i +

∑
j μjρ

U
j N(j, i)

(λS
i +

∑
j μjρU

j C(j, i))Ri
, (2)

where

Ri =
∞∑

k=0

(ρU
i + ρI

i )
k = (1 − ρU

i + ρI
i )

−1, (3)

then the steady-state distribution has a product form solution:

π(x) =
N∏

i=1

(1 − ρU
i − ρI

i )
‖xi‖!

xU
i ! xI

i !
(ρU

i )xU
i (ρI

i )
xI

i . (4)

The proof is based on the analysis of the global balance equation. The Kolmogorov
equation at steady state is:

π(x)

(∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0

)

=
∑

i

π(x − eU
i )λU

i 1xU
i >0

+
∑

i

π(x − eI
i)λ

I
i1xI

i>0

+
∑

i

π(x + eU
i )

(xU
i + 1)μi

||xi + eU
i ||

di

+
∑

i

∑
j

π(x + eU
i − eU

j )
(xU

i + 1)μi

||xi + eU
i ||

P (i, j)1xU
j >0

+
∑

i

∑
j

π(x + eU
i − eI

j)
(xU

i + 1)μi

||xi + eU
i ||

N(i, j)1xI
j>0

+
∑

i

λS
i

∑
a≥0

∑
b≥0

π(x + eU
i a + eI

ib)1||xi||=0

+
∑

i

μi

∑
j

C(i, j)
∑
a≥0

∑
b≥0

π(x + eU
i + eU

j a + eI
jb)1||xj ||=0.

Remark that this equation includes null transitions, on both sides of the equation, when
the queue size is 0. For the sake of readability the proof is postponed to an appendix.

These queues exhibit a very interesting behavior, which is depicted in Fig. 3. As men-
tioned earlier, the part of the capacity given by the servers to the inert customers is lost, thus
one can observe a waste of the server power. At state (xU, xI), the lost part is xI/(xU + xI).
In Fig. 3, we have depicted a sample path of the remaining part of the service capacity.
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Figure 3. Sample paths for the effective capacity for a queue with catastrophes and both
types of customers. Same parameters as in Fig. 1.

When xU + xI = 0, we have set this lost part to 0 (or equivalently, the remaining part is
equal to 1). The service capacity evolves with time with a decreasing trend, which is due
to the increasing number of inert customers. Clearly, the remaining service which is equal
to xU/(xU + xI) decreases with the number of inert customers (i.e. xI). As the number of
inert customers increases with time until the next catastrophe, we obtain a queue where the
service capacity decreases with age until a rejuvenation (i.e. the catastrophe) refreshes the
server and its capacity. The small fluctuations are due to the number of usual customers
which increases or decreases as a result of arrivals and departures. Finally at time 144, a
signal occurs and all the customers are deleted. Another signal arrives at time 217 and also
clears the queue. However, these two signals do not have exactly the same effect on the
future of the sample-path.

The signal arriving at time 144 empties the queue. But the next event is an arrival
of an inert customer and the remaining capacity of service jumps to 0 as the queue only
contains one inert customer. When an usual customer arrives, the capacity jumps at 0.5 as
the queue population is now one inert and one usual customer sharing the capacity.

At time 217, the signal is followed by the arrival of several usual customers (i.e.
exactly 3). Thus, the capacity stays at 1 for a short period of time before decreasing when
the first inert customer arrives.

Note that even if these queues exhibit a very unusual behavior, they are still PS queues
with a well-known steady-state distribution. The only difference is described by the flow
equation, not by the distribution. Therefore, the usual formulas for PS queues are still valid
and we obtain the average number of usual customers at queue i by:

E[Ni] =
ρU

i + ρI
i

1 − ρU
i − ρI

i

.
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3. STABILITY

Clearly Eqs. (1)–(3) define a nonlinear fixed point system. Due to the nonlinearity, existence
of a fixed point solution is not a trivial question and must be addressed. Furthermore, one
may expect that the arrival of catastrophes make the queueing process stationary.

