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Abstract

We formulate and prove a shape theorem for a continuous-time continuous-space
stochastic growth model under certain general conditions. Similar to the classical lattice
growth models, the proof makes use of the subadditive ergodic theorem. A precise
expression for the speed of propagation is given in the case of a truncated free-branching
birth rate.
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1. Introduction

Shape theorems have a long history. Richardson [21] proved the shape theorem for the Eden
model. Since then, shape theorems have been proven in various settings, most notably for first-
passage percolation and permanent and nonpermanent growth models. Garet and Marchand [11]
not only proved a shape theorem for the contact process in a random environment, but also
provided a overview of existing results.

Most of the literature is devoted to discrete-space models. A continuous-space first-passage
percolation model was analyzed by Howard and Newman [13]; see also the references therein.
A shape theorem for a continuous-space growth model was proven by Deijfen [5]; see also
Gouéré and Marchand [12]. Our model is naturally connected to that model; see the end of
Section 2.

The questions addressed in this paper are motivated not only by probability theory but also
by studies in natural sciences. In particular, we can mention a demand to incorporate spatial
information in the description and analysis of ecology, bacteria populations, tumor growth,
epidemiology, and phylogenetics among others; see, e.g. [24]–[27]. Authors often emphasize
that it is preferable to use the continuous-space spaces R2 and R3 as the basic or ‘geographic’
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Asymptotic shape for spatial birth processes 75

space; see, e.g. [26]. More on connections between theoretical studies and applications can be
found in [20].

The paper is organized as follows. In Section 2 we describe the model and formulate our
results, which are proven in Sections 3 and 4. Technical results, in particular on the construction
of the process, are collected in Section 5. In Section 6 we present some further conjectures
about the models treated in this paper and related models.

2. The model, assumptions, and results

We consider a growth model represented by a continuous-time continuous-space Markov
birth process. Let �0 be the collection of finite subsets of Rd ,

�0(R
d) = {η ⊂ Rd : |η| < ∞},

where |η| is the number of elements in η. Note that �0 is also called the configuration space or
the space of finite configurations.

The evolution of the spatial birth process on Rd admits the following description. Let B(X)

be the Borel σ -algebra on the Polish space X. If the system is in state η ∈ �0 at time t then
the probability that a new particle appears (a ‘birth’) in a bounded set B ∈ B(Rd) over time
interval [t; t + �t] is

�t

∫
B

b(x, η) dx + o(�t),

and with probability 1 no two births happen simultaneously. Here b : Rd × �0 → R+ is some
function which is called the birth rate. Using a slightly different terminology, we can say that
the rate at which a birth occurs in B is

∫
B

b(x, η) dx. We note that it is conventional to call the
function b the ‘birth rate’, even though it is not a rate in the usual sense (as in, e.g. ‘the Poisson
process (Nt ) has unit jumps at rate 1 meaning that P{Nt+�t − Nt = 1}/�t = 1 as �t → 0’)
but rather a version of the Radon–Nikodym derivative of the rate with respect to the Lebesgue
measure.

Remark 2.1. We characterize the birth mechanism by the birth rate b(x, η) at each spatial
position. Often the birth mechanism is given in terms of contributions of individual particles:
a particle at y, y ∈ η, gives a birth at x at rate c(x, y, η) (often c(x, y, η) = γ (y, η)k(y, x),
where γ (y, η) is the proliferation rate of the particle at y, whereas the dispersion kernel k(y, x)

describes the distribution of the offspring); see, e.g. Fournier and Méléard [10]. As long as we
are not interested in the induced genealogical structure, the two ways of describing the process
are equivalent under our assumptions. Indeed, given c, we may set

b(x, η) =
∑
y∈η

c(x, y, η),

or, conversely, given b, we may set

c(y, x, η) = g(x − y)∑
y∈η g(x − y)

b(x, η),

where g : Rd → (0, ∞) is a continuous function. Note that b is uniquely determined by c but
not vice versa.
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We equip �0 with the σ -algebra B(�0) induced by the sets

ball(η, r) = {ζ ∈ �0 | |η| = |ζ |, dist(η, ζ ) < r}, η ∈ �0, r > 0, (2.1)

where dist(η, ζ ) = min{∑|η|
i=1 |xi − yi | | η = {x1, . . . , x|η|}, ζ = {y1, . . . , y|η|}}. For more

detail on configuration spaces; see, e.g. [16] or [22]. In particular, the distance above coincides
with the restriction to the space of finite configurations of the metric ρ used in [22], and the
σ -algebra B(�0) introduced above coincides with the σ -algebra from [16].

We say that a function f : Rd → R+ has an exponential moment if there exists θ > 0 such
that ∫

Rd

eθ |x|f (x) dx < ∞.

