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This paper deals with the non-negative boundary blow-up solutions of the equation
∆u = b(x)up + c(x)uσ |∇u|q in Ω ⊂ R

N , where b(x), c(x) ∈ Cγ(Ω, R
+) for some

0 < γ < 1 and can be vanishing or singular on the boundary, and p, σ and q are
non-negative constants. The existence and asymptotic behaviour of such a solution
near the boundary are investigated, and we show how the nonlinear gradient term
affects the results. As a consequence of the asymptotic behaviour, we also show the
uniqueness result.

1. Introduction and main results

In this work we analyse the existence, asymptotic behaviour near the boundary and
uniqueness of non-negative solutions to the singular boundary-value problem

∆u = b(x)up + c(x)uσ|∇u|q, x ∈ Ω,

u = ∞, x ∈ ∂Ω.

}
(1.1)

As usual, u = ∞ on ∂Ω means that u(x) → ∞ as d(x) := dist(x, ∂Ω) → 0, and
such non-negative solutions will be called ‘boundary blow-up’ or, for brevity, ‘large’
solutions. Here Ω is a bounded domain with smooth boundary in R

N , N � 1,
exponents p, σ and q are non-negative, b(x), c(x) ∈ Cγ(Ω, R+), R

+ := [0,∞) for
some 0 < γ < 1, and henceforth, Cγ(Ω) means that Cγ

loc(Ω). Moreover, sometimes
we need the following structural assumption.

(Hb) The weighted function b(x) is non-trivial in Ω, and if x0 ∈ Ω such that
b(x0) = 0, then there exists a sub-domain Ω0 ⊂ Ω such that x0 ∈ Ω0 and
b(x) > 0 on ∂Ω0.

For the large solution of the particular problem

∆u = b(x)up, x ∈ Ω,

u = ∞, x ∈ ∂Ω,

}
(1.2)
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with p > 1, almost everything is known: existence and non-existence, uniqueness,
boundary behaviour of the solution and its normal derivatives, second-order esti-
mates near the boundary, etc. The assumptions on the weighted function b(x) have
varied over the years: for instance,

• in [2, 18], when b is smooth and positive up to the boundary,

• in [8], when b is smooth but is zero on ∂Ω with a prescribed behaviour,

• in [20,21], where b satisfies (Hb) and b ∈ Cγ(Ω) and either

sup
x∈Ω

[d(x)]−µb(x) � C0

for some −2 < µ � 0 and some constant C0, or b ∈ Lr(Ω) for some r > N/2.

Then [6] almost covered the three cases above about the weight and studied the
more general equation ∆u = b(x)f(u); the upper-and-lower-solutions method was
used there. Chuaqui [4] also studied the large solution of (1.2). It was assumed that
b ∈ Cγ(Ω) and there exist constants b1, b2 > 0 and µ > −2 such that

b1d
µ(x) � b(x) � b2d

µ(x) in Ω. (1.3)

The following result was obtained in [4, theorem 1.1].

Proposition 1.1. Assume b verifies hypotheses (1.3). Then problem (1.2) has no
positive solution if µ � −2, and it has a unique positive solution u when −2 < µ < 0.
Moreover,

D1d
−α(x) � u(x) � D2d

−α(x) in Ω,

where α = (2 + µ)/(p − 1), and D1 and D2 are positive constants.

In fact, the existence of positive large solutions holds under the weaker assump-
tion 0 < b(x) � b2d

µ(x) in Ω for some −2 < µ < 0 and b2 > 0.
More recently, Garćıa-Melián [7] studied the corresponding results for p-Laplacian

problem.
The presence of the gradient terms may have significant influence on the exis-

tence, uniqueness and asymptotic behaviour of the large solution. Problems of
this type appear in stochastic control theory and were first studied by Lasry and
Lions [15], who addressed existence, uniqueness, non-existence and the blow-up rate
near the boundary of C2(Ω)-solutions of the problem

∆u = αu + |∇u|q + Ψ(x), x ∈ Ω; u = ∞, x ∈ ∂Ω.

where α > 0, 1 < q < ∞ are constants and Ψ is a smooth function. In recent years,
there have been many works published on the problem

∆u ± |∇u|q = b(x)f(u), x ∈ Ω; u = ∞, x ∈ ∂Ω. (1.4)

When b(x) = 1, f(u) = eu, Bandle and Giarrusso [1] gave the following results:

(i) if q � 0, then problem (1.4)+ has one solution in C2(Ω), and the same state-
ment is true for problem (1.4)−, provided 0 � q � 2;
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(ii) if 0 � q � 2, then every solution u± to problem (1.4)± satisfies

lim
d(x)→0

u±(x)
− ln(d(x))

= 2;

(iii) if q > 2, then for any solution u+ to problem (1.4)+, it holds that

lim
d(x)→0

u+(x)
− ln(d(x))

= q.

Whereas when b(x) = 1, f(u) = up, they gave the following results.

(i) If p > 1 and 0 < q < 2p/(p+1), then problem (1.4)± has at least one positive
solution in C2(Ω). Moreover, every solution satisfies

lim
d(x)→0

u±(x)
[2(p + 1)/(p − 1)2]1/(p−1)(d(x))−2/(p−1) = 1.

(ii) If 2p/(p + 1) < q < p, then any positive solution of problem (1.4)+ satisfies

lim
d(x)→0

u+(x)[(p − q)d(x)/q]q/(p−q) = 1.

(iii) If p > 0 and max{1, 2p/(p + 1)} < q < 2, then problem (1.4)− possesses
a positive solution. Moreover, every positive solution u of problem (1.4)−
satisfies

lim
d(x)→0

u−(x)(2 − q)[(q − 1)d(x)](2−q)/(q−1) = 1.

(iv) If p > 0 and q = 2, then problem (1.4)− has a positive solution which satisfies

lim
d(x)→0

u−(x)
ln(d(x))

= 1.

