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Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic
field is studied via direct numerical simulations. The simulations follow the revealing
experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16),
in particular the paradoxical observation of high-amplitude velocity fluctuations,
which exist in the downstream portion of the flow when the strong transverse
magnetic field is imposed in the entire duct including the honeycomb exit, but not
in other configurations. It is shown that the fluctuations are caused by the large-scale
quasi-two-dimensional structures forming in the flow at the initial stages of the decay
and surviving the magnetic suppression. Statistical turbulence properties, such as the
energy decay curves, two-point correlations and typical length scales are computed.
The study demonstrates that turbulence decay in the presence of a magnetic field is
a complex phenomenon critically depending on the state of the flow at the moment
the field is introduced.
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1. Introduction
This paper addresses decay of turbulence in an electrically conducting fluid in the

presence of an imposed static magnetic field. The parameters typical for technological
and laboratory flows of liquid metals are considered, so the quasi-static (also
called non-inductive) approximation, according to which the magnetohydrodynamic
flow–field interaction is reduced to the effect of the imposed field on a flow, is
adopted (see, e.g. Davidson (2016), for the derivation and a discussion of validity of
the approximation).

In any three-dimensional flow of an electrically conducting fluid, an imposed
magnetic field suppresses turbulent fluctuations via the Joule dissipation of induced
electric currents. Unlike its viscous counterpart, the Joule dissipation is active
irrespective of the length scale, and anisotropic in the sense that its rate is proportional
to the square of the gradient of velocity along the magnetic field lines. As described
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by Moffatt (1967), this transforms an initially isotropic flow into a flow with reduced
or even zero velocity gradients along the magnetic field lines. In flows with walls,
the picture is more complex due to the effect of walls on the velocity and electric
currents. In particular, in the case of a magnetohydrodynamic (MHD) duct, the mean
flow is changed by the Lorentz force, and special boundary layers appear (see, e.g.
Branover 1978; Müller & Bühler 2001). The principal features of the transformation
of turbulence still remain (i) suppression of fluctuations, so the MHD flows are
found in a laminar or transitional state at much higher Reynolds numbers than their
hydrodynamic counterparts (see, e.g. Zikanov et al. 2014a, for a review), and (ii)
dimensional anisotropy with weaker velocity gradients along the field lines than across
them (see, e.g. Moffatt 1967; Davidson 1997; Zikanov & Thess 1998; Vorobev et al.
2005; Krasnov et al. 2008; Reddy & Verma 2014; Verma 2017). The anisotropy may
reach the asymptotic state of flow’s quasi- (i.e. to the degree allowed by the boundary
conditions) two-dimensionality if the magnetic field is sufficiently strong to suppress
three-dimensional instabilities inherently present in such a flow (Thess & Zikanov
2007).

The term anisotropy is used in this paper with the meaning commonly employed in
the research of MHD turbulence (see, e.g. Zikanov & Thess 1998; Knaepen, Kassinos
& Carati 2004; Knaepen & Moin 2004; Vorobev et al. 2005) – as the persistent
inequality of the typical length scales of the flow structures in the directions along
and across the magnetic field. The anisotropy of the Reynolds stress tensor (the
inequality of velocity components) is, as discussed e.g. by Burattini, Zikanov &
Knaepen (2010), Favier et al. (2010, 2011) and Verma & Reddy (2015), not caused
directly by the magnetic field and strongly affected by the presence of walls and
other features of a particular flow, as well as the typical length scale at which the
velocity is considered.

It must be stressed that while the picture outlined above is generally correct
for any transformation of conventional three-dimensional turbulence, MHD flows
exhibit complex and often counterintuitive behaviour. Good examples are the flow
regimes with spatially localized or intermittent turbulence reported by Boeck et al.
(2008), Brethouwer, Duguet & Schlatter (2012), Krasnov, Zikanov & Boeck (2012),
Krasnov et al. (2013), Zikanov et al. (2014a,b), and the experimental demonstration
by Pothérat & Klein (2014, 2017) that under certain circumstances the magnetic field
can, in fact, enhance turbulence.

A starting point of the modern understanding of the decay of quasi-static MHD
turbulence in a uniform field is the theoretical analysis of Moffatt (1967). A linearized
model based on the assumption of a very strong magnetic field acting on an initially
isotropic flow was used and the concept of the magnetically induced anisotropy was
established, which largely formed the basis of the future work. The other results
of Moffatt (1967), such as the power law of the energy decay ∼t−1/2 and the
asymptotically reached energy partition such that the energy of the field-parallel
velocity component becomes two times larger than in the transverse components,
have later been found to be non-universal (see, e.g. discussion in Burattini et al.
2010). Verma (2017) also critically reviews some of Moffatt’s ideas.

A theoretical model of decaying homogeneous turbulence was developed by
Davidson (1997) (see also Davidson 2016). Estimates of the rates of viscous and
Joule dissipation in terms of the integral length scales along and across the magnetic
field have led to a simple model of the decay. It shows that power-law scaling of
energy with time is only possible when one dissipation mechanism is much stronger
than the other. In general, the decay rate varies with the flow’s anisotropy in the
course of the process.
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Numerical simulations of homogeneous decaying MHD turbulence in the framework
of the periodic box model were performed by Schumann (1976), Knaepen & Moin
(2004), Burattini et al. (2010) and Favier et al. (2011). The results of simulations
of Schumann (1976) and, to a lesser degree, of Favier et al. (2011) were limited
to the behaviour at small Reynolds numbers due to the direct numerical simulation
(DNS) accuracy requirements and the rapid magnetic suppression of turbulence. The
limitations were avoided by Knaepen & Moin (2004) and Burattini et al. (2010) via
the use of the dynamic Smagorinsky LES model, which had been demonstrated to
be reliably accurate for the MHD quasi-static turbulence by Knaepen & Moin (2004),
Vorobev et al. (2005) and Vorobev & Zikanov (2007). It was confirmed by Burattini
et al. (2010) that the linear model of Moffatt (1967) is only valid for very strong
magnetic suppression and during short (less than one turnover time) transformation of
the flow. Otherwise, the evolution is complex and strongly influenced by the large-
scale anisotropic structures forming in the flow during the initial decay period. This
implies inevitable influence of the boundaries and, in general, lack of universality of
the decay behaviour.

Experimental reproduction of the decay of homogeneous MHD turbulence was
attempted by Alemany et al. (1979). Turbulence was generated by a grid falling
through a cylindrical vessel filled with mercury and positioned within a uniform
axially oriented magnetic field. At moderate distances x from the grid, the fluctuation
energy of the field-parallel velocity component was found to fall as ∼x−1. Farther from
the grid, the decay accelerated to approximately ∼x−1.7. This change of behaviour was
attributed by Alemany et al. (1979) to the increase of the effective local magnetic
interaction parameter N (we define the parameter in § 2.1). An interesting result was
found for the energy power spectra, whose slope along the wavenumber k gradually
approached ∼k−3 indicating strong anisotropy or even approximate two-dimensionality.
It is pertinent to mention in view of our following discussion that in the experiment
of Alemany et al. (1979) turbulence was generated entirely within the zone of the
applied magnetic field. Furthermore, we note that the energy spectrum is difficult
to ascertain in strongly suppressed flows at high N. Dependencies other than ∼k−3,
for example, exponential decay ∼ exp(−bk) with a decay length b, are also found
to be consistent with the experimental and computational data for the energy power
spectrum (Verma 2017).

A series of similarly configured experiments with GaInSn as a working fluid was
reported by Voronchikhin et al. (1985). Several parameters of these experiments make
them potentially more interesting for our study than those of Alemany et al. (1979).
In particular, the use of stationary velocity probes allowed the authors to record longer
decay histories. Similarly to our study, two types of decay were considered. In one,
as in Alemany et al. (1979), turbulence was generated within the magnetic field. In
the other, the magnetic field was imposed after full passage of the grid through the
cylinder, i.e. on an already developed turbulent flow.

