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1. Introduction

In this paper we define relative congruence ideals for various automorphic symmetric
powers Symm” f of a Hida family f over Q in big ordinary Hecke algebras for symplectic
and unitary groups (these powers are now known to be automorphic for m < 8) and we
prove, under some assumptions, that they coincide with the characteristic power series of
(the Pontryagin duals of) Greenberg Selmer groups over Q for related symmetric powers
Af = Symm?* @ det™ py of the Galois representation of the family f. Note that these
Selmer groups over Q are modules over the weight variable Iwasawa algebra which are
finitely generated but a priori not known to be torsion except for the symmetric square.
It follows from our result that they are. Similar results when one includes the cyclotomic
variable (that is, for Selmer groups over the Z,-extension Qu of @) could probably also
be studied but are not dealt with in this paper. Let us be a little more precise.

Let N > 1 and let p be an odd prime not dividing N. Let E/Q, be a finite extension
of Q,, O its valuation ring, @ a uniformizing parameter and k = O/(w) its residue
field. Let A1 = O[[X]] be the one variable Iwasawa algebra identified to the completed
group algebra of 14 pZ, over O by the choice of a topological generator u of the group
14 pZp. Let hy be the cuspidal Hida Hecke algebra (generated over O by the T’s for £
prime to Np, by the diamond operators < a >q for a € Z; for the cohomological weight
0, and by Up. The ring h; is reduced; it is endowed with a structure of Aj-algebra by the
homomorphism sending X to (u)g — 1 for which it is finite and flat. Let w: hy — A be a
surjective Aj-algebra homomorphism onto a local domain which is finite and torsion-free
over A. Geometrically, it amounts to considering an irreducible component of Spech;.
We put n(Up) = a. We assume that O is sufficiently big so that the residue field Aj/my,
of Ay coincides with k. We denote by ¥ the reduction of an element y € A;. Let I'g be
the absolute Galois group. We assume that the residual Galois representation p,: g —
GL; (k) associated to u is irreducible. It is well known that under this assumption
there exists a continuous Galois representation p,: I'g — GL2(A1) associated to u.
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Let D, C I'g be a decomposition group at p. Let w be the cyclotomic character modulo
p (we shall also denote by w its Teichmiiller lift). The ordinarity condition for u
implies that there exists a unique integer a € [0, p —2] and a (not necessarily unique)
D ,-stable two-step filtration 0 C FOc Fel = P With D, acting by unr(er) on gr® and
by unr(@ Hw ! on gr“‘_l. In other words, the restriction of the representation p,, to
a decomposition group D, at p is conjugate to

unr(a) *
0 unr@ Heo )"

Ifa+1 < p—1, the filtration is uniquely determined, but we want to allow the possibility
a+1=0 (mod p—1). This is why we assume throughout the paper the condition (RFR)
of residual Frobenius regularity (to be reinforced later)

@ #£ 1. (RFR)

Under this condition, the filtration defined above is unique, evenifa+1 =0 (mod p —1).
Let Sty be the standard representation of GL,. For any j > 1, let A/ = Symm?/ ®
det™/ Sty; we assume from now on that p > 2j + 1; in particular, viewed as a Z p-schematic
representation, the (2j+ 1)-dimensional representation of GL, A/ has irreducible
geometric fibers. Let Al = A opy: 'g = GLzj11(Ay). Let X: I'g — AlX denote the
restriction (to D,) of the universal deformation of the p-adic cyclotomic character yx
unramified outside poo: if x (o) = w(o)ut@ (that is, £([z, Q,]) = log,(z)/ log,,(u) for
z € Zy). then

X(o) = x (o)1 + X)“.

Let &, = w*X. Then the restriction of A{L to the local Galois group D) leaves stable
a filtration (Fk(”+1)Ai)k with Ai-free graded pieces grk(““)A{L on which D, acts by
unr(e )¢§. In order to define the ordinary Selmer group of .A,jt even if the residual action
of the inertia is trivial, it is crucial for us that this filtration be well defined modulo p.
To achieve this, we assume throughout the paper the following reinforcement of (RFR):

aon £ 1 (RFR),)

where ¢, denotes the least common multiple of the integers 1, 2, ..., 2n. Note that (RFR,)
will be enough to guarantee R = T theorems for U(n + 1) but for actually deducing from
these results a relation between congruence modules and Selmer groups, the stronger
assumption n(a + 1) < p — 1 will be ultimately needed.

Let A 1 be the normal closure of Aj. It is a two-dimensional normal local ring, hence it
is Cohen—-Macaulay so that Ay is free over A. For any O-module M, we denote by M* =
Homp(M, E/O) its Pontryagin dual. Let us consider the minimal p-ordinary Selmer
group associated to Aj;:
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Sel(Ale) = Ker HI(Q, A{L X4, ZT)

— [[H'Ue. A ®a, AD) x H(D,y, (Al /F Al @4, A])/L,,
LEp

where L, denotes the image in HI(D,,, .A,jL ®a, ZT) of
L, =Ker (Hl(Dp, FOA) @4, A7) — H'(I,, (FOML/F AT) @34, XT)) .

Its Pontryagin dual Sel(A )* is finitely generated over Al. Recall that the
Greenberg-Iwasawa main conjecture implies (by taking the cyclotomic variable s to be
1) that

(1) there is a p-adic L function L p(Ale) in A | interpolating normalized special values
L*(Aé{, 1) where f; runs over the eigenforms of classical weights k > 2 occurring
in u.

(2) Sel(.A )* is torsion and a characteristic power series is equal to L p(A ) up to a unit

in A1, this means, more precisely, that the localization at each height one prime of
Ay of its first Fitting ideal Fltto(Sel(.A )*) is generated by p(A ).

Let T; be the localization of h; at the maximal ideal corresponding to the residual
representation p,. The homomorphism p factors through T;. We still denote u: Ty —
A the resultlng homomorphlsm Extendlng the scalars, it gives rise to a surjective
homomorphism Tl T ®a, A1 — A1 which we again denote by s The context should
make clear the meaning of this notation. Since T is reduced and A1 is a domain which
is flat over A, we see that T‘] is reduced too. By tensoring with Ky = Frac(A|), we have
a splitting

T1®Z1K1 =K XT/IIC

where the ﬁrst projection is given by u®]Idk,. Let T’ be the image of the second
projection Tl — T/ . One defines the congruence ideal of wby ¢ = T1 N (A1 X {OT’ b.

We view this 1deal as an ideal of A}. Recall that for a finitely generated Aj-module M ,
any generator of the smallest principal ideal X; containing the first Fitting ideal Fitty(M)
of M is called a characteristic power series: Xy = (Char(M)). It is non-zero if and only if
M is torsion. Consider the assumption

(¥) N is squarefree, there exists a subfield k" C k such that SLy(k") C Im p,, C GL2(k"),
moreover for any prime ¢ dividing N, the restriction to Iy of p, is non-trivial (hence
unipotent).

Let R; be the universal deformation ring for N-minimal p-ordinary deformations of p,,.
It can be viewed as a Aj-algebra in two ways, which are equivalent because our ground
field is Q: one way is using the determinant of p"™V: it is a deformation of the global
character @~ @tD: g — k*. Since the pair (Aq, Cba_l) can be viewed as the universal
deformation of the character w=@tD | the global character p"™V defines a structural
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morphism A; — Rj. Another is to consider the restriction of p"™" to [ pt

: 1 =%
pumv | 1 ~ ( ) ) .
P 0 "Ilzllmw

Since the local character W"V: [, — k* is a deformation of @~“*V it also gives rise to
a structural morphism A; — R;. These two structures coincide. Recall a special case of
theorems by Wiles and Hida

Theorem 1.1. Assume (%) and either (RFR) ora+1 < p — 1, then the natural surjection
R — Ty is an isomorphism of A1-algebras and T is local complete intersection over Aj.
Moreover, ¢, is a principal ideal of Z].

The precise definition and some properties of local complete intersection algebras are
given in §8.4. From the theorem, one can deduce equalities.

Corollary 1.2. (a) Assume (x) anda+1 < p—1, then ¢, = (Char(Sel(AL)*)),

(b) Assume (x) and (RFR) ora+1 < p—1, then ¢, = (LP(A}L)).

Note that the p-adic L function L P('All/«) interpolating the special values L*(A%k) has
been constructed by one of the authors [22] (see also his notes of the Pune course [24]).

The goal of this paper is to establish analogues of part (a) of the theorem above for
higher j’s, provided the automorphic base change is established for Symm™ for certain

values of m less than 2j. For any imaginary quadratic field K of discriminant D prime
to N in which p splits, let U (n) be a definite unitary group for K.

Theorem 1.3. Assume (%) and 3(a+1) < p—1. Then,

e for j =3, the characteristic power series of Sel(.A,jL)*< is a generator of the ideal of
congruences between the family Symm3u and Siegel families which are not of the form
Symm> i’ for other GL,-families u',

o for j =2, for U(4) a unitary group as above, the characteristic power series of Sel(Aj,)*
is a generator of the congruence ideal between the U(4) Hida family associated to
Symm3u and families on U(4) which do not come from Siegel families.

Similarly, we have

Theorem 1.4. If one assumes (%) and 4(a+1) < p—1, then for j=4, for U() a
unitary group as above, the characteristic power series of Sel(AiL)* is a generator of the
congruence ideal between the U(5) Hida family Symm®*u and families of unitary forms
on U(5) which do not come from congruences between Symm>u and families on GSp, by
the integral transfer from GSpy to U(5).

See §83 and 4 for a more precise form of the statement and its proof. To put these
results in perspective, let us mention a more elementary result.
Let p be a prime of A;. For j = 3, 2,4, consider the condition

Fitto(Sel(A/)*) C p (S;)

and the conditions
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(C3) there exists a Hida family G of Iwahori level N on GSp, which is not the Symm3
of a Hida family on GL, and such that Symm’x = G (mod p)

(C3) there exists a Hida family G of Iwahori level N on U (4) which does not come from
GSp,4 by base change and such that Symm3u = G (mod p)

(C4) there exists a Hida family G of Iwahori level N on U(5) which does not come from
GSp,4 by base change and such that Symm4,u = G (mod p).

Theorem 1.5. Assume (), then (C3) implies (S3) or (S2) or (Sa).

See §5. It requires a theorem of big image of Galois established by [25] when A} = A}
and by A. Conti in his thesis [9] in general. Note that the conditions (C;) are not mutually
exclusive so that the difficulty of separating a priori the possible conclusions (S;) is not
SO surprising.

Our theorems do separate the conclusions and imply in particular for j =3,2,4
that (C;)implies (S;). Their proof requires using more advanced tools, namely R =T
type theorems in the minimal level case and Hida—Tate theory of congruence ideals for
Gorenstein rings. Actually our method applies to more cases:

Theorem 1.6. Assume (*) and p—1> max(n(a+1), (n—1)) hold. Assume also that
N has at least two prime factors qi and q». Assume that the transfers Symm"~! and
Symm” from GL(Q) to GL, respectively GL,11 are established. Then, for any imaginary
quadratic field K of discriminant prime to Np in which p and q split and q> is inert
and for U(n) and U(n+ 1) corresponding unitary groups for K, the characteristic power
series of Sel(A})* is a generator of the quotient of the congruence ideal between the family
Symm" e and families of unitary forms on U(n+ 1) by the congruence ideal between the
family Symm”™ ™'y and families of unitary forms on U(n). In particular, the quotient of
these ideals is integral and principal.

This theorem applies for n = 5, 6,7, 8 by [7] where the Symm™ transfer is established
for m < 8. See §6 for a more precise statement and the proof.

We also give in § 7 an analogue result starting from a Hida family o on GSp,(Q) instead
of a Hida family u on GL;(Q). We still need to assume that it has Iwahori auxiliary
level T@(N) for a squarefree integer N and that its Galois representation satisfies
N-minimality, p-distinguishability and residual bigness (see § 7). The method and result
are similar although the Hida family o is two variable so that the commutative algebra
results involve three-dimensional local rings, so that we can only compare localizations
at height one primes of the congruence ideal and the characteristic power series of the
standard (degree 5) Selmer group. The tool this time is the base change from GSp,(Q)
to U(4) (for an imaginary quadratic field) established by Mok [5, 32] and the conclusion
is that the two variable characteristic power series of the degree 5 Galois representation
associated to the family o generates the height one part of the ideal of congruences
between the base change of o to U(4) and families on U(4) which do not come from

GSp4(Q)-
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For such a family o, we formulate in § 7 assumptions
e (%)@ the Galois representation p, has residual large image and is N-minimal
e (RFR)® 3, is p-distinguished,
which are analogue of (¥) and (RFR) for GL;. The transfer homomorphism between
Hecke algebras T§ — T3 induces by specialization to the automorphic weight (1,2, 2),
respectively (2,2), a transfer homomorphism le,tz,z(N ,0) —> 7’2f2(N , 0) from the Hida
Hecke algebra for U(3, 1) of automorphic weight (1, 2,2) to the Hida Hecke algebra for
GSp(4) of weight (2,2). We can consider this homomorphism as being associated to a
p-adic transfer map from p-adic Siegel cusp forms to ‘stable’ p-adic automorphic forms
on U(3, 1) (stable means here p-adic limits of stable forms). Let us mention two corollaries
(see Corollaries 7.5 and 7.6).

Corollary 1.7. Let f € Sho(T'P(N)) be a Siegel cusp eigenform of automorphic weight
(2,2) such that (x)@® and (RFR)® hold. Assume that the specialization T, 5(N, O) in
automorphic weight (2,2) of the Hida Hecke algebra for GSp(4) and the sp’ecialization
7‘172’2(N, O) in automorphic weight (1,2,2) of the Hida Hecke algebra for U(3,1),
are reduced. Then the O-length of the Selmer group Sel(Sty) of the 5-dimensional
representation associated to f is equal to the valuation of the ideal of congruence between
a transfer fyw) of f to U(4) and p-adic automorphic forms on U(4) of automorphic
weight (ki, k2, k3) = (1,2,2) and ITwahori level N which do not come by transfer from
GSp(4).

Note that there are no algebraic automorphic forms on U(4) of automorphic weight
(ki, k2, k3) = (1,2,2) because the weight is not cohomological. But even if one transfers
from the definite unitary group U(4) to a quasi-split group U(3, 1), there are still no
classical holomorphic automorphic forms on U (3, 1) of automorphic weight (k1, k2, k3) =
(1,2, 2) because the weight is even not in the non-degenerate limit of discrete series.
However, by using Hida theory [23, Theorem 6.8] for U(3, 1), we do have an action of
the Hecke algebra A5 on ordinary p-adic holomorphic automorphic forms of this weight.

The second corollary applies to abelian surfaces:

Corollary 1.8. Let A be a modular abelian surface defined over Q, ordinary at p
of squarefree conductor N (p prime to N). Assume that the rings T5,(N,Zp) and
lefz,z(Na Zp) are reduced. Let T, A be the Tate module and S,A C /\2 T,A the associated
rank 5 Galois representation. Assume that the residual representation A[p] is modular
for a Siegel modular form of weight (2,2) for which (x)® and (RFR)® hold. Then the
cardinality of Sel(S,A) spans the Zp-ideal of congruence between a transfer fyw) of f to
U @) and p-adic automorphic forms on U(4) of automorphic weight (ki, k2, k3) = (1,2, 2)
and Twahori level N which do not come by transfer from GSp(4).

See the end of § 7 for a more precise statement and the proof.
The last section presents the formalism of congruence modules, in particular the
transfer formula (Corollary 8.6) which is used throughout the paper.
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2. Theorems R, | =T, _, for n > 4

2.1. Big ordinary Hecke algebra for unitary groups

Recall that we fixed a squarefree integer N =¢qj-...-qx prime to p. As stated in
Theorem 1.6, we will need to assume in some cases that k > 2. Hida theory for unitary
groups [20, Chapter 8] is developed using coherent cohomology but hereafter we follow
the presentation of [14, § 2] (see also [15]) using definite forms of unitary groups. We fix an
auxiliary imaginary quadratic field K = Q(+/—A) of negative discriminant —A relatively
prime to Np such that p = pp© and g; = q1q{ split and g> remains inert in K. Let D be
a central division algebra over K of rank n? whose ramification set Sp consists in the
primes above g;. From the calculations of [5, (2.3) and Lemma 2.2}, we see that

(Case 1) If n is odd or is divisible by 4, then for any k > 1, there exists an involution
of second kind * on D which is positive definite at co and such that the unitary group
U (D, %) is quasi-split at all inert places.

