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Multivariate statistical analysis (MSA) is applied to the extraction of chemically relevant signals
acquired with a micro-X-ray fluorescence (μ-XRF) mapping (full-spectral imaging) system. The sep-
aration of components into individual histograms enables separation of overlapping peaks, which is
useful in qualitatively determining the presence of chemical species that have overlapping emission
lines, and holds potential for quantitative analysis of constituent phases via these same histograms.
The usefulness of MSA for μ-XRF analysis is demonstrated by application to a geological rock
core obtained from a subsurface compressed air energy storage (CAES) site. Coupling of the μ-
XRF results to those of quantitative powder X-ray diffraction analysis enables improved detection
of trace phases present in the geological specimen. The MSA indicates that the spatial distribution
of pyrite, a potentially reactive phase by oxidation, has low concentration and thus minimal impact
on CAES operations. © International Centre for Diffraction Data
[doi:10.1017/S0885715612000243]
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I. INTRODUCTION

Compressed air energy storage (CAES) is an important
technology for renewable energy systems such as wind and
solar power, because of the inherently intermittent nature of
power-generation of these systems. To cope with the intermit-
tent nature, it is ideal to store power that is generated “off-
peak” in a temporary energy storage facility, until peak
demand requires its release. CAES systems are designed to
store energy as pressurized air, pumped into large under-
ground caverns or porous rock formations such as saline aqui-
fers (Succar and Williams, 2008). When stored energy is
required, the pressure is released to power electrical generators
that restore electricity to the power grid. The rock formations
for CAES require detailed characterization regarding their
geological constituents to predict and optimize performance.
A concern is the possible reaction of gases present in the com-
pressed air, such as oxygen, with phases present in the for-
mation. Pyrite oxidation could alter the pH, salinity, and
mineralogy. Oxidation could potentially produce colloidal
products, such as ferric hydroxide and melanterite, and dissol-
ution of carbonates with associated precipitation of gypsum
(Succar and Williams, 2008). Thus, oxidation can substan-
tially impact CAES through alteration of porosity and per-
meability, which in turn govern storage capacity and flow
rates of air into and out of the formation. The use of X-ray dif-
fraction (XRD) and micro-X-ray fluorescence (μ-XRF) in the
analysis of one such core-drilled specimen taken from a bore-
hole at a CAES facility is discussed. The use of principal com-
ponent analysis (PCA), a common form of multivariate
statistical analysis (MSA), to decompose the convoluted
μ-XRF dataset containing elemental information regarding at

least eight distinct phases is also discussed. These XRF results
are then used to improve trace phase identification of the quan-
titative XRD results.

II. EXPERIMENTAL

The rock core was obtained from a borehole to support
site characterization of a potential CAES facility in Iowa. A
small piece (∼24 × ∼40 ×∼15 mm3) was cut from the original
core block. From that piece, a small portion was removed and
ground to a powder (∼5 g) for routine powder XRD analysis.
The remaining portion of sample was impregnated with a red
fluorescent, low-viscosity resin under vacuum. The sample
was then mounted on a glass slide and polished to a thickness
of ∼30 µm. This thin-section specimen was analyzed using
optical petrography (using a Leitz Wetzlar Orthoplan-Pol
polarizing microscope) as well as subsequent μ-XRF analysis.

A Bruker M4 Tornado μ-XRF mapping system was used
for μ-XRF analysis. The instrument was equipped with a
micro-focused Rh source (50 kV, 600 µA) with a poly-
capillary optic (∼30 µm spot size). The detector system used
two silicon-drift detectors to collect fluorescence spectra
from the specimen. The specimen was secured to the x–y
translation stage within the M4 chamber, and XRF spectra
were collected under vacuum conditions (∼10−3 Torr). The
XRF-mapping dataset for the thin-section specimen was col-
lected as a large datacube with full X-ray spectra (4096 chan-
nels, 0–40 keV) collected at each pixel in a two-dimensional
array. The step size used for the μ-XRF spatial map was 50
µm. This resulted in a 502 × 860 matrix for the map which
covered an area of ∼25 × 43 mm2, thus incorporating the
entire cross-sectioned specimen. Total data collection time
was ∼4 h. The dimensionally of the datacube (502 × 860 ×
4096) was greater than 1.7 billion elements, and encompassed
a file size of 747 MB. Elemental maps for individual atomic
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species were generated within the M4 software package. For
PCA, the datacube was read into an in-house modified PCA
software package written in MATLAB (The Mathworks,
2008). MSA, which seeks to maximize the mutual simplicity
of the spatial components (Keenan, 2009), took 90 s on a PC
equipped with four-core 3.8 GHz Intel Xeon processors and 8
Gb of memory. Full details on the use of PCA are beyond the
scope of this paper and the reader may refer to literature on this
topic (e.g. Jollife, 2002; Keenan and Kotula, 2004; Rodriguez,
et al., 2007, 2010).

