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1. Introduction

We study the three-dimensional magnetohydrodynamics (3D MHD) equations

ut − ∆u + (u · ∇)u − (b · ∇)b + ∇π = 0,

bt − ∆b + (u · ∇)b − (b · ∇)u = 0,

div u = 0, div b = 0,

⎫⎪⎬
⎪⎭ in QT := Ω × [0, T ), (1.1)

where Ω is a bounded domain with smooth boundary in R
3. Here, u : QT → R

3 is
the flow velocity vector, b : QT → R

3 is the magnetic vector and π = p+ 1
2 |b|2 : QT →

R is the total pressure. We consider the initial–boundary-value problem of (1.1),
which requires initial conditions

u(x, 0) = u0(x) and b(x, 0) = b0(x), x ∈ Ω, (1.2)

together with the boundary conditions defined as follows: either

u = 0 and b · n = 0, (∇ × b) × n = 0 (1.3)

or
u · n = 0, (∇ × u) × n = 0 and b · n = 0, (∇ × b) × n = 0. (1.4)

Here, n is the outward unit normal vector along the boundary ∂Ω. The initial
conditions satisfy the compatibility condition, i.e. ∇ · u0(x) = 0 and ∇ · b0(x) = 0.
The notion of weak solutions will be introduced in definition 2.2.
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The MHD equations describe the dynamics of the interaction of electrically con-
ducting fluids and electromagnetic forces, for example, plasma and liquid metals
(see, for example, [7]).

Definition 1.1. A weak solution pair (u, b) of the 3D MHD equations (1.1), (1.2)
with boundary conditions (1.3) or (1.4) is regular in QT provided that ‖u‖L∞(QT )+
‖b‖L∞(QT ) < ∞.

In this paper, we list only some results relevant to our concerns. It has been
shown that global weak solutions for the MHD equations exist in finite energy space
(see [8]) and classical solutions can exist locally in time in a 3D space. Namely, the
weak solutions exist globally in time (see [8]); however, as shown in [16], if weak
solutions (u, b) are additionally in L∞(0, T ; H1(R3)), they become regular in the
3D case. In view of the regularity conditions in Lorentz space, He and Wang proved
in [11] that a weak solution pair (u, b) becomes regular in the presence of a certain
type of integral condition, typically referred to as Serrin’s condition, namely, u ∈
Lq,∞(0, T ; Lp,∞

x (R3)) with 3/p + 2/q � 1 and p > 3, or ∇u ∈ Lq,∞(0, T ; Lp,∞
x (R3))

with 3/p+2/q � 2 and p > 3/2. These results are restricted to the problem for the
whole space.

Our study is motivated by the work of He and Wang [11], that is, we obtain the
regularity conditions for a weak solution to the 3D MHD equations (1.1)–(1.4) in
a 3D bounded domain. In particular, for bounded domains, the difficulty lies in
treating the pressure. For this, we consider the vorticity equations for the 3D MHD
equations to avoid the estimate of terms containing the pressure term. Our proof
is based on a priori estimates for the vorticities w := ∇ × u and j := ∇ × b. On
the other hand, to deal with the pressure, we use the Stokes estimate for the Stokes
systems (see lemma A.1).

Our main results reads as follows.

Theorem 1.2. Suppose that (u, b) is a weak solution of (1.1), (1.2) with initial
condition u0, b0 ∈ H1(Ω) and boundary condition (1.3) or (1.4). If the velocity u
satisfies

u ∈ Lq((0, T ); Lp,∞(Ω)),
3
p

+
2
q

= 1, 3 < p � ∞, (1.5)

then (u, b) is regular in QT .

The proof of this part is almost same as that in [12, theorem 1]. Furthermore, we
modify it by replacing the Sobolev norm for a velocity u by the Lorentz norm via
the interpolation theorem. For the convenience of the reader, we include the proof
in the appendix.