(Case 2) If n = 2m with m odd; for k > 2 there exists an involution of second kind * on
D which is positive definite at co and such that the unitary group U (D, *) is quasi-split
at all inert places except ¢».

We fix G = U(D, %) as above.

Definition 2.1. We fix an auxiliary level group UP = ]_[l 1Ugi xU NP of Twahori type of
squarefree level N; this means that for each prime ¢ dividing N, Uj is

—equal to the standard Iwahori subgroup of G, if G is quasi-split at ¢ (that is, either
G, = GL,(Ky) if ¢ splits in K, or if G, is the quasi-split unitary group),

— is a minimal parahoric subgroup if G, is not quasi-split.

Remark 2.2. Let Il be any cuspidal automorphic representation on G with
cohomological weight and level U = U?” x U,. Let g be a prime dividing N which is

inert in K; the condition Il qq # 0 implies that the base change of Ilg, to K, has
fixed vectors by the Iwahori Subgroup of GL,(Ky). Let oqy,;, be the p-adic Weil- Dehgne
representation of Ig 4. Let UHGJ, be its restriction to the inertia subgroup I,. If the
reduction modulo p of Enc_q is regular unipotent, the same holds for EHG.q and Ig 4 is
the twist of the Steinberg representation by an unramified, at most quadratic, character.

This remark will be useful later.

We fix an isomorphism i,: G, = G(Q,) = GL,(Q,), which we use to identify these
groups. Thus, we can view U, = i;l(GL,, (Zp)) as a hyperspecial maximal compact
subgroup of G,. From now on, we omit the mention of i, and we simply write
U, = GL,(Zp). Let I, C U, be the Iwahori subgroup and for 0 < b < c, IS’C C U, be the
subgroup of matrices whose reduction modulo p¢, respectively p?, belong to the group
of Z/p°Z-points of the subgroup B of upper triangular matrices of GL,, respectively
to the group of Z/p?Z-points of the group N’ = diag(1,...,1,%)- Nt where NT is the
group of upper unipotent matrices. Note the difference with [14, Definition 2.1] where the
condition modulo p? is that u € NT(Z/p?Z). Here we enlarge the group Nt to N’. This is
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because we want to define a big ordinary Hecke algebra depending only on the semi-simple
variables of the diagonal torus 7', not on the whole of T'. Let T** = Ker(det: T — G,,). We
have a decomposition T = T** x G, given by u — (u*®, det u) where u = diag(uy, ..., u,)
and u** = diag(uy, ..., up—1, (uy-... cup—1)"hH.

Let G be the locally compact group of finite adeles of G and Gg be the subgroup of
principal adeles. By compactness of G, Gq is discrete in Gy and for any compact open
subgroup U of G ¢, the quotient Gg\G ¢/ U is finite (see [36, Chapter 5, § 3, Theorem 5.5]).
We fix from now on the auxiliary level group U = U? x U, of Iwahori type of squarefree
level N in the sense of Definition 2.1. As usual, one can add another auxiliary prime r (in
the sense of Taylor—Wiles) prime to Np to assure that U is sufficiently small: GogNU = 1.
Note that at the prime r, U is no longer of Iwahori type but of strict Iwahori type. After
localization at a suitable maximal ideal, it will not introduce extra ramification at r for
the automorphic forms occuring in the Hida—Geraghty Hecke algebra of auxiliary level
U defined below.

Forc>b>0,let U = UP x IZ’C. Let E be a sufficiently large p-adic field; let O be
its valuation ring. Any (n — 1)-tuple A = (A1, ..., Au—1) € Z" ! defines a character of the
diagonal torus T of GL, (and of T** = T NSL,) by

. A o
diag(ty, ... .to) = 17" ..o

Let us assume that Ay > ... A,_1 =0, let Ly(O) be the ‘maximal’ O-representation of
GL, of highest weight A (see [37]). Let wo be the longest element of the Weyl group of
GL,,. Then L, (0O) is defined as the algebraic induction of wg) from B to GL,, that is, the
O-module of rational functions ¢ € O[GL,] such that ¢ (tntg) = (wor)(t)¢(g) for any
b =tnt € B. We define the O-module S, (U”¢; O) of cuspidal forms of level U?¢ for G
by

S;L(Ub’c; O) ={s: Go\G s — L, (0); s(xu) = u;l -s(x) for any u € Ub’c}.

For ¢ > 0, let hy (U"; O) be the O-algebra of endomorphisms of Sy (U”¢; ©) generated
by the Hecke operators
wel; 0

o Tpi = [UPaS U, where i =1,...,n, aif) = ( o 1
n—i

), and & runs over the

degree one primes of Ok, relatively prime to M Ap.

o Uy, = (wo)»)(ag))fl[Ub'cag,)Ub’C])\, i=1,...,n—1, where w is a uniformizing
parameter of p and ag) = <w01,- 1 0 ) as before,
n—i
o (u); = [UPuU"); where u € T(Z) (actually, it depends only on the image of u in
T5(Z/ p"Z).

Recall that [UPcaU?€], acts by ([UbaqUb<]; - 5)(x) = > i p-s(xa;) where
UPcqUb< = | |; 0;UP< (see beginning of [14, §2.3]). The operators Tz ;, Ugy; and (u)s
preserve integrality [14, Definitions 2.3.1 and 2.3.2].

Let e be the ordinary idempotent associated to Uy, = ]_[::11 Uy ,i. We define

hpy = Liglé - (USS5 0).

C
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It does not depend on the dominant weight A [14, Proposition 2.6.1]. It is reduced [14,
Lemma 2.4.4]. Let To =T(Zp), T, = T*°(Zp); and similarly let T, = Ker(T(Z,) —
T(Z/p*Z)), T® = Ker(T**(Z,) — T**(Z/p*Z)). We can decompose Ty = T(Z/pZ) x T
and Ty = T} x (14 pZp). For p > 2,let u = 1+ p. We can identify the O-algebra A, of
power series in n — 1 variables to the completed group algebra O[[T}*]] by sending 1 + X;
to diag(1;—1, u, 1,—1—;, u‘l). We view h,_1 as a A,_1-algebra via the weight 0 diamond
action T} — h:ﬁl, u — (u)g. As a A,_j-algebra, h,_; is finite torsion-free. Indeed, the
proof of [14, Proposition 2.5.3] goes through when one replaces the group 7, by the group
T;*, because with our modified definition of the groups U b we do have

S U0 = 5, 0)
hence, by Hida’s lemma (see [14, Lemma 2.5.2], we see that
¢ S,UPX):E/O)T =e-5,U"" E/O)

which is the key step for the vertical control theorem and its corollary [14, Corollary
2.5.4]. From this fact, the finiteness and torsion freeness of our Hecke algebra over A,_;
follow as in [14, Corollary 2.5.4].

2.2. Symm”*1 Langlands functoriality

We assume that the Symm”*1 Langlands functoriality from GL; to GL, is established
(sending non-CM classical cusp eigensystems to cuspidal eigensystems on GL,). It
is known for n—1 < 8 thanks to the works of Kim and Shahidi [28], Kim [26] and
Clozel and Thorne [6, 7]. Let @ be a non-CM holomorphic cuspidal representation
of GL2(Ag) cohomological for a local system of highest weight a’ > 0 (later, o’ will
vary in the arithmetic progression a+ (p—1)Z for a as in the introduction), with
conductor N and level group Uo(l)(N )={ue GLg(z); u (mod N)upper triangular}, (that

M
is, dim 7% V) = 1). The Langlands parameter ro: Wr — GL2(C) of n is given by
/ ’ O 1
roo(z) = diag((z/2) @172, (Z/2)@FD/2) for z € We and roo(j) = (( 1+ 0).
By assumption, there is an automorphic cuspidal representation IT = Symm"_ln on
GL,. The Langlands parameter R : Wr — GL,(C) of Il is given by its restriction to
Wc by

ROO(Z) — diag((z/Z)(n_l)(a,H)/z, (Z/Z)(n—3)(a’+l)/2’ o (Z/Z)—(n—])(a/-i-])/Z)‘

It follows from the local Langlands correspondence for GL,(Ag) that IT is Steinberg at
all primes dividing N. Let ITx be the base change of IT to GL,(Ag) (see [1, IIL,5]); the
Langlands parameter of ITg oo is Roolwe . It is cohomological. Moreover, Ik 4 is Steinberg
at all primes q of K dividing N. In particular, [Tg is square-integrable at both places of
Sp; therefore, by the Jacquet-Langlands correspondence for GL, (see [1, 44]), it descends
to a cuspidal representation I1p on D*(Ak). Note that ITp o = Ik « is cohomological.
By [5, Lemma 3.8 and Proposition 4.11], ITp descends as a cuspidal representation I1g on
G (for more general results of descent from D> to G, see Labesse [29, Theorem 5.4] and
Mok [32]). The difference with [5, Proposition 4.11] is that here I1g o is the irreducible
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representation of highest weight ((n —1)a’, (n —2)d’,...,a’,0) of the compact group
U(n) (instead of being a cohomological representation of U(n — 1, 1)); moreover, g 4
is Steinberg at all places q of K dividing N. Note that

e For any rational prime ¢ prime to Np which splits in K, say, ¢ = ££¢, the Hecke

eigenvalues fg; on the 1-dimensional space Hgs of the Hecke operators Tg;, i =
1,...,n—1, are determined by the relation between Hecke polynomials:

PGV () = Sym' ™! PO(T) € EIT)
where
Pjgi)(T) = 12—, T+q"+ = (T —ag) (T — ).
Sym” ! p;?(T) =(T —aZ_l)(T _ a;—zﬂq) (T — ﬁ;"l),
and
Plslns_l)(T) =T" 11 T" o (=) g/ UTD 2 T o (1) gD 2,

e since a’ # 0, the local component IT, is unramified and the eigenvalues uq ; of the
normalized Atkin-Lehner operators Uy, (i =1,...,n—1), on the finite-dimensional

I .
vector space I1,” are given by

n

[1 (T —pit AL w“‘)a’) = sym"~! P{O(T)

u i —
ie=1 w,i—1

where one has put Ug o = Uy, =1d. Explicitly, one has wugz1 = ozZ*], Ug2 =

a’;_2ﬁ—pa,, ce U a1 = ap( ﬁ"a, y'=2_ where ap is the unit root of P,S))(T). Note that
P P

the eigenvalues ug ; are p-adic units since % is. This follows from [14, Lemma 2.7.5]

because the weight A = (A1, ..., Ay) is given by ((n — 1)d’, (n —2)d’, ..., d’, 0), hence it

is regular if @’ # 0, hence the lemma applies.

Let hll\’*"ew be the N-new quotient of ;. For any prime g prime to Np splitting in K
as EE°, let

P%-(n_l)(T) — Tn _ TS,ITn_] + . + (_l)Jq](]'i‘l)/zTS’]Tﬂ—] + - + (—l)nqn(n+l)/2T$,n

be the universal Hecke polynomial of the spherical Hecke algebra of GL, at & and
Pq(l)(T) =T2- T,T +qS, the universal Hecke polynomial of the spherical Hecke algebra
for GL, at g. Recall that €: Z; — pZp is defined by x = o (xX)ut™ . We can interpolate
the formulas above:

Proposition 2.3. There exists a ring homomorphism 6: h,_1 — hy above the algebra
homomorphism An,_1 — Ay given by 1+X; — (A1 +X)""" for i=1,...,n—1. The
homomorphism 6 is characterized by the fact that for any prime g prime to Np splitting in
K as EEC, the image by 6 of the universal Hecke polynomial Ps("_l)(T) is Sym™ ™! Pq(l)(T),

while the images 0(Ug ;) are given by (U[(,l))"_z"+1 . (w(%)(l—}-X)l(%))i_l, Let w be an
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N-new p-ordinary holomorphic cuspidal automorphic form w on GL2(Q) of highest weight
a>0. Let uy: hivfnew — O be the associated eigensystem. Let 6,y =6 (mod X —u® +1).
Then for any rational prime q split in K as €€, pu, 00, sends the universal polynomial
PD(T) to Sym™™! Py (T) and if we put Pr,(T) = (T —ap)(T — Bp), ord(arp) = 0, we

have g 00y (Ug i) = ():;',_"(/f}—",)"_1 fori=1,...,n—1.

pw?

Proof. For primes g # p, the statement is obvious. For the prime p, for any a’ > 0, one

gets
a'(i-1)

0(Up,i) = (U2 (%) (mod X —u® +1).

But we have for a’ > 0

- - » )
ot Br at ) (£>a (D _ gn-2it <£>“ o
p pw-a/ 4 pa’+1 o — Y >

as desired. O

2.3. Galois representations

Let T'g = Gal(Q/Q) and 'y = Gal(K/K). In this section we use notations and results
of [4, §2.1]. Let G, = (GL, x GL}) x {1, j} where j> =1 and j(g,u)j "' = (g~ ', ). It
is a non-connected group scheme over Z. Let v: G — GL; be the homomorphism given by
(g, ) — wand v(j) = —1. We have the inclusions of Lie algebras sl, C gl, C Lie G,. Note
that ad(g, u)(X) = gXg~ ! and ad(j)(X) = —' X. We fix a sufficiently large p-adic field E
with valuation ring O. In this section, we consider representations p: 'y — GL,(R) and
homomorphisms r: I'g — GL,(R) for various O-algebras R. The theorem below follows
from [14, Proposition 2.7.2] (see also [4, Proposition 3.3.4]) and [14, Corollary 2.7.8].

Theorem 2.4. Let A be a dominant weight for GL,; for any cuspidal automorphic
representation I'I’G of G(Ag) occurring in e-S;Lr(UO’l,E), there exists a continuous
semi-simple representation

pri, : Tk — GLy(E)

such that

(i) for g prime to Np splitting in K as E&°, o, is unramified at g and the
characteristic polynomsal of Frobg is PHEE(T)’

(ii) pl{l/c = Pl\-/[/GXl_n
(iii) for any prime q inert in K not dividing Np, Py, is unramified at q
(iv) if moreover A is regular, P, 1s crystalline and ordinary at p and p¢. For instance
at p:
WPJ * e *

X_ll//p’z e
pH,G|FKP ~

—n+1
X nt 1ﬁp,n
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’
where YpioArty: Ky — E* is given on Op by x> xt-ivt and by Yy o
Arty(w) = umy i /um,i—1, i =1,...,n—1 where umy ; is the unique unit eigenvalue
of Ugs,i on (l'I’G’p)’I’ fori=1,...,n—1.

In particular, denoting by Art the global Artin symbol of K, we have for any x € O;,p
det o, oArt(x) = xiZL‘(A;leH*U.

As explained in [14, Proposition 2.7.2], the key ingredient in order to apply the main
result of [16] is [29, Corollary 5.3]. The uniqueness of the unit eigenvalue of Ug,; on

(H’)g”p fori=1,...,n—1is proven in [14, Lemma 2.7.5(2)].

By Theorem 2.4, we have a perfect pairing (, ): E" x E" — E and a character yu =
x1 " I'g: T'g — E* such that
o (y,x) = —p(o)(x, y)

* (pn, (8)x, pri, (cde)y) = pn(d)(x, y).

By [4, Lemma 2.1.1], there is a bijection between ‘polarized representations’ (p, u, {, ))
where p: 't — GL,(E), p: I'g: 'g — E* are homomorphisms and (, ): E" x E" —
E is a perfect pairing, and homomorphisms r: I'o — G,(E). We have —u(c) = (=1)".
Therefore, Theorem 2.4 yields

Corollary 2.5. For ITj; as above, there exists a continuous homomorphism
RH/G: Fg = Gu(E)

such that

e for 8§ € 'k, one has RH/G ) = (,oan (&), x'"(8)),

o Ry (0) = (J; ! (=D)")j.