For XRD analysis, the ground powder specimen (<100
µm particle size) was loaded into a side-drifted specimen
holder against filter paper (to reduce preferred orientation
effects). Standard powder XRD analysis was performed
using a Siemens model D500 θ− θ diffractometer equipped
with a sealed-tube (CuKα) source, fixed (1°) slits, a diffracted-
beam graphite monochromator, and a scintillation detector.
Generator settings were 40 kV and 30 mA. Scan parameters
were a 2θ angular range of 10–65°, a step size of 0.04°, and
a count time of 4 s. Phase identification was performed within
the program Jade (ver. 9.3, Materials Data, Inc., Livermore,
CA). The resulting XRD dataset was quantitatively analyzed
using Rietveld refinement within the program GSAS
(Larson and Von Dreele, 2000; Toby, 2001).

III. RESULTS AND DISCUSSION

Figure 1 reveals that the specimen is almost entirely com-
posed of the mineral quartz (PDF entry 00-046-1045; also see
Table I). An initial single-phase refinement of the powder
XRD data within GSAS revealed a reasonable fit, as shown
in the inset labeled “Quartz only” (upper right corner of
Figure 1). However, careful evaluation of the low-intensity
peaks near the background (see zoomed region, inset in

Figure 1) reveals small peaks from additional phases.
Detailed evaluation of the low-intensity “trace” phases was
desirable, as initial optical petrography analysis (not shown)
suggested additional phases besides the dominant quartz. In
particular, the presence of pyrite was confirmed by optical
microscopy. Note that petrographic microscopy techniques
such as point-counting (Dickinson, 1970; Gazzi, 1966) can
require hours of detailed measurements. PCA-augmented
μ-XRF analysis generates, in minutes, the same spatially dis-
tributed chemical information as obtained through these time-
consuming microscopy methods. Interestingly, powder XRD
analysis, used specifically to identify these trace phases,
could not confirm the presence of pyrite within the sample
on the basis of the obtained pattern, as shown in Figure 1.
Hence μ-XRF mapping was undertaken, that is, to test whether
the chemical signature for the suspected pyrite could be iso-
lated spatially using μ-XRF.

Typical PCA uses algorithms that search large datasets for
commonalities within the dimensionally of the data matrix.
The resulting PCA outputs are displayed in generic terms as
“loadings” and their corresponding “scores” (see Rodriguez,
et al., 2007). For the case of this datacube, the loadings
(also called “components”) are extracted as isolated histo-
grams, along with the corresponding scores that can be
extracted as x–y spatial maps. The typical PCA map output
for a component is a (rainbow) color contour image (red =
strong, blue = weak) to indicate how that component is distrib-
uted spatially. The histograms derived from PCA look like
typical XRF spectra and can be treated as such. The combi-
nation of component histograms (abbreviated as “Cmpt-#”
throughout the text) and their corresponding contour maps
can adequately be recombined to fully describe the measured
dataset, while removing background noise. Analysis of the
μ-XRF datacube using PCA yielded as many as 13 possible

Figure 1. Initial XRD pattern showing domination of quartz content, with only trace peaks of additional phases present in the background.
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components necessary to describe the dataset. Some had to do
with specific chemical signatures that could easily be assigned
to phases within the sample. Others were more subtle effects.
Table I outlines all the assigned components from PCA as well
as the quantified XRD results from powder XRD analysis. The
comparative results of XRD and μ-XRF analyses will be dis-
cussed in detail later.