Theorem 1.3. Suppose that (u, b) is a weak solution of (1.1), (1.2) with the initial
condition u0, b0 ∈ H1(Ω) and boundary condition (1.4). If the vorticity w satisfies

w ∈ Lq((0, T ); Lp,∞(Ω)),
3
p

+
2
q

= 2,
3
2

< p � ∞,

then (u, b) is regular in QT .
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Remark 1.4. In theorems 1.2 and 1.3 we do not obtain results like

u ∈ Lq,∞(0, T ; Lp,∞(R3)),
3
p

+
2
q

� 1, p > 3,

or

w ∈ Lq,∞(0, T ; Lp,∞(R3)),
3
p

+
2
q

� 2, p >
3
2
.

Unfortunately, the argument in [6, 14] has not worked in our proof. However, in
case of the whole space, we can get the result above. Its proof is contained in a
forthcoming paper because of technical reasons to do with the results.

This paper is organized as follows. In § 2 we recall the notion of weak solutions
and review some known results. In § 3 we present the proof of theorem 1.3. Lastly, in
the appendix we give a proof of the regularity condition for the vorticity in the 3D
MHD equations in Sobolev space via a different method to that in [4, theorem 1.4].

2. Preliminaries

In this section we collect notation and definitions used throughout this paper. We
also recall some lemmas that are useful for our analysis. Let Ω be a bounded open
domain with smooth boundary ∂Ω in R

n, n � 3, and let I = (0, T ) be a finite time-
interval. For 1 � q � ∞, W k,q(Ω) indicates the usual Sobolev space with standard
norm ‖ · ‖k,q, i.e. W k,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 � |α| � k}. In the case
in which q = 2, we write W k,q(Ω) as Hk(Ω). Also, we denote {f ∈ L2(Ω) : ∇·f = 0}
by L2

σ(Ω). All generic constants will be denoted by C, which may vary from line to
line.

2.1. Lorentz space

Let m(ϕ, t) be the Lebesgue measure of the set {x ∈ Ω : |ϕ(x)| > t}, i.e.

m(ϕ, t) := m{x ∈ Ω : |ϕ(x)| > t}.

We denote the Lorentz space by Lp,q(Ω) with 1 � p, q � ∞ and with the norm [18]

‖ϕ‖Lp,q(Ω) =

⎧⎪⎪⎨
⎪⎪⎩

( ∫ ∞

0
tq(m(ϕ, t))q/p dt

t

)1/q

< ∞ for 1 � q < ∞,

sup
t�0

{t(m(ϕ, t))1/p} < ∞ for q = ∞.
(2.1)

The Lorentz space Lp,∞(Ω) is also called the weak Lp(Ω) space, with norm equiv-
alent to

‖f‖Lq,∞(Ω) = sup
0<|Ω|<∞

|Ω|1/q−1
∫

Ω

|f(x)| dx. (2.2)

Following [18], the Lorentz space Lp,q(Ω) may be defined by real interpolation
methods as

Lp,q(Ω) = (Lp1(Ω), Lp2(Ω))α,q, (2.3)
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with
1
p

=
1 − α

p1
+

α

p2
, 1 � p1 < p < p2 � ∞.

From the interpolation method above, we note that

L2p/(p−1),2(Ω) = (L2(Ω), L6(Ω))3/2p,2. (2.4)

We also need the Hölder inequality in Lorentz spaces (see [15]).

Lemma 2.1. Assume that 1 � p1, p2 � ∞, 1 � q1, q2 � ∞ and u ∈ Lp1,q1(Ω),
v ∈ Lp2,q2(Ω). Then uv ∈ Lp3,q3(Ω) with

1
p3

=
1
p1

+
1
p2

and
1
q3

� 1
q1

+
1
q2

,

and the inequality

‖uv‖Lp3,q3 (Ω) � C‖u‖Lp1,q1 (Ω)‖v‖Lp2,q2 (Ω) (2.5)

is valid.

We recall first the definition of weak solutions.

Definition 2.2 (weak solutions). Let u0, b0 ∈ L2
σ(Ω). We say that (u, b) is a weak

solution of (1.1) if u and b satisfy the following.

(i) We have

u ∈ L∞([0, T ); L2(Ω)) ∩ L2([0, T ); H1(Ω)),

b ∈ L∞([0, T ); L2(Ω)) ∩ L2([0, T ); H1(Ω)).