Theorem 3.1: Assume that the chain is ergodic. If λS
i > 0 and λU

i > 0 for all queue i, then
the solution of the fixed point exists and ρU

i + ρI
i < 1 for all i.

Proof: We first prove the existence with Brouwer’s theorem. Let us define operator F on
(R+)2N by its components FU

i and F I
i :

• if FU
i + F I

i < 1

FU
i (F ) =

λU
i +

∑
j μjF

U
j P (j, i)

μi + (λS
i +

∑
j μjFU

j C(j, i))Ri
,

F I
i (F ) =

λI
i +
∑

j μjF
U
j N(j, i)

(λS
i +

∑
j μjFU

j C(j, i))Ri

and

Ri = (1 − FU
i − F I

i )−1

• and FU
i = F I

i = 0 otherwise

We investigate the fixed points of F . Remark that the system of flow equations and F define
the same system when ρU

i + ρI
i < 1. We now define a new operator, say G, on (R+)2N by

its components:

GU
i (F ) =

λU
i +

∑
j μjF

U
j P (j, i)

μi
,

and

GI
i(F ) =

λI
i +
∑

j μjF
U
j N(j, i)

λS
i

Clearly, F � G. It is sufficient to take into account that μj > 0, FU
j ≥ 0, C(j, i) ≥ 0, and

Ri ≥ 0 or Ri ≥ 1 in Eqs. (1) and (2).
Furthermore, operator G is non-negative, contracting, continuous and (GU

i ) is associated
with a classical Jackson network. Thus, G has a fixed point f̂ .

Now, we define S as a subset of (R+)2N as follows:

S = {q ∈ (R+)2N : 0 � q � f̂}.

Clearly, S is compact and convex. Since for all j, λU
j > 0, we have f̂ � 0 and then

interior of S is not empty.
As mentioned earlier, F (q) � G(q). Furthermore G is non-decreasing in S, so for all q

in S we have G(q) � G(f̂). Combining these inequalities and the fixed point, we get:

F (q) � G(q) � G(f̂) = f̂

and then F (S) ⊆ S.
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S is compact convex and has a non-empty interior, F is continuous and F (S) ⊆ S.
F satisfies assumptions of Brouwer’s theorem [9]. Thus, F has a fixed point.

This sufficient condition of existence of fixed point of F is also a sufficient condition for
system of Eqs. (1)–(3) to have a fixed point.

Finally, we prove that ρU
i + ρI

i < 1. Clearly, if a fixed point exists with ρU
i + ρI

i > 1 for
some i, then FU

i = 0. But FU
i cannot be equal to 0 for a fixed point. Indeed FU

i > 0 as
λU

i > 0 for all queue i. �

Theorem 3.2: If λS
i > 0 and λU

i > 0 for all queue i, then the chain is ergodic.

Proof: As the rates are bounded, the chain is uniformizable and we consider the embedded
Markov chain. Remember that N is the number of queues. At any time, there is a positive
probability that the next N events are signals sent to the N queues and which empty all
the queues. Therefore, the chain is ergodic. �

4. PARTIAL REJUVENATION

We now assume that the effect of the signal is to delete some of the inert customers present
in the queue. However, it does not delete all of them with probability 1. The probability of
deletion is state dependent. It depends on the number of inert customers and the number
of usual customers. Let the state be (xU, xI), the probability of a deletion of m customer is
given by the following probability:

Pr(m deletions given state(xU, xI)) = β(xU, xI,m) (5)

Of course this is only defined for m ≤ xI and we have:
∑xI

m=0 β(xU, xI,m) = 1. We prove, in
the following theorem, that for a well-defined distribution β, the steady-state distribution
has a multiplicative form. For the sake of readability, we assume that matrix C is zero and
the signals only arrive from the outside.