Only a limited portion of the data obtained in the course of the experiments
was reported by Voronchikhin et al. (1985). This prevents an in-depth comparison
between their results and the computational results reported in this paper. One
important conclusion directly relevant to our study was, however, made. The effect of
accelerated decay of turbulence caused by the magnetic field was found to be much
stronger when the field was imposed on the developed turbulent flow than when
turbulence formed within the field.

Extensive experimental studies of the mercury flows in ducts with imposed
transverse magnetic fields were carried out from the late 1960s to 1980s in Riga
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(see e.g. Branover et al. 1970; Kolesnikov & Tsinober 1974; Votsish & Kolesnikov
1976a,b; Kljukin & Kolesnikov 1989). A major motivation of the experiments
was to explain the so-called residual fluctuations of velocity found in the flows
with strong magnetic fields when the measurements of pressure drop indicated full
laminarization. It was hypothesized that the fluctuations were manifestations of nearly
two-dimensional flow structures forming in the flow. It was argued that the decay
rate of turbulence would be reduced by the presence of such structures in two ways.
Their quasi-two-dimensionality would mean that they are only weakly suppressed by
the magnetic field. Furthermore, the strong anisotropy would imply reduction of the
energy cascade to small length scales or inversion of the cascade, thus leading to
reduction of the viscous dissipation rate.

The existence of quasi-two-dimensional structures was confirmed in the experiments.
The flow was also found to be strongly influenced by the mechanism of turbulence
generation. A particularly interesting example was the experiment of Kljukin &
Kolesnikov (1989). Turbulence in a duct was generated by a grid combining two sets
of cylindrical bars, one parallel and one perpendicular to the magnetic field. Two
experiments were performed: with the bars parallel to the magnetic field located on
the downstream or the upstream side of the grid. No significant difference between
the two flows was found at weak magnetic fields. In the strong field case, however,
the flow with the field-parallel bars on the downstream side of the grid demonstrated
residual fluctuations with intensity decreasing very slowly along the duct. No such
behaviour was found in the flow with the field-parallel bars located on the upstream
side of the grid. The effect was attributed by Kljukin & Kolesnikov (1989) to
formation of strong quasi-two-dimensional vortical structures in the former case.

Recent numerical simulations of MHD duct flows by Krasnov et al. (2012, 2013)
and Zikanov et al. (2014a,b) have shown that the presence of velocity perturbations
at apparently laminar pressure drop along the duct can also be caused by turbulence
in the sidewall (parallel to the magnetic field) boundary layers, which survives at
much stronger magnetic fields than the turbulence in the core of the duct and in the
Hartmann boundary layers normal to the field. Such turbulence could not be registered
in the experiments of Branover et al. (1970), Kolesnikov & Tsinober (1974), Votsish
& Kolesnikov (1976a,b), where the measured pressure drop was dominated by the
friction in the thin Hartmann layers. At the same time, the alternative explanation
proposed by the Riga researchers certainly had substantial experimental support.

The present work follows closely the experiments of Sukoriansky, Zilberman
& Branover (1986), in which the phenomenon of turbulent fluctuations persisting
along the duct in the presence of a strong magnetic field was revisited on a
higher level of accuracy and technical sophistication. Flows of mercury in a duct
of 2 × 4.8 cm cross-section were studied. A magnetic field of strength up to 1.1 T
with the main component transverse to the flow’s direction and parallel to the
shorter side of the duct was imposed in the test section by a long (pole length
approximately 90 cm) electromagnet. The inlet into the test section was equipped
with a honeycomb consisting of densely packed round tubes of diameter 2.4 mm with
electrically insulating 0.5 mm thick walls (common drinking straws). The purpose of
the honeycomb was twofold. It generated approximately isotropic and uniform field
of velocity fluctuations and reduced or even prevented the M-shaped mean velocity
profile normally forming at the entrance into the magnetic field (see e.g. Branover
1978). The Reynolds and Hartmann numbers were

ReD ≡
DU
ν
= 7.85× 104, HaD ≡ BD

(
σ

ρν

)1/2

= 0, . . . , 780, (1.1a,b)
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FIGURE 1. (Colour online) (a) Schematic diagram of the experimental facility
of Sukoriansky et al. (1986). (b) Experimental results. Turbulence intensities on the
duct axis as functions of Ha/Re at different magnet positions (reprinted with the
permission of Springer).

where D was the duct’s hydraulic diameter, U was the mean velocity and ν, σ
and ρ were the kinematic viscosity, electric conductivity and density of the fluid.
The experimental set-up and the key results are shown in figures 1(a) and 1(b),
respectively.

The striking and, at first glance, paradoxical results were obtained in the hot-film
measurements of velocity fluctuations 43 cm downstream of the honeycomb’s exit.
The measurements showed completely different signals for the two distributions of the
magnetic field illustrated in figure 1(a). In the situation identified in Sukoriansky et al.
(1986) and this paper as case 1, the entire length (27 cm) of the honeycomb was
located between the magnet poles (see the upper schematic illustration in figure 1b),
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and turbulence was generated and decayed entirely within the practically uniform
transverse magnetic field. In the situation identified as case 2, the magnet poles were
shifted downstream so that the axial distance between the honeycomb’s exit and
the nearest corner of the pole was 15.5 cm (see the lower schematic illustration in
figure 1b). In this case, turbulence was generated at negligible magnetic field and
travelled approximately 5.5 convective times D/U before entering the space between
the poles and thus experiencing the full magnetic suppression effect.

The key results are shown in figure 1(b) reproduced from figure 5 of Sukoriansky
et al. (1986). The curves show the turbulence intensity u′/U based on the streamwise
velocity fluctuations measured on the duct axis 43 cm downstream of the honeycomb,
i.e. well in the zone of the uniform magnetic field. The signals measured in the
two cases are approximately the same for weak magnetic fields, approximately at
HaD/ReD < 3 × 10−3. Owing to the turbulence suppression by the magnetic field,
the intensities decrease with growing HaD reaching ∼0.02 at HaD/ReD = 3 × 10−3.
For stronger magnetic fields, however, the signals show entirely different trends. In
case 2, the intensity continues to decrease to approximately 0.015 at high HaD. In
case 1, the intensity grows rapidly with growing HaD and reaches 0.09 (almost twice
the intensity in the flow without magnetic field) at HaD/ReD = 10−2.

The appearance of high-amplitude fluctuations for strong magnetic fields in the case
1 configuration was explained in Sukoriansky et al. (1986) by the effect described
above, i.e. by development of quasi-two-dimensional flow structures with weak
gradients along the magnetic field lines. Such structures would experience weak
magnetic suppression and a reduced energy cascade to small length scales thus
preserving the strength of the associated velocity fluctuations as the fluid moved
downstream. The explanation is consistent with other experiments, e.g. of Kljukin &
Kolesnikov (1989). No direct evidence of this scenario has, however, been obtained.
The type of the flow structures and the degree of their anisotropy could also not be
determined in the experiments and has not been a subject of numerical analysis.

In this paper, we present high-resolution numerical simulations designed to explore
validity of the hypothesized scenario leading to the residual velocity fluctuations
and to produce a detailed description of the flow. The numerical model reproduces
the geometry and parameters of the experiment of Sukoriansky et al. (1986) with
one adjustment. For the purpose of understanding the effect of walls on decaying
turbulence, two orientations of the transverse magnetic field, along the shorter (as in
Sukoriansky et al. 1986) and longer sides of the duct are considered. The role of the
anisotropy introduced by the honeycomb is also addressed. The problem formulation,
parameters and numerical procedure are described in § 2. The structure and statistical
properties of the computed flows are presented in § 3. The concluding remarks are
provided in § 4.