Bandle and Giarrusso [1] extended the above results for more general function f(u).
It was also shown that if f(t)/F q/2(t) → ∞ as t → ∞, then the solution u± of (1.4)±
satisfies

1
d(x)

∫ ∞

u±(x)

1√
2F (t)

dt → 1 as d(x) → 0,

and if
f(t)

F q/2(t)
→ 0 as t → ∞,

then

u±(x)[(q − 1)d(x)](2−q)/(q−1) → 1
2 − q

as d(x) → 0,

where

F (t) =
∫ t

f(s) ds.
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Giarrusso [10,11] showed that if

f(t)
F q/2(t)

→ κ, 0 < κ < ∞, as t → ∞ and 1 < q < 2,

then

u±(x)[(q − 1)d(x)](2−q)/(q−1) →
[
2 − q
√

a±

](2−q)/(q−1)

as d(x) → 0,

where a± is the solution of the equation

a

2 − q
± aq/2 = κ.

Later Ghergu et al . [9] and Zhang [22,24] extended the above results for the more
general function f(u) and weighted function b(x).

For the general quasilinear boundary blow-up problem

∆u − ψ(x, u,∇u) = 0, x ∈ Ω,

u = ∞, x ∈ ∂Ω,

}
(1.5)

Goncalves et al . [14] showed the existence of non-negative solutions under the con-
dition

a(x)g(t) � ψ(x, t, ξ) � h(t)(1 + Λ|ξ|2), (1.6)

where a, g, h are continuous functions, Λ > 0 is a constant, g and h are non-
decreasing and satisfy g(0) = 0, g(t) > 0 for t > 0 and h(0) � 1; in particular, g
satisfies the so-called Keller–Osserman condition, namely∫ ∞

1

1√
G(t)

dt < ∞, G(t) =
∫ t

0
g(s) ds.

Goncalves et al . applied the abstract result therein to prove the existence of large
solutions of the problem

∆u = a(x)g(u) + λuσ|∇u|q, x ∈ Ω; u = ∞, x ∈ ∂Ω,

where a(x) ∈ Cγ(Ω) ∩ C(Ω̄), 0 � q � 2, and g satisfies the Keller–Osserman
condition.

For other works on large solutions with nonlinear gradient terms, see [3,9,12,16,
23] and the references therein.

Motivated by the above papers, in this work we study the existence, asymptotic
behaviour near the boundary and uniqueness of large solutions for problem (1.1).
To this end, we first study the radially symmetric case:

v′′ +
N − 1

r
v′ = a1(r)(R − r)µvp + a2(r)(R − r)νvσ|v′|q, r ∈ (0, R),

v � 0, r ∈ (0, R),
v′(0) = 0, lim

r↗R
v(r) = ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.7)
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We show the existence and asymptotic behaviour of radial large C2-solutions of (1.7)
by constructing suitable blow-up weak upper and lower solutions. Then we derive
the existence of non-negative solutions of (1.1) in a general domain by a comparison
argument. Finally, by using a perturbation method and constructing comparison
functions, we obtain the exact asymptotic behaviour of any non-negative solution
of (1.1) near the boundary. The uniqueness of the solution is shown by a standard
argument.

Our main results are summarized in the following and, to the best of our know-
ledge, they are not covered by any of the references cited above.

Theorem 1.2. Assume that R > 0, ai ∈ C([0, R]; R+), p, σ > 0, q � 0, µ > −2
and ν > −(2 − q). If one of the following holds:

(i)

p > max
{

1,
(µ + 2)(σ + q − 1)

ν + 2 − q
+ 1

}
, a1(r) > 0 in (0, R];

(ii)

p <
(µ + 2)(σ + q − 1)

ν + 2 − q
+ 1, q + σ > 1 and a2(r) > 0 in (0, R];

(iii)

1 < p =
(µ + 2)(σ + q − 1)

ν + 2 − q
+ 1, a1(r) > 0 or a2(r) > 0 in (0, R],

then, for each ε > 0, problem (1.7) has at least one non-negative solution vε and
satisfies

1 − ε � lim inf
r↗R

vε(r)
ψ(R)(R − r)−α

� lim sup
r↗R

vε(r)
ψ(R)(R − r)−α

� 1 + ε, (1.8)

where

α =
µ + 2
p − 1

and ψ(R) =
(

α(α + 1)
a1(R)

)1/(p−1)

when condition (i) holds,

α =
ν + 2 − q

q + σ − 1
and ψ(R) =

(
α1−q(α + 1)

a2(R)

)1/(q+σ−1)

when condition (ii) holds,

α =
µ + 2
p − 1

and ψ(R) is the unique positive solution of the equation

a1(R)xp−1 + a2(R)αqxq+σ−1 = α(α + 1)

when condition (iii) holds.
Therefore, for each x0 ∈ R

N , the function

uε(x) := vε(r) with r := |x − x0|
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provides us with a radially symmetric non-negative solution of the problem

−∆u = a1(r)dµ(x)up + a2(r)dν(x)|∇u|q, x ∈ BR(x0),
u = ∞, x ∈ ∂BR(x0),

and satisfies

1 − ε � lim inf
d(x)↘0

uε(x)
ψ(R)d−α(x)

� lim sup
d(x)↘0

uε(x)
ψ(R)d−α(x)

� 1 + ε,

where d(x) := dist(x, ∂BR(x0)) = R − |x − x0| = R − r, α and ψ(R) are defined
above.

Theorem 1.3. Suppose that there exist constants b2, c2 > 0 and µ2, ν2 > −1/N ,
such that

b(x) � b2d
µ2(x), c(x) � c2d

ν2(x), x ∈ Ω.

Then problem (1.1) has at least one non-negative solution under one of the following
conditions:

(i) p > 1, b(x) satisfies (Hb);

(ii) q + σ > 1, c(x) � c1d
ν1(x) in Ω for some c1 > 0 and ν1 � 0.