Let m be an N-new p-ordinary cuspidal holomorphic representation of level N
cohomological of highest weight a > 0 occurring in the Hida family wu. Let p,: I'g —
GL,(0) its p-adic Galois representation. Assume that the residual representation p =
Pr: I'g = GLy(k) has big image, in the sense that there exists a subfield k" C k such
that

SLy (k") € Im p,, C GLy(K)).

Note that up to conjugation the restriction of p, to a decomposition group D, at p is

given by
unr(a) *
0 unr@ Ho !
where a = u(Up).

Let T = Symm"fln be the n — l-symmetric power cuspidal representation of 7 on
GL,(Q) and Ilg its base change to G. Let

Rp = Symm"~!p, : g — GL,(0)

be the Galois representation associated to IT.
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By [4, Lemma 2.1.2], the continuous homomorphism
Rng: g — G4 (0)

associated to I1g is given as follows. Let ¢ be a complex conjugation in I'g. For o € I'k,
we put
Rng(0) = (Rn(0), (det pr(0))" ")

and for o € Pg\l'k, and J, = Symm"~! (? _Ol> (so that J, = antidiag(l, —1,1,...,
(=1)"™1)). Then we put
Rrg(0) = (Ru(@)J ", (=1)""'(det pr (o))" ).

Moreover, we have
voRm, = 8" (det Rp)" ™!,

where 6: I'g/T'g = {£1}. It is ordinary at p and each prime q of K dividing N, its
restriction to the inertia subgroup I, is regular unipotent.
Note that by our assumption, there exists a subfield ¥ C such that

Symm”"~!'SLy (k) € Im Ry C &’ - Symm" ' GL, (k).

This implies that the residual image of Ry is big in the sense of [4, Definition 2.5.1]
(see [4, Lemma 2.5.4] for details). Let m be the maximal ideal of h,_1 associated to the
residual representation

R =Rn,: g — Gu(k).

We fix a decomposition group D) = Ik, at p in I'g. Note that after a given conjugation,
one can assume that the restriction to D, is upper triangular, with diagonal

diag (unr(&)"‘l, unr@)" 20 a)_(”_l)(“H))

which we rewrite as

diag (V1. Vo, Ty D).

Let T,_; be the localization of h,_; at m and, for any weight A" € Z congruent to
((n—Da,(n—2)a, ...,a,0) modulo p—1, let T(U*!, ®) be the image of T,_; in
Endp(e- S;/(U%!, E)) We shall compare, under certain assumptions, T,_;, respectively
T,»(U%!, ©), with the universal ordinary deformation ring R,_1, respectively and Ry of
the representation R defined as follows. Let CNLo be the category of complete noetherian
local O-algebras A with residue field k = O/wgO. For an object A of CNLp, a lifting
r:Tg = Gu(A) of R is a continuous homomorphism such that r (mod my) = R. Two
liftings r, r’: Tg — Gn(A) of R are equivalent if there exists g € 1 +maM,(A) such that
¥’ =g-r-g~'. We consider the functors of liftings D and D,/ from CNLo to Sets defined
as follows:

e The functor D sends an object A to the set of equivalence classes of liftings r: I'g —
Gn(A) of R which satisfy the two following conditions
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(1) r is N-minimal: for each prime ¢ dividing N there exists g, € 1, +my4 - M, (A)
such that for any o € I,

pri o (0) = gq - exp(tp(0)N,) - g !

where
010
00 1
Noe=100"".
00... 1
00... 0
(2) r|p, is ordinary, that is, there exist characters ¥,1,..., ¥, n: Ik, - A* and g €

1, +ma M, (A) such that for any o € I'k,,

Yr1(0) * . *

X Wrao) ...
prior(c) =g- i

X" (o)

with the condition that for any j =1,...,n, ¥, ; is a lifting of Er’j.

e The functor Dy is defined similarly, replacing condition (2) by the stronger condition
(2)x rlp, is ordinary with characters v, ; lifting of Wj (j=1,...,n) and for any
j=1,...,n and for any x € Oy,

Y (Arty (1)) = x s,

The functor D, respectively D, is the functor of N-minimal ordinary, respectively
N-minimal ordinary of weight A’ deformations of R. Note the condition that the characters
¥, j are liftings of Jr’j implies that ¥, ;|;, is a lifting of o= U=D@th (5 =1, n).

Let d, be the least common multiple of all integers k less than n.

Let us consider the following conditions

(1a) a?®-1 £ 1 (mod wg) holds,
(Ib) m—1(a+1) < p—1 holds.

Condition (1a) implies that the characters ¥ ji Dp — k* associated to R| D, are
mutually distinct on the Frobenius element [p, Q,], while condition (1b) implies that
the restrictions to the inertia subgroup of the characters v ;j are mutually distinct. In the
following subsections devoted to the proof that R,—1 = T;_,, assumption (la) is assumed
(although we could have assumed (1b) instead).

Lemma 2.6. Assuming condition (1a) or (1b), the functors D and D/ are representable
by universal couples (R,—1,r"™) and (R, ;™) where R,—1 and R;/ are objects of CNLo

and rMv Lo = Gu(Ru—1) and rj7: Tg — Gu(Ry) are continuous homomorphisms such
univ univ

that pry or'™, respectively r’/"V is conjugate in 1+mp _ My(Ry—1), respectively in

n—1
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1+ mR)L/ Mn (R)\./)} to

Y (o) * . *
x o) ...

X —n+1 I/f;LmiV (O')
with 1//}"‘“’ lifting Jj (j=1,...,n), respectively

w“fjif(a) * *
x ') ...

PR ZoMC))

univ

with the same lifting condition, and such that the restriction of ¥} Jo Arty to (’);( 18 given
by x x it (j=1,...,n).

Proof. As mnoted above, the restriction of pr; oR to the decomposition group
D, at p is upper triangular and its diagonal is given by diag (unr(&)”’1 ,
unr(@)" Bwt L, unr(&)_"+la)_("_l)(“+l>). Hence either assumption 1a), respectively
1b), assures that the characters on the diagonal are mutually distinct on D, respectively
I,,. This is well known to assure that the functors D and D, satisfy Schlessinger’s criterion
for representability (see for instance [42]). O

The ring R,—; has a natural structure of A,_j-algebra given by the characters
wi‘miv: K, — R_,. More precisely, by identifying Z, = Op, we view the topological
generator u of 1+ pZ, as topological generator of 1+p. We then define the structural
morphism A,_; — R,_; by sending 1+ X; to ;T}’H oArtp(u)_1 fori=1,...,n—1.
Note that ¥ is determined by the determinant relation [/, x =1y = x "1 +D/2,

Let Py be the prime ideal of A,_; defined as the kernel of the morphism

. A A
T — O, diag(ty,....ty) =1, ... ty".

Lemma 2.7. For any A congruent to ((n—a,(n—2)a,...,a,0) modulo p—1, the
natural ring homomorphism
Rn—1 — Ry

induces an isomorphism
Ry—1/PyRn—1 = Ry.

Proof. It suffices to check for each j =1, ..., n that w}‘“i" o Arty modulo Py is given on

(9; by x — x“*n-i+1_ This is the case on 1 +p by definition of P,/. This is also the case
on O 1ors = Hp—1 since w}"‘iv is a lifting of v . O

Proposition 2.8. There is a unique lifting R": Lo — G(T;_,), respectively RQ,: g —
Gu(Ty (U, ©0)) of R such that for any Hecke eigensystem GH/G: Ti_, — O, respectively

n—
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91-[;;: T, (U%', ©) - O associated to a cuspidal representation I; on G, one has
91-[/(; o R"= RH/G, By universal property, the homomorphism R" gives rise to a surjective
Ap—1-algebra homomorphism ¢gi: Ry—1 — T, _,. Similarly, the homomorphism Ril, gives
rise to a surjective O-algebra homomorphism quQ,: Ry — T (UYL, 0).

Proof. The existence of R" respectively Ril/ follows from [14, Proposition 2.74]. Its

restriction to the inertia group I, at any prime divisor ¢ of N is regular unipotent

by Remark 2.2. Its ordinarity at p follows from [14, Corollary 3.1.4]. This gives rise to

ordered characters xpi”, i =1,...,n lifting the ordered characters Efl, i=1,...,n and
such that

w{’ *

“Tylo) ...

pry oRh|l"1<p ~ x ) .

x "lyh(o)

Actually, viewing the topological generator u of 1 + pZ p as topological generator of 1+ p,
we have wfl’fi“ oArty(u) = (1+ X;)~! as the series (1 4+ X;)~! interpolates the values u
at X; = u*. The N-minimality of R” follows from that of RH/G for all ITj;’s occurring in
T, _,. By universal property, this yields the existence of a unique ring homomorphism
¢gi: Ro—1 — T, _, such that ¢pi o R"Y ~ R" The relation ¢gn o 1/fl.““iv = 1//l.h implies that
¢gn is Ay—1-linear.

The surjectivity of ¢rr and ¢Ri’/ follows from the absolute irreducibility of R and

Carayol’s theorem: T} _| = A,—[Tr RhHK] and R,—1 = A,_1[Tr R““iV|rK] hence T, _, =
@i (Rp—1). Similarly for ¢)th . O

’

Let A’ € Z'} be an arbitrary regular dominant weight congruent to ((n—a, (n —
2)a, ...,a,0) modulo p — 1. We shall use the technique of classical Taylor—Wiles systems
to prove that ¢ps is an isomorphism and that the rings R, and T,/ are local complete

)\/

intersections over O. From this it will be easy by varying A’ to deduce that ¢gr is an
isomorphism and that R,_; and T} _, are local complete intersections over A,_1.

We follow (in an easier situation) the proof of [14, § 3] which itself relies on calculations
of [4, §3.5].

2.4. Galois cohomology

Let p>2 and R = Symm"flﬁﬂ where 7 is holomorphic cuspidal on GL(Q), of
square-free conductor N and cohomological for a local system of highest weight a > 0.
We assume it is p-ordinary. Therefore it occurs in a (unique) Hida family pu. We assume
that o, has big image and that it is N-minimal as above. We also assume (1a).

Note that the image R(c) of the complex conjugation ¢ is conjugate in G, (k)
to (Jn_l, (—=1)")j where J, = antidiag(1, —1,...,1,(=1)""1). From this we have as in
[4, Lemma 2.1.3]:

Lemma 2.9. dimg(gl,)=' =n(n —1)/2.
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Proof. For X € M,(k), we have Ad R(c)(X) = Jn_lej_lln. We have Jn_1 =(=D"1y, =
'J, and jXj~!' = —'X, hence

Ad R(c)(X) = X if and only if Jn_lX is antisymmetric. The subspace of these matrices
has dimension n(n — 1) /2. O

Let M = gl, (k) = Ady, R and M* = Homg (M, k(1)) its k-Cartier dual. For N = M or
M*, let KO(N) = dimy HO(FQ, N); for any place v of Q, and any fixed decomposition group
D, C Tq, let hi (M) = dimy H (D, M) (i =0,1,2). Let Q = {q1,...,¢,} be a finite set
of primes disjoint of those dividing Np such that for any i =1,...,r, g; = v;v{ splits in
K. For any finite place v # p of Q with v ¢ Q, let

Loy = Ly(M) = Hy, (T, M) = Ker(H' (T, M) > H' (1, M)) = Ker(H' (D /1,, M")
foreachv e Q,let Lo, C H'(D,, M) to be specified later in such a way that dimg Loyv—
hg(M) = 1. We also put Ly =0 and

Lo, =Ly(M)=1Im(L,(M) - H(T'), M)

where L/,(M) = Ker(H'T',, FOM) — HY(T',, FO(M)/F'(M))).
For any place v of Q, let Lé,v be the orthogonal in H'(D,, M*) of Loy C H'(D,, M)

for the local Tate duality H!'(D,, M) x H'(D,, M*) — k. When Lg, =H} (T, M),

unr
one has L+ =H! (I',, M*). Moreover it is easy to check that LP(M)L = L,(M*)

o.v unr

associated to the p-ordinarity filtration of M* given by F!(M*) = (FP=¢H1=i(pm))t
where a, respectively b is the smallest, respectively largest weight of F*(M) (that
is, FA(M) = M # F4T'(M), and F*(M) # 0 but FP*'(M) =0). Let Ly = (Lg.,)y and
Eé = (LL’U)U. We define the Selmer groups

H}:Q (M) = Ker <H1(r, M) — @HI(DU, M)/LQ,U>

and

Hzé (M*) = Ker (Hl(r, M*) — O H (D, M*)/L{U>

They are finite and their cardinalities are denoted by hlﬁg (M) respectively hi: L (M™).

The Poitou-Tate Euler characteristic formula, as formulated for instance in [10, Theorem
2.18], yields

hipg (M) =gy (M) = O (M) — hO(M™) + > “(dimy Lo, — hS(M)).

Proposition 2.10. We have:
(i) dimg Lg,¢ —h)(M) =0 for any € ¢ Q and £ # p,
(i) dimg Lo.4 —h)(M) =1 forq € Q,
(iii) dimg Lg,p —hg(M) <n(m—1)/2, (this uses (1a) and (1b)).
(iv) B = h(Doo, M) = n(n —1)/2
(v) hO(M) =0 =hro(M*) =0.
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It follows that
hpg (M) —hypy (M) <20 =r.

Proof. From the Poitou-Tate Euler characteristic formula, the last inequality follows
from the four first formulas. The first equality is clear from the exact sequence

0 — HO(Dg, M) — Mt "5' ple - HY(Dy/ 1y, MTt) — 0.

Let us check the inequality at p. We proceed as in [12, Lemma 10.4.4]. Let by, n,, t, be
the Lie algebras of the upper triangular, upper unipotent subgroup, respectively of their
quotient. We have an exact sequence
H(D), ) = H(D, b,) — H (D), ba /1)) — H' (D, mp)
— H'(Dp, b)) — H (D, ba/1y)).

Moreover, we also have an exact sequence
0— H'(D,/I,, by/ny) — H' (D), by/ny) — H' (I, by /ny).

By assumptions (1a) and (1b), we have hO(Dp, n,) =0 and hz(DP, n,) = hO(Dp, ny (1)) =
0. Therefore, we have L,(M) = L,(M) and

hO(Dp, b,) =B (D, by /1g) + ' (D, 0) —dimy Lo, +h'(Dy/1y, by/n) = 0.

By cyclicity of D, /I,, we have hO(Dp, b,/ny,) = hl(Dp/Ip, b, /n,). Moreover by Tate local
duality, we have

KDy, n,) — R (Dp, 1) +h2 (D, 1) = — dimy .

Hence hl(D[,, n,) = dimy n,. We conclude that dimg Lo, , — hO(Dp, b,) =dimgn, =n(n —
1)/2. It implies dim Lo p —hO(D,,, gly) <n(m—1)/2 as desired. Statement (iv) follows
from 2.9. Statement (v) follows from the fact that M (and M*) is the sum of the

irreducible T-modules A}, = AL (k) (j = 1,...,n— 1) which satisfy H(I, A7) = 0 since
2j < p and SLy(K') € Im 5, C GLa (k). 0

2.5. Application of Chebotarev density theorem

Let M = gl,, (k). Let r = dimy Hlﬁé(l"@, M*). For ¢ prime to Np splitting in K, let X2 —
GrgX +q"H = (X —a@,)(X —B,), where @,,B, € k. We write R|p, =¥, ®5, where
Eq = (Eq)”_1 and 5, is the unramified D;-module given by the sum of all eigenspaces
corresponding to the other eigenvalues &Z*’Eg, i #0. We assume that (o /Bq)""*1 %=
1 (mod mg) so that the eigenvalues Eg_iﬁg, i=0,...,n—1 are mutually distinct.

Therefore 5, does not contain Eq as Dy-submodule. Given a finite set of primes g prime
to Np, split in K as above and such that ¢ =1 (mod p), let us define

Lgq =H'(Dy/1,. Ad5,) @H' (D, AdY,)

We notice as in [4, §2.4.6] the obvious
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Lemma 2.11. We have dimy Lg 4 —hg(M) = dimy H' (I, Ad ¥ )Pr = 1.
Using Lo = (Lg,v)v With Lg , as before for v ¢ Q, and the definition above for v € Q,
we define HIEQ(FQ, M) and HIEL (g, M*). Note that, as in [4, Proposition 2.4.9], we have
Q

a short exact sequence

0— Hl%(rQ, M*) > H} (Do, M*) > @ H' (D, /1,, Ad¥ (1))
q€Q
given by the maps wy : [c] = [c4] for g € Q, where, for any o € D,

cq(o) = pr% oc(o) oi%

where iy is the inclusion of the Eq—line and pry is the projection onto this line parallelly
q q
to 54.
Moreover, each term of the right-hand-side sum is one-dimensional.