(ii) (u, b) satisfies (1.1) in the sense of distributions; that is,∫ T

0

∫
Ω

(
∂φ

∂t
+ ∆φ + (u · ∇)φ

)
u dxdt +

∫
Ω

u0φ(x, 0) dx =
∫ T

0

∫
Ω

(b · ∇)φb dxdt,

∫ T

0

∫
Ω

(
∂φ

∂t
+ ∆φ + (u · ∇)φ

)
b dxdt +

∫
Ω

b0φ(x, 0) dx =
∫ T

0

∫
Ω

(b · ∇)φu dxdt

for all φ ∈ C∞
0 (Ω × [0, T )) with div φ = 0, and∫

Ω

u · ∇ψ dx = 0,

∫
Ω

b · ∇ψ dx = 0

for every ψ ∈ C∞
0 (Ω).

2.2. Useful inequalities

Next, we recall a Gagliardo–Nirenberg inequality (see, for example, [13, theo-
rem 2.2]).

Lemma 2.3. Let Ω be a bounded domain in R
n, n � 1, and let ∂Ω be locally

Lipschitz. Assume that u ∈ W 1,p(Ω) and
∫

Ω
u dx = 0. For every fixed number

p, q � 1 and r � 1, there exists a constant C = C(n, p, r, Ω) such that

‖u‖Lq(Ω) � C‖∇u‖θ
Lp(Ω)‖u‖1−θ

Lr(Ω), (2.6)
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where p, q � 1, and

θ =
(

1
r

− 1
q

)(
1
n

− 1
p

+
1
r

)−1

.

Next, we recall an estimate regarding to the gradient vector (see [19]).

Lemma 2.4. Let Ω be a bounded domain in R
3. Suppose that u ∈ W 1,p(Ω) for some

1 < p < ∞ with u · n = 0 on ∂Ω. Then the following estimate is satisfied:

‖∇u‖Lp(Ω) � C(‖∇ · u‖Lp(Ω) + ‖∇ × u‖Lp(Ω)).

Next, we recall estimates regarding smooth vector fields under the slip boundary
condition (see [2, lemma 2.2], [3, theorem 2.1] and [5, lemmas 2.1 and 2.2]).

Lemma 2.5. Let Ω be a smooth domain in R
3. Then, for each q > 1 and regular

smooth vector fields f , the following hold.

(a) We have

−
∫

Ω

∆f · f |f |q−2 dx = 1
2

∫
Ω

|f |q−2|∇f |2 dx +
4(q − 2)

q2

∫
Ω

|∇|f |q/2|2 dx

−
∫

∂Ω

|f |q−2(n · ∇f)f · f dS.

(b) Moreover, using the vector identity,

(n · ∇)f · f = (f · ∇)f · n + ((∇ × f) × n) · f,

we can also deduce that

−
∫

Ω

∆f · f |f |q−2 dx = 1
2

∫
Ω

|f |q−2|∇f |2 dx +
4(q − 2)

p2

∫
Ω

|∇|f |q/2|2 dx

−
∫

∂Ω

|f |p−2(f · ∇)f · n dS

−
∫

∂Ω

|f |p−2((∇ × f) × n)f dS.

Lemma 2.6. Assume that u is regular enough and satisfies the boundary condition
(1.4) on ∂Ω. Then the following identity for w = ∇ × u holds true:

−∂w

∂n
· w = (ε1jkε1βγ + ε2jkε2βγ + ε3jkε3βγ)wjwβ∂knγ on ∂Ω,

where εijk denotes the totally antisymmetric tensor such that (a × b) = ε1jkajbk.
In particular, ∫

Ω

∆w · w dx � −
∫

Ω

|∇w|2 dx + C

∫
∂Ω

|w|2 dx.
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3. Proof of theorem 1.3

As mentioned in the introduction, to eliminate the pressure term we consider the
vorticity equation

wt − ∆w + (u · ∇)w − (u · ∇)w − (b · ∇)j + (j · ∇)b = 0,

jt − ∆j + (u · ∇)j − (j · ∇)u − (b · ∇)w + (w · ∇)b = 2F (∇b, ∇u),

}
(3.1)

where

F (∇b, ∇u) =

⎛
⎝∂2b · ∂3u − ∂3b · ∂2u

∂3b · ∂1u − ∂1b · ∂3u

∂1b · ∂2u − ∂2b · ∂1u

⎞
⎠ , w = ∇ × u, j = ∇ × b.