Theorem 1.4. Suppose that there exist constants β, ρ > 0, µ > −2, ν > −(2 − q)
satisfying µν � 0. If one of the following holds:

(i)

p > max
{

1,
(µ + 2)(σ + q − 1)

ν + 2 − q
+ 1

}
, lim

d(x)↘0

b(x)
dµ(x)

= β, c(x) � c2d
ν(x)

near the boundary;

(ii)

p <
(µ + 2)(σ + q − 1)

ν + 2 − q
+1, q+σ > 1, lim

d(x)↘0

c(x)
dν(x)

= ρ, b(x) � b2d
µ(x)

near the boundary;

(iii)

1 < p =
(µ + 2)(σ + q − 1)

ν + 2 − q
+ 1, lim

d(x)↘0

b(x)
dµ(x)

= β, lim
d(x)↘0

c(x)
dν(x)

= ρ

and

µ � 2
2 − q

ν if ν < 0

(ν < 0 implies q < 2);
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then any non-negative solution u(x) of (1.1) satisfies

lim
d(x)↘0

u(x)
d−α(x)

= l, (1.9)

where

α =
µ + 2
p − 1

and l =
(

α(α + 1)
β

)1/(p−1)

when condition (i) holds,

α =
ν + 2 − q

q + σ − 1
and l =

(
α1−q(α + 1)

ρ

)1/(q+σ−1)

when condition (ii) holds,

α =
µ + 2
p − 1

and l is the unique positive solution of the equation

βxp−1 + ραqxq+σ−1 = α(α + 1) (1.10)

when condition (iii) holds.
Furthermore, in any case, if p > 1 and q + σ � 1, or p = 1, σ + q > 1 and q � 1,

then the solution of (1.1) is unique if it exists.

Remark 1.5. It is well known that case (i) also holds for the large solutions of the
simple semilinear equation ∆u = b(x)up. On the contrary, case (ii) shows that the
asymptotic behaviour of u is really influenced by the term c(x)uσ|∇u|q and does
not depend on the particular b(x)up. On the other hand, case (iii) shows that the
asymptotic behaviour of u is influenced not only by the term c(x)uσ|∇u|q but also
by the term b(x)up.

The rest of this paper is organized as follows: in § 2, we give a comparison principle
for quasilinear equations and two related existence theorems. In § 3 we first study
the large solution for the radially symmetric case, and then prove theorems 1.3
and 1.4.

2. Comparison principle and existence result

2.1. Comparison principle

First we consider a second-order quasilinear operator Q of the form

Qu :=
N∑

i,j=1

aij(x, u,∇u)Diju + b(x, u,∇u),

where x = (x1, . . . , xN ) is contained in the domain Ω of R
N . The coefficients of

Q, namely the functions aij(x, z, ξ), i, j = 1, . . . , N , b(x, z, ξ) are assumed to be
defined for all values of (x, z, ξ) in the set Ω × R × R

N .
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Lemma 2.1 (Gilbarg and Trudinger [13, theorem 10.1]). Let u, v ∈ C(Ω̄) ∩ C2(Ω)
satisfy Qu � Qv in Ω, and u � v on ∂Ω, where

(i) the operator Q is elliptic with respect to either u or v,

(ii) the coefficients aij are independent of z,

(iii) the coefficient b is non-increasing in z for each (x, ξ) ∈ Ω × R
N ,

(iv) the coefficients aij , b are continuously differentiable with respect to the ξ vari-
ables in Ω × R × R

N .

It then follows that u � v in Ω. Furthermore, if Qu > Qv in Ω, u � v on ∂Ω
and conditions (i)–(iii) (but not necessarily (iv)) hold, we have the strict inequality
u < v in Ω.

If ψ : Ω×R
+×R

N → R and ψ(x, 0, 0) = 0, we can extend the function ψ(x, u,∇u)
to the region u � 0 properly, and apply lemma 2.1 with the operator Qu = ∆u −
ψ(x, u,∇u). The following comparison principle plays an important role in the
proofs of theorems 1.3 and 1.4.

Lemma 2.2. Assume that ψ : Ω × R
+ × R

N → R, ψ(x, 0, 0) = 0 and ψ(x, t, ξ) is
non-decreasing in t for each (x, ξ) ∈ Ω × R

N . Let u, v ∈ C(Ω̄) ∩ C2(Ω) be two
non-negative functions.

(i) If u, v satisfy

∆u − ψ(x, u,∇u) > ∆v − ψ(x, v,∇v) in Ω, u � v on ∂Ω,

it then follows that u < v in Ω.

(ii) If u, v satisfy

∆u − ψ(x, u,∇u) � ∆v − ψ(x, v,∇v) in Ω, u � v on ∂Ω,

and in addition the coefficient ψ is continuously differentiable with respect to
the ξ variable in Ω × R

+ × R
N , it then follows that u � v in Ω.

2.2. Existence results

Now we consider the general equation

∆u − ψ(x, u,∇u) = 0, x ∈ Ω. (2.1)

Definition 2.3. Let 1 < k � ∞. A function ū ∈ W 1,k(Ω) is called a weak upper
solution to (2.1) if

ψ(·, ū(·),∇ū(·)) ∈ Lk′
(Ω) with k′ =

⎧⎪⎨
⎪⎩

k

k − 1
, k < ∞,

1, k = ∞,

and∫
Ω

∇ū · ∇v dx �
∫

Ω

ψ(x, ū, ∇ū)v dx for all v ∈ W 1,k
0 (Ω), v � 0 a.e. in Ω.
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A function u
¯

∈ W 1,k(Ω) is called a weak lower solution of (2.1) if the inequalities
above are reversed. If u

¯
� ū a.e. in Ω, we say they are ordered. In addition, if

ū = u
¯

= ∞, we say that they are the ordered weak upper and lower solutions
of (1.5).