Spectra and PCA maps for all 13 components are not pre-
sented. Instead, a few important components are selected to
illustrate the functionality of the PCA technique. To orient
the reader to PCA output, Figure 2 shows the first derived
component (Cmpt-1), along with other images for compari-
son. The histogram in Figure 2, shown as Intensity vs.
Energy, is a straightforward XRF spectrum with the SiKα
peak as the main observed emission line, as well as some
small peaks from other elements near the background level.
This histogram can easily be assigned to the quartz phase.
As the μ-XRF system is unable to detect elements below
sodium, the only peak expected to be observed from the quartz
phase is the SiKα line. The contour map for the first com-
ponent, shown in the upper right corner of Figure 2 and
labeled as “Cmpt-1 PCA map”, shows this Si signal coming
from nearly all the locations across the specimen. Only
small regions indicate any absence of this signal. For compari-
son, an optical image (labeled “Video image”) is included in
Figure 2 so one can observe the appearance of the specimen
under typical optical conditions. Pink-staining is seen within
some areas of the specimen and around the edges; this is
from the added epoxy resin. Regions of darker coloring
suggest the existence of different phases besides the dominant
quartz. In addition to the video image and the PCAmap, the Si
map generated by the M4 software package is also included,
which simply isolates signal from the SiKα emission line
and plots its relative magnitude as a function of sample pos-
ition. This is dubbed the “keV-slice” as it is an energy cross-
section through the datacube. The SiKα keV-slice map is simi-
lar to the PCA map, indicating the strong presence of Si across
the specimen, with small, isolated regions indicating absence
of Si-containing minerals. Figures 1 and 2 clearly indicate that
any additional phases present in this sample are minor or trace
constituents, making this sample particularly challenging with
regard to phase identification.

Figure 3 illustrates the fourth derived component of the
analysis. The solid line in the Intensity vs. Energy plot (labeled
Cmpt-4) shows the spectrum that is very similar to that
obtained from an independent pyrite mineral sample, shown
as the offset (dashed line) in the plot. The intensity ratios for
the SKα, FeKα, and FeKβ lines are all nearly identical between
the two spectra. In essence, the derived component histogram
Cmpt-4 is the chemical spectrum for pyrite. The signature is
quantitative, and can be used to characterize phase presence
on the basis of species concentration. Some additional elemen-
tal lines are present in the component spectrum, namely
the SiKα and the TiKα peaks. These peaks are not likely part
of pyrite, but their origin is likely “bleed-in” of the first
component (silicon from quartz) and a second identified
component (titanium from anatase, TiO2; see Table I). The
presence of the extra SiKα and the TiKα peaks shows that
the PCA technique is not always perfect for the generation
of pure components, but that it sometimes suffers from “com-
ponent mixing.” This is especially true when a datacube con-
tains one or two components that dominate (e.g. quartz),
whereas other components are indicative of more subtle effects
(i.e. pyrite). In fact, nearly all the 13 derived components had
some bleed-in from the quartz component as indicated by a
small Si peak in each spectrum. This can make quantification
of compounds containing silicates more difficult. However,
this issue had little impact on the relative intensity ratios of
the SKα and FeKα, Kβ peaks observed in Cmpt-4.

The keV-slice maps shown in Figure 3 for S and Fe are
very interesting. They actually do not show a very high degree
of correlation. A long, vertical vein is seen on the right side of
the S keV-slice map, suggesting a sulfur-containing mineral.
This vein is not present in the Fe keV-slice map. Careful
analysis of other keV-slice maps revealed that the Ca map
(not shown) also displayed this vein. The material was ulti-
mately identified as being from a calcium sulfate mineral gyp-
sum. This was confirmed on the basis of weak peaks in the
XRD pattern and the presence of other similar spatial mapping
features from other borehole specimens obtained from nearby
depths. Note that PCA did find a component for gypsum
(Cmpt-5) with proper chemical ratios of S and Ca (see
Table I). In truth, many of the features in the S and Fe
keV-slice maps are not actually signals from pyrite. This

Table I. Summary of X-ray diffraction (XRD) and micro-X-ray fluorescence (μ-XRF) analyses.

PCA rank no. from μ-XRF data Key elements of component from μ-XRF Identified material Wt% from Rietveld refinementa PDFb entry number

1 Si Quartz 94.3(4) 00-046-1045
2 Ti Anatase 0.5(1) 00-021-1272
3 Ca, Cl Epoxy resin –

4 Fe, S Pyrite 0.2 00-042-1340
5 Ca, S Gypsum 0.3 00-033-0311
6 Ca, P Hydroxylapatite 1.6(2) 04-011-6221
7 Cl Epoxy in voids –