2. Problem formulation, method and parameters
2.1. Problem formulation

An isothermal flow of an incompressible electrically conducting Newtonian fluid in
a duct of rectangular cross-section is considered. A transverse magnetic field, the
exact configuration of which is specified below, is imposed. Assuming the asymptotic
limit of low magnetic Reynolds and Prandtl numbers, the quasi-static (non-inductive)
approximation of the magnetohydrodynamic interactions (see e.g. Davidson 2016) is
used. The non-dimensional governing equations are

∂v

∂t
+ (v · ∇)v =−∇p+

1
Re
∇

2v +
Ha2

Re
(−∇φ ×B+ (v×B)×B), (2.1)
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∇ · v = 0, (2.2)
∇

2φ =∇ · (v×B), (2.3)

where v, p and φ are the fields of velocity, pressure and electric potential and B
is the non-dimensionalized magnetic field. The typical scales used to derive (2.1)–
(2.3) are the mean streamwise velocity U for velocity, shorter half-width H of the
duct for length, H/U for time, ρU2 for pressure, the maximum strength B0 of the
transverse component for the magnetic field and UB0H for electric potential. The non-
dimensional parameters are the Reynolds number

Re≡
UH
ν

(2.4)

and the Hartmann number
Ha≡ B0H

√
σ/ρν (2.5)

related to the parameters (1.1) based on the hydraulic diameter as Re= 0.3542ReD and
Ha= 0.3542HaD.

We will also use the magnetic interaction parameter

N ≡
Ha2

Re
=

B2
0Hσ
ρU

. (2.6)

Further settings of the problem are illustrated in figure 2. The computational domain
reproduces the test section of the experiment of Sukoriansky et al. (1986). It is a duct
segment of length 0 6 x 6 Lx and cross-section −Ly/2 6 y 6 Ly/2, −Lz/2 6 z 6 Lz/2
with Lx = 16π, Ly = 4.8 and Lz = 2.0.

The sidewalls are of zero slip and perfect electric insulation:

v = 0,
∂φ

∂n
= 0 at sidewalls. (2.7a,b)

At the inlet x= 0, we require that

∂φ

∂x
= 0. (2.8)

A velocity distribution imitating the flow exiting the honeycomb is applied. In the
experiment, the tubes of the honeycomb are densely packed and have the inner
diameter d≈ 2.4 mm and wall thickness about 0.5 mm. The parameters for the flow
in a single tube are Red = 6600 and Had = 45 and the non-dimensional pipe length
is Ld/d = 112.5. At such parameters, the flow is expected to be weakly turbulent in
case 2. In case 1, the magnetic field suppresses turbulence and slightly deforms the
streamwise velocity profile (see Müller & Bühler 2001; Li & Zikanov 2013; Zikanov
et al. 2014a). The numerical model ignores the differences and uses the same velocity
distribution in the two cases (see figure 2b). The flow in the space between the tubes
present in the experiment is also ignored.

To compute the velocity distribution, the inlet plane is covered by hexagons, into
which circles of inner diameters and wall thickness corresponding to those of the
honeycomb tubes are fitted. The axisymmetric parabolic profile of streamwise velocity
is imposed within each tube. At each time step, random three-dimensional velocity
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FIGURE 2. (Colour online) Setting of the problem. (a) Scheme of the computational
domain shown in the x–y cross-section. The x- and y-axes of the coordinate system used
in the simulations are shown. The non-dimensional width of the domain in the z-direction
is 2.0. The profiles of the main component B of the magnetic field computed according to
the model of Votyakov, Kassinos & Albets-Chico (2009) are shown (see text); x1 is the
location of the upstream corner of the magnet pole pieces in case 2. The two crosses
in the downstream part of the flow domain indicate the locations where the velocity
fluctuation signals are recorded in the experiment of Sukoriansky et al. (1986) and in the
simulations. (b) Distribution of the streamwise velocity uinlet imposed at the inlet to imitate
the flow exiting the honeycombs of Type A and Type B (see text).

perturbations of relative amplitude 10−4 are added, after which the entire distribution
is rescaled so that the mean streamwise velocity is equal to 1.0.

As illustrated in figure 2(b), the tubes of the honeycomb can be packed so that
they form straight rows along the longer (the honeycomb Type A in the following
discussion) or shorter (Type B) walls of the duct. The results of the simulations
presented in § 3.2 demonstrate that the two arrangements produce noticeably different
flows.

Soft boundary conditions
∂v

∂x
=
∂φ

∂x
= 0, (2.9)

are applied at the exit x= Lx of the computational domain.
Two orientations of the main component of the magnetic field, parallel to the

longer (By) or shorter (Bz) walls of the duct are used. In each case, the distribution
of the magnetic field is approximated in the simulations using the model suggested
by Votyakov et al. (2009). The model provides simple formulas for divergence-free,
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two-dimensional, two-component field created by a magnet with two infinitely wide
rectangular pole pieces. The accuracy of the model was verified in comparison with
measurements in Zikanov, Listratov & Sviridov (2013). The input parameters of
the model are the coordinates of the corners of the pole pieces, for which we take
y=±2.6 (for By) or z=±1.2 (for Bz), and x1=−27, x2= 63 in case 1 and x1= 15.5,
x2= 105.5 in case 2. The resulting magnetic field has the main component illustrated
in figure 2(a) and the component Bx, which is much weaker and only significant
within the flow domain around the entrance into the magnetic field in case 2.

The problem is solved numerically using the finite-difference scheme first described
as the scheme B in Krasnov, Zikanov & Boeck (2011) and extended to spatially
evolving flows in a duct e.g. in Zikanov et al. (2014b). The solver has been
successfully applied in numerous simulations of turbulent and transitional MHD flows
at high Re and Ha (see e.g. Krasnov et al. 2012, 2013; Li & Zikanov 2013; Zikanov
et al. 2014a,b). The scheme is explicit and of the second order in time and space. The
discretization is on the structured collocated grid built along the lines of the Cartesian
coordinate system. The exact conservation of mass, momentum and electric charge,
as well as near conservation of kinetic energy, are achieved by using the velocity
and current fluxes obtained by interpolation to staggered grid points. The standard
projection technique is applied to compute pressure and enforce incompressibility.
The numerical algorithm is parallelized using the hybrid MPI-OpenMP approach.

The modification of the algorithm in comparison with the original version of
Krasnov et al. (2011) concerns the solution of the Poisson equations for pressure and
electric potential. The fast cosine decomposition is used in the streamwise direction,
for which the right-hand side of the equation is modified to achieve homogeneous
Neumann boundary conditions at x= 0 and x= Lx. The direct cyclic reduction solver
implemented in the subroutines of the library FishPack (Adams, Swarztrauber &
Sweet 1999) is used in the y–z-plane.

The computational results reported below are obtained on the grid consisting of
Nx × Ny × Nz = 3072× 512× 192 points. The points are clustered towards the duct’s
walls using the coordinate transformation

y=
Ly

2

[
0.9 sin

(π

2
η
)
+ 0.1η

]
, z=

Lz

2

[
0.9 sin

(π

2
ζ
)
+ 0.1ζ

]
, (2.10a,b)

where −16 η6 1 and −16 ζ 6 1 are the transformed coordinates, in which the grid
is uniform.

A grid sensitivity study was performed to determine that the model sufficiently
accurately reproduced the essential features of the flow, such as mixing and
instabilities of the honeycomb jets, generation of turbulence and its decay in the
presence of the magnetic field. Additional simulations for the case 1 and case 2
configurations with the magnetic field parallel to the longer sides of the duct on
the smaller grid with Nx × Ny × Nz = 2048 × 384 × 128 and the same clustering
scheme were carried out. The results were qualitatively the same as on the larger
grid with minor quantitative differences. In particular, the time-averaged wall friction
coefficients computed for the entire flow domain changed by less than 1 %. The effect
of the numerical resolution on the results is further discussed in § 4.