We first determine the existence of the weak solution to the problem

∆u − ψ(x, u,∇u) = 0, x ∈ Ω,

u = φ(x), x ∈ ∂Ω.

}
(2.2)

Assume that ū ∈ W 1,k(Ω) is a weak upper solution (u
¯

∈ W 1,k(Ω) is a weak lower
solution) of (2.1). If ū � φ (u

¯
� φ) on ∂Ω, we say that ū (u

¯
) is a weak upper

solution (lower solution) of (2.2).

Lemma 2.4 (Du [5, theorem 4.9]). Let ū, u
¯

∈ W 1,k(Ω) be the ordered weak upper
and lower solutions of (2.2); φ(x) can be extended to Ω such that φ ∈ W 1,k(Ω) and
u
¯

� φ � ū a.e. in Ω. Assume that there exist a positive constant C1 and a function
h1 ∈ Lk′

(Ω) with k′ = k/(k − 1), such that

|ψ(x, t, ξ)| � h1(x) + C1|ξ|k−1 a.e. x ∈ Ω for all ξ ∈ R
N , t ∈ [u

¯
, ū]. (2.3)

Then there is a weak solution u ∈ W 1,k(Ω) of problem (2.2) such that u
¯

� u � ū
a.e. in Ω.

As for the existence of classical solutions, we have the following theorem.

Theorem 2.5. Let ψ ∈ Cγ(Ω ×R×R
N ) for some 0 < γ < 1, and ū, u

¯
∈ W 1,∞(Ω)

be the ordered weak upper and lower solutions of (2.2); φ(x) can be extended to
Ω such that φ ∈ C2+γ(Ω) and u

¯
� φ � ū a.e. in Ω. Assume that there exist

constants k > 1, C1 > 0, m > N and a function h1 ∈ Cµ(Ω) ∩ Lm(Ω) for some
0 < µ < 1, such that (2.3) holds. Then there is a C2,β(Ω)-solution u of (2.2) for
some 0 < β < 1 and satisfying u

¯
� u � ū in Ω.

Proof. Choose l > k so large that l/(k − 1) > m. For such fixed l, by the inequality
(2.3) and Young’s inequality, we have that there exist two positive constants C2
and C3 such that

|ψ(x, t, ξ)| � h1(x) + C2 + C3|ξ|l−1 a.e. x ∈ Ω for all ξ ∈ R
N , t ∈ [u

¯
, ū].

It is obvious that ū, u
¯

∈ W 1,l(Ω) are the ordered weak upper and lower solutions
of (2.2). In view of lemma 2.4, problem (2.2) has a weak solution u ∈ W 1,l(Ω) and
satisfies u

¯
� u � ū in Ω, which implies ∇u ∈ Ll(Ω). So, |∇u|k−1 ∈ Ll/(k−1)(Ω) ↪→

Lm(Ω). By the inequality (2.3), we have

|ψ(x, u,∇u)| � h1(x) + C1|∇u|k−1 ∈ Lm(Ω).

Thus, by the Lp theory for elliptic equations, we have u ∈ W 2,m(Ω). Since m > N ,
we have that ∇u ∈ Cα(Ω̄) with 0 < α = 1 − N/m < 1 by the Sobolev imbedding
theorem. Applying the Schauder theory, we obtain that problem (2.2) has a solution
u ∈ C2,β(Ω) for some 0 < β < 1. This completes the proof.
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The following theorem is needed in the next section.

Theorem 2.6. Let ψ ∈ Cγ(Ω × R
+ × R

N ), and non-negative functions ū, u
¯

∈
W 1,∞

loc (Ω) be the ordered weak upper and weak lower solutions of (1.5). Assume
that there exist constants k > 1, C1 > 0 and two functions h1 ∈ Cµ(Ω) and
g ∈ L∞

loc([0,∞)) for some 0 < µ < 1, such that

|ψ(x, t, ξ)| � h1(x) + g(t) + C1|ξ|k−1 a.e. x ∈ Ω for all ξ ∈ R
N , t ∈ [u

¯
, ū]. (2.4)

Then there is a C2,β(Ω)-solution u of (1.5) for some 0 < β < 1 such that u
¯

� u � ū
in Ω.

Proof. Let δ > 0 and Ωδ := {x ∈ Ω : d(x) > δ}. Consider the problem

∆u = ψ(x, u,∇u), x ∈ Ωδ,

u = ū, x ∈ ∂Ωδ.

}
(2.5)

Since ū ∈ W 1,∞(Ωδ) and u
¯

∈ W 1,∞(Ωδ), by (2.4) we see that there is constant
C2 = C2(δ) > 0 such that

|ψ(x, t, ξ)| � h1(x) + C2 + C1|ξ|k−1 a.e. x ∈ Ωδ for all ξ ∈ R
N , t ∈ [u

¯
, ū].

It is obvious that ū|Ωδ
and u

¯
|Ωδ

are the ordered upper and lower solutions of (2.5),
and h1 ∈ Cµ(Ω̄δ). By theorem 2.5, there exists a solution uδ ∈ C2,β(Ωδ) of (2.5)
such that u

¯
� uδ � ū in Ωδ. In view of the standard inner Schauder estimate and

compact imbedding theorem, we conclude the existence of a sequence δn → 0 such
that uδn → u in C2,β(Ω). It follows that u is a solution to (1.5) and u

¯
� u � ū

in Ω.