Theorem 4.1: Assume that for all queue, the effect of the signal on inert customers is
given by probability:

β(xU , xI + m,m) =
xU

xU + xI

(
m∏

k=1

xI + k

xU + xI + k

)
=

xU

xU + xI

(xI + m)!(xU + xI)!
(xU + xI + m)!xI !

)1||x||>0,

(6)

and β(0, 0, 0) = 1. Assume that the Markov chain (x)t = (x1, . . . , xi, . . . xN )t is ergodic.
If the following flow equations have a solution such that ρU

i + ρI
i < 1 for all i,

ρU
i =

λU
i +

∑
j μjρ

U
j P (j, i)

μi + λS
i

, (7)
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and

ρI
i =

λI
i +

∑
j μjρ

U
j N(j, i)

λS
i

1−ρI
i

, (8)

then the steady-state distribution has a product form solution:

π(x) =
N∏

i=1

(1 − ρU
i − ρI

i )
||xi||!

xU
i ! xI

i !
(ρU

i )xU
i (ρI

i )
xI

i . (9)

Proof: once again, the proof is based on the analysis of the Kolmogorov equation at steady
state:

π(x)

(∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0

)
=
∑

i

π(x − eU
i )λU

i 1xU
i >0

+
∑

i

π(x − eI
i)λ

I
i1xI

i>0

+
∑

i

π(x + eU
i )

(xU
i + 1)μi

||xi + eU
i ||

di

+
∑

i

∑
j

π(x + eU
i − eU

j )
(xU

i + 1)μi

||xi + eU
i ||

P (i, j)1xU
j >0

+
∑

i

∑
j

π(x + eU
i − eI

j)
(xU

i + 1)μi

||xi + eU
i ||

N(i, j)1xI
j>0

+
∑

i

λS
i

∑
m≥0

π(x + eI
im)β(xU

i , xI
i + m, m).

Once again this equation includes null transitions, on both sides of the equation, when the
queue size is 0. We use the same arguments as in the previous proof of product form.

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0 =
∑

i

λU
i

xU
i

ρU
i ||xi||

1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||

1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||

P (i, j)1||xj ||>0

+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||

N(i, j)1||xj ||>0

+
∑

i

λS
i

∑
m≥0

(ρI
i)

m (||xi|| + m)!xI
i!

||xi||! (xI
i + m)!

β(xU
i , xI

i + m, m).
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We use the definition of the distribution β. After substitution, we obtain:

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0 =
∑

i

λU
i

xU
i

ρU
i ||xi||

1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||

1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||

P (i, j)1||xj ||>0

+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||

N(i, j)1||xj ||>0

+
∑

i

λS
i

xU
i

||xi||
∑
m≥0

(ρI
i)

m1||xi||>0

+
∑

i

λS
i

∑
m≥0

(ρI
i)

m1||xi||=0.

As ρI
i < 1,

∑
m≥0(ρ

I
i)

m = (1 − ρI
i)

−1. We make the same decomposition of λS
i into

λS
i

xU
i

||xi|| + λS
i

xI
i

||xi|| .

Furthermore,

xU
i

||xi|| = 1 − xI
i

||xi||

and we move the negative part to the left-hand side (l.h.s.).

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

λS
i

1 − ρI
i

xI
i

||xi||1||xi||>0 +
∑

i

xU
i (μi + λS

i )
||xi|| 1||xi||>0

=
∑

i

λU
i

xU
i

ρU
i ||xi||1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||P (i, j)1||xj ||>0
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+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||N(i, j)1||xj ||>0

+
∑

i

λS
i

1
1 − ρI

i

1||xi||>0

+
∑

i

λS
i

1
1 − ρI

i

1||xi||=0.

The last two terms of the right-hand side (r.h.s.) are gathered and we cancel the term λS
i ,

which is present on both sides on the equation.