Proof of theorem 1.3. First, we prove theorem 1.3 under the condition (1.5). Mul-
tiplying the first equation of (3.1) by w and the second equation of (3.1) by j,
integrating over Ω and adding them, we have

1
2

d
dt

∫
Ω

(|w|2 + |j|2) +
∫

Ω

(|∇w|2 + |∇j|2)

�
∫

Ω

|w| |∇u| |w| +
∫

∂Ω

∣∣∣∣∂w

∂n
· w

∣∣∣∣ +
∫

Ω

|j| |∇u| |j| +
∫

∂Ω

∣∣∣∣ ∂j

∂n
· j

∣∣∣∣
+

∫
Ω

|(j · ∇)b| |w| +
∫

Ω

|(w · ∇b)| |j| + 2
∫

Ω

|F (∇u, ∇b)| |j|

:= II1 + II2 + II3 + II4 + II5 + II6 + II7,

where we use lemmas 2.5 and 2.6. Using Hölder’s inequality, lemmas 2.1, 2.3 and 2.4,
the interpolation inequality for Lorentz space, and Young’s inequality, the terms
II1 and II7 are estimated as follows:

II1 � ‖∇u‖Lp,∞(Ω)‖w‖2
L2p/(p−1),2(Ω)

� C‖∇u‖Lp,∞(Ω)‖w‖2−3/p
L2(Ω)‖∇w‖3/p

L2(Ω)

� C‖∇u‖2p/(2p−3)
Lp,∞(Ω) ‖w‖2

L2(Ω) + 1
512‖∇w‖2

L2(Ω)

� C‖w‖2p/(2p−3)
Lp,∞(Ω) ‖w‖2

L2(Ω) + 1
512‖∇w‖2

L2(Ω)

and

II7 � ‖∇u‖Lp,∞(Ω)‖j‖L2p/(p−1),2(Ω)‖∇b‖L2p/(p−1),2(Ω)

� ‖∇u‖2p/(2p−3)
Lp,∞(Ω) ‖j‖L2p/(p−1),2(Ω)‖j‖L2p/(p−1),2(Ω)

� C‖∇u‖Lp,∞(Ω)‖j‖2−3/p
L2(Ω)‖∇j‖3/p

L2(Ω)

� C‖∇u‖2p/(2p−3)
Lp,∞(Ω) ‖j‖2

L2(Ω) + 1
512‖∇j‖2

L2(Ω)

� C‖w‖2p/(2p−3)
Lp,∞(Ω) ‖j‖2

L2(Ω) + 1
512‖∇j‖2

L2(Ω).
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Through a similar method to that used for II1 and II7, we obtain

II1 + II3 + II5 + II6 + II7

� ‖∇u‖2p/(2p−3)
Lp,∞(Ω) (‖w‖2

L2(Ω) + ‖j‖2
L2(Ω)) + 1

2 (‖∇w‖2
L2(Ω) + ‖∇j‖2

L2(Ω)).

Next, we can easily estimate II2. Indeed, we use the trace theorem (see, for example,
[9, pp. 257–258]) and smoothness of the boundary to obtain

II2 �
∫

∂Ω

∣∣∣∣∂w

∂n
· w

∣∣∣∣ � C

∫
Ω

|w|2. (3.2)

Similarly, we estimate II4 as follows:

II4 �
∫

∂Ω

∣∣∣∣ ∂j

∂n
· j

∣∣∣∣ � C

∫
Ω

|j|2. (3.3)

Summing up the estimates II1, II2, . . . , II7, we obtain

1
2

d
dt

∫
Ω

(|w|2 + |j|2) + 1
2

∫
Ω

(|∇w|2 + |∇j|2) � C(1 + ‖w‖2p/(2p−3)
Lp,∞(Ω) )

∫
Ω

(|w|2 + |j|2).
(3.4)

Applying Gronwall’s inequality to (3.4), we have the desired result.
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Appendix A.