3. Radially symmetric case

Proof of theorem 1.2.
(i) First we show that, for each ε > 0 sufficiently small, a constant Aε > 0 exists
for which the function

v̄ε(r) := A + B+

(
r

R

)2

(R − r)−α (3.1)

provides us with a positive upper solution of (1.7) for each A > Aε if

B+ = (1 + ε)ψ(R), (3.2)

where

α =
µ + 2
p − 1

and ψ(R) =
(

α(α + 1)
a1(R)

)1/(p−1)

.
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Indeed, v̄′
ε(0) = 0 and limr↗R v̄ε(r) = ∞, since α > 0. Thus, v̄ε is an upper solution

of (1.7) if and only if

B+

R2 [α(α + 1)r2 + 4αr(R − r) + 2(R − r)2] + (N − 1)
B+

R2 (R − r)(2(R − r) + αr)

� a1(r)(R − r)µ−αp+α+2
(

A(R − r)α +
B+r2

R2

)p

+ a2(r)(R − r)ν−ασ+α+2−(α+1)q
(

A(R − r)α +
B+r2

R2

)σ

×
(∣∣∣∣B+r

R2 (2(R − r) + αr)
∣∣∣∣
q)

. (3.3)

Note that ν − ασ + α + 2 − (α + 1)q > µ − αp + α + 2 = 0 at r = R; thus, (3.3)
becomes

α(α + 1)B+ � Bp
+a1(R),

which is satisfied if and only if
B+ � ψ(R),

since p > 1. Therefore, by choosing B+ as in (3.2), inequality (3.3) is satisfied in
a left neighbourhood of r = R, say (R − δ, R] for some δ = δ(ε) > 0. Finally, by
choosing A sufficiently large, it is clear that the inequality is satisfied in the whole
interval [0, R], since p > 0 and a1(r) is non-zero. This concludes the proof of the
claim above.

Now we will construct an adequate weak lower solution of (1.7). We claim that,
for each sufficiently small ε > 0, there exists C < 0 such that

vε(r) := max{0, C + B−(r/R)2(R − r)−α} (3.4)

provides us with a weak lower solution of (1.7), here

B− = (1 − ε)ψ(R). (3.5)

Indeed, vε is a weak lower solution of (1.7) if, in the region where

C(R − r)α +
B−r2

R2 � 0, (3.6)

the following inequality is satisfied:

B−
R2 [α(α + 1)r2 + 4αr(R − r) + 2(R − r)2] + (N − 1)

B−
R2 (R − r)(2(R − r) + αr)

� a1(r)(R − r)µ−αp+α+2
(

C(R − r)α +
B−r2

R2

)p

+ a2(r)(R − r)ν−ασ+α+2−(α+1)q
(

C(R − r)α +
B−r2

R2

)σ

×
(∣∣∣∣B−r

R2 (2(R − r) + αr)
∣∣∣∣
q)

. (3.7)
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Now, note that for each C < 0, a constant

Z = Z(C) ∈ (0, R)

exists for which

C(R − r)α +
B−r2

R2 � 0 if r ∈ [0, Z(C)),

while

C(R − r)α +
B−r2

R2 � 0 if r ∈ [Z(C), R).

Moreover, Z(C) is decreasing and

lim
C↘−∞

Z(C) = R, lim
C↗0

Z(C) = 0. (3.8)

At r = R, (3.7) becomes

α(α + 1)B− � Bp
−a1(R),

which is satisfied if and only if

B− � ψ(R).

Therefore, by choosing B− as in (3.5), inequality (3.7) is satisfied in a left neigh-
bourhood of r = R, say (R − δ, R] for some δ = δ(ε) > 0. Moreover, due to (3.8),
there exists C < 0 such that

Z(C) = R − δ(ε).

For this choice of C, it readily follows that vε provides us with a weak lower solution
of (1.7).

It is easy to see that (2.4) holds, owing to p, σ > 0, q � 0. Since vε(r), v̄ε(r) ∈
W 1,∞

loc (0, R) are the ordered non-negative weak lower and upper solutions of (1.7),
the existence of a classical solution u of (1.7) is followed by theorem 2.6, and vε(r) �
v � v̄ε(r) in Ω.

Finally, since

lim
r↗R

v̄ε(r)
B+(R − r)−α

= lim
r↗R

vε(r)
B−(R − r)−α

= 1, (3.9)

where B+ and B− are the constants defined through (3.2) and (3.5), we conclude
the asymptotic behaviour for this case.

The proofs of cases (ii) and (iii) are similar to that of case (i). Here we omit the
details. The remaining assertions of the theorem are easy consequences from these
features.

Remark 3.1. From the proof we can see that, for case (i), if a2(r) ≡ 0 in (0, R),
it suffices to require that p > 1, a1(r) > 0 in (0, R] to ensure the existence and
asymptotic behaviour of the solution near the boundary. Similarly, for case (ii), if
a1(r) ≡ 0 in (0, R), it suffices to require that σ+q > 1, a2(r) > 0 in (0, R] to ensure
the corresponding results.
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Remark 3.2. If σ = 0, q > 1, µ > −2, ν = −(2 − q) and a1(r), a2(r) > 0, then
(1.7) has a solution vε satisfying

1 − ε � lim inf
r↗R

−vε(r)
(a2(R))−1/(q−1) ln(R − r)

� lim sup
r↗R

−vε(r)
(a2(R))−1/(q−1) ln(R − r)

� 1 + ε. (3.10)

Indeed, we just set

v̄ε(r) = A − (1 + ε)(a2(R))−1/(q−1)
(

r

R

)2

ln(R − r),

vε(r) = C − (1 − ε)(a2(R))−1/(q−1)
(

r

R

)2

ln(R − r).

With a similar argument to that in the proof of theorem 1.2, we obtain (3.10).

4. Proofs of theorems 1.3 and 1.4

Proof of theorem 1.3. For n � 1, consider the following problem:

∆u = b(x)up + c(x)uσ|∇u|q, x ∈ Ω,

u = n, x ∈ ∂Ω.

}
(4.1)

Our aim is to pass to the limit in (4.1) as n → ∞. This requires a few steps.