Several additional tests were performed at Ha= 0 to analyse the effect of the grid
size, grid clustering and the amplitude of the noise added at the inlet on the instability
and mixing of jets in the portion of the duct just downstream of the inlet. It has been
found that at the grid clustering associated with (2.10) further increase of the grid
size and further decrease of the noise amplitude do not result in visible changes in
the formation of turbulence.
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Run no. Field Field Honeycomb Re Ha N =
Ha2

Re
R=

Re
Ha

orientation configuration type

1 By Case 1 A 27 800 55 0.1088 505.5
2 By Case 2 A 27 800 55 0.1088 505.5
3 By Case 1 A 27 800 195 1.368 142.6
4 By Case 2 A 27 800 195 1.368 142.6
5 Bz Case 1 A 27 800 195 1.368 142.6
6 Bz Case 2 A 27 800 195 1.368 142.6
7 Bz Case 1 B 27 800 195 1.368 142.6
8 Bz Case 2 B 27 800 195 1.368 142.6

TABLE 1. Simulation parameters.

3. Results
The parameters of the simulations are listed in table 1. For the convenience of

the reader, the runs are numbered such that odd indices 1, 3, 5, 7 correspond to
case 1 with homogeneous field, whereas even indices 2, 4, 6, 8 – to case 2 with
non-homogeneous field (see figure 2a). Each simulation is initialized with a laminar
state and continued for 100 non-dimensional time units, whereby a fully developed
flow is established. Subsequently, the simulation is continued for a ‘production phase’
of 100 (in runs 1–4) or 50 (in runs 5–8) time units. The turbulence statistics in this
paper are based on the, respectively, 1000 or 500 flow samples collected during this
phase with the time interval 0.1.

Simulations 1 and 2 are for Ha/Re = HaD/ReD = 2.0 × 10−3, i.e. for the
parameters in the range of moderate magnetic fields where a strong (twofold)
reduction of turbulence intensity was detected in the experiment of Sukoriansky
et al. (1986) for both the field configurations (see figure 1b). Simulations 3–8 are
for Ha/Re = HaD/ReD = 7.0 × 10−3. For this strong magnetic field, the experiment
shows anomalous behaviour with the turbulence intensity in the case 2 configuration
remaining low, but the intensity in the case 1 configuration growing to a level
approximately 50 % higher than without the magnetic field.

In the following discussion, the properties of the computed flows are analysed using
the fields of turbulent fluctuations defined as

v′ = v − 〈v〉, (3.1)

where 〈v〉(x) is the mean velocity obtained by time averaging over the entire
production phase of the run.

We start the discussion with the main results summarized in table 2. The time-
averaged root-mean-square (r.m.s.) amplitudes of the velocity fluctuations computed
at x = 43, z = 0 and two values of y are shown. The values for u′ correspond to
the experimental measurements of Sukoriansky et al. (1986) (see figure 1b) and show
that the seemingly paradoxical dependence of the fluctuation amplitude on the strength
of the magnetic field and magnet’s location is reproduced by the simulations. Weak
fluctuations of all the velocity components are found in runs 1 and 2 performed at
Ha= 55. Equally weak fluctuations are found in runs 4, 6 and 8 performed at Ha=
195 when the poles of the magnet shifted downstream (the case 2 configuration in
figure 2). Anomalously high fluctuation amplitudes are found in runs 3, 5 and 7, i.e.
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Centre (y= 0) Off centre (y=−1.4)
Run no. u′ v′ w′ u′ v′ w′

1 4.35× 10−3 3.90× 10−3 3.47× 10−3 4.40× 10−3 4.41× 10−3 3.79× 10−3

2 4.67× 10−3 4.55× 10−3 3.55× 10−3 4.82× 10−3 5.23× 10−3 4.12× 10−3

3 1.35× 10−2 4.45× 10−3 1.13× 10−2 1.35× 10−2 4.30× 10−3 1.21× 10−2

4 3.35× 10−3 2.65× 10−3 2.38× 10−3 4.11× 10−3 2.56× 10−3 2.78× 10−3

5 5.30× 10−3 5.40× 10−3 1.61× 10−3 5.62× 10−3 5.75× 10−3 1.61× 10−3

6 3.76× 10−3 3.87× 10−3 1.87× 10−3 3.84× 10−3 3.27× 10−3 2.78× 10−3

7 1.23× 10−2 1.05× 10−2 3.46× 10−3 1.18× 10−2 1.25× 10−2 3.59× 10−3

8 5.03× 10−3 4.66× 10−3 1.48× 10−3 5.17× 10−3 4.69× 10−3 2.81× 10−3

TABLE 2. Root-mean-square amplitudes of fluctuations of velocity components at the
points x= 43, z= 0, y= 0 (centre) and x= 43, z= 0, y=−1.4 (off centre) computed using
the entire signals of fully developed flow. Since the time-averaged streamwise velocity
at these points is approximately 1.0 in our units, the values approximately correspond to
the respective turbulence intensities. The data for flows with anomalously high fluctuation
amplitudes are marked by grey colour.

in the flows with Ha=195 and the honeycomb exit located within the zone of uniform
magnetic field (the case 1 configuration in figure 2). The amplitudes of two velocity
components are increased: the streamwise component u′ and the component orthogonal
to the magnetic field (w′ in run 3 and v′ in runs 5 and 7). The increase in comparison
to the other cases is approximately fourfold in runs 3 and 7 and twofold in run 5.

Table 2 shows that the flow’s behaviour is affected by the magnetic field strength,
magnet location, orientation of the magnetic field with respect to the duct walls and
the honeycomb arrangement. The following discussion is separated into two parts. The
mechanism of the generation of high-amplitude fluctuations is explained and illustrated
in § 3.1 on the basis of the results obtained in runs 1–4. Further investigation of the
fluctuations is presented in § 3.2, where the influence of the magnetic field orientation
and honeycomb arrangement is analysed using the data from runs 5–8.

A comment is in order concerning the comparison between the simulations and
the experiments of Sukoriansky et al. (1986). As we have already mentioned and
discuss in detail below, the qualitative agreement is quite satisfactory. The quantitative
agreement is, however, poor. From table 2 and figure 1(b) and figure 6 of Sukoriansky
et al. (1986) we see that in all the simulations the computed r.m.s. fluctuations are
approximately five times lower than in the experiment. Possible reasons for this are
discussed in § 4.

3.1. Effect of magnetic field on turbulence decay
The following discussion is primarily based on simulations 1–4.

3.1.1. Velocity fluctuations
Figure 3 shows the time signals of the velocity components computed at the

point x = 43, y = z = 0 corresponding to the point of velocity measurements in the
experiment of Sukoriansky et al. (1986) (see figure 1b). The r.m.s. amplitudes listed
in table 2 are calculated using these signals and similar signals recorded at x = 43,
y=−1.4, z= 0. We see that the behaviour indicated by the r.m.s. data is not subject
to significant variations at long time scales. Consistent anomalously high fluctuation
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Ha = 55 Ha = 195
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FIGURE 3. (Colour online) Time signals of velocity components computed at x= 43, z= 0
and y= 0 shown for the second half of the fully developed flow stages of simulations 1–4.
Runs 1, 2 at Ha= 55 and runs 3, 4 at Ha= 195 are shown in, respectively, (a,c,e) and
(b,d, f ). (a–f ) Streamwise u, spanwise v (transverse and parallel to the main component
of the magnetic field) and vertical w (transverse and perpendicular to the main component
of the magnetic field) velocity components.

amplitudes of streamwise (u) and field-normal transverse (w) velocity components are
found in run 3 when the magnetic field is strong and has the case 1 configuration.

3.1.2. Flow structure
The spatial structures of the fully developed flows in simulation runs 1–4 are

illustrated in figures 4 and 5. We see that at Ha = 55 (runs 1 and 2 in figure 4)
the flows remain turbulent, although the velocity fields are significantly modified by
the magnetic fields. The modifications include development of the mean flow profile
with a nearly flat core and characteristic Hartmann and sidewall boundary layers (see
figure 4) and reduction of turbulence intensity. Since the Reynolds number based
on the Hartmann thickness R ≡ Re/Ha = 505, this result is in agreement with the
earlier studies of the flows in long ducts with uniform transverse magnetic field. As
discussed, for example, in the review by Zikanov et al. (2014a), fully laminar and
fully turbulent flows are typically found at, respectively, R< 200 and R> 400, with
the transitional range at 200< R< 400. We also note that at Ha= 55 no substantial
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FIGURE 4. (Colour online) Instantaneous distributions of the streamwise velocity u at
several locations along the duct shown for the fully developed flows in simulations 1–4
(see table 1 for the flow parameters).

differences are observed between the case 1 and case 2 configurations except that the
flow modification happens farther downstream in run 2.