Theorem 2.12. For any m > 1 there exists a set Q, of primes q splitting in K, say,
(@) = qq¢, and relatively prime to Np, such that

o i0m=r

e for any q € Oy, one has g =1 (mod p™)

o Hl% (T, M*) =0

e for any q € Op, ﬁ(Frobq) has distinct eigenvalues in k.

Proof. We follow the proof of [4, Proposition 2.5.9]. Let us first assume that we chose
primes g which split totally in K(¢,m) and such that R(Frob,) has distinct eigenvalues
in k. The condition HILé (g, M*) = 0 is implied by the isomorphism

H‘%(FQ, M*) = @ H'(Dy /1. AdY,)
q€Qm

of the sum of the maps w, defined above. Since M = MY, we have M = M*
as I'g,-modules. For this, it is enough to show that for each non-zero class
[c] € H}lw (g, M*) there is a prime g such that w,([c]) € Hl(Dq/Iq, Aqu) is non-zero.

By Chebotarev density theorem, it is enough to find for each non-zero class [c] €
Hlﬁw (I'g, M*) an element o € I'g such that U|K(§pm) =1, R(o) admits an eigenvalue y
with multiplicity 1, and pry oc(0) oiy # 0 where i3 is the injection of the y-eigenspace
of R(o) into the space of R and pr;; the projection to this eigenspace.

Let F, be the extension of K ({,m) cut out by Ad R, that is, the field fixed by the kernel
of AdR|r, . Let us show that ¢(I',) # 0. By the inflation-restriction exact sequence

H'(Gal(F,,/Q), AdR) — H' (g, AdR) — Hom('f,, Ad R)

it suffices to see that H'(Gal(F,,/Q), AdR) = 0. Consider the inflation-restriction exact
sequence

EGal(Fm /Fo)

0 — H'(Gal(F,/Q), Ad ) — H'(Gal(F,,/Q), AdR) — H'(Gal(F,,/Fy), AdR)"@.
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Since F|/Fy is of degree prime to p, we have
H'(Gal(F,/ Fo), AdR)'@ = Hom(Gal(F,/F), AdR' ©)

but AR © =0 (by bigness), hence the right-hand side vanishes. Similarly, Gal(F},/Fy)
acts trivially on V and H!(Gal(Fy/Q), Ad R) vanishes by bigness (see [4, Corollary 2.5.4]).

Now, we consider c(Toe,m) as a Gal(F,, /Q(¢pm))-submodule of AdR. Note that
Gal(F, /Q(¢pm)) contains PSLy (k") hence there exists g € Gal(F,,/Q(¢pm)) of order not
dividing p fixing a non-zero element of c(T'g(,m)); we can even assume that g acting

on Ad R has distinct eigenvalues in k, again by bigness of 5, provided that p — 1 does
not divide ¢,_1. Let op € FQ(;pm) lifting g and let 0 = top where v € I'g,, is such that

c(0) =c(t)+c(og) ¢ (op—1)V. Such a 7 exists because c(l"@(gpm)) ¢ (g—1)AdR. The
corresponding element o satisfies the desired conditions for some ¥ € k*. O

For q € Qm, let X% —an X +qt! = (X—&q)(X—Bq), where Eq,Eq € k. We write
R| D, = Eq @54 where Wq = unr(&q)”’l and 5, is the unramified D,-module given by the
sum of all eigenspaces corresponding to the other eigenvalues Eg_iﬁi], i # 0. Note that
54 does not contain ¥, as Dy-submodule. We define

Lo,.q = H'(Dy/1;, Ad5y) ®@H' (Dg, AdY,).
We notice as in [4, §2.4.6] the obvious

Lemma 2.13. We have dimy Lo, 4 —h(M) = dim H' (I, Ad )P = 1.

Using Lg,, = (Lg,,.v)v With Lo, ., as before for v ¢ Q,,, and the definition above for
v € O, we define HlﬁQm (Tg, M) and HIL L (TCg, M*).

Corollary 2.14. For any set Q,, as above, one has dimg Hlﬁg To, M) <tQmu=r.

2.6. Construction of a Taylor—Wiles system

Recall we fixed in Definition 2.1 a level subgroup U C G(z) of level N. Let Q be a finite
set of primes g splitting in K such that g =1 (mod p) and (g /B;)! # 1 (mod mg). Let
A4 be the p-Sylow of (Z/qZ)*. We write (Z/qZ)* = Ay x Ag. For each ¢ € Q, ¢ = qq¢,
we fix an isomorphism iq: U; = GL,(Oy); we identify Oq/q = Z/qZ. Let

. 1 *
UL; = {g e Uy iq(g) = (gno ! 8) (mod gq) § € A,I;,gn_1 € GLn_1(Oq)} .
We also write Uél = iq(U(;). We also consider the parahoric group

Ugo= {g e U, iy(g) = <gn0] z) (mod q) 8 € (Z/qZ)*, gn—1 € GLnl(Oq)}

associated to the maximal parabolic subgroup P C GL, fixing the line < ¢, >. Note that

Ugo/ Uy = Ag- Let Uy =Tl,eq Uy x U2, Ugo =Tyeg Ugo x U2 and Ag = co Ay-
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Note that UQ,()/UQ2 = Ag. Let h,_i, ¢, respectively ?zn,LQ, be the (cuspidal) Hida
Hecke algebra of auxiliary level group U ’Q excluding the Hecke operators at NQ,
respectively, including the Atkin-Lehner Hecke operators U, ; at ¢ € Q. This is naturally
an O[Ag]-algebra. We denote by ag = ([6]—1,8 € Ap) the augmentation ideal of
OlAgpl.

If we put Ug’c = U’QﬂUb*", we note that these algebras both act faithfully on e-
Sp(E/O) = l’l)nc e- S)\(Ugc; E/O) (where A is an arbitrary dominant weight, for instance
A = 0). By using the diamonds of weight 0, one endows these O-algebras with a structure
of Ay—1 = O[[T}*]]-algebra. We have a morphism h,_1,¢9 — h,—1 which factors through
ha1,0 = hu—1,0/00hn—1,0-

For any fixed dominant weight A’ congruent to ((n — Da, (n —2)(1 ,a,0), we also
consider the Hecke algebras e - h;L/(UQ ,(9), respectively e - h,\/(UQ ,O) of weight A/.
Recall that

n lQ/PA’hn 1,0 —~> ¢ hl’(UQ ’ )
is a surjection with nilpotent kernel. Let mg be the maximal ideal of h,_1 g associated
to the residual representation R. Let T._1,0= (hn_l,Q)mQ respectively Ty g =e-
hw(Ug’l, O)m, be the corresponding localization—completion. We denote by R}é: g —
Gu(Ty—1,0) the lifting of R constructed as R" = Rh over T | = T,_1¢. Similarly for
R)J,Q' FQ g gn(T)L/,Q).
For g € Q and for B € K, we define compatible Frobenius Hecke operators

— 11 0
qv”’czlql(uc’,(”olﬁ> )x(U”)"

It defines an endomorphism of So(Uj", O)m,. We fix a lifting ¢, of the geometric
Frobenius to Q, given by the Artin symbol [g,Q,] on sz. Let T, 0=

ho(UéC, O)my and Let R“ Ig = Gu(T)¢ 1.0) be the push-forward of Rh via the
surjective homomorphism Tn—l,Q — Tnf . Let Az be the unique root of Char Rac(qﬁq)
in T,,—1, ¢ lifting the root ol e k* of Char ﬁ(%). By Hensel’s lemma, for any ¢ > 1 we

]
have factorizations in T, :

Char R““(X) = (X — Ag) 05 (X).

Let Yac =[l,c0 07(q ch’c)eS()(Ugc, O)my; it is the largest e- ho(Ua’C; O)my
[(4 Vg)geol-submodule of SO(UEC, O)m, on which for any g€ Q, ,Vy°—Ag is
topologically nilpotent. Let T, _ 1(Y':’C) be the image of e - ho(Uac; Oy in End@(Yc’c).

We denote by RYu the image of the representation R" by the projection T* , —

n—1
T,-1(Yy <. Recall that by [4, Proposition 3.4.4, 8] (here our level groups U}, 0 ¢ play
the role of the group U there).

Proposition 2.15. For anyc > 1,
e forany B € qu NOq, we have qug‘c € Tn,l(Yé’c), and X —qch’c divides Char R““(¢,)
in Tyo1 (YG)X].
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o The map given by 4V ([B8,Qq]) = qu’C for B € K$ NOq extends into a continuous
character 4V©©: Dy — (T,,_1(Yé’c))>< and we have
R;,chq =5 69qvc,c
where s4 is unramified of rank n — 1.

Proof. We refer to [4, Proposition 3.4.4, 8] for the details; we simply mention that
the proof relies on [4, Lemma 3.1.5] which analyzes the g-component of a cuspidal
representation occurring in T,_1 (Y, é’c); the possibility of a partial Steinberg component
is excluded by the condition ¢ =1 (mod p). O

Actually, by Hensel’s lemma one can even define a unique root A, € T,—1 o of
Char R" (¢g) congruent to aZ‘l modulo the maximal ideal such that

Char R"(X) = (X — AS9)Q4(X)

with Qg(X) € Ty—1,0[X] and Q4(Ay) € T, o- For any ¢ > 1, A, interpolates the A€
via the morphisms T,_j ¢ — T;fl,Q' For any B € K3 NOq, the operators qV;’C are
compatible when ¢ > 1 varies; they give rise to an element ,Vg € T,_1 o and to a
continuous homomorphism

Dy, — Trjfl,Q'
One can then define a subspace Yo C Sg(E/O)m, by Yo = ]_[qu Qq(Vg)So(E/Om,

such that for any ¢ > 1, one has Ygs = Yé’c ®Q,/Z, via the identification
S§ = e-So(US: E/O).
We conclude from 2.15 that for any ¢ € Q,
RY|p, =54 ®qV.

where s, is unramified and ,V ([g, Q1) = A,.
Let Dg be the deformation subfunctor of D imposing that for any g € Q, the liftings
r € Dg(A) of R when restricted to D, are of the form

sq A(wq)

where s, is unramified of rank n—1 and lifts 5,, and ,V,: D, = A* is such that
Ve(g, Q4D = a:}’l (mod my). Let R,_1 o be the universal deformation ring of Dg. It is
endowed with a universal lifting

Rlénivi FQ — Q,,(R‘éniv)
and characters w;“ivz D, — (R“Q“iv)x such that
Rlénileq — S(l]miv @ w;niv’

where sy™ is unramified and lifts 5,, and ¥2"™(lg, Q,]) lifts the root @~' € k* of

?(Frobq). Similarly, we have

R}, 51 Tq = Gu(Tyr )
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such that for any g € Q,
h _ h
R}»’,Qqu = S)\./,(j @ ‘(/f}-/,l]’
where wi’,’q =y qu 1 By Proposition 2.15, these automorphic liftings give rise to surjective
ring homomorphisms

Rn—l,Q d Tn_l,Q(YQ) and RA’,Q — T)L/’Q(YQ)

sending R‘éniv to R and w}l’"i" to 4V, respectively R;\‘}‘% to Rff/ 0 and 1//5“iV to qVqO 1 Let

[ , , q
mg respectively mg,, 0 be the maximal ideal of Ry o. Note that we have canonically

n—1,0

mRniLQ/(mO + m%g ) = mR)V/,Q/(mO + mZRA/‘ )

n—1,0 o

and that the k-dual of this space is canonically isomorphic to HILQ (I'g, M). Moreover, it
follows from Corollary 2.14 that

Corollary 2.16. For any set Q,, as above and for r = dimg Hlﬁﬂ(f‘@, M), one has

dimgmg, o, /(Mo +my ) =dimgHy, (Tg, M) <£Qn =r.

n—1,0m

2.7. End of the proof

We first fix a regular dominant weight A’ congruent modulo p—1 to ((n — 1)a, (n —
2)a,...,a,0). We assume either (la) or (1b), so that the characters on the diagonal
of Symm”*]ﬁu| p, are mutually distinct. We consider the diagram of morphisms

Ry, 0, = Tu 0,(Y0,)
! \
R,y — Ty (U, 0).

The first line is O[Ag,, ]-linear. Let M,/ o, be the Pontryagin dual of Yg, and M, ¢ g,
be the Pontryagin dual of the analogue Yy, o of Yg, obtained by replacing the level
group Ug,, by Ug,, 0. Similarly, let M;, 4 be the Pontryagin dual of e- Sy (U E/O) .
We know that M, o, is free of finite rank over O[Ag, ] and admits a faithful action of
Ty, 0,,(Yo,)- By [14, Lemma 2.2.6], we have

M)‘/:Qm/anM)\/st ; M)\,ao» Qm

One also knows that
Ry 0,/80, Ry, 0, = Ry
By Corollary 2.14, there are surjections in CN Lp:

OolY1,....Y%11— Ry o,-
Let W,,: be the composition
OlYy,.... 11— Ry g, — Ry

We also have surjections
OllZy,...,Z]1 = OlAg,,]
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whose kernels n,, satisfy (), nn = (0). We can lift the map
OllZy, ..., Z 1] — O[AQm] — Ry 0,

to a map
®,: OllZy,...,Z]] — O[[Yy,..., Y]l

The composition
Yo ®@p: OllZ1, ..., Z: ]l = Ry/moRy

has kernel (Z1,...,Z,) +mpo.
On the other hand, it follows from [4, Corollary 3.1.5] that we have a Hecke linear
isomorphism
My 0,.0 =My
so that

My 0,,/00, My 0, =My g

One can now apply Diamond—Fujiwara’s version of the Taylor—Wiles machine (see [11,
Theorem 2.1] as at the end of the proof of [4, Theorem 3.5.1] to conclude that the
morphism

Ry — T)L/(Uo’l, 0)

is an isomorphism in CN L@, that M,/ 4 is free over T, (U%!, ©) and that these algebras
are local complete intersections.

In order to deduce that R,_1 — TZ—I is an isomorphism of A,_j-algebras and that
they are local complete intersections, we proceed as in [43, §3.2]. We choose a regular

dominant weight A’ congruent to ((n — 1)a, ..., a,0) and we consider the diagram
Ry,-1/PR,y — T, _,/PTi_,
\! A
Ry — T (U, 0)

where P = Pyy. We know that the bottom line is an isomorphism and that the first
column is an isomorphism. It follows that the first line is an isomorphism and that
T,_,/PT,_, =T}, Moreover, by Hida’s control theorem M,_1/PM,_1 = M,/ g; hence
M, _1/PM,_ is free over T _,/PT,_,. This implies by Nakayama’s lemma that M,
is free over T | (use that M,_; is free over A,_; by Hida theory). In particular, T _,
is free over A,_;. From this we can deduce by a similar argument that the injectivity of
Ry—1/PRy—1 — T, _,/PT,_, implies the injectivity of R,—1 — T, _,. Since P is generated
by a regular sequence in A,—; and since T, _,/PT, _, is local complete intersection over
Ayp—1/P, the same holds for T}, _, over A,_.