∑
i

(λU
i + λI

i) +
∑

i

λS
i

1 − ρI
i

xI
i

||xi||1||xi||>0 +
∑

i

xU
i (μi + λS

i )
||xi|| 1||xi||>0

=
∑

i

λU
i

xU
i

ρU
i ||xi||1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||P (i, j)1||xj ||>0

+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||N(i, j)1||xj ||>0

+
∑

i

λS
i

ρI
i

1 − ρI
i

.

We decompose into three equations:

∑
i

(λU
i + λI

i) =
∑

i

ρU
i μidi +

∑
i

λS
i

ρI
i

1 − ρI
i

, (10)

∑
i

λS
i

1 − ρI
i

xI
i

||xi||1||xi||>0 =
∑

i

λI
i

xI
i

ρI
i||xi||1||xi||>0 +

∑
i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||N(i, j)1||xj ||>0,

(11)

∑
i

xU
i (μi + λS

i )
||xi|| 1||xi||>0 =

∑
i

λU
i

xU
i

ρU
i ||xi||1||xi||>0 +

∑
i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||P (i, j)1||xj ||>0.

(12)

The second and third equations are satisfied due to the definition of ρI
i (Eq. (8)) and

ρU
i (Eq. (7)). It remains to prove that the first equation is a global flow equation between
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the network and the outside. We consider Eq. (8) and we multiply by the denominator:

λS
i

1 − ρI
i

ρI
i = λI

i +
∑

j

μjρ
U
j N(j, i).

We proceed the same way for Eq. (7):

μiρ
U
i = λU

i +
∑

j

μjρ
U
j P (j, i).

We sum for all queue index i and we add the two equalities:

∑
i

μiρ
U
i +

∑
i

λS
i

1 − ρI
i

ρI
i =

∑
i

λU
i +

∑
i

∑
j

μjρ
U
j P (j, i) +

∑
i

λI
i +
∑

i

∑
j

μjρ
U
j N(j, i).

Taking into account that for all i,
∑

j P (i, j) +
∑

j N(i, j) = 1 − di, as matrix C is zero, we
get: ∑

i

μiρ
U
i di +

∑
i

λS
i

1 − ρI
i

ρI
i =

∑
i

λU
i +

∑
i

λI
i.

And we find the first flow equation and that concludes the proof. �

5. CONCLUSION

We have presented here a new types of G-networks with a new type of customers. Typically,
we represent an age-dependent server, with a service capacity, which decreases with time
until a rejuvenation takes place. We hope that such a theoretical result will help to develop
new models for G-networks in the performability domain. It is possible to extend this result
for a more general partial rejuvenation with a more complex state-dependent distribution
of destruction.
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APPENDIX

We assume that the solution as a product form solution and each queue has distribution at steady
state given by Eq. (4). After simplification, and exchanging indices i and j in the last term of the
r.h.s., we get:

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0 =
∑

i

λU
i

xU
i

ρU
i ||xi||1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||1||xi||>0

+
∑

i

ρU
i μidi
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+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||P (i, j)1||xj ||>0

+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||N(i, j)1||xj ||>0

+
∑

i

λS
i

∑
a≥0

∑
b≥0

(ρU
i )a(ρI

i)
b1||xi||=0

+
∑

j

μjρ
U
j

∑
i

C(j, i)
∑
a≥0

∑
b≥0

(a + b)!(ρU
i )a(ρI

i)
b

a!b!
1||xi||=0.

First, let us consider the double summation in the last two terms of the r.h.s.:

(a + b)!(ρU
i )a(ρI

i)
b

a!b!
.

It is well known that, if ρU
i + ρI

i < 1, then:

∑
a≥0

∑
b≥0

(a + b)!(ρU
i )a(ρI

i)
b

a!b!
= (1 − ρU

i − ρI
i)
−1.

Thus, this double summation is equal to Ri. On the r.h.s., we now write 1||xi||=0 = 1 − 1||xi||>0

and the move the negative terms on the l.h.s. to factorize.