Step 1 (existence of solutions for (4.1)). The (constant) function u
¯

= 0 and ū = n
are the ordered lower and upper solutions of (4.1). Owing to 0 � b(x) � b2d

µ2(x),
0 � c(x) � c2d

ν2(x), by Young’s inequality, we have that, for any θ > q,

0 � b(x)up + c(x)uσ|∇u|q

� b2n
pdµ2(x) + c2n

σ

(
θ − q

θ
dν2θ/(θ−q)(x) +

q

θ
|∇u|θ

)
for all x ∈ Ω, 0 � u � n.

Since µ2, ν2 > −1/N , we can choose θ > 1 so large that Nν2θ/(θ − q) > −1, which
implies

b2n
pdµ2(x) + c2n

σ θ − q

θ
dν2θ/(θ−q)(x) ∈ Lm(Ω)

for some m > N . By theorem 2.5, we see that problem (4.1) has at least one solution
un(x) ∈ C2(Ω) such that 0 � un(x) � n.

Step 2 ({un} is non-decreasing in Ω as n increases). Indeed, un and n+1 are the
ordered lower and upper solutions of (4.1) when the boundary condition is replaced
with u = n + 1, x ∈ ∂Ω. So we have un � un+1, n � 1.

Step 3 ({un} is uniformly bounded in Ω for each n). First we solve (i), i.e. p > 1,
b(x) satisfies (Hb) and b(x) � b2d

µ2(x). By [20, theorem 1], there exists a positive
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solution v(x) to the problem

∆v = b(x)vp, x ∈ Ω,

v = ∞, x ∈ ∂Ω.

Since
∆un − b(x)up

n − c(x)uσ
n|∇un|q � ∆un − b(x)up

n, x ∈ Ω,

and un(x) � v(x) = ∞ on ∂Ω, by lemma 2.2 we have un(x) � v(x) for all n.

We now solve (ii), i.e. q + σ > 1, c(x) � c1d
ν1(x). Fix a point x0 ∈ Ω, and

consider a small ball B centred at x0 and contained properly in Ω. By remark 3.1,
there exists a positive solution v(x) to the problem

∆v = c1(dist(x, ∂B))ν1vσ|∇v|q, x ∈ B,

v = ∞, x ∈ ∂B.

Hence, we have

∆un − b(x)up
n − c(x)uσ

n|∇un|q � ∆un − c1d
ν1(x)uσ

n|∇un|q

< ∆un − c1(d(x, ∂B))ν1uσ
n|∇un|q, x ∈ B.

By lemma 2.2 we also have un(x0) � v(x0) for all n.

Step 4 (the limit process). Standard elliptic regularity arguments show that the
limit limn→∞ un(x) = u∗(x) exists and u∗(x) satisfies the differential equation
in (1.1). To prove that u∗(x) is a non-negative solution of (1.1), we merely verify
u∗(x)|∂Ω = ∞. If this is not true, then there exist a positive constant M , a sequence
{xk} ⊂ Ω and x0 ∈ ∂Ω, such that xk → x0 and u∗(xk) � M . For any fixed k, note
that un(xk) → u∗(xk) as n → ∞; it follows that there exists Nk > 0, such that
un(xk) � 1 + M for all n � Nk. Note that un is increasing in n. We have

un(xk) � 1 + M

for every n > 0. Now fix a n > 1 + M and let k → ∞ in the above inequality.
It follows that un(x0) � 1 + M < n, since xk → x0, which is a contradiction of
un(x0) = n. The theorem is proved.

Proof of theorem 1.4. If

lim
d(x)↘0

b(x)
dµ(x)

= β > 0 and lim
d(x)↘0

c(x)
dν(x)

= ρ > 0,

then, given 0 < ε < min{β/2, ρ/2}, there exists δ = δ(ε) > 0, so that, for all x ∈ Ω
with d(x) < 2δ,

(β − ε)dµ(x) � b(x) � (β + ε)dµ(x), (ρ − ε)dν(x) � c(x) � (ρ + ε)dν(x).
(4.2)

Now we define Ωδ = {x ∈ Ω : d(x) < δ} with ∂Ωδ = {x ∈ Ω : d(x) = δ}. It is easy
to prove that, by diminishing δ > 0 if necessary,

d(x) ∈ C2(Ω̄2δ), |∇d(x)| ≡ 1 on Ω2δ.

To prove the limit (1.9), we consider two cases.
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Case 1 (µ, ν � 0). Since the proof of each case is similar, here we just prove (iii).
Let

u+(x) = B+(d(x) − �)−α, x ∈ D+
� := Ω2δ/Ω̄�,

u−(x) = B−(d(x) + �)−α, x ∈ D−
� := Ω2δ−�,

}
(4.3)

where � ∈ Γ := (0, δ), α is defined in theorem 1.4 for case (iii), and

B+ = max
{

l

(
1 +

2ε

β − ε

)1/(p−1)

, l

(
1 +

2ε

ρ − ε

)1/(σ+q−1)}
,

B− = min
{

l

(
1 − 2ε

β + ε

)1/(p−1)

, l

(
1 − 2ε

ρ + ε

)1/(σ+q−1)}
,

where l is the positive solution of (1.10).
Since µ, ν � 0, we have b(x) � (β−ε)(d(x)−�)µ and c(x) � (ρ−ε)(d(x)−�)ν for

any x ∈ D+
� . Consequently, it follows by µ−αp+α+2 = ν−ασ−(α+1)q+α+2 = 0

and p > 1, σ + q > 1 that

∆u+ − b(x)(u+)p − c(x)(u+)σ|∇u+|q

� B+(d(x) − �)−α−2[α(α + 1) − α(d(x) − �)∆d(x)

− (β − ε)Bp−1
+ (d(x) − �)µ−αp+α+2

− αq(ρ − ε)Bσ+q−1
+ (d(x) − �)ν−ασ−(α+1)q+α+2]

= B+(d(x) − �)−α−2[α(α + 1) − (β − ε)Bp−1
+

− αq(ρ − ε)Bσ+q−1
+ − α(d(x) − �)∆d(x)]

< B+(d(x) − �)−α−2[α(α + 1) − βlp−1 − αqρlσ+q−1 − α(d(x) − �)∆d(x)].