In simulations 3 and 4 performed at Ha= 195, we have R= 143, which is below
the laminar–turbulent transition range. Turbulence is, therefore, suppressed (albeit not
completely, as we will see in the following analysis) as the fluid moves through the
magnetic field (see figure 4). The flows obtained for the two configurations of the
magnetic field are, however, clearly different.
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By

By

y
x

z

Flow

Run 3 Run 4

FIGURE 5. (Colour online) Isosurfaces of the vertical velocity component w (transverse
and perpendicular to the main component of the magnetic field By) for runs 3 and 4.
Two iso-levels of the same magnitude and opposite signs (yellow (lighter) – positive, blue
(darker) – negative) are visualized. The inset on the left shows the honeycomb pattern and
the main component of the magnetic field By.

In the case 2 configuration, there is a distance between the honeycomb and the
beginning of the zone of full-amplitude magnetic field. The plots for run 4 in figures 4
and 5 clearly show that the distance is sufficient for the instability and mixing of
the jets generated by the honeycomb. Three-dimensional turbulence develops. Upon
entering the magnetic field, the turbulent fluctuations are quickly suppressed, which is
reflected by the strong reduction of the r.m.s. velocity fluctuations at x= 43 shown in
table 2.

In the case 1 configuration, the formation of turbulence near the honeycomb exit
occurs in the presence of a full-amplitude magnetic field. As shown in figures 4 and 5,
the velocity field in run 3 quickly becomes strongly anisotropic. The instability of the
honeycomb jets does not lead to a three-dimensional turbulent state, but to a quasi-
two-dimensional flow dominated by structures aligned with the magnetic field.

The illustrations in figures 4 and 5, the distribution of the vorticity component
ωy parallel to the magnetic field in the (x, z) cross-section of the duct shown in
figure 6, and the additional visualizations analysed in the course of our work (not
shown) suggest the following scenario of the evolution of the spatial structure of
the flow. In the inlet portion of the duct, approximately at x < 3, the dominant
feature of the evolution is the transformation of the round jets exiting the honeycomb
into quasi-two-dimensional planar (nearly parallel to the (x, y) plane) jets. Already
in the course of this transformation, the jets experience the Kelvin–Helmholtz
instability that leads to noticeable waviness at x between 3 and 4 and to roll-up
into quasi-two-dimensional vortices at around x = 5. The following evolution is
characterized by quasi-two-dimensional vortices superimposed on the plug-like profile
of the streamwise velocity. It is indicated by figures 4–6 and confirmed by the
quantitative analysis presented later in this paper that the dynamics of the vortices is
that of quasi-two-dimensional turbulence.

The last preceding paragraph summarizes our key observation. It provides the
basis for the explanation suggested earlier for the anomalously strong velocity
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0 2 4 6
x

8 10 12

1680-8-16

FIGURE 6. (Colour online) Instantaneous distribution of the vorticity component ωy
parallel to the magnetic field in the (x, z) cross-section through the duct’s axis. The
transformation of jets into vortices is shown for run 3 by a close-up of the inlet region
at 0 6 x 6 12.

fluctuations observed in the experiments of Sukoriansky et al. (1986) and, likely,
other experiments such as those of Kljukin & Kolesnikov (1989). Due to their
weak gradients along the magnetic field lines, the quasi-two-dimensional vortices
do not generate strong Joule dissipation. Furthermore, the quasi-two-dimensionality
reduces the energy flux from large to small length scales, which implies weaker
viscous dissipation. The flow structures are still suppressed by the Joule and
viscous dissipation in the boundary layers, but the effect is not strong. The
quasi-two-dimensional vortices are visible until the end of the flow domain (see
figures 4 and 5), and are responsible for the generation of high-amplitude velocity
fluctuations at far downstream locations.

3.1.3. Turbulence decay along the duct
The distributions of the turbulent kinetic energy in each velocity component 〈u′2〉,
〈v2
〉, 〈w2

〉 are computed as functions of x along the lines y = z = 0 and y = −1.4,
z= 0.

The turbulence decay curves obtained at y= z= 0 are shown in figures 7 and 8. The
intervals 06 x< 0.1 in figure 7 and 06 x< 1 in figure 8 are excluded to highlight the
decay stage of the flow evolution and to eliminate the initial stage of jet instability and
mixing, at which the data are strongly influenced by the position of the point y= z= 0
with respect to the honeycomb pattern. The slope lines are plotted to illustrate the
decay rate rather than to suggest a specific scaling.

For runs 1 and 2, the energy decay curves obtained at two locations of the magnet
are not very different from each other. This suggests weak influence of the magnetic
field in agreement with the low magnetic interaction parameter N= 0.1088. For small
x, the magnetic damping causes somewhat more rapid decay in run 1 than in run
2. At larger x, approximately at x > x1 where the strength of the magnetic field is
approximately the same in the two flows, turbulence decays faster for run 2. We
attribute that to the stronger Joule dissipation caused by the stronger velocity gradients
in the field direction retained by the flow. At the end of the duct, the turbulent kinetic
energy in the two flows decreases to approximately the same level.

The curves in figure 8(a,b) show significant level of fluctuations in all three velocity
components. This is in agreement with the three-dimensional fully turbulent nature of
the flow visualized in figure 4. At the same time, the Reynolds stress tensor is not
isotropic. At small x, 〈u′2〉> 〈v′2〉∼ 〈w′2〉. At larger x, approximately at x> 12 in run 1
and x> 20 in run 2, we see significant anisotropy with 〈u′2〉 ∼ 〈v′2〉> 〈w′2〉.
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FIGURE 7. (Colour online) Time-averaged turbulent kinetic energy 〈u′2 + v′2 + w′2〉 as a
function of x along the centreline of the duct y= z= 0. The vertical dotted line indicates
the location of the corners of the magnet pole pieces in runs 2 and 4. The slope line
∼x−5/3 is shown for comparison.
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FIGURE 8. (Colour online) Time-averaged turbulent kinetic energies in separated velocity
components 〈u′2〉, 〈v′2〉, 〈w′2〉 as functions of x along the centreline of the duct y= z= 0.
The inlet section of the duct 06 x6 1 is excluded. Slope lines are shown for comparison.
The vertical dotted line indicates the location of the corners of the magnet pole pieces in
runs 2 and 4.

The effect of the magnetic field is much more pronounced in runs 3 and 4. For
run 4, the energy decay curves is practically indistinguishable from those for the run
2 curve for x< x1 (see figure 7). For x> x1, the strong imposed magnetic field results
in rapid decay and the lowest value of the turbulent kinetic energy at the duct exit
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among all simulations 1–4. Interestingly, during the initial stages of this decay, in
the interval 15< x< 30, the fluctuations of the velocity component v parallel to the
magnetic field remain stronger than the fluctuations of the other two components (see
figure 8d). We do not have data that would allow us to precisely identify the specific
flow structures responsible for this effect. We note that the behaviour is consistent with
the evolution of homogeneous, initially isotropic turbulence after sudden application of
a strong magnetic field. As predicted by Moffatt (1967) and confirmed by Burattini
et al. (2010) and Favier et al. (2010), the initial stages of the decay are characterized
by the energy of field-parallel velocity fluctuation component substantially larger (two
times larger in the asymptotic limit N� 1) than the energy of the field-perpendicular
components. Far downstream, approximately for x> 30, the remaining fluctuations u′
and w′ decay very slowly, with the rate approaching 〈u′2〉 ∼ 〈w′2〉 ∼ x−0.5.

For the most interesting simulation 3, figures 7 and 8 show a very strong effect of
the magnetic field. At the entrance portion of the duct, the generation of turbulence is
inhibited and the turbulent kinetic energy is an order of magnitude smaller than in the
other three cases. The energy grows slightly for x < 0.3 and then decays, but much
slower than in the other cases. The energy becomes larger than in the other flows at
x≈ 3.