3. Proof of Theorem 1.3

3.1. The case j =3

The proof of Theorem 1.3 makes use of the Symm3 base change from GL,(Q) to GSp,(Q)
as established in [39]. The level of the Symm? of a newform of squarefree Iwahori level
is still squarefree Iwahori [39]. Let hy be the Hida Hecke algebra constructed in [41] (see
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also [23] or [43]). It is a finite torsion-free algebra over As = Z,[[X1, X»]]. Calculations
detailed in [8, §3.3] describe the only possible homomorphism

H(GSpy) VP @ H,(GSps)"™ ™ — H(GL)"? @ H,(GLy) ™~

between our abstract Hecke algebras, deduced from the base change map from GL; to
GSp, and compatible with the ordinarity condition. In fact, in [8, Proposition 3.3.5],
A. Conti defines eight homomorphisms ANP ®Ap,i, i =1,...,8 in the context of finite
slope case, but only the first is compatible with our ordinarity assumption. It provides a
commutative diagram of algebra homomorphisms

hy 5 hy
t 0
Ay — A

the bottom homomorphism is induced on the highest weights of local systems by n > 0
(a,b) where a > b > 0 are given by a = 2n and b = n. Here, n > 0 corresponds to the
irreducible representation Symm” St of highest weight n of GL>(Q) and (a, b) corresponds
to the similar Weyl representation of GSp,(Q). For any prime £ not dividing Np, let the
universal genus 2 Hecke polynomial at £

PP(X) = X* = T X3+ £(Re+ (1 + 25 X* = T8 X + 008}
where the coefficients are given by the universal Hecke operators with the notations
of [41, Conjecture 2 § 7]. Then, the homomorphism 6 is defined as follows. For any prime
¢ not dividing Np, it sends the coefficients of P(Z) (X) to those of the symmetric cube
Symm P(l) (X — U3)(X U2Vg)(X UeVQ)(X V ) of the genus 1 universal Hecke

polynomial Pe(l) =X2—TyX 4S8, = (X —Up)(X — Vy). For £ = p, let Up,1, respectively
U,.2, be the double class of diag(p, p, 1, 1), respectively diag(p, p?, p, 1), for the Iwahori
subgroup of GSp4(Z,). Then by standard calculations (see [8, Proposition 3.3.5 and
Corollary 3.3.9], we see that 6 sends Up to U3 and Up 2 to U4

Let T be the localization of &y at the maxnnal ideal assomated to Symm 0,; the
morphlsm 6 factors through T — T;. Let A = pno6. Let TS = T, ®a, Ay. Let us still
denote by the same letters the homomorphlsms obtained by extensions of scalars to A

:[g — Tl _,u) Zl
and their composition A = po6. Let us recall [35, Theorem 4.2] (especially, in the context

of deformations of a residual representation SymmSﬁM, treated in §5.8.2 of this paper).
Let Ry be the minimal p-ordinary universal deformation ring of Symm3ﬁﬂ.

Theorem 3.1. Assuming the assumptions () and that either a'? £ 1 (mod my,) or3(a+

1) < p—1, we have Ry =T and T, is local complete intersection over Ay; moreover it
is finite flat over Aj.

Note that the auxiliary level of &y is Iwahori of the same squarefree level N as h.

Corollary 3.2. Assuming the assumptions (¥) and 3(a+1) < p— 1, we have
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(1) the homomorphism 6: T5 — Ty is surjective, moreover
(2) the Aq-algebra ’Té is reduced.

Proof. By absolute irreducibility of p, and of its symmetric cube and by R; = T; and
R; =T, we see that the rings TS and T are generated by the traces. Let T} be the image
of T by 6; it is a Aj-subalgebra of Ty. It contains U, = 60(Up - Up_’i)‘ For any prime
¢ relatively prime to Np, we have TrSymm3,o(Frg) = T; —20 <> -Ty. Let & € T| be
this quantity. The polynomial X3 —2¢ < £ >¢ - X — & admits a root T; € T;. Hence in
the residue field k = T /mT, = T’l/mT/17 it has a root t,. If this root is simple, we can
conclude by Hensel’s lemma that T; € T|. Let us show that we can find a finite set X' of
primes £’s prime to Np such that

T, CA][Up,Tg,EGE]-i-mTI (*)

and such that for each £ € X, t, is simple.

Recall that the subgroup of elements B of GL, (k') such that det B € (F ,,)"Jrl is precisely
equal by [38] to Im p. Let £ € X. Let o and g be the roots in k of X? —#,X + £+ = 0.

_ a0

We have p(Fry) ~ A = (0 5
aroot of 3x2+4x+3=0.If p =5, x = | is double root; if p > 5, the roots are inverse
one of the other and are distinct. If p = 5 and we do have « = B, we have Ty € A| +mr,
hence we can omit T, from our set of generators.

If p>5andif x = % is a root of 3x2+4x+3 =0, let us find two primes ¢ and ¢”
such that T, € A{[Ty, Tyr] C Ty and

>. The condition 3(a + 8)° —2aB = 0 implies that x = % is

3(Tp)* =20 <€ >#£0 (mod my,) and 3(Tpr)?—2¢" < £” >#£0 (mod mr,).

Let c € (IF;)“'H. In particular, there exist o’ and o” € I'g such that

— /_050 —//N//_:BO
,o(o)NA—<Oﬁc> and p(c") ~ A _<Oac)

where for both relations, the conjugation is by the same matrix as for A. Now we choose
¢ # +1 such that 3(a + Bec)? —2afc # 0 and 3(ac+ B)? —2afc # 0. This rules out at
most four values. If p # 5, it is easy to see that (F;‘ )¢*+! has order at least 5 under the
assumption p—1 > 3(a+1). Hence such a ¢ exists. Choose ¢’ and £” by Chebotarev
density such that p(Fry), respectively o(Frys), belongs to the conjugacy class of o,
respectively o”. Note that ¢ +1 # 0 and

Ty =(c+1)""' - (Ty +Tp) (mod mr,).

This shows that we can achieve the inclusion (x) by replacing the set of indexes X for
our generators T, by (X —{€}) U{€’, £”}. Then, an obvious induction shows that we can
assume Ty C A[U,, Ty, £ € X'] with t; simple for any £ € X. We have therefore proved
that T,1 =T.

(2) The proof of Theorem 3.1 also shows that E; = R ®), A1 is isomorphic to the
A1-algebra Té image of T3 in [, T, (U%', ©) where A’ runs over the set of regulars
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weights of the form (2n’,n’) for all integers n’ > 0. This algebra is clearly reduced. By
Theorem 3.1, it coincides with T3 ®4, A1. By tensoring by Ay, this implies that T3 is

reduced. O
Using Corollary 3.2, we have quasi-splittings of u, 6 and A:

T, ®§l Ki =K x T;,L,K| (1)

T;@;l K1 = (T ®A“l ICl)XT/G,]CI (2)

T; X7, K1 EK; x T;,Kl' (3)

Let T/ev respectively ”Iv‘;, be the image of 'T‘; by the second projection in (2), respectively
in (3). Besides the ideal ¢, already defined, one can define two other congruence ideals:

o =T5N (T x {05, ))

and _ _
¢ = T; N(A] x {0711;»})

Corollary 3.3. Assume (x) and 3(a+1) < p—1, then the ideals ¢, ¢, and A(cg) are
principal and we have the relation

¢ = cuA(cy)

Proof. We know that Ty and T are local complete intersections over A; (i=1,2). By
flatness of A1 over Ay, it follows that T1 and TS are local complete intersections over A1
Thus, the statement follows from Lemmas 8.5 and 8.8. O

Proposition 3.4. Under the same assumptions as above, the ideal ¢, is generated by
Char(Sel(Adsp, 0))-

Proof. Let £ be the composition of the isomorphism R, — T} with A: T — A],Rz
R2 ®A2 Al and L: R2 — A1 the composition of E(X)IdA with the multlphcatlon Al ®
A1 — Al. By flatness of A1 over Aq, we see that Rz is local complete intersection over
Aj. We first apply 8.7 to see that the principal ideal ¢) coincides with the reflexive
envelope of Fittg(C (E, Xl)). It remains to see that

Ci(L, A1) = Sel(Adsp, py.)-

Let I = Ker(Ay — Ap). It is a principal ideal, say I = (£). The quotient Ry = Ry /&R is
local complete intersection over A; and is the deformation ring of symplectic N-minimal
ordinary deformations whose Hodge—Tate weights are of the form (34, 24, h, 0). We have
QRy /A, O, Zl = QR’Z/M ®7, Zl. By flatness of Zl over A, we conclude

QRN By AL = Qf /7,
Let us now compute the Pontryagin dual of Cy (Z, Xl):
Ci(L, A1)* = Homg, (Q, 7, -

*

A Homg, (r,/A, @4, Ay, ZT)
A

f) =
= Homg, (Qr,/a,, A}) = Derp, (R, A%)
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Let RQ(ZT) =R Pe- KT with €2 = 0, then
Dery, (Ra, A7) = Hom (Ry (A7), A7) = {p € D(Ra(A)); p(0) = (1+€-¢(0))p"™ (0)}/~.

The map p — ¢ induces an injective map ® from this set (which happens to be a group)
to the group of cohomology classes [c] € HI(FQ, gl (A1) ®4, A"T)

Recall that by the assumption a!? £ 1 (mod my,) or 3(a+1) < p —1, the p-ordinarity
filtrations are well defined on p"V, on Adsp 4Symm3 pu and on Ai. Moreover, the image
of @ is contained in the subgroup of the cohomology classes such that for ¢ dividing
N, c¢(Iy) =0 (this is the N-minimality condition) and such that cl1, takes values, up to
conjugation, in nf (A}) ®4, Ay where nt(A)) = Fil' Ad (Symm?®p,,) is the upper nilpotent
subgroup of gl,(A;) = Ad (Symm3,oﬂ). This is the min-ord condition. Note that if p is
upper triangular on I, it is still so on D,.

Let us show the surjectivity of ®. Indeed, any cocycle ¢ defines a unique conjugacy
class [p] of liftings of p. We need to check that [p] defines a deformation in D(Rz(g*f)); it
amounts to verifying that the characters defined by p|p, are in the right order on the full
decomposition group. This is imposed by the uniqueness of the p-ordinarity filtration. [

On the other hand, for p > 3, we have a decomposition of Z,-representations of GL;:
Adsp, = A' @ A3. This implies a decomposition of minimal p-ordinary Selmer groups

Sel(Adsp, pu) = Sel(AL) @ Sel(A3).

Since we know that ¢, = (CharSel(.AD) and ¢, = Char(Sel(Adsp,0,)), we conclude by
division.

Corollary 3.5. The ideal A(cy) is principal generated by Char(Sel(Ai)).

By definition, the associated primes of A(cp) in A are congruence primes between
Symm3 (n) and Siegel families which are not Symm3 of GL,(Q) families. Because of the
Greenberg—Iwasawa conjecture, it is natural to conjecture that the (not yet constructed)
p-adic L function of Ai generates the ideal A(cg), hence controls the congruences of the
above type. This would require a decomposition, not only up to algebraic numbers but up
to p-adic units in a number field, of normalized special values at 1 of the specializations
frx in the Hida family, according to the decomposition of the complex L functions

L(Adsp, (f2),5) = L(AJ, )L(A}, 5).

3.2. The case j =2

In order to treat the case j = 2, we assume that the integer a associated to T; (hence to
w) satisfies 3(a + 1) < p — 1. We also use another decomposition of Z,-representations of
GL; (valid if p > 3):

Adg, = Al A2 @ A3

The general formulas over Z, are actually

m—1
Adgy, = P A
i=1
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for any m > 2, provided p > m —1, and

m

Adsyp,, = @AZJ—I

j=1

for any m > 1 provided p > 2m — 1.

As already mentioned, the Symm?® base change to GL4(Q) is established by Kim. Recall
that we fixed a squarefree level N and a prime factor g; thereof. As above, we choose
an auxiliary imaginary quadratic field in which p and g; split. We then choose a degree
16 skew field of center K with second kind involution, which ramifies exactly at those
two primes. There exists a unitary group U (4) compact at infinity, quasi-split at all inert
primes. By Arthur and Clozel, automorphic forms can be transferred from GL;(Q) to
U(4). In his thesis [14], Geraghty defined a Hida Hecke algebra hf associated to U(4)
which is finite torsion-free over the Iwasawa algebra A3z = Z,[[X1, X2, X3]]. At this stage,
it is better to write h3 for the Hecke algebra for symplectic forms previously denoted by
hy, in order to distinguish unitary and symplectic group Hecke algebras. The Symm?® base
change provides a ring homomorphism h% — h; with a commutative diagram

hg g hl
t T
A3 — A

The bottom map is induced by n +— (A1, A2, A3) where A1 > Ay > A3 > 0 are given by
A1 = 3n, Ay = 2n and A3 = n. But we need a more precise information about this diagram.
For this, we note that the base change from GSp, to GL4 has also been established [32],
so that there is also a commutative diagram of ring homomorphisms

R A TRy
1 t T 1
A3 — A — A = A

where the first bottom arrow is given by (a, b) — (A1, A2, A3) wherea > b >0 and 1| >
A2 = A3 = 0 are given by A = a+b, A, = a and A3 = b. Let T be the localization of h3

at the maximal prime corresponding to Symm3ﬁu. The morphism 6’ factors through T
and is still denoted as 6": T§ — T5. Let ' = 1 00". Let T = T§ ®4; A1. We tensorize the

morphisms by A (without changing the notation) and we get A 1-algebra homomorphisms
~ 0’ ~ ~
LT 5 A

Let G4 = (GL4 x GL1) % {1, j} where j(g,v)j~! = (v'g~!,v). Let R3 be the minimal
p-ordinary universal ring of deformations p: Gg — G4(B) of Symm3ﬁu: Gg — GL4(k).
By treating a simpler case than in [14], we prove

Theorem 3.6. Assuming () and either @' # 1 (mod A) or3(a+1) < p—1, we have

R3 =T, and this ring is local complete intersection over As; in particular it is finite flat
over A3.
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Corollary 3.7. Assuming the assumptions (*) and 3(a+1) < p—1, we have
(1) the homomorphism 6': T4 — T is surjective, moreover
(2) the Ay-algebra T is reduced.

Proof. (1) Over the Iwasawa algebras, both rings are generated by the traces of the
universal modular representations P and oT3- As in §3.1, we denote by T;, Ry, Sy the
Hecke operators at € in T5. By Chebotarev density theorem, T3 is generated by the Tp’s
for primes £ relatively prime to Np and split in the imaginary quadratic field K. For
such an ¢, we have Tr o1 (Frg) = Tp,1 and Tr T (Fre¢) = Ty, hence 6'(T;,1) = T; and these
elements generate T3 over A,.

(2) As in the symplectlc case (see Corollary 3.2), the proof given at the end of §2.7
shows also that Ry = R3 ®, Ay is isomorphic to the image T; of T4 in [, T4, (U™, 0)

where A’ runs over the set of regular weights of the form (3n’, 2n’ ,n/ ), n’ > 0. Thus Tg is
clearly reduced. It is isomorphic to T5 ®a, A1 by Theorem 3.6. O

Thus Corollaries 3.7 and 3.2 imply that, assuming 3(a+1) < p — 1, the Aj-algebras
T and T are reduced and we have quasi-splittings of (A and) 6’ and A":

Ty@z K = Moz K0 x T i, @)
T4 @7, Ki =K1 x T, .. (3
Let T’e/7 respectively TA/7 be the image of Tg by the second projection in (2'), respectively
in (3'). Besides the ideal ¢, already defined, one can define two other congruence ideals:
cor = T4 N (T x {05 })
9/
and
aor =T5N (A x {05 }).
A./
The formalism of §§8.3-8.5 yields the following

Corollary 3.8. Assume (%) and 3(a+1) < p—1, then
(1) the ideals ¢/, car(cgr) and cg are principal and we have the relation
v = i A(cyr).
(2) the ideal ¢y is generated by Char(Sel(Adsp, o))
Proof. Same proof as in Corollary 3.3. O

Note that the associated primes of A(cy’) in A, are congruence primes between
Symm?> (1) and unitary families which do not come from Siegel families.

Moreover, according to the Greenberg—Iwasawa main conjecture, the ideal A(cy) should
be generated by the (still conjectural) p-adic L function L p(A;ZL)~ On the other hand, for

p > 3, we have a decomposition of Z,-representations of GLy: Ads(, = Adsp, ® A%. This
implies a decomposition of minimal p-ordinary Selmer groups

Sel(Adsy, ) = Sel(Adsp, py) B Sel(A2).

Since we know that ¢; = Char(Sel(Adsp,0,)*), we conclude by division:
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Corollary 3.9. The ideal X(cy) is principal generated by Char(Sel(.Ai))*.
Proof. Same proof as in Corollary 3.3. O

4. The case j =4

To treat this case, we fix an auxiliary imaginary quadratic field as above and we choose
unitary groups U(4) and U(5) which are compact at infinity and with the same local
conditions at finite places.