A.1. Stokes system

We consider the following Stokes system, which is the linearized Navier–Stokes
equations,

vt − ∆v + ∇p = f, div v = 0, in QT := Ω × (0, T ) (A 1)

with initial data v(x, 0) = v0(x). As in (1.3) and (1.4), the boundary data of v are
again assumed to be either no-slip or slip conditions, namely,

v(x, t) = 0, x ∈ ∂Ω, (A 2)

or
v · n = 0, (∇ × v) × n = 0, x ∈ ∂Ω. (A 3)

Next, we recall maximal estimates of the Stokes system in terms of mixed norms
(see [10, theorem 5.1] and [17, theorem 1.2] for no-slip and slip boundary cases,
respectively).
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Lemma A.1. Let 1 < l, m < ∞. Suppose that f ∈ Ll,m
x,t (QT ) and v0 ∈ D

1−1/m,m
l ,

where D
1−1/m,m
l is a Banach space with the norm (see, for example, [10])

D
1−1/m,m
l (Ω)

:=
{

w ∈ Ll
σ(Ω);

‖w‖
D

1−1/m,m
l

= ‖w‖Ll +
( ∫ ∞

0
‖t1/mAle−tAlw‖m

Ll

dt

t

)1/m

< ∞
}

,

where Al is the Stokes operator (see [10,17] for the details). If (v, p) is the solution
of the Stokes system (A1) satisfying one of the boundary conditions (A 2) or (A 3),
then the following estimate is satisfied:

‖vt‖Ll,m
x,t (QT ) + ‖∇2v‖Ll,m

x,t (QT ) + ‖∇p‖Ll,m
x,t (QT )

� C‖f‖Ll,m
x,t (QT ) + ‖v0‖D

1−1/m,m
l (Ω). (A 4)

Since

D
1−1/m,m
l (Ω) := [Ll(Ω), W 1,l((Ω))]1−1/m,m,

we note that ‖v0‖D
1−1/m,m
l (Ω) � ‖v0‖W 1,l(Ω) (see, for example, [1, ch. 7]) and,

therefore, ‖v0‖D
1−1/m,m
l (Ω) in (A 4) can be replaced by ‖v0‖W 1,l(Ω).

A.2. Proof of theorem 1.2

In [12, proposition 1], we are shown the following result.
Let 1 � q < ∞ and introduce a function space Xq

t defined as follows:

Xq
t =

{
f : Ω × [0, t) → R

3
∣∣∣

‖f‖Xq
t

:= lim sup
τ<t

‖f(τ)‖W 1,q(Ω) + ‖f‖Lq((0,t);W 2,q(Ω)) < ∞
}

.

Proposition A.2 (local existence). Let 3 < q < ∞ and let Ω be either a bounded
domain in R

3 or a half-space R
3
+. There exists Tmax ∈ (0, ∞], the maximal time of

existence, such that if u0, b0 ∈ H1(Ω) ∩ W 1,q(Ω), then there is a unique solution
pair (u, b) in (1.1) with boundary conditions (1.3) or (1.4) satisfying u, b ∈ Xq

t for
any t < Tmax.

Proof of theorem 1.2. We argue by contradiction. Suppose that T ∗ is the first time
of singularity with T ∗ � T . Then u and b must satisfy, for any δ > 0,

lim sup
t↗T ∗

(‖u(·, t)‖4
L4

x
+ ‖b(·, t)‖4

L4
x
)

+ lim
t↗T ∗

( ∫ t

T ∗−δ

‖|∇u(·, τ)||u(·, τ)|‖2
L2

x
+ ‖|∇b(·, τ)||b(·, τ)|‖2

L2
x

)
= ∞. (A 5)
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Multiplying the first equation of (1.1) by |u|2u, the equation of the magnetic field
by |b|2b, integrating over Ω and summing the above estimates, we have