Interesting behaviour is observed in the interval 3 < x < 6. While the fluctuation
energy 〈v′2〉 of the field-parallel velocity component continues to decay along the duct,
the fluctuation energies of the other two components grow. This behaviour manifests
substantial energy transfer from the mean flow to the fluctuations. The visualizations
of the flow structure in figures 4–6 allow us to attribute it to the Kelvin–Helmholtz
instability of the quasi-two-dimensional planar jets, which develop quite rapidly at
already x≈ 3, and the resulting formation of quasi-two-dimensional vortices.

The turbulence decay at x>6 is characterized by 〈u′2〉∼ 〈w′2〉�〈v′2〉 (see figure 8c),
which is expected for quasi-two-dimensional vortical structures extending wall-to-wall
in the field direction. The energy remains much larger than in the other three flows.
For x > 8, the decay is well approximated by the power law ∼x−5/3 (see figure 7).
It should be stressed that we do not have theoretical arguments supporting this decay
rate. The same is true for the decay rates indicated by the slope lines in figure 8. The
lines are shown purely for comparison, as illustrations of the decay trends obtained in
the simulations.

3.1.4. Turbulence statistics
The velocity fields computed in runs 1–4 for fully developed flows at 100 < t <

200 are used to accumulate the turbulence statistics discussed in this section. Energy
power spectra are calculated from the velocity fluctuation signals at x= 43, y= z= 0
(see figure 3). To comply with the periodicity condition, we have used a window
function w(τ ), based on a superposition of two hyperbolic tangents w(τ )= tanh(aτ 3)+
tanh(a(Tm− τ)

3)−1 with a=0.03. Here it is assumed that the argument τ varies from
0 to the maximum Tm = 100. This function provides smooth transition from zero to
unity at both ends and retains more than 90 % of the unmodified sequence.

A possible alternative to this approach would be to compute the spatial wavenumber
spectra in the cross-section x = const. For that, we would have to use the data
recorded in the core (excluding the boundary layers) portion of the cross-section.
The data would have to be interpolated to a uniform grid and time averaged. We
see our approach as preferable for the following several reasons. It is free from
the errors associated with the interpolation and the variation of flow properties in
the cross-section. The spectra based on the time signal directly correspond to the
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measurements made in the experiment. Finally, one-dimensional spectra are more
informative in the case of strongly anisotropic turbulence than three-dimensional or
two-dimensional ones.

The spectra are shown in figure 9. We see that even at Ha = 195 the spectra
are continuously populated in a wide range of frequencies ω, so the flows can be
classified as turbulent. The inertial ranges cannot be reliably determined due to their
shortness typical for turbulence decay in the presence of MHD suppression. Still, one
sees portions of the spectra with the slope close to ∼ω−5/3 at Ha = 55 and ∼ω−3

at Ha= 195. The latter can be viewed as an indication of the quasi-two-dimensional
character of the turbulence, although, as argued by Alemany et al. (1979) and
Sommeria & Moreau (1982), the same spectrum may appear as a result of the
equilibrium between the local angular energy transfer and the Joule dissipation in the
core flow or the Hartmann boundary layers.

The spectrum of w2 is particularly convenient for characterization of the anomalous
high-amplitude turbulent fluctuations observed in flow 3 (see figure 9f ). The energy
peak at ω ≈ 10 is evidently associated with the characteristic streamwise size of the
vortices (see figure 5).

We have also evaluated two-point velocity correlation functions along the directions
parallel (y) and perpendicular (z) to the magnetic field. The coefficients are defined as
(here for the velocity component w)

Rw(`y) =

∫ Lz−δz

−Lz+δz

w(x∗, 0, z)w(x∗, `y, z) dz+
∫ Lz−δz

−Lz+δz

w(x∗, 0, z)w(x∗,−`y, z) dz

2
∫ Lz−δz

−Lz+δz

w2(x∗, 0, z) dz
, (3.2)

Rw(`z) =

∫ Ly−δy

−Ly+δy

w(x∗, y, 0)w(x∗, y, `z) dy+
∫ Ly−δy

−Ly+δy

w(x∗, y, 0)w(x∗, y,−`z) dy

2
∫ Ly−δy

−Ly+δy

w2(x∗, y, 0) dy
. (3.3)

The magnetohydrodynamic boundary layers of thicknesses δy = Ly/Ha and δz =

Lz/Ha1/2 are excluded from the integration, so the estimation of the correlations is
limited to the zone of approximately homogeneous turbulence in the core flow. The
integrals are calculated at the time moments separated by 0.1 and time averaged over
the period of fully developed flow. The calculations are performed for several duct
cross-sections x= x∗, namely at x∗ = 1, 2, 3, 4 and at 7 6 x∗ 6 49 with a step of 3.

The computed correlation curves provide detailed information on the development of
the dimensional anisotropy along the duct. The results are presented in the Appendix.
Here, we discuss the longitudinal (L‖) and transverse (L⊥) length scales along (y) and
across (z) the magnetic field derived as:

Ly
‖ =

∫ 1−δy

0
Rv(`y) d`y, (3.4)

Ly
⊥ =

∫ 1−δy

0
Rw(`y) d`y, (3.5)

Lz
‖
=

∫ 1−δz

0
Rw(`z) d`z, (3.6)
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FIGURE 9. (Colour online) Power spectra of the kinetic energy based on the velocity
signals computed at x = 43, y = z = 0 in the fully developed flows at Ha = 55 (runs 1,
2 shown in a,c,e) and Ha= 195 (runs 3 and 4 shown in b,d, f ). The spectra of the total
kinetic energy E= u2

+ v2
+w2 and the energy in two velocity components u and w are

shown. For the sake of clarity, the filtered spectra (using Bezier spline) are shown, the
original raw data are only demonstrated in (a,b). Also shown, for the sake of comparison,
are the power laws ∼ω−3 and ∼ω−5/3. The spectra of the energy in the velocity component
v (not shown) demonstrate practically no difference between the four flows.

Lz
⊥
=

∫ 1−δz

0
Rv(`z) d`z. (3.7)

In isotropic turbulence, we would find Ly
‖ ≈ Lz

‖ ≈ 2Ly
⊥ ≈ 2Lz

⊥. These relationships
are, quite expectedly, not satisfied by flows 3 and 4 with strong magnetic field. For
flows 1 and 2 with weak magnetic field, the relationships hold for Lz

‖ and Lz
⊥ at

large distances from the inlet, where the honeycomb-created jets are properly mixed
(see figure 10c,d), but not for Ly

‖ and Ly
⊥ (not clearly visible in figure 10a,b, but

verified in our analysis). We also see that for weak magnetic field the scales Ly
‖ and

Ly
⊥ remain practically constant, while Lz

‖ and Lz
⊥ grow downstream. The outlying point

in figure 10(c) corresponds to the effect of the local flow transformation in run 4,
discussed in the Appendix.
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FIGURE 10. (Colour online) Integral length scales based on the correlation data obtained
in runs 1–4: (a,b) parallel to the magnetic field, (c,d) perpendicular to the field. The scales
Ly
‖, Ly

⊥ and Lz
‖, Lz

⊥ are shown as functions of the streamwise coordinate x. The nature of
the peak at x= 16 in (c) is explained in the Appendix.

In runs 3 and 4, the strong magnetic field causes rapid growth of Ly
‖, Ly

⊥ and Lz
‖, but

not Lz
⊥. The most interesting for us are the length scales Ly

⊥ and Lz
‖ computed on the

basis of the fluctuations of the velocity component w. We see that the length scale
Ly
⊥ along the magnetic field grows monotonically downstream after the full-strength

magnetic field is introduced (at x= 0 in run 3 and at x= x1 in run 4) as an indication
of the flow’s transition into strongly anisotropic form. Interestingly, the large vortices
developing in run 3 result in slower growth, so at the end of the domain, Ly

⊥ is smaller
than in run 4. The length scale Lz

‖ in the direction perpendicular to the magnetic
field grows very rapidly at small x in run 3 and stabilizes at approximately 0.25 at x
above approximately 20. This value as associated with the typical transverse size of
the quasi-two-dimensional vortices. On the contrary, in run 4, where the vortices do
not form, Lz

‖ grows continuously downstream.