Besides the Symm3 base change, we also consider the Symm4 base change from GL,
(established by Kim [26] to GLs, and by Clozel to U(5)). We note the commutative
diagram of group schemes over Z,:

GL»
Symm?® . Symm* (4)
GSpy —> GSOs

where the bottom arrow is the standard (2 : 1)-covering coming from the exceptional
isomorphism GSp(4) = GSpins. Recall that by definition GSOs = G, x SOs. Therefore,
the adjoint action of Symm*GL; on sos coincides with the adjoint action of Symm3GL,
on 5p4. We therefore have the following Z,-decompositions for the action of Symm4GL2:

s0s = Al @ A°

and
ss=Alo Ao A0 AL

Let R4 be the minimal p-ordinary universal ring of deformations p: Gg — Gs(B) of
Symm4ﬁM. Since 5 is odd, one can choose an imaginary quadratic field in which p and
q1 split, a skew field D split outside q; and ¢G{ and a second kind involution * on D
such that G = U(D, %) is definite at oo and quasi-split at all inert places. Again, by
Geraghty’s thesis, the Hida Hecke algebra hjj associated to U(5) is finite torsion-free A4.
Its localization T} at the maximal ideal associated to Symm4ﬁﬂ satisfies

Theorem 4.1. Assuming o' # 1 (mod my,) or 4la+1) < p—1, we have Ry =T}; this
ring s local complete intersection over Ay4. In particular it is finite flat over Ay.

Note that the universal morphism R4 — R, induced by the diagram (4) gives rise by
identification to a non-obvious base change morphism 6”: T} — T, above the morphism
A4 — Ay (also induced by the diagram (4)). We prove as in Corollary 3.7 that 6” is
surjective. Let T = T; ®ay A1. We consider the morphisms

™51 5 A,
Let A = A 00”. We can define the congruence ideal ¢y» as before by

Cr = TZ N (Z] X {OT;/, }) .

Corollary 4.2. Under the assumptions (*) and 4(a+ 1) < p — 1, the ideal ¢;» is principal,
generated by a characteristic power series of Sel(Adsis Symm4pﬂ)*.
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Proof. Same proof as in Corollary 3.3. O

We define a new congruence ideal ¢y~ by
Cor = T‘Z N (’T‘; X {Ofg,,}> .
Then,
Corollary 4.3. We have
G = A (cgr).

Moreover, the congruence ideal A(cgr) divides A(cgr) and

A(cor)
Alcgr)

= Char(Sel(A})").

Proof. We have a decomposition of Selmer groups
Sel(Adgi;Symm®p,,) = Sel(Adsos Symm* p,) @ Sel(A7) @ Sel(A}).

O

Of course this suggests that the prime factors in Aj of the (not yet constructed) p-adic
L function L p(Ai) are congruence primes between Symm4u and forms on U (5) which do
not come from GSp(4) (by the base change given by GSping — GSOs).

5. Digression: a Kummer type criterion for the non-triviality of certain
Selmer groups

We keep the notations of the introduction and we assume (x). Let p be a prime of Zl.
For j = 3,2, 4, consider the condition

Fitto(Sel(A/)*) C p (S;)

and the condition

(C3) there exists a Hida family G of Iwahori level N on GSp, which is not the Symm?
of a Hida family on GL; and such that Symm3pc =G (mod p).

We prove

Theorem 5.1. Assume (%), then (C3) implies (S3) or (S2) or (S4).

Proof. Let vg: T5 — Az be the Hida family associated to G and pg : I'g — GSp4(A2) be
the Galois representatlon associated to this Hida famlly It is well defined because p, PG =
Symm p,, is absolutely irreducible by (). We define T, =T, ®7, Ay and TS = T, ®a, A
and we consider . N
AT LA,

We can decompose Ar ®a, Zl as a product of domains B; which are finite extensions
of A1. Let C be the normalization of Bj. By assumption, pg,c = pG ®a, C is not a
Symm3 but there exists a prime ideal pc of C above p such that, denoting by ¢,
respectively ¢, the homomorphism ¢: C — C/pc, respectively ¢: A /p — C/pc, we have
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¢«pG,.c = 1xSymm?> pp (mod p) up to conjugation in C/pc. Note that pc = Ker ¢ is a
height one prime of the normal ring C. Since pg,c is not the Symm? of a Hida family on
GL,, it follows by a theorem of Conti [9] that Im pg ¢ contains a congruence subgroup of
GSp,4 (A1) up to conjugation by an element of GSp,(C). In particular, the adjoint action
Ad® pG.c on spa(C) is irreducible while it becomes reducible when one applies ¢. More
precisely:

$+(Ad” p.c) = A (C/pc) @ A (C/pe).

Note that Cp. is a dvr. Let K = Frac(C/pc). By [38, Proposition 4.2], there exists
a Cpc-lattice L in spg(Frac(C)) with Galois action such that on the quotient
L/pcL, the action of Galois is a non-trivial extension of A}L(K) by Az(K). But
Hom(.A}L(K), AZ(K)) = .Ai(K) @Ai(K) @Ai(K) as I'g-modules. Since we are dealing
with N-minimal p-ordinary Selmer groups, the non-triviality of one of the three Selmer
groups over K follows. O

6. The case j =n

It follows from [37] that for any n with 1 <n < p—1, we have a decomposition
Sl = @;’-Zl Al over Z, which is GLy-equivariant for the action on the left-hand side
by Ad Symm”. It follows that for n € [1, p — 1[, we have

sl = s, @ A"

where GL; acts by Ad Symm” on the left-hand side and by Ad Symm”~! on the first factor
or the right-hand side.

From now on, we take j =n —1 or j = n. Let h% be the Hida Hecke algebra associated
to the unitary group U (j + 1) chosen to be compact at infinity and with local conditions
at finite primes as before. This algebra is finite torsion-free over the Iwasawa algebra
Aj in j variables. Let us assume that the automorphic base change is established for
Symm/ for j =n—1 and j = n. This gives rise to algebra homomorphisms 6 iE h;‘ — h
above the homomorphism A; — A induced by m > 0+ (x1,...,x;) with x; =m, x; =
2m,...,xj = jm. Let u: hy — Ay be a Hida family and let ; = po#;, for j =n—1,n.
We assume that the image of the residual representation p, contains SL,(F,). Let T?
be the localization of h;‘ at the maximal ideal associated to Symmjﬁu. Let R; be the
universal deformation ring for minimal p-ordinary lifts p: Gg — G;11(B) of Symm/ Py
We have proven in § 2

Theorem 6.1. Assuming (x), and o =1 (mod m)a, orn(@+1) < p—1, and that the
transfer Symm’ is established for j =n—1,n, then for j =n—1,n, we have Rj = T7
and these rings are local complete intersections over A ;.

One shows exactly as in Corollary 3.2 the

Corollary 6.2. Assuming (x) and max(n(a+1),2(n—1)) < p—1, T? ®n; A1 is reduced
and the morphisms T;? — Ty for j =n—1,n are surjective.
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From this it follows that for j =n —1,n, the congruence modules oy and cp; are
principal and related by the relation

G =24 (Cej)c#.

Moreover, if one assumes that a2 % 1 (mod m) Ay, it also follows from the theorem
that for j =n—1,n, the ideal ¢;; is generated by Char ((Sel(Ad Symmjpﬂ))*). Since we
have

Sel(Ad Symm’ p,)) = Sel(Ad Symm/ ™ p,)) @ Sel(A/).

we deduce by passing to the characteristic power series of the Pontryagin duals that
Gy = O (Char(Sel AZ))

and dividing by the invertible ideal ¢, we conclude that A,_1(cg,_,) divides A,(cg,) and
that the quotient is the principal ideal (Char(Sel A7))).

This theorem applies to n =4, 5, 6, 7, 8 since the transfers Symmj, j=3,4,56,7,8 of
a classical form of weight >2 have been established in [7]. For n = 4, we obtain a different
proof of the Theorem 4.3 given in §4 relating congruences on U(4) and U(5). In that
case, the congruence ideals refer to transfers from GSp(4) to U(4) and U(5), while here
they refer to the congruences between Symm?, respectively Symm® transfers and families
on U(4) respectively U(5). For n > 5, there is no alternative proof because there is no
known transfer from GSp, to U(n 4+ 1) compatible to Symm? and Symm”.

The meaning of this is that any congruence prime between Symm” ' and a family
of U(n)-forms which are not Symm”~! from GL; is also a congruence prime between
Symm"p and a family of U(n+ 1)-forms which are not Symm” from GL,. However, it
does not seem that one can define a cuspidal base change from U (n) to U(n+ 1) which
would explain this phenomenon by Tate-Hida formalism. It appears for the moment only
as a consequence of our congruence ideal main conjecture theorem.

7. The case of the standard representation of GSp(4)

Let N be squarefree, prime to p. We consider the cuspidal Hida Hecke algebra A3 of
auxiliary level I'j, (N). Let us consider a Hida family o of Siegel cusp forms that is, a
As-algebra homomorphism o : h5 — A onto a domain A, which is finite and torsion-free
over Ap. We assume that it is N-minimal:

(N-Min) for any prime ¢ dividing N, p,(I;) contains a regular unipotent element.

Let A» be the normal closure of As. It is not necessarily flat over A;. Let K an imaginary
quadratic field in which the prime p and all the primes dividing N split. As we noted
above, using the base change from GSp(4) to GL(4) established in [32] and Clozel’s
descent to U(4), we constructed a morphism 6’: h§ — kY. Let T, respectively T} be
the localization of the rings h5 respectively i3 at the maximal ideals associated to 0, -
We localize the morphism 6’ at these maximal ideals. We write 6": T — T for its
localization. It is over the homomorphism from Az = O[[Y7, Y2, Y3]] to Ay = O[[ X1, X2]]
which sends 1 + Y] — (14+ X1)(1+ X3), Y2 — Xq, Y3+ X»; for a further application, let
us note that in particular, the inverse image of the prime ideal P_; 1 = (1+X; —u~!, 1 +
Xo—uVis Poo i1 =0+Yi—u 2 1+Y2—u", 14+ V3 —u"). Let T¢ = T ®a, A>
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and T% = 2®A2 Ay, We set A _009’ Let T” T5 ®a, A, and T =T, ®a, Ay. Let
g T” — TS and & o: TY — Az be the A,- algebra homomorphlsms obtamed by extension
of scalars We put A =506
Let « =0 (Up,1), B’ such that o(Up2) = ap’ and y' = ()7, and 8’ = a~!. These four
elements belong to A}
We assume that the residual Galois representation p, is absolutely irreducible and that
(RFR?) the four elements a, ', y’ and &' of A, are mutually distinct modulo ma,.
By ordinarity the restriction of p,, to a decomposition group D, at p is conjugate to

unr(o) * * *
unr(f)w (@D * *
unr(y)w~(@+2) *

unr(y)w_()

for a pair of integers a; > az > 0. Assume the residual Galois image is big: either Im p,
contains Sp, (k') or Symm3SL, (k") C Im 5, C k*Symm3GL,(k').

If the residual image is big (in the sense of [35, §5.8]), and that the four Hecke
eigenvalues at p are distinct modulo myu,. Then, let R; for i =2,3 be the minimal
p-ordinary universal deformation rings of o, (for deformations into GSp,(B) respectively
G4(B)), we can prove

Theorem 7.1. Assume that ps has residual big image, is N-minimal and that (RFR?)
holds; then we have Ry =T5 and R3; =T%, and the rings T respectively T5 are local
complete intersections over Ay respectively Aj.

As in Corollary 3.7 and its proof, this implies that

Corollary 7.2. The homomorphism T3 — Tj is surjective.

We can define three congruence ideals ¢4, ¢, ¢. Because of the assumption (RF R?),
we see as in the proof of Proposition 3.4 that the differential module QTg /A, O A,
is isomorphic to Sel((Adsy,ps))* and that similarly QTE/Az 1y Xg is isomorphic to
Sel((Adsp,p0))*. Hence by Theorem 8.7, we conclude that ¢, = Char((Sel(Adsy, 05))*)
and ¢; = Char((Sel(Adsp,p))*). We also have the transfer formula of Proposition 8.14:

& = (o (cor).
On the other hand, we have
Ads, (p0) = Adsp, (p5) © Sty

where St, is the composition of ¢ with St: GSp, — GSOs. From this and Proposition 8.14
(for v =2) and Theorem 8.15, we conclude

Theorem 7.3. The reflexive envelope o(cyr) of the ‘non-base change’ congruence ideal
o (cgr) of Ay is principal and is generated by Char((Sel(Sty))*).
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Remark 7.4. (1) A p-adic standard L function L ,(St,) associated to the Hida family o
has been constructed by Liu [31] (her work includes the case of an arbitrary genus
g). The main conjecture implies that o (cgr) is generated by L, (St,). It is natural to
ask whether the height one prime factors of L,(St;) in A, are congruence primes
between o and families on U(4) which do not come from GSp(4).

(2) Let & be the quadratic character associated to the imaginary quadratic field
K defining the unitary group U(4). Following the method of [31], Zhang [47]
proved that for a cusp Siegel Hecke eigensystem o, the normalized special value
L™ (St(c)®&,1) is in O and generates, under certain assumptions, another
non-base change congruence ideal between the Theta lift of o to U(4) and
‘non-Theta lift’ Hecke eigensystems on U (4). Note however that this Theta lift
is not the same functoriality as the one used in Theorem 7.3 above. Indeed, the
Theta lift involves a twist by & while no such twist occurs in our functoriality.
The Bloch-Kato conjecture suggests that in the case of [47], one should have
(L™™(Sty ® £, 1)) = Char Sel(St(ps) @ &).

We give below an application of this theorem. Let us take a; =ap = p—2. Let
f €822 w(N)) be a Siegel cusp form of weight (2,2). Let pr: I'g — GSpy(O) be
the associated Galois representation. Assume the residual Galois image is big: either
Im p ; contains Spy(k’) or Symm>SL, (k) C Im prC k*Symm3GL, (k') for a subfield &’ of
k, and that p is N-minimal (the image of the inertia at any prime dividing N contains
a regular unipotent element). Let «, B8, y, 8 be the Satake parameters at p ordered in
such a way that ord,(a) = ord,(8) = 0 and ord,(y) = ord,(8) = 1, with ad = By. Assume
that «, B, y/p, 8/p belong to O and are mutually distinct modulo @wg. There are two
such orderings. We fix one. This choice fixes a p-ordinarity filtration of ps|p, and of
P rlp, so that the minimal p-ordinary Selmer group of Sty = Sto py is well defined. Let
f°" be the p-stabilization of f such that f*|U, | =af* and f*|U,, = aff*'. There
exists a family o: h5 — Ay whose specialization in weight (ai, a2) = (=1, —1) gives the
Hecke eigenvalues of f*'. More precisely, there exists an arithmetic prime _; _; of
Ay above P_i _j. After extending the coefficient ring O, we may and do assume that
A2/B-1,-1 = 0. Let T3' = T; ®p; A2 and T =T, ®4, A2. We still write o: 7)) — Ay,
0": T3 = Ty and A =0 08" Let T{", , = T3*/PB-1,-1 73" and T), = Ty /P-1,-17, . Let us
explain the notations. We fix a compact Harris—Taylor Shimura variety for U(3, 1) [16]
and we let eVy(N,O) be the O-module of ordinary p-adic automorphic forms on
U(3,1) of auxiliary Iwahori level N. Similarly, we let eV, (N, O) be the O-module of
ordinary p-adic automorphic forms on GSp(4) of auxiliary Iwahori level N. Let similarly
ev1u,2,2(N , O) be the space of ordinary p-adic automorphic forms on U (3, 1) of Iwahori
level N and automorphic weight (1, 2, 2), respectively eVZS’Z(N , O) the space of ordinary
p-adic automorphic forms on GSp(4) of Iwahori level N and automorphic weight (2, 2).
Note that eS5 ,(N, O) C eV, ,(N, O) is not an equality in general. By [23, Theorem 1.1(6)
and Theorem 6.7(6)], we have exact control:

eVy (N, O)[P-1,—1]1 = eV, ,(N,0), eV3'(N,O)[P_z_1-1]1=eV|;,,(N,O).
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On the other hand, it follows from [35, Theorem 7.1] that the algebra 75, (N, O) is local
complete intersection over O. Indeed, it is a quotient of the local compiete intersection
As-algebra T5(N, O) by the regular sequence ((1+ X1) — ul, 1+ X2)—u~l) and acts
faithfully on eVZSl(N , 0). The same method proves similarly that the algebra Tllfz,z(N ,0)
is local complete intersection over O and acts faithfully on eVl%Z’Z(N , 0). However, it is
not known whether these algebras are reduced because they may not act by normal
operators on the spaces of p-adic modular forms.