1
4

d
dt

∫
Ω

(|u|4 + |b|4) +
∫

Ω

(|∇u|2|u|2 + |∇b|2|b|2) + 1
2

∫
Ω

(|∇|u|2|2 + |∇|b|2|2)

= −
∫

Ω

∇π|u|2u −
∫

Ω

b∇(|u|2u)b −
∫

Ω

b∇(|b|2b)u

+
3∑

i,j=1

∫
∂Ω

uj,xi
uj |u|2ni +

3∑
i,j=1

∫
∂Ω

bj,xibj |b|2ni. (A 6)

Let ε be a sufficiently small positive number, which will be specified later. Inte-
grating (A 6) in time over (T ∗ − ε, τ) for any τ with T ∗ − ε < τ < T ∗, we observe
that

1
4

∫
Ω

(|u(·, τ)|4 dx + |b(·, τ)|4) dx − 1
4

∫
Ω

(|u(·, T ∗ − ε)|4 + |b(·, T ∗ − ε)|4) dx

+
∫ τ

T ∗−ε

∫
Ω

|∇u|2|u|2 dxdt +
∫ τ

T ∗−ε

∫
Ω

|∇b|2|b|2 dxdt

+ 1
2

∫ τ

T ∗−ε

∫
Ω

|∇|u|2|2 dxdt + 1
2

∫ τ

T ∗−ε

∫
Ω

|∇|b|2|2 dxdt

�
∫ τ

T ∗−ε

∫
Ω

|∇π| |u|2|u| dxdt +
∫ τ

T ∗−ε

∫
Ω

|b|2|u| |u| |∇u| dxdt

+
∫ τ

T ∗−ε

∫
Ω

|b|2|u| |b| |∇b| dxdt +
∫ τ

T ∗−ε

∫
Ω

|u|3|∇u| dxdt

+
∫ τ

T ∗−ε

∫
Ω

|b|3|∇b| dxdt

:= I + II + III + IV + V.

For convenience, we denote Ω × (T ∗ − ε, τ) by Qτ . Using Hölder’s inequality, the
first term I can be estimated as

I �
∫ τ

T ∗−ε

‖∇π‖L2
x
‖u2‖

L
2p/(p−2),2
x

‖u‖Lp
x,∞

� C

∫ τ

T ∗−ε

‖∇π‖L2
x
‖u2‖θ

L2
x
‖∇|u2|‖1−θ

L2
x

‖u‖Lp,∞
x

� C‖∇π‖L2(Qτ )‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x
,

where θ = 2/q. For convenience, we denote

‖u(·, T ∗ − ε)‖W 1,2(Ω)

by Cε. Using the estimate (A 4), we continue to estimate I as

I � C(‖(u · ∇)u‖L2(Qτ ) + ‖(b · ∇)b‖L2(Qτ ) + Cε)

× ‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x
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� C‖|u||∇u|‖2(q−1)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x

+ C‖|b||∇b|‖L2(Qτ )‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x

+ CCε

3∑
k=1

‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x
. (A 7)

Next we estimate II. Following similar computations to those for I, we get

II �
∫ τ

T ∗−ε

∫
Ω

|b|2|u||u||∇u|

� C

3∑
k=1

||u||∇u||L2(Qτ )‖∇|b|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖b(·, t)‖4/q
L4

x
.

(A 8)

In the same manner, we estimate III:

III � C

3∑
k=1

||b||∇b||L2(Qτ )‖∇|b|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖b(·, t)‖4/q
L4

x
.

(A 9)
For IV and V, using Hölder’s inequality, we have

IV + V � Cε1/2(||u||∇u||L2(Qτ ) sup
T ∗−ε<t<τ

‖u(·, t)‖2
L4

x

+ ||b|∇b|||L2(Qτ ) sup
T ∗−ε<t<τ

‖b(·, t)‖2
L4

x
).