8 K, Al, Si, Fe Orthoclase 1.9(2) 04-009-3700
8 Microcline 1.0(2) 04-008-1783
9 Si Si Laue –

10 Ca, Si, As Glass slide –

11 Zr, Hf Zircon 0.2 00-006-0266
12 Si Si Laue –

13 Si Si Laue –

aBracketed value refers to 1σ error on last significant digit.
bPowder Diffraction File (PDF-4 + , 2010): ICDD, Newtown Square, PA.
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fact underscores the difficulty of isolating chemical signatures
of trace phases when the atomic species of that desired con-
stituent phase are also present in other phases in the specimen.
What one really needs is to spatially identify the commonality
of location for the Fe and S fluorescence signals that possess
the proper emission-line intensity-ratio to be assigned to the
FeS2 chemical composition. This, in fact, is exactly what the
Cmpt-4 PCA map reveals, as seen in Figure 3 (upper right).
This color contour map is nearly featureless, with a blue back-
ground level across most of the map area. However, dispersed
across the map are small regions, shown as red dots, which
indicate strong “scores” for the Cmpt-4 histogram. These

small dots indicate the presence of tiny pyrite grains (100–
500 µm) within the specimen matrix. One such dot is high-
lighted with an arrow, shown in the upper right portion of
the Cmpt-4 PCA map. Arrows also highlight this same pos-
ition on the Fe and S keV-slice maps; this demonstrates that
S and Fe signals are observed in this location, with approxi-
mately the same spatial dimensions as that of the PCA map.
Such fine-tuned analysis would be very difficult without the
use of PCA techniques. The obvious low quantity of pyrite
in this specimen explains the difficulty in detecting this trace
phase using conventional powder XRD analysis. In addition,
the information derived from the Cmpt-4 PCA map regarding

Figure 2. The Intensity vs. Energy spectrum for the first isolated PCA component (Cmpt-1), along with the corresponding PCA map for Cmpt-1 (shown as a
color contour map; upper right). A chemical map for the SiKα keV-slice is shown for comparison, along with a video image from optical microscopy.

Figure 3. PCA-derived Cmpt-4. The Intensity vs. Energy plot shows the obtained Cmpt-4 spectrum (solid line) along with a spectrum from a pyrite standard
(offset dashed line). keV-slice maps for S and Fe are shown along with the PCA-derived contour map for Cmpt-4. A small arrow on map images indicates the
location of a ∼500-μm pyrite grain.
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the small size, and spatially isolated nature of the pyrite grains,
increased confidence that the pyrite phase would not pose a
major concern regarding acidic damage within the bore-hole.
The spatial mapping by μ-XRF was critical in the diagnosis of
pyrite as isolated grains, and this information was useful in
assessing a minimal impact of pyrite reaction during CAES
operation.

Figure 4 shows the final fit of the Rietveld refinement for
the powder XRD data. The plot contains the same zoomed-in
range as shown in the inset of Figure 1. The small impurity
peaks are now accounted for in the refinement shown in
Figure 4. The μ-XRF analysis coupled with PCA enabled
straightforward clarification of the trace phases. Table I sum-
marizes the synergistic results obtained by the merger of XRD
and μ-XRF analyses. Along with quartz, additional phases
were confirmed to be present: orthoclase, hydroxylapatite,
microcline, anatase, gypsum, zircon, and pyrite. Note that
the order in terms of PCA ranking of the derived components
listed in Table I does not always follow the quantity of a given
phase (i.e. wt%). This is because PCA rank depends on dataset
variance and not on concentration. Figure 4 shows specific
indexed peaks for these trace phases. These labeled peaks
were selected because they had significant relative intensities
for the given phase (>40% Irel as documented in PDF entries
for these phases listed in Table I), and they did not overlap
major peaks from the other phases. The residual error (Rp)
obtained from Rietveld analysis reduced from 18.57% for
the “Quartz only” refinement (Figure 1) to 17.16% after fitting
the trace phases (Figure 4). Although this is not a large
change, the reduction of the residual error by ∼1.5%, along
with the generally good fit of the observed to calculated pat-
terns in Figure 4, indicates an accurate assessment of the
trace phases in this specimen.

The PCA components were of great assistance in the
phase identification. Specifically, isolation of Cmpt-6 as con-
taining both phosphorous and calcium enabled the quick
identification of hydroxylapatite likely from fossilized remains
within the specimen. Microcline and orthoclase have the same
chemical signature, and therefore were extracted as one

component (Cmpt-8) in the PCA technique. Phase identifi-
cation searches of the XRD pattern with K, Al, and Si resulted
in the identification of both these phases. The same process
worked for the trace phases of zircon and pyrite. In fact, the
quantitative results for zircon and pyrite trace phases using
Rietveld refinement indicate their presence at ∼0.2 wt%.
This is typically at the limit of quantification for powder
diffraction measurements, as the error associated with the
phase fraction is of the same magnitude as the quantity refined
to be present. Even with this limitation in quantification,
qualitatively, the phases can be isolated spatially in terms of
chemical signature, and confirmed present on the basis of
the location of diffraction peaks in the bulk powder analysis.
This was critical in the confirmation of pyrite within this
specimen.