Of course, if f has an exponential moment then automatically f ∈ L1(Rd).
Assumptions on b. We will need several assumptions on the birth rate b.

Condition 2.1. (Sublinear growth.) The birth rate b is measurable and there exists a function
a : Rd → R+ with an exponential moment such that

b(x, η) ≤
∑
y∈η

a(x − y). (2.2)

Condition 2.2. (Monotonicity.) For all η ⊂ ζ ,

b(x, η) ≤ b(x, ζ ), x ∈ Rd .

The previous condition ensures attractiveness; see below.

Condition 2.3. (Rotation and translation invariance.) The birth rate b is translation and
rotation invariant: for every x, y ∈ Rd , η ∈ �0, and M ∈ SO(d),

b(x + y, η + y) = b(x, η), b(Mx, Mη) = b(x, η).

Here SO(d) is the orthogonal group of linear isometries on Rd , and for a Borel set B ∈ B(Rd)

and y ∈ Rd ,

B + y = {z | z = x + y, x ∈ B}, MB = {z | z = Mx, x ∈ B}.
Condition 2.4. (Nondegeneracy.) Let c0, r > 0 such that

b(x, η) ≥ c0 wherever min
y∈η

|x − y| ≤ r. (2.3)

Remark 2.2. Condition 2.4 is used to ensure that the system grows at least linearly. The con-
dition could be weakened, e.g. as follows.

• For some r2 > r1 ≥ 0 and all x, y ∈ Rd , b(y, {x}) ≥ c01{r1≤|x−y|≤r2}.

Accordingly, the proof would become more intricate.

Remark 2.3. If b is as in (2.4) and f has polynomial tails, then the result of Durrett [6] suggests
that we would expect a superlinear growth. This is in contrast with Deijfen’s model, for which
Gouéré and Marchand [11] gave a sharp condition on the distribution of the outbursts for linear
or superlinear growth.
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Examples of a birth rate are

b(x, η) = λ
∑
y∈η

f (|x − y|) (2.4)

and

b(x, η) = k ∧
(

λ
∑
y∈η

f (|x − y|)
)

, (2.5)

where λ, k are positive constants and f : R+ → R+ is a continuous, nonnegative, nonincreasing
function with compact support.

We denote the underlying probability space by (�, F , P). Let A be a sub-σ -algebra of F .
A random element A in �0 is A-measurable if

� 
 ω → A = A(ω) ∈ �0

is a measurable map from the measure space (�, A) to (�0, B(�0)). Such an A will also be
called an A-measurable finite random set.

The birth process will be obtained as a unique solution to a certain stochastic equation. The
construction and the proofs of key properties, such as the rotation invariance and the strong
Markov property, are given in Section 6. We place the construction toward the end because it
is rather technical and the methods used there do not shed much light on the ideas of the proofs
of our main results. Denote by (η

s,A
t )t≥s = (η

s,A
t , t ≥ s) the process started at time s ≥ 0

from an Ss-measurable finite random set A. Here (Ss)s≥0 is a filtration of σ -algebras to which
(η

s,A
t )t≥s is adapted; it is introduced after (5.3). Furthermore, (η

s,A
t )t≥s is a strong Markov

process with respect to (Ss)s≥0; see Proposition 5.2.
The construction method we use has the advantage that the stochastic equation approach

resembles a graphical representation (see, e.g. [7] or [18]) in the fact that it preserves mono-
tonicity: if s ≥ 0 and almost surely (a.s.) A ⊂ B, A and B being Ss-measurable finite random
sets, then a.s.

η
s,A
t ⊂ η

s,B
t , t ≥ s. (2.6)

This property is proven in Lemma 5.1 and is often referred to as attractiveness.
The process started from a single particle at 0 at time zero will be denoted by (ηt )t≥0; thus,

ηt = η
0,{0}
t . Let

ξt :=
⋃
x∈ηt

B(x, r) (2.7)

and, similarly,
ξ

s,A
t :=

⋃
x∈η

s,A
t

B(x, r),

where B(x, r) is the closed ball of radius r centered at x (recall that r appears in (2.3)).
The following theorem represents the main result of the paper.

Theorem 2.1. There exists μ > 0 such that, for all ε ∈ (0, 1), a.s.

(1 − ε)B(0, μ−1) ⊂ ξt

t
⊂ (1 + ε)B(0, μ−1) for sufficiently large t. (2.8)

Proof. See Section 3. �
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Remark 2.4. We note that the statement of Theorem 2.1 does not depend on our choice for the
radius in (2.7) to be r; we could just as well take any positive constant, e.g.⋃

x∈ηt

B(x, 1).

In particular, μ in (2.8) does not depend on r .