3.2. Effect of walls and anisotropy of inlet conditions
The discussion of § 3.1 as well as previous works by various authors (see e.g. Moffatt
1967; Sukoriansky et al. 1986; Kljukin & Kolesnikov 1989; Burattini et al. 2010)
suggest that the development and persistence of quasi-two-dimensional structures
aligned with the strong imposed magnetic field is a general physical phenomenon
to be observed, in some form, in all decaying MHD turbulent flows. At the same
time, features of the flow’s configuration may strongly affect the realization of the
phenomenon in a specific case. For our system, the most important such features are:
(i) the location of the duct walls non-parallel to the magnetic field, which limit the
longitudinal size of the quasi-two-dimensional flow structures and (ii) the design of
the honeycomb, which may introduce anisotropy into the initial state of the flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.171


Decay of turbulence in a duct with transverse magnetic field 681

The importance of these features is due to the presence of the strong transverse
magnetic field. Without the field, approximately homogeneous and isotropic turbulence
insensitive to such details of the system’s geometry is expected to form in the core
of the duct downstream of the honeycomb’s exit.

The two effects are explored in our study in simulation runs 5–8 (see table 1 for
parameters). The strong magnetic field corresponding to Ha= 195 is applied in all the
simulations, so we expect the behaviour similar to that observed earlier in simulations
3 and 4. The main component of the magnetic field is oriented along the shorter
side of the duct (Bz) and not along the longer side as before. The case 1 and case
2 distributions of the magnetic field along the duct are considered. In addition to
allowing us to see the effect of the distance between the field-crossing walls, the
new simulations provide a direct comparison with the experiment of Sukoriansky et al.
(1986), in which the magnetic field is in the z-direction.

Two arrangements of the honeycomb tubes are considered. As illustrated in
figure 2(b), the tubes are arranged into straight rows along the longer (Type A)
or shorter (Type B) sides of the duct. This implies different anisotropies of the flows
exiting the honeycomb. The Type A (runs 5 and 6) produces structures with weaker
average gradients in the y-direction, i.e. perpendicularly to the magnetic field. The
Type B (runs 7 and 8) results in the flow structures with weaker gradient in the
z-direction, i.e. the direction of the magnetic field.

The r.m.s. velocity fluctuations in fully developed flows are presented in table 2.
We see that the situation is generally similar to that observed earlier in simulations 3
and 4. The anomalously strong velocity fluctuations appear when the magnetic field
has the configuration of case 1 (runs 5 and 7) but not of case 2 (runs 6 and 8). Also
as before, the strong fluctuations develop in the streamwise velocity component u and
the transverse component perpendicular to the magnetic field v.

The effect of the anisotropy introduced by the honeycomb is clearly visible. The
fluctuation amplitude in run 7 is approximately the same as in run 3, while it is
approximately two times smaller in run 5.

To explain these results, we will consider the spatial structure of the flows visualized
in figures 11–12. As in § 3.1, profiles of the streamwise velocity (figure 11) and
isosurfaces of the transverse velocity component perpendicular to the magnetic field
(figure 12) are shown.

We start with simulations 6 and 8, in which the magnet poles are shifted
downstream of the honeycomb exit (the case 2 configuration, see figures 1b and 2a).
One can see that, similarly to simulation 4, three-dimensional turbulence forms before
the fluid enters the zone of strong magnetic field. Subsequent effective magnetic
damping results in the low amplitude of remaining velocity fluctuations reported in
table 2.

The flows of simulations 6 and 8 also have prominent M-shaped profiles of
streamwise velocity (see figure 11). Such a profile is expected when the flow in a
duct with electrically insulating walls enters the zone of strong transverse magnetic
field (see e.g. Branover 1978; Andreev, Kolesnikov & Thess 2006). The profile can
also be noticed in run 4 (see figure 4), but it is more pronounced in runs 6 and 8
due to the larger distance between the sidewalls (the walls parallel to the magnetic
field).

The two just discussed flow features are equally observed in simulations 6 and
8. The only difference between the two flows is that we see significant velocity
fluctuations near the sidewalls in the far downstream portion of the duct in flow 6
but not in flow 8 (see figures 11 and 12). The physical nature of this phenomenon has
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FIGURE 11. (Colour online) Instantaneous distributions of the streamwise velocity u at
several locations along the duct shown for the fully developed flows in simulations 5–8
(see table 1 for flow parameters).

been verified in additional simulations. We attribute its existence to the strong shear
layer associated with the planar sidewall jets forming in the M-shaped profile. Such
layers are known to be very susceptible to instabilities (see e.g. Kobayashi, Shionoya
& Okuno 2012). A similar phenomenon is also known in another configuration with
planar sidewall jets, termed Hunt’s flow (Braiden et al. 2016). The fact that sidewall
turbulence appears in run 6, but not in run 8, is due to the effect of the honeycomb
arrangement. Stronger flow instability is triggered in run 6, since the perturbations
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Flow
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(b)

Run 6

Bz

Bz

y
x

z

Flow

Run 7 Run 8

FIGURE 12. (Colour online) Isosurfaces of the velocity component v (transverse and
perpendicular to the main component of the magnetic field Bz) for simulations 5, 6 (a)
and 7, 8 (b). Two iso-levels of the same magnitude and opposite sign (yellow (lighter)
– positive, blue (darker) – negative) are visualized. The inset on the left shows the
honeycomb patterns of Types A and B, and the main component of the magnetic field
Bz.

introduced into the sidewall layers by the honeycomb of Type A are less aligned
with the magnetic field and, therefore, can destabilize earlier.

In simulations 5 and 7, the honeycomb exit is located within the zone of strong
transverse magnetic field (the case 1 configuration, see figures 1b and 2a). Similarly
to flow 3, the simulations show development of quasi-two-dimensional structures that
are poorly suppressed by the magnetic field and have the form of large-scale vortices
aligned with the field. Interestingly, the strength of the structures and the amplitude
of the associated velocity fluctuations is approximately the same in runs 7 and 3 (see
table 2). The process of formation of the quasi-two-dimensional vortices is practically
unaffected by the orientation of the magnetic field.

On the contrary, the effect of the initial flow anisotropy introduced by the
honeycomb is quite strong. The vortices are noticeably weaker and the fluctuation
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amplitude is approximately two times smaller in run 5 (when the honeycomb produces
structures elongated across the magnetic field) than in runs 3 and 7 (when the
elongation is along the field).

4. Discussion and concluding remarks
We performed numerical simulations inspired by the experiment of Sukoriansky

et al. (1986). The main goal was to understand the mechanisms leading to the
anomalous high-amplitude velocity fluctuations detected in the experiment when
a strong magnetic field covered the entire test section including the honeycomb.
This goal has been largely achieved. The simulation results are in good qualitative
agreement with the experimental data. The presence or absence of anomalously strong
fluctuations is found, respectively, at the same flow parameters as in the experiment
(cf. the experimental data in figure 1b and computed data in table 2).

The computed spatial structure and statistical properties of the flow provide the
explanation of the experimental observations. The jets forming at the honeycomb exit
are unstable and serve as a source of small-scale turbulence. When the magnetic field
is weak (runs 1 and 2), the kinetic energy injected into the flow is transferred to
small length scales in the conventional process of development of three-dimensional
turbulence. The turbulence then decays under the combined action of viscous and
Joule dissipation.

Similar formation of three-dimensional turbulence occurs in flows 4, 6 and 8, in
which the magnetic field is strong but begins at a distance from the honeycomb exit.
When the fluid enters the strong magnetic field zone, the turbulence experiences strong
magnetic suppression. Its subsequent evolution is characterized by low amplitude of
velocity fluctuations (see figures 3–5, 11 and 12 and table 2) and development of weak
quasi-two-dimensional structures (see figure 10).