We consider 022 =0 (mod PB_1 _1), 6,,=0" (mod P_; 1) and Xj22 =0],,0027.
These morphisms give rise to the diagram’ o

7]‘?2‘2(N, 0) - 7'2f2(N, 0) = 0.

Let Ti,z(N p, O) denote the Iwahori level Hecke algebra acting faithfully on the space
of classical Siegel cusp forms of Iwahori level Np and automorphic weight (2,2) and let

opsi: Ty ,(Np, O) — O

be the eigensystem associated to f*'. Composing with the surjection m22: T'(N, O) —
T‘E’z(Np, 0), we have 022 = ofst o752. Note that w2 might have a non-zero kernel due
to non-classical holomorphic Siegel cusp forms of cohomological weight (2,2). We can
nevertheless define the congruence ideal 02.2(cor )

Corollary 7.5. Assume that py satisfies ()@ and (RFRP) as above. Assume that the
rings 7'2f2(N, 0) and 7'172’2(N, O) are reduced, then the O-length of Sel(Sty) is equal to
the w -adic valuation of the congruence ideal 0'2’2(C91/ 22).

This ideal Ug,g(cei“) measures congruences between the transfer of f to U(3,1) and
p-adic automorphic forms of automorphic weight (1, 2, 2) and Iwahori level N on U(3, 1).
Note that the space of classical automorphic forms of weight (1, 2,2) and Iwahori level
Np is null, since 1 < 2.

Proof. By [35, Theorem 7.1], the algebra ’722(N,(9) is isomorphic to the universal
deformation ring Ri2 of GSp(4)-valued minimal ordinary deformations of p, of
Hodge-Tate weights 0,0, 1, 1. One can prove similarly that the algebra 7, ,(N,O)
is isomorphic to the universal deformation ring Ry, , of G4-valued minimal érdinary
deformations of p, viewed in Gy(k), of HodgefTa;cé weights 0,0, 1, 1. In particular,
O/¢5.,,, has same length as Sel(Adsy, pf), and O/¢s,, has same length as Sel(Adsp, o).
Recall that Adg,pf = Adsp,pr @ Sty. On the other hand, the rings 7/, ,(N, O) and
2‘Y’2(N, O) being local complete intersections over O, we can apply Corollary 8.6
and conclude that Chigz = Cops 'UZ,Z(CG{.M) We then obtain the result by division as

before. O

This corollary applies in particular to modular abelian surfaces.
Corollary 7.6. Let A be a modular abelian surface defined over Q, ordinary at p of

squarefree conductor N (p prime to N). Assume the Galois representation on A[p] has
big image and is N-minimal. Assume that the rings T, ,(N,Zp) and T, ,(N,Z,) are
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reduced. Let T,A be the Tate module and S,A C /\2 T,A the associated rank 5 Galois
representation. Then the cardinality of Sel(S,A) spans the Zp-ideal 02,2(59{ 22).

8. Congruence ideal formalism

We recall a formalism developed by Hida based on Tate’s appendix to [34], alongside we
introduce the notion of congruence modules and differential modules for general rings
and basic facts about it. We apply the theory to Hecke algebras and deformation rings to
show that these two torsion modules have the same size (that is, the equal characteristic
ideals and Fitting ideals).

8.1. Differentials

We recall here the definition of 1-differentials and some of their properties for our later
use. Let R be a A-algebra, and suppose that R and A are objects in CN Ly, where W
is a finite flat extension of Z,. The module of 1-differentials Qg/4 for a A-algebra R
(R, A € CNLy) indicates the module of continuous 1-differentials with respect to the
profinite topology.

For a module M with continuous R-action (in short, a continuous R-module), let us
define the module of A-derivations by

§: continuous
Ders(R,M) =1{5: R —> M € Homy (R, M) |6(ab) = ad(b) + bS(a)
foralla,b € R

Here the A-linearity of a derivation § is equivalent to §(A) = 0, because
§(1)=6(1-1)=28(1)=8(1) =0.

Then Qg;4 represents the covariant functor M +— Dera(R, M) from the category of
continuous R-modules into MOD.

The construction of Qg4 is easy. Let R ®4 R be the completion of R ® 4 R with respect
to the (mg ®4 R+ R ®4 mp)-adic topology. The multiplication a ® b +— ab induces a
A-algebra homomorphism m : R ®4 R — R taking a ® b to ab. We put I = Ker(m), which
is an ideal of R®4 R. Then we define Qr/a = I/I*. We endow it with a structure
of R-module by action of R®1. It is a complete module for the mg-topology. One
checks that the map d : R — Qg/a given by d(a) =a®1 —-1®a mod 17 is a continuous
A-derivation. Thus we have a morphism of functors: Homg (g 4, ?) — Dera (R, ?) given
by ¢ — ¢ od. Since Qg4 is generated by d(R) as R-modules (left to the reader as an
exercise), the above map is injective. To show that Qg4 represents the functor, we need
to show the surjectivity of the above map, which is well known (see [33]).

Proposition 8.1. The above morphism of two functors M — Homg(Qg/a, M) and M —
Ders (R, M) is an isomorphism, where M runs over the category of complete R-modules.
In other words, for each A-derivation §:R — M, there exists a unique R-linear
homomorphism ¢ : Qrja — M such that § = ¢od.

We have the following fundamental exact sequences:
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Corollary 8.2. Let the notation be as in the proposition.

(i) Suppose that A is a C-algebra for an object C € CLw. Then we have the following
natural exact sequence:

Qa/c®aR — Qrjc —> Qr/a — 0.
(ii) Let w : R — C be a surjective morphism in CLyw, and write J = Ker(xw). Then we
have the following natural exact sequence:
]/J2 ﬂ—) QR/A@RC — QC/A — 0.
Moreover if A= C, then J]J* = Qr/a ®rC.
For any continuous R-module M, we write R[M] for the R-algebra with square zero
ideal M. Thus R[M] = R & M with the multiplication given by
o) ®x)=r®Fx +r'x).
It is easy to see that R[M] € CNLy, if M is of finite type, and R[M] € CLy if M is a
p-profinite R-module. By definition,
Dery (R, M) = {¢ € Homa_q¢(R, RIM])|¢ mod M = id}, (8.1)

where the map is given by 8 — (a — (a ®8(a)). Note that i : R — R®4 R given by
i(a)=a®1 is asection of m : R®4 R — R. We see easily that R®q R/I2 = R[Qg/a] by
x> m(x)® (x —i(m(x))). Note that d(a) = 1 ®a —i(a) for a € R.

8.2. Congruence and differential modules
Let R be an algebra over a normal noetherian domain A. We assume that R is an A-flat
module of finite type. Let ¢ : R — A be an A-algebra homomorphism. We define

C1(¢; A) = QR/a ®r,p Im(¢)

which we call the differential module of ¢ . We have seen (for instance Corollary 3.3, (2))
that if R is a deformation ring, this module is the dual of the associated adjoint Selmer
group. If ¢ is surjective, we just have

Ci(¢; A) = Qr/a®R.g A.

We suppose that R is reduced (having zero nilradical of R). Then the total quotient
ring Frac(R) can be decomposed uniquely into Frac(R) = Frac(Im(¢)) @ X as an algebra
direct product. Write 14 for the idempotent of Frac(Im(¢)) in Frac(R). Let a = Ker(R —
X)=(yRNR), § =Im(R — X) and b = Ker(¢). Here the intersection 14 RN R is taken
in Frac(R) = Frac(Im(¢)) ® X. Then we put

Co(¢; A) = (R/a) ®r.¢ Im(¢) =Im(¢)/(¢(a)) = 1gR/a=S/b=R/(a@®b),

which is called the congruence module of ¢ but is actually a ring (cf. [22, §6]). We can
split the isomorphism 14R/a = §/b as follows: First note that a = (RN(1yR@0)) in
Frac(Im(¢)) @ X. Then b = (06 X) N R, and we have

IyR/a=R/(a®b) = S/b,
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where the maps R/(a@ b) — 14R/a and R/(a@ b) — S/b are induced by two projections
from R to 14R and S.

Write K = Frac(A). Fix an algebraic closure K of K. Since the spectrum Spec(Co(¢; A))
of the congruence ring Co(¢; A) is the scheme theoretic intersection of Spec(Im(¢)) and
Spec(R/a) in Spec(R):

Spec(Co(A; A)) = Spec(Im(¢)) N Spec(R/a) := Spec(Im(¢)) Xspec(r) SPec(R/a),

we conclude that

Proposition 8.3. Let the notation be as above. Then a prime p is in the support of Co(¢; A)
if and only if there exists an A-algebra homomorphism ¢’ : R — K factoring through R/a
such that ¢(a) = ¢'(a) mod p for all a € R.

In other words, ¢ mod p factors through R/a and can be lifted to ¢’. Therefore, if A is
the integer ring of a sufficiently large number field in Q, U¢ Supp(Co(¢; A)) is made of
primes dividing the absolute different 9(R/Z) of R over Z, and each prime appearing in
the absolute discriminant of R/Z divides the order of the congruence module for some ¢.

By Corollary 8.2 applied to the exact sequence: 0 — b — R i) A — 0, we know that
Ci(¢; A) = b/b%. (8.2)

Since Co(¢p; A) = S/b, we may further define higher congruence modules by C,(¢; A) =
b /6"t

8.3. Transfer property of congruence modules
Let B be a normal profinite local domain of characteristic p residue field. We suppose

to have a sequence of surjective B-algebra homomorphisms: R 5, S5 A of reduced
local rings finite flat over B. We put A = uo6 : R — A. We assume that R, S, A are
all Gorenstein rings over B. This means that

Homp(R, B) = R,Homp(S,B) =S and Homp(A, B) = A as R-modules. (8.3)

We write B = A. Since R is reduced, the total quotient ring Q(R) of R is a product of
fields, and we have Q(R) = Qs @ Q(S) for the complementary semi-simple algebra Qgy.
Let Rs be the projection of R in Qg. We have the following (unique) decomposition
(1) Spec(R) = Spec(Rs) U Spec(S), union of closed subschemes inducing R < (Rs @ S)
with A-torsion module Cy(0, S) := (Rs ® S)/R.
Similarly, we have Q(S) = Q4 ® Q(A) and Q(R) = Q', ® Q(A) as algebra direct sums.
Write S4 (respectively R4) for the projected image of S (respectively R) in Qa4
(respectively Q',). Then we have
(2) Spec(S) = Spec(S4) USpec(A), union of closed subschemes inducing § < (Ss @ A)
with A-torsion module Co(u, A) := (Sa & A)/S.
(3) Spec(R) = Spec(Ra) U Spec(A), union of closed subschemes inducing R < (Rs @© A)
with A-torsion module Co(A, A) := (R4 D A)/R.
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By [22, Lemma 6.3] (or [19, §5.3.3]), we get the following isomorphisms of R-modules:
Co(h; A) = RA®RA, Co(0;S) =Rs®rS and Co(u; A) = 5S4 Qs A. (8.4)

Write 75 : R = Rs and w : R — S for the two projections and (-,)g : Rx R — B and
(-, )s : S x § — B for the pairing giving the self-duality (8.3). We recall [21, Lemma 1.6]:

Lemma 8.4. The S-ideal Ker(zws : R — Ry) is principal and S-free of rank 1.

Proof. Let b =Ker(6 : R — §) and a = Ker(rg : R — Rg). By assumption, R and S are
B-free of finite rank; so, b is B-free, and by duality, we have an exact sequence 0 —

S* o, R* — b* — 0. Note that b* is naturally an Rg-module which is free of finite rank
over B. Thus identifying S = $* and R* = R by (8.3), we have 0*(S*) ={r e R;r-b =
0} = (Q(S) ®0) N R = a; hence #* induces S = $* = a. 0

Recall the following fact first proved in [22, Theorem 6.6]:

Lemma 8.5. We have the following exact sequence of R-modules:
0 — Co(u; A) = Co(r; A) — Co(0; ) ®s A — 0.
Proof. Write M* = Homp(M, B) as an R-module for an R-module M. Note that
Ker(0) = RN(Rs®0) C Rs®dS, Ker(x) = RN(RAB0) CRADA
and Ker(u) = SN(S4P0) C SapA.

From an exact sequence 0 — Ker(d) - R — § — 0, we have the following commutative
diagram with exact rows (for a = Ker(srs : R — Ry)):

§* L R* — 5 Ker(d)*
3| ! |
S=a R Rg,
—> —»

which shows Rs = Ker(0)* = ((Rs ®0) N R)* as R-modules. Similarly, we get Ker(1)* =
R4, Ker(u)* = S4. We have a commutative diagram with exact rows:

Ker(6) R—" 1 s 0

l Lo
0 A A 0
Applying the snake lemma, we get an exact sequence of R-modules:

0 — Ker(#) — Ker(h) - Ker(u) — 0.

By B-freeness of A and S, all the terms of the above exact sequence are B-free. Thus the
above sequence is split as a sequence of B-modules, and we have the dual exact sequence:

Ker(u)* ——— Ker(L)* —— Ker(6)*

| | i

Sa B — R4 ——> Rg.
TN —
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Tensoring with A over R, from (8.4), we get an exact sequence:
Tor}e(RS, A) — Co(; A) = Co(A; A) = Cop(8; S)®r A — 0.

Thus we need to show the vanishing: Tor}e (Rs, A) = 0. To see this, we recall a = §. Thus
the exact sequence a < R — Rg can be rewritten as S < R — Rg. Tensoring with A
over R, we get an exact sequence

0 = Tork (R, A) — Tork(Rs, A) > S®r A > RQrA - Rs®r A — 0.

Since we have a commutative diagram:

SQr A A
| |
R®RrA A

and Coker(w) is a torsion A-module, « is a non-trivial A-linear map of the integral domain
A into itself; so, « is injective, and we conclude Tor}e (Rs, A) = 0 as desired. O

By (8.4), the three congruence modules Co(u; A), Co(r; A), Co(0; S) ®r A are residue
rings of R; so, cyclic A-modules. Moreover, by Lemma 8.4, they are the ring A modulo
principal ideals. Write their generators as Ac; = ANR C (RA® A), Ac, =ANS C (5S4 @
A) and Scg = SNR C (Rg® S). Thus we have Co(A; A) = A/c; A, Co(u; A) = A/c, A and
Co(0; S) ®s A = A/A(cg)A for the image A(cy) € A of ¢y € S. By the above lemma, we
conclude the following result:

Corollary 8.6. We have A(cg) - ¢, = ci up to units in A; so, for the ideals ¢y generated by
c?, we have A(cg) - ¢, = cy.

Note here ¢y (respectively A(cp)) is the annihilator Anng(Co(?; A)) (respectively
Anng (Co(?; S) ®s A) of Co(?; A) in A, and ¢y is the annihilator Anng(Co(0; A)) of Co(6; S)
in S.

8.4. Local complete intersections

Let A be a complete normal local domain (for example, a complete regular local ring like
A=W or A= W[[T]] or A= WI[T\,...,T.]] (power series ring)). Any local A-algebra
R free of finite rank over A has a presentation R = A[[X1,..., X,]1/(f1,..., fm) for
fi € A[[Xy, ..., X,]] with m > n. If m = n, then R is called a local complete intersection
over A. Note that if B is a complete normal local domain which is finite flat over A, the
extension R ®4 B of an A-algebra R which is local complete intersection over A is local
complete intersection over B. There is a theorem of Tate giving the identity of the Fitting
ideals of the differential module and the congruence module for local complete intersection
rings. To introduce this, let us explain the notion of pseudo-isomorphisms between torsion
A-modules (see [3, VII.4.4] for a more detailed treatment). For two A-modules M, N of
finite type, a morphism ¢ : M — N is called a pseudo-isomorphism if the annihilator of
Ker(¢) and Coker(¢) each has height at least 2 (i.e., the corresponding closed subscheme of
Spec(A) has co-dimension at least 2). If A = W, a pseudo-isomorphism is an isomorphism,
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and if A = W[[T1]], it is an isogeny (having finite kernel and cokernel). The classification
theorem of torsion A-modules M of finite type tells us that we have a pseudo-isomorphism
M — P, A/fi for finitely many reflexive ideal 0 # f; € A. An ideal | is reflezive if
Homy4 (Homy (f, A), A) = § canonically as A-modules (and equivalently f = ﬂAGA,(ADf(A);
i.e., close to be principal). Then the characteristic ideal Char(M) of M is defined by
Char(M) :=[]; fi C A. If A is a unique factorization domain (for example, if A is regular;
a theorem of Auslander—Buchsbaum [33, Theorem 20.3]), any reflexive ideal is principal. If
A = W, then |W/ Char(M)|, = ||M||p, and if further A = Z,, we have Char(M) = (|M|).