It is common to write the ball radius as the reciprocate μ−1, probably because μ comes up
in the proof as the limiting value of a certain sequence of random variables after applying the
subadditive ergodic theorem; see, e.g. [5] or [7]. We decided to retain the tradition not only for
historic reasons, but also because μ comes up as a certain limit in our proof too, even though
we do not obtain μ directly from the subadditive ergodic theorem. The value μ−1 is called
the speed of propagation. The subadditive ergodic theorem is a cornerstone in the majority of
shape theorem proofs, and our proof relies on it.

Formal connection to Deijfen’s model. The model introduced in [5] with deterministic
outburst radius, that is, when in the notation of [5], the distribution F of the radii of the outburst
balls is the Dirac measure: F = δR for some R ≥ 0 can be identified with

ζR
t =

⋃
x∈ηt

B(x, R)

for the birth process (ηt ) with birth rate

b(x, η) = 1{there exists y∈η : |x−y|≤R}.

Explicit growth speed for a particular model. The precise evaluation of speed appears to
be a difficult problem. For a general one-dimensional branching random walk, the speed of
propagation was determined by Biggins [3]. An overview of related results for different classes
of models can be found in [1].

We now provide the speed for a model with interaction.

Theorem 2.2. Let d = 1 and

b(x, η) = 2 ∧
(∑

y∈η

1{|x−y|≤1}
)

.

Then the speed of propagation is given by

μ−1 = 144 ln(3) − 144 ln(2) − 40

25
≈ 0.735 48 . . . .

Proof. The proof can be found in Section 4. �

3. Proof of Theorem 2.1

Outline of the proof. The proof can roughly be divided into three parts. First, we show that
the system grows no faster than linearly, which is the content of Proposition 3.1. The proof
of Proposition 3.1 relies on Lemma 5.1, which allows a comparison of birth processes with
different rates, and on the results on the spread of the supercritical branching random walk by
Biggins [3].

Second, we show that the system grows at least linearly. Strictly speaking, in this part we
give only exponential estimates on the probability of certain linearly growing balls not to be
filled with the particles of our system (Lemma 3.3) as opposed to an a.s. statement about the
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entire trajectory as in Proposition 3.1. This is, however, sufficient for our purposes. The main
ingredients here are exponential estimates for the Eden model (or first-passage percolation
model), comparison of the Eden model with our process, and once again Lemma 5.1.

Finally, the most technical in our opinion, we actually prove the theorem using the previous
two parts. We define a specially designed collection of stopping times {Tλ(x), x ∈ Rd} and
{Tλ(x, y), x, y ∈ Rd}, depending on an additional parameter λ > 0 (see (3.5) and (3.6)). The
strong Markov property of (ηt ) (Proposition 5.2 and Corollary 5.1) allows us to apply Liggett’s
subadditive ergodic theorem to show that, for any x ∈ Rd , (Tλ(tx))t≥0 grows linearly with t

((3.10) and Lemma 3.6). We then move on to prove that the limit limt→∞ Tλ(tx)/t does not
depend on x (Lemma 3.7) and is strictly positive (Lemma 3.8). The bulk of the final part of the
proof of Theorem 2.1 is contained in Lemmas 3.10 and 3.11, where we show the necessary a.s.
inclusions removing the dependence on λ along the way.

Proposition 3.1. There exists Cupb > 0 such that, a.s. for large t ,

ηt ⊂ B(0, Cupbt). (3.1)

Remark 3.1. The index ‘upb’ hints on ‘upper bound’.

Proof of Proposition 3.1. It is sufficient to show that, for e = (1, 0, . . . , 0) ∈ Rd , there
exists C > 0 such that, a.s. for large t ,

max{〈x, e〉 : x ∈ ηt } ⊂ Ct. (3.2)

Indeed, if (3.2) holds then, by Proposition 5.1, replacing e with any other unit vector along any
of the 2d directions in Rd , (3.1) also holds.

For z ∈ R, y = (y1, . . . , yd−1) ∈ Rd−1 we define z ◦ y to be the concatenation (z, y1, . . . ,

yd−1) ∈ Rd . In this proof we denote by (η̄t ) the birth process with η̄0 = η0 and the birth rate
given by the right-hand side of (2.2), namely

b̄(x, η) =
∑
y∈η

a(x − y). (3.3)

Since b(x, η) ≤ b̄(x, η), x ∈ Rd , η ∈ �0, we have, by Lemma 5.1, a.s. ηt ⊂ η̄t for all t ≥ 0.
Thus, it is sufficient to prove the proposition for (η̄t ). The process (η̄t ) with rate (3.3) is, in
fact, a continuous-time continuous-space branching random walk (for an overview of branching
random walks and related topics; see, e.g. [23]). Denote by η̄e

t the element-wise projection
of η̄t onto the line determined by e; that is, η̄e

t = {x ∈ R1 | x = 〈y, e〉 for some y ∈ ηt }. The
process (η̄e

t ) is itself a branching random walk, and, by