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

xU
i μi

||xi|| 1||xi||>0 +
∑

i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri1||xi||>0

=
∑

i

λU
i

xU
i

ρU
i ||xi||

1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||

1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μiρ
U
i

xU
j

ρU
j ||xj ||

P (i, j)1||xj ||>0

+
∑

i

∑
j

μiρ
U
i

xI
j

ρI
j ||xj ||

N(i, j)1||xj ||>0

+
∑

i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri.

Now we decompose Ri into Ri(x
U
i /||xi||) + Ri(x

I
i/||xi||) and we substitute in the l.h.s. After

substitution, factorization and exchanging indices i and j in the fifth and sixth terms of the
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r.h.s., we get:

∑
i

(λU
i + λI

i + λS
i ) +

∑
i

⎛
⎝μi + (λS

i +
∑

j

μjρ
U
j C(j, i))Ri

⎞
⎠ xU

i

||xi||1||xi||>0

+
∑

i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri

xI
i

||xi||1||xi||>0

=
∑

i

λU
i

xU
i

ρU
i ||xi||

1||xi||>0

+
∑

i

λI
i

xI
i

ρI
i||xi||

1||xi||>0

+
∑

i

ρU
i μidi

+
∑

i

∑
j

μjρ
U
j

xU
i

ρU
i ||xi||

P (j, i)1||xi||>0

+
∑

i

∑
j

μjρ
U
j

xI
i

ρI
i||xi||

N(j, i)1||xi||>0

+
∑

i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri,

which can be decomposed into three parts:

∑
i

(λU
i + λI

i + λS
i ) =

∑
i

ρU
i μidi +

∑
i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri

×
∑

i

⎛
⎝μi +

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri

⎞
⎠ xU

i

||xi||1||xi||>0

=
∑

i

⎛
⎝λU

i +
∑

j

μjρ
U
j P (j, i)

⎞
⎠ xU

i

ρU
i ||xi||

1||xi||>0,

and

∑
i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri

xI
i

||xi||1||xi||>0 =
∑

i

⎛
⎝λI

i +
∑

j

μjρ
U
j N(j, i)

⎞
⎠ xI

i

ρI
i||xi||

1||xi||>0.

The last two equations hold because of the flow equations (i.e. Eqs. (1) and (2)). It remains to
prove that the first equation is consistent with Eqs. (1) and (2) and describes the flow between the
network and the outside. From these equations, we obtain:

ρU
i μi + ρU

i Ri

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠ = λU

i +
∑

j

μjρ
U
j P (j, i)

and ⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Riρ

I
i = λI

i +
∑

j

μjρ
U
j N(j, i).
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Thus, adding the two equalities:

ρU
i μi + (ρU

i + ρI
i)Ri

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠ = λU

i + λI
i +

∑
j

μjρ
U
j (P (j, i) + N(j, i)).

But Ri(ρ
U
i + ρI

i) = Ri − 1. After substitution and summation on i, we get:

∑
i

ρU
i μi +

∑
i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠ (Ri − 1) =

∑
i

(λU
i + λI

i)

+
∑

j

μjρ
U
j

∑
i

(P (j, i) + N(j, i)).

Moving the negative terms on the r.h.s., we get:

∑
i

ρU
i μi +

∑
i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri =

∑
i

(λU
i + λI

i + λS
i )

+
∑

j

μjρ
U
j

∑
i

(P (j, i) + N(j, i) + C(j, i)).

Remember that due to the normalization, we have for all i

di +
∑

j

P (i, j) +
∑

j

N(i, j) +
∑

j

C(i, j) = 1.

Therefore, after cancellation of terms, we get:

∑
i

(λU
i + λI

i + λS
i ) =

∑
i

ρU
i μidi +

∑
i

⎛
⎝λS

i +
∑

j

μjρ
U
j C(j, i)

⎞
⎠Ri.

This concludes the proof.

https://doi.org/10.1017/S0269964817000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000092

	1 Introduction
	2 Model and product-form steady-state distribution
	3 Stability
	4 Partial rejuvenation
	5 Conclusion