Notably, a defining (hkl) for the gypsum phase is absent
from Figure 4. Significant peak overlap occurred for all the
major reflections in this phase. The pattern showed consist-
ency regarding possible intensity, which could account for
this phase, but the intensity always overlapped other major
reflections from other phases. Gypsum was confirmed on the
basis of several factors. Firstly, the μ-XRF clearly showed a
component with Ca and S in a 1:1 atomic ratio (see Cmpt-5
in Table I), which suggested a sulfate. Secondly, other core-
drill specimens taken from similar depths showed gypsum,
but with higher concentrations, which made the identification
routine. Thirdly, other calcium sulfate-containing phases com-
mon in geological formations, such as anhydrite and bassa-
nite, were inconsistent with the XRD data. Lastly, gypsum
was accommodated within the Rietveld refinement without
difficulty and refined to a realistic concentration.

In Table I, note again that not all PCA components had
origins in specific phases present in the core-drill cross-
section. Actually, 6 of the 13 components could be considered
artifacts of the analysis. This includes components from the
epoxy resin (i.e. Cmpt-3 and Cmpt-7), a component from
the underlying glass slide (Cmpt-10), and components from
Si Laue peaks (Cmpt-9, Cmpt-12, and Cmpt-13). These arti-
facts are very interesting because they demonstrate the ability

Figure 4. Zoomed range of final Rietveld refinement showing fitting of trace phases. Quartz peaks go off-scale. Reflection tick-marks underneath the fit pattern
indicate locations of possible peaks from individual phases. Selected phases with assigned (hkl) values have been labeled for the trace phases (Rp = 17.16%).
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of PCA to remove systematic errors that might otherwise con-
taminate the quantitative analysis of given phases. This is par-
ticularly true of Laue peaks. For example, the Cmpt-12
histogram, shown in Figure 5, is nearly identical to that of
Cmpt-1 (quartz). However, there is one major difference: a
broadened peak at ∼5.8 keV. This peak would not easily
identify with any expected elemental species from the speci-
men, but could possibly be mistaken for MnKα (5.90 keV).
The fact that this peak showed a broadened peak profile led
to immediate suspicion regarding its origin. Evaluation of
the PCA map for Cmpt-12, as shown in Figure 5, supports
the identification of this component as being from Laue dif-
fraction effects. As seen in the Cmpt-12 PCAmap, the appear-
ance of individual grains, evenly distributed throughout the
specimen in a similar fashion to that of the quartz phase, is
highly suggestive of Laue diffraction. In addition, the spec-
trum for Cmpt-12 tags the Laue peak with the SiKα peak,
assuring that this effect is from the quartz phase.
Geometrical considerations regarding the beam and detector
angular orientation tentatively assign the Laue energy as
being diffraction from the quartz (102) and/or (110) planes.
Here again, the effectiveness of the PCA technique is
observed. The method not only helps remove potentially mis-
leading artifacts that may bias quantitative results, but also
separates these artifacts for specific assignment, which often
leads to additional information gleaned from the technique.

IV. CONCLUSION

The analysis of μ-XRF datasets using PCA revealed a
highly detailed, spatially constrained set of components.
Detection of trace phases in the core-drilled cross-section
was greatly enhanced by PCA when coupled with quantitative
powder XRD results. Derived PCA components are quantitat-
ive for determining chemical composition. PCA-augmented
μ-XRF analysis generates, within seconds, the same spatially
distributed chemical information as obtained from many hours
of petrographic microscopy. Results support geological
characterization of the renewable energy site for CAES.
Pyrite oxidation is not a major concern during CAES oper-
ation because the mineral was detected at low quantities and
it was well dispersed throughout the mineral matrix from the
core-drilled specimen.
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Figure 5. Derived PCA spectrum and corresponding PCAmap for Cmpt-12.
The Intensity vs. Energy plot is identical to that of Figure 1, but with the
addition of a broad Laue peak at ∼5.8 keV. The PCA map shows that the
distribution of this component is correlated with large, individual grains
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