Theorem 8.7 (J. Tate). Assume that R is a local complete intersection over a complete
normal noetherian local domain A with an algebra homomorphism A : R — A. If after
tensoring the quotient field Q or A, R®4 Q = (Im(A) ®4 Q) D S as algebra direct sum
for some Q-algebra S, then C;(A; A) is a torsion A-module of finite type, and we have

Anny (Co(r; A)) = Char(Co(; A)) = Char(Ci(1; A)).

For the reader’s convenience, we shall give a proof of this theorem in the following
subsection. Actually we prove

length, (Co(2; A)) = length 4 (C1(A; A)), (8.5)

assuming that A is a discrete valuation ring (see Proposition 8.12). If A is a normal
noetherian domain, Chars(M) =[], plenetha, Mo 01 the localization M p at height
I-primes P for a given A-torsion module M. Since Ap is a discrete valuation ring if
and only if P has height 1, this implies the above theorem.

8.5. Proof of Tate’s theorem

We reproduce the proof from [34, Appendix| (which actually determines the Fitting
ideal of M more accurate than Char(M)). We prepare some preliminary results; so,
we do not assume yet that R is a local complete intersection over A. Let A be a
normal noetherian integral domain of characteristic 0 and R be a reduced A-algebra
free of finite rank r over A. The algebra R is called a Gorenstein algebra over A if
Homa (R, A) = R as R-modules. Since R is free of rank r over A, we choose a base
(x1,...,x,) of R over A. Then for each y € R, we have r x r-matrix p(y) with entries in
A defined by (yxq, ..., yx,) = (x1, ..., x:)p(y). Define Tr(y) = Tr(p(y)). Then Tr: R — A
is an A-linear map, well defined independently of the choice of the base. Suppose that
Tr(xR) = 0. Then in particular, Tr(x"*) = 0 for all n. Therefore all eigenvalues of p(x) are
0, and hence p(x) and x are nilpotent. By the reducedness of R, x = 0 and hence the
pairing (x, y) = Tr(xy) on R is non-degenerate.

Lemma 8.8. Let A be a normal noetherian integral domain of characteristic 0 and R be
an A-algebra. Suppose the following three conditions:

(1) R is free of finite rank over A;
(2) R is Gorenstein; i.e., we have i : Homg (R, A) = R as R-modules;
(3) R is reduced.
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Then for an A-algebra homomorphism A : R — A, we have

Co(h; A) = A/A(i(Trg/a))A.
In particular, length, Co(A; A) is equal to the valuation of d = A(i(Trgsa)) if A is a
discrete valuation ring.

Proof. Let ¢ = i~1(1). Then Trr/a = 8¢. The element § = Sg/a is called the different of
R/A. Then the pairing (x, y) > Trg/a (67 'xy) € Ais a perfect pairing over A, where ! €
S = Frac(R) and we have extended Trg/4 to § — K = Frac(A). Since R is commutative,
(xy, z) = (¥, x2). Decomposing S = K & X, we have

Co(r; A) =Im(A)/A(a) = A/RN (K &0).

Then it is easy to conclude that the pairing ( , ) induces a perfect A-duality between
RN(K ®0) and A®O0. Thus RN (K @ 0) is generated by A(8) = A (Trg/a)). O

Next we introduce two A-free resolutions of R, in order to compute dg/4. We start
slightly more generally. Let X be an algebra. A sequence f = (f1,..., fu) € X" is called

reqular if x — f;x is injective on X/(f1,..., fj—1) for all j =1,...,n. We now define a
complex K3 (f) (called the Koszul complex) out of a regular sequence f (see [33, §16]).
Let V = X" with a standard base ey, ..., e¢,. Then we consider the exterior algebra

N EHB(N' V).
j=0

The graded piece AV has a base e, =ej, Neiy N+ Nej; indexed by sequences

i
(i1, ..., ;) satisfying 0 < i} <ip < --- <i; < n. We agree to put /\OV =Xand \’V =0
if j > n. Then we define X-linear differential d : A/ X — A/™' X by

J
~1
d(eiy Neiy N---Nejj) = Z(—l)’ fip€iy N-o-Nei_  Neiy A Aei).

r=1

In particular, d(ej) = f; and hence,

/\OV/d</\1v) = X/(f).
Thus, (K%(f),d) is a complex and X-free resolution of X/(f1,..., fu). We also have
n .
dy(ei ANea A Aey) = Z(—l)/_lfjel A Aeji_I Aejr1 A Aey.
j=1
Suppose now that X is a B-algebra. Identifying A" “ly with v by
eLN-Nej_1Nej1 N Neg > ¢j

and A"V with X by e Aex A+ Aey > 1, we have

1m<d; : Homp (/\"—1\/, Y) — Homgpg (/\"v, Y)) >~ (f)Homp (X, Y),
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where (f)Homp(X,Y) = Zj fiHomp (X, Y), regarding Hompg (X, Y) as an X-module by
y¢(x) = ¢(xy). This shows that if X is a B-algebra free of finite rank over B, K% (f) is
a B-free resolution of X/(f), and

Hompg(X,Y)

Extp(X/(/).¥) = H"(Homp (K3 (/). Y)) = X )

(8.6)
for any B-module Y.

We now suppose that R is a local complete intersection over A. Thus R is free
of finite rank over A and R = B/(f1,..., fu) for B = A[[Ty, ..., T,]]. Write ¢; for T;
mod (f1,..., fu) in R. Since R is local, t; are contained in the maximal ideal mg of R.
We consider C = B®4 R = R[[T}, ..., T,]]. Then

R=RI[[T,....T,11/(Th —t1,..., T, —t),

and g=(T1—1t1,...,T,—1t,) is a regular sequence in C = R[[T}, ..., T,]]. Since C
is B-free of finite rank, the two complexes Kp(f) - R and Kg(g) — R are B-free
resolutions of R.

We have a A-algebra homomorphism & : B < C given by ®(x) = x® 1. We extend
® to ®°: Kp(f) — Kg(g) in the following way. Write f; = Z?:l b;jg;. Then we define
@' Kp(f) > Ki(g) by @'(ei) =Y} bijej. Then &/ = A’/ ®!. One can check that
this map ®°® is a morphism of complexes. In particular,

Dy(e1 A---Aey) =det(bjjler A--- Ney. (8.7)

Since ®° is the lift of the identity map of R to the B-projective resolutions Kg(f) and
K¢(g), it induces an isomorphism of extension groups computed by K¢g(g) and Kz (f):

®* : H*(Homp(K{(g). B)) = Exth (R, B) = H*(Homp (K} (f). B)).
In particular, identifying A" B" = B, we have from (8.6) that
H"(Homg (K3 (f), B)) = Homg(B, B)/(f)Homp(B, B) = B/(f) = R

and similarly

. Hompg(C, B)
H"(Homp(Kg(g), B)) = ——— .
(¢)Homp(C, B)
. . H B
The isomorphism between R and @)fﬁﬁ%

by d = det(b;;) (see (8.7)). Thus we have

is induced by &, which is a multiplication

Lemma 8.9. Suppose that R is a local complete intersection over A. Let mw:B =
A[[Ty, ..., T,]1 — R be the projection as above. We have an isomorphism:

b Homp(C, B)
(T —t,..., T, —t,)Homp(C, B)

gwen by h(¢) = m(¢(d)) for d = det(b;j) € C.

12

R
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We have a base change map:
t : Homy (R, A) — Homp(C, B) = Homg(B®4 R, BQ4 A),

taking ¢ to id ®¢. Identifying C and B with power series rings, t(¢) is just applying
the original ¢ to coefficients of power series in R[[T}, ..., T,]]. We define I = hot:
Homu (R, A) — R.

Lemma 8.10. Suppose that R is a local complete intersection over A. Then the above map
I is an R-linear isomorphism, satisfying I (¢p) = w7 (L(¢(d)). Thus the ring R is Gorenstein.

Proof. We first check that I is an R-linear map. Since I(¢) = 7 (t(¢(d)), we compute
I(¢pob)) and ri(¢) for b € B and r = 7w (b). By definition, we see
(7 (bx)) = ((@(r@Dd)) and rl(¢)=mn(bi(¢(d)).
Thus we need to check 7 (t(¢)((r ® 1 —1® b)d)) = 0. This follows from:
r@l—1®be(g) and det(bj)gi =y b, fi.

where b, are the (i, j)-cofactors of the matrix (b;;). Thus I is R-linear. Since ¢« mod mp
for the maximal ideal mpg of B is a surjective isomorphism from

Homu ((A/my4)", A/ma) = Homy (R, A) @4 A/my

onto
Hompg((B/mp)", B/mg) = Homg(C, B) ®p B/mg,

the map ¢ is non-trivial modulo m¢c. Thus I mod mg is non-trivial. Since A is an
isomorphism, Homp (C, B) ®c C/mc¢ is 1-dimensional, and hence I mod mg is surjective.
By Nakayama’s lemma, [ itself is surjective. Since the target and the source of I are A-free
of equal rank, the surjectivity of I tells us its injectivity. This finishes the proof. O

Corollary 8.11. Suppose that R is a local complete intersection over A. We have
I(Trgsa) = m(d) for d = det(b;;), and hence the different Sg/a is equal to m(d).

Proof. The last assertion follows from the first by 7(¢) = 7 (t(¢(d)). To show the first, we
choose dual basis xq, ..., x, of R/A and ¢y, ..., ¢, of Hom4 (R, A). Thus for x € R, writing

xx; =y ;a;jxj, we have Tr(x) = ) ; a;; = Y _; ¢pi(xx;) = ) _; xi¢;(x). Thus Tr =, x;¢;.
Since x; is also a base of C over B, we can write d = Zj bjx; with ¢(¢;)(d) = b;. Then

we have
I(Trrsa) = Y xil (¢i) = ) xim(u(@)(d) =Y ximbi) =7 (Z b,-xi) =7 (d).
i i i i
This shows the desired assertion. O

We now finish the proof of (8.5):

Proposition 8.12. Let A be a discrete valuation ring, and let R be a reduced local complete
intersection over A. Then for an A-algebra homomorphism R — A, we have

length, Co(X, A) = length, C1(X, A).
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Proof. Let X be a torsion A-module, and suppose that we have an exact sequence:
A" L AT —>X—0

of A-modules. Then we claim length, X = length, A/det(L)A. By elementary divisor
theory applied to L, we may assume that L is a diagonal matrix with diagonal entry
di,...,d,. Then the assertion is clear, because X = @j A/d;A and length A/d A is equal
to the valuation of d.

Since R is reduced, Qg/4 is a torsion R-module, and hence Qr/a @r A = C1(A; A) is a
torsion A-module. Since R is a local complete intersection over A, we can write

R ; A[[Tl,, Tr]]/(fl’ ~-'7fr)'
Then by Corollary 8.2(ii), we have the following exact sequence for J = (fi, ..., fr):

J/I @t 11 A — QAT T.0/A QalT,.... T A —> Qr/A QR A — 0.

.....

This gives rise to the following exact sequence:
P Adf; & @ AdT; — €10 4) — 0,
J J

where df; = f; mod J%. Since Ci(r;A) is a torsion A-module, we see that
length 4 (A/ det(L)A) = length, C1(X; A). Since g = (T1 — t1, ..., T, — t,,), we see easily that
det(L) = m(A(d)). This combined with Corollary 8.11 and Lemma 8.8 shows the desired
assertion. L]

8.6. A more general setting

Let A; be the power series ring W[[T, ..., T;]]. We consider the following commutative
diagram of local profinite W-algebras sharing the same residue field F with W:
R, —— R, - A
UT UT UT (8.8)
TTm,n Tn,v
Am Ay A,

We put A" := ' 06’. Consider the following conditions:

(A0) A is an integral domain.

(A1) m; indices the identity A ; ®A ;.7 Ak = Ax for (j, k) = (m,n) and (j, k) = (n, v);
SO, m = n = v.

(A2) R; is free of finite rank over A for j =m,n, and A is a torsion-free A,-modules of
finite type.

(A3) Homy,(Rj, Aj) = R;j as Rj-modules for j =m,n.
(A4) Rj®a; A, is a reduced algebra for j =m,n.
(A5) R; is a local complete intersection over A; for j =m,n.

Note that (A5) implies (A4) (e.g. [33, Theorem 21.3]).
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Lemma 8.13. Suppose (A0-3). Let A be the normalization of A and put ﬁj = R; ®4; A
for j=m,n.
(1) Suppose that v =1. Then R is free of finite rank over A and satisfies
HomA(RJ, A) R as R modules

(2) Suppose v > 1. Then for each height 1 prime P of A, RJ P = R ®3 Ap for
the localization Ap of A at P s free of finite rank over Ap and satisfies
HomA (R/p Ap) R p asRJp -modules for j = m,n.

Proof. We only prove the assertion (1), since the assertion (2) is easier to prove after
localization at P as Ap is a discrete valuation ring. If v =1, A is reflexive and hence flat
over Aj. Thus we get
Homy , (Rj, Aj) ®4, A = Homy(R;, A)
from [2, T1.5.4]. Since Homa; (R;, A;) = R, we get from the above identity
Rj = R;®a, A=Hom,,(R;, A;) ®4, A = Homz(R;, A)

as I?j—modules‘ O

~

By Lemma 8.13, under (A0-4), the sequences R, LA R, 5 Aifv=1 and I?m)p 5

ﬁ,, P LY Apifv=1for6 =6'®1and u = i’ ® 1 satisfies the requirement of R LN s& A
for the transfer property of congruence modules in 8.3. Thus we get for the annihilators
¢9 := Anng(Co(?%; A)) with ?=X,u and ¢y := = Anng (Co(0; R, ) the following transfer
formula:

Proposition 8.14. Assume (A0-4).

(1) If v=1, the ideals c7 (?= A, u,0) are all principal, and satisfies A(cp) - ¢,y = €y
(2) Ifv > 1, writing M for the reflexive closure of a torsion-free A,-module M of finite
type, we have the following identity A(/c(;\/)wu = (y.
Proof. By Corollary 8.6, we get the assertion (1) and also the localized identity: A(c)p -
¢y, p = ¢, p for each height 1 prime P in the setting of (2), since A(cp, p) = A(cp) p and 7 p
is the annihilator of the corresp0n~ding P-localized congruence m~odule by the definition
of the congruence module. Since M = (") p Mp inside M ® 5 Frac(A), we get the assertion

(2). O
Now suppose (A5); so, R; = A;[[X1,..., X11/(f1,..., fr) for a regular sequence
(fty---, frx) in MA X, Xk ]]- Tensoring A over A; with the exact sequence:

0— (f1,..., fi) > Ajl[X1, ..., Xk]] = R; — 0,
we get a sequence,
0= (fis.os fi) = AllX1, ..., Xl > R =0,

which is exact. Since R; is A j-free of finite rank, the first sequence of A j-modules is split
exact; so, the exactnebs is kept after tensoring A. Thus (A5) implies that

(A’5) EJ- is a local complete intersection over A for j = m, n.
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Thus

H. Hida and J. Tilouine

we may apply Tate’s formula Theorem 8.7 to our setting ﬁm’p — ﬁnyp — Zp for

each height 1 primes and get the following fact:

Theorem 8.15. Assume (A0-5). Then we have

(cg) - Char(Cy (i, A)) = Char(Cy (1, A)).
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