Since
lim

(x,�)∈D+
� ×Γ

(d(x),�)↘(0,0)

α(d(x) − �)∆d(x) = 0,

we have

∆u+ − b(x)(u+)p − c(x)(u+)σ|∇u+|q < 0, x ∈ D+
� .

Similarly, we have

∆u− − b(x)(u−)p − c(x)(u−)σ|∇u−|q > 0, x ∈ D−
� .

Case 2 (µ, ν � 0). This situation is more complicated. The following method is
motivated by [19].

For (i), we define

u+(x) = B+(d(µ+2)/2(x) − �(µ+2)/2)−2/(p−1), x ∈ D+
� ,

u−(x) = B−(d(µ+2)/2(x) + �(µ+2)/2)−2/(p−1), x ∈ D−
� ,

}
(4.4)

where � and D±
� are defined as in (4.3), B± = (1±ε)l and l is a constant defined in

theorem 1.4 for case (i). Set D±(x) = d(µ+2)/2(x) ∓ �(µ+2)/2 for simplicity. A direct
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calculation implies

∆u± − b(x)(u±)p − c(x)(u±)σ|∇u±|q

= B±

[
(p + 1)(µ + 2)2

2(p − 1)2
D

−2p/(p−1)
± (x)dµ(x)

− (µ + 2)µ
2(p − 1)

D
−(p+1)/(p−1)
± (x)d(µ−2)/2(x) (4.5)

− µ + 2
p − 1

D
−(p+1)/(p−1)
± (x)dµ/2(x)∆d(x)

]

− b(x)Bp
±D

−2p/(p−1)
± (x)

− c(x)Bσ+q
±

(
µ + 2
p − 1

)q

D
−(2σ+(p+1)q)/(p−1)
± (x)dµq/2(x)

= B±D
−2p/(p−1)
± (x)dµ(x)

×
[
(p + 1)(µ + 2)2

2(p − 1)2
− (µ + 2)µ

2(p − 1)
D±(x)d−(µ+2)/2(x)

− µ + 2
p − 1

D±(x)d−µ/2(x)∆d(x) − Bp−1
±

b(x)
dµ(x)

− Bσ+q−1
±

c(x)
dν(x)

(
µ + 2
p − 1

)q

× D
−(2σ+(p+1)q−2p)/(p−1)
± (x)d(2ν+µq−2µ)/2(x)

]
. (4.6)

Since

D+(x) � d(µ+2)/2(x) for x ∈ D+
� ,

d(µ+2)/2(x) � D−(x) � 2d(µ+2)/2(x) for x ∈ D−
� ,

and −2 < µ � 0, we have

0 � − (µ + 2)µ
2(p − 1)

D+(x)d−(µ+2)/2(x) � − (µ + 2)µ
2(p − 1)

, (4.7)

− (µ + 2)µ
2(p − 1)

� − (µ + 2)µ
2(p − 1)

D−(x)d−(µ+2)/2(x) � − (µ + 2)µ
(p − 1)

. (4.8)

Consequently,

lim
(x,�)∈D±

� ×Γ

(d(x),�)↘(0,0)

−µ + 2
p − 1

D±(x)d−µ/2(x)∆d(x) = 0. (4.9)

Now we estimate the last term in the bracket of (4.6). If

−2σ + (p + 1)q − 2p

p − 1
� 0,
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it follows that

D
−(2σ+(p+1)q−2p)/(p−1)
± (x)d(2ν+µq−2µ)/2(x) � Cdξ(x),

where

C = 2−(2σ+(p+1)q−2p)/(p−1), ξ =
ν + 2 − q

p − 1

[
p−

(
(µ + 2)(σ + q − 1)

ν + 2 − q
+1

)]
> 0.

On the other hand, if

−2σ + (p + 1)q − 2p

p − 1
� 0,

we also find that

D
−(2σ+(p+1)q−2p)/(p−1)
− (x)d(2ν+µq−2µ)/2(x) � dξ(x),

Hence, by c(x) � c2d
ν(x), we have

lim
(x,�)∈D−

� ×Γ

(d(x),�)↘(0,0)

Bσ+q−1
−

c(x)
dν(x)

(
µ + 2
p − 1

)q

× D
−(2σ+(p+1)q−2p)/(p−1)
− (x)d(2ν+µq−2µ)/2(x) = 0. (4.10)

Note that

lim
d(x)→0

b(x)
dµ(x)

= β.

Combining (4.6) with (4.8)–(4.10), for � ∈ Γ with δ sufficiently small, we conclude
that

∆u− − b(x)(u−)p − c(x)(u−)σ|∇u−|q > 0, x ∈ D−
� . (4.11)

Furthermore, by

Bσ+q−1
+

c(x)
dν(x)

(
µ + 2
p − 1

)q

D
−(2σ+(p+1)q−2p)/(p−1)
+ (x)d(2ν+µq−2µ)/2(x) � 0,

and combining (4.6) with (4.7) and (4.9), we also conclude that

∆u+ − b(x)(u+)p − c(x)(u+)σ|∇u+|q < 0, x ∈ D+
� . (4.12)

For case (ii), we set

u±(x) = B±(d(ν+2−q)/2 ∓ �(ν+2−q)/2)−2/(q+σ−1), x ∈ D±
� ,

where B± = (1 ± ε)l, and l is a constant defined in theorem 1.4 for case (ii). Set

D±(x) = d(ν+2−q)/2(x) ∓ �(ν+2−q)/2.
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A direct calculation implies