Summing up (A 7)–(A 9) and using Young’s inequality, we obtain

1
4

∫
Ω

(|u(·, τ)|4 dx + |b(·, τ)|4) dx − 1
4

∫
Ω

(|u(·, T ∗ − ε)|4 + |b(·, T ∗ − ε)|4) dx

+
∫ τ

T ∗−ε

∫
Ω

|∇u|2|u|2 dxdt +
∫ τ

T ∗−ε

∫
Ω

|∇b|2|b|2 dxdt

+ 1
2

∫ τ

T ∗−ε

∫
Ω

|∇|u|2|2 dxdt + 1
2

∫ τ

T ∗−ε

∫
Ω

|∇|b|2|2 dxdt

� C‖|u||∇u|‖2(q−1)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x

+ C‖|b||∇b|‖L2(Qτ )‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x

+ CCε‖∇|u|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖u(·, t)‖4/q
L4

x

+ C||u||∇u||L2(Qτ )‖∇|b|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖b(·, t)‖4/q
L4

x

+ C||b||∇b||L2(Qτ )‖∇|b|2‖(q−2)/q
L2(Qτ ) ‖‖u‖Lp,∞

x (Ω)‖Lq
t

sup
T ∗−ε<t<τ

‖b(·, t)‖4/q
L4

x

+ Cε1/2(||u||∇u||L2(Qτ ) sup
T ∗−ε<t<τ

‖u(·, t)‖2
L4

x
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+ ||b|∇b|||L2(Qτ ) sup
T ∗−ε<t<τ

‖b(·, t)‖2
L4

x
)

� 1
2‖|u||∇u|‖2

L2(Qτ ) + 1
2‖|b||∇b|‖2

L2(Qτ ) + CC2
ε

+ C(‖‖u‖Lp,∞
x (Ω)‖Lq

t
+ ε)

(
sup

T ∗−ε<t<τ
‖u(·, t)‖4

L4
x

+ sup
T ∗−ε<t<τ

‖b(·, t)‖4
L4

x

)
.

Since the above estimate holds for all t with T ∗ − ε < t < τ , we obtain

sup
T ∗−ε<t<τ

(‖u(·, t)‖4
L4

x
+ ‖b(·, t)‖4

L4
x
) +

∫ τ

T ∗−ε

∫
Ω

(|∇u|2|u|2| + |∇b|2|b|2) dxdt

+ 1
2

∫ τ

T ∗−ε

∫
Ω

(|∇|u|2|2 + |∇|b|2|2) dxdt

�
∫

Ω

|u(·, T ∗ − ε)|4 dx +
∫

Ω

|b(·, T ∗ − ε)|4 dx + CC2
ε

+ C(‖‖u‖Lp,∞
x (Ω)‖Lq

t
+ ε)

(
sup

T ∗−ε<t<τ
‖u(·, t)‖4

L4
x

+ sup
T ∗−ε<t<τ

‖b(·, t)‖4
L4

x

)
.

With sufficiently small ε so that (‖‖u‖Lp,∞
x (Ω)‖Lq

t
+ ε) � 1/2C with a constant C

in the above estimate, we have

‖u(·, t)‖4
L4,∞

x,t (Qτ ) + ‖b(·, t)‖4
L4,∞

x,t (Qτ ) + 1
2‖|∇u||u|‖2

L2(Qτ )

+ 1
2‖|∇b||b|‖2

L2(Qτ ) + 1
2‖∇|u|2‖2

L2(Qτ ) + 1
2‖∇|b|2‖2

L2(Qτ )

� 2(‖u(·, T − ε)‖4
L4

x(Ω) + ‖b(·, T − ε)‖4
L4

x(Ω)) + CC2
ε .

For simplicity, we denote Ω × (T ∗ − ε, T ∗) by Qε. Since τ is arbitrary with τ < T ∗,
we obtain

‖u(·, t)‖4
L4,∞

x,t (Qε) + ‖b(·, t)‖4
L4,∞

x,t (Qε) + 1
2‖|∇u||u|‖2

L2(Qε)

+ 1
2‖|∇b||b|‖2

L2(Qε) + 1
2‖∇|u|2‖2

L2(Qε) + 1
2‖∇|b|2‖2

L2(Qε) � C,

where C is a constant depending on ‖u(·, T ∗ − ε)‖W 1,2(Ω). This is contrary to the
hypothesis of (A 5). Therefore, T ∗ cannot be a maximal time of existence less than
or equal to T . This completes the proof.
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