High-amplitude velocity fluctuations develop in runs 3, 5 and 7 when the strong
magnetic field imposed at the exit from the honeycomb leads to rapid development
of strongly anisotropic flow structures. This degenerates the mechanism of vortex
stretching and suppresses the energy cascade to small length scales thus preventing
formation of conventional three-dimensional turbulence. The dominant flow structures
evolve into quasi-two-dimensional vortices, which are aligned with the magnetic field
and, therefore, only weakly suppressed and retain their strength and structure until
the end of the computational domain, i.e. at the streamwise distance of at least 25
shorter duct widths. It appears highly plausible that the anomalously strong velocity
fluctuations recorded in the experiment are caused by such vortices.

The difference in the flow evolution between the cases with weak and strong
magnetic fields can be related to the differences in the values of the magnetic
interaction parameter (the Stuart number) N ≡ Ha2/Re. This parameter estimates the
typical ratio between the Lorentz and inertial forces and, therefore, is often used as
a measure of expected transformation of turbulence by an imposed magnetic field
(see e.g. Zikanov & Thess 1998; Vorobev et al. 2005; Krasnov et al. 2008; Burattini
et al. 2010; Krasnov et al. 2012). Values of N about and higher than 1 are typically
required for strong transformation (there are inevitable variations of this rule due to
various definitions of the length and velocity scales, various types of the flow and
the variation of the transformation effect with the typical length scale). In our study,
N = 0.1088 in runs 1, 2 and N = 1.368 in runs 3–8. The fact that the suppression
of three-dimensional turbulence and dramatic changes of the flow structure are found
in the simulations with strong magnetic field but not with a weak one is, therefore,
fully consistent with the known trend.
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Decay of turbulence in a duct with transverse magnetic field 685

We have explored the effect of the geometric features of the system on the flow’s
behaviour at strong magnetic field. It has been found that the role of the orientation
of the magnetic field, which can also be interpreted as the role of the wall-to-wall
distances across and along the field, is minimal. This is demonstrated by the lack of
noticeable differences between the flows in runs 3 and 4 on the one hand and runs 7,
8 on the other hand.

On the contrary, the initial anisotropy introduced by the honeycomb has strong
effect on the flow with the quasi-two-dimensional vortices. As demonstrated by
simulations 3, 5 and 7, the amplitude of the vortices is substantially reduced when
the flow structures formed at the exit of the honeycomb are elongated across rather
than along the magnetic field.

We would like to stress that the flow evolution observed in runs 3, 5 and 7 does
not include development of an inverse energy cascade. For inverse cascade to exist,
the quasi-two-dimensional turbulence has to be continuously forced. In our case the
turbulent energy is injected locally near the honeycomb by the instability of the
jets leaving it. Part of this energy is dissipated by Joule friction, but the rest feeds
quasi-two-dimensional vortices. Downstream, the flow is unforced and is a subject
to anisotropic Joule dissipation and wall friction. Without constant supply of energy,
the inverse cascade (in a strict sense of this term) does not develop, but the vortices
grow in size due to quasi-two-dimensional dynamics.

As we have already mentioned, the results of the simulations are in good
qualitative agreement with the experimental data of Sukoriansky et al. (1986). The
high-amplitude fluctuations appear at the same values of Ha. Assuming that simulation
7 is the closest analogue of the experiment, we notice that the ratios between the
fluctuation amplitudes in the case 1 and case 2 configurations of the magnetic field are
of the same order of magnitude: approximately 5 in the experiment and approximately
2.5 in the simulations (see table 2).

However, the turbulence intensity in the computed flows is approximately five times
lower than measured in the experiment. This is true for both low and high values of
Ha and for different orientations and spatial structures of the magnetic field. Several
possible explanations are related to both the numerical and experimental procedures.
We cannot reliably discuss the possible role of the experimental procedure due to
the substantial time that has passed since the experiment was completed. Likely
numerical causes are the insufficient resolution of the shear layers in the jets exiting
the honeycomb and the assumption of laminar, with weak random noise, nature of
the jets. It is well known (see e.g. Kim & Choi 2009) that, in numerical simulations,
the instability and mixing of submerged jets are strongly affected by the resolution
and the inlet conditions. This may potentially lead to lower energy injection from
the jets into the small-scale turbulent fluctuations. We should also mention that in
the experiment the flow between the tubes of the honeycomb is not zero, which may
result in additional shear and stronger mixing. This effect is ignored in the numerical
model.

From the viewpoint of the turbulent decay theory, our work provides a good
example of non-universality of decay of MHD turbulence. The curves in figures 7
and 8 show complex behaviour of the fluctuation energy. The decay rate varies
with the stage of the process and among the velocity components. The values of
the two independent non-dimensional parameters (for example, N and Re) do not
determine the decay scenario in a unique way. The process is strongly affected by
the development, or lack thereof, of quasi-two-dimensional structures. The appearance
and nature of such structures is, in turn, determined not just by the strength of the
magnetic field, but also by the features of the flow evolution, most importantly, by
the state of the flow at the moment the magnetic field is introduced.
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Rw(ly) versus distance ly. (b,d, f,h,j) Correlation coefficients Rw(lz) versus distance lz.
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FIGURE 14. (Colour online) Two-point correlations in the cross-sections at x= 3, 13, 16,
31 and 43 for the velocity component v in runs 1–4. (a,c,e,g,i) Correlation coefficients
Rv(ly) versus distance ly. (b,d, f,h,j) Correlation coefficients Rv(lz) versus distance lz.

performed on the parallel supercomputers Jureca of the Forschungszentrum Jülich
(NIC) and SuperMUC of the Leibniz Rechenzentrum (LRZ), flow visualization was
done at the computing center of TU Ilmenau.
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FIGURE 15. (Colour online) Transformation of the flow in run 4 at the entrance into the
strong magnetic field zone. Instantaneous distributions of the three velocity components at
x= 13, 14.5 and 16 are shown.

Appendix
The two-point correlation functions obtained for the transverse velocity components

w and v in simulations 1–4 are shown in figures 13 and 14. Long-range correlations
remain weak in flows 1 and 2 during the entire decay and that there is practically
no difference between the two curves. This confirms the essentially three-dimensional
small-scale structure of turbulence in these flows.

The development of strong correlations along the magnetic field in flows 3 and 4
is consistent with the results of earlier simulations and theoretical models (see e.g.
Moffatt 1967; Davidson 1997; Zikanov & Thess 1998; Krasnov et al. 2008; Burattini
et al. 2010) of transformation of turbulent flow under the impact of a strong magnetic
field. While the growth of the typical scale of the turbulent structures in the field
direction is always stronger and the only one caused directly by the Joule dissipation,
the growth of the typical transverse size is caused by the enlargement of the quasi-
two-dimensional vortices.

The results obtained for the correlation coefficient Rv in flow 4 at x = 16 (see
figure 14f ) may appear surprising. The flow has nearly constant significant correlations
(Rv ≈ 0.2) over almost the entire duct width. This is not observed for any other
computed correlation coefficient in any other cross-section. The reason for this
behaviour is illustrated in figure 15. From x= 13 to x= 16, the streamwise velocity u
changes its profile in the way typical for a duct flow entering a strong magnetic field
(see e.g. Andreev et al. 2006, for a discussion of the flow transformation). Along
the y-axis parallel to the magnetic field, the Hartmann profile with nearly uniform
velocity in the core and thin Hartmann boundary layers develops. Along the z-axis,
the profiles acquires the typical M-shape. The redistribution of the streamwise velocity
is accompanied by a non-zero mean flow toward the walls at y=±1 (clearly visible
in the distribution of v at x= 16) and in the z-direction (visible in the distribution of
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w at x= 14.5, i.e. slightly upstream of the beginning of full-strength magnetic field,
in agreement with the scenario of formation of the M-shaped profile). The elevated
correlation coefficient Rv in flow 4 at x= 16 is caused by the flow in the y-direction.
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