∆u± − b(x)(u±)p − c(x)(u±)σ|∇u±|q

= B±D
−(q(q+σ+1)+2σ)/(q+σ−1)
± (x)d(2ν+(ν−q)q)/2(x)

×
[
(q + σ + 1)(ν + 2 − q)2

2(q + σ − 1)2
Dq

±(x)d−(ν+2−q)q/2

+
(ν + 2 − q)(−ν + q)

2(q + σ − 1)
Dq+1

± (x)d−(ν+2−q)(q+1)/2(x)

− ν + 2 − q

q + σ − 1
Dq+1

± (x)d−(ν+2−q)(q+1)/2+1(x)∆d(x)

− Bp−1
±

b(x)
dµ(x)

D
(2(σ−p)+q(q+σ+1))/(q+σ−1)
± (x)

× d(2(µ−ν)−(ν−q)qµ)/2(x) − Bσ+q−1
±

c(x)
dν(x)

(
ν + 2 − q

q + σ − 1

)q]
.

Analogously to case (i), we have

Dq
−(x)d−(ν+2−q)q/2(x) � 1, Dq+1

− (x)d−(ν+2−q)(q+1)/2(x) � 1,

Dq
+(x)d−(ν+2−q)q/2(x) � 1, Dq+1

+ (x)d−(ν+2−q)(q+1)/2(x) � 1,

and

lim
(x,�)∈D±

� ×Γ

(d(x),�)↘(0,0)

Dq+1
± (x)d−(ν+2−q)(q+1)/2+1(x)∆d(x) = 0,

lim
(x,�)∈D−

� ×Γ

(d(x),�)↘(0,0)

Bp−1
−

b(x)
dµ(x)

D
(2(σ−p)+q(q+σ+1))/(q+σ−1)
− (x)d(2(µ−ν)−(ν−q)qµ)/2(x) = 0.

So, arguing as in case (i), (4.11) and (4.12) also hold.
For (iii), as in case (i), we define u± by (4.3), except that B± = (1 ± l)ε, where

l is defined in theorem 1.4 for case (iii). Since ν < 0 (which implies q < 2),

µ � 2ν

2 − q
and p =

(µ + 2)(σ + q − 1)
ν + 2 − q

+ 1,

we conclude that
2σ + (p + 1)q − 2p

p − 1
� 0.

It then follows that

D
−(2σ+(p+1)q−2p)/(p−1)
− (x)d(2ν+µq−2µ)/2(x) � 1, x ∈ D−

� ,

D
−(2σ+(p+1)q−2p)/(p−1)
+ (x)d(2ν+µq−2µ)/2(x) � 1, x ∈ D+

� .

⎫⎬
⎭ (4.13)

By

lim
d(x)→0

b(x)
dµ(x)

= β, lim
d(x)→0

c(x)
dµ(x)

= ρ,
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and combining (4.6) with (4.7)–(4.9) and (4.13), for � ∈ Γ with δ sufficiently small,
we conclude that (4.11) and (4.12) hold.

Let u be any solution of (1.1) and let

M1(δ) = max
d(x)�2δ

u(x), M2(δ) = B−(2δ)−α.

We see that
u(x) � u+(x) + M1(δ), x ∈ ∂D+

� ,

u−(x) � u(x) + M2(δ), x ∈ ∂D−
� .

}
(4.14)

On the other hand, as p, σ � 0, we have

∆[u+ + M1(δ)] − b(x)[u+ + M1(δ)]p

−c(x)[u+ + M1(δ)]σ|∇[u+ + M1(δ)]|q < 0, x ∈ D+
� ,

∆[u + M2(δ)] − b(x)[u + M2(δ)]p

−c(x)[u + M2(δ)]σ|∇[u + M2(δ)]|q < 0, x ∈ D−
� .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(4.15)

By (4.14), (4.15), it follows by lemma 2.2 that

u(x) � u+(x) + M1(δ), x ∈ D+
� ,

u−(x) � u(x) + M2(δ), x ∈ D−
� .

Hence, for x ∈ D+
� ∩ D−

� , letting � → 0, we see that

B−d−α(x) � u + M2(δ) � B+d−α(x) + M1(δ) + M2(δ),

which implies

B− � lim inf
d(x)↘0

u(x)
d−α(x)

� lim sup
d(x)↘0

u(x)
d−α(x)

� B+.

Letting ε → 0, we obtain

lim
d(x)↘0

u(x)
d−α(x)

= l,

which is in agreement with (1.10).
The final step is to prove the uniqueness. Let u1 and u2 be two positive solutions

of (1.1). By (1.10), we thus have

lim
d(x)↘0

u1(x)
u2(x)

= 1.

The uniqueness follows from this fact and lemma 2.2 by a standard argument [17].
Indeed, for θ > 0 arbitrary, set (1 + θ)ui = wi, for i = 1, 2. It follows that

lim
d(x)↘0

(u1 − w2)(x) = lim
d(x)↘0

(u2 − w1)(x) = −∞.

When p > 1, σ + q � 1, we have that

∆wi −b(x)wp
i −c(x)wσ

i |∇wi|q < (1+θ)[∆ui −b(x)up
i −c(x)uσ

i |∇ui|q] = 0, x ∈ Ω.
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Therefore, by lemma 2.2(i), we may infer that

u1 � (1 + θ)u2, u2 � (1 + θ)u1, x ∈ Ω. (4.16)

When p = 1, σ + q > 1 and q � 1, we have that

∆wi − b(x)wp
i − c(x)wσ

i |∇wi|q � (1 + θ)[∆ui − b(x)up
i − c(x)uσ

i |∇ui|q], x ∈ Ω.

By lemma 2.2(ii), we also obtain (4.16).
Passing to the limit θ → 0+ in (4.16), we get u1 = u2 in Ω. This completes the

proof of theorem 1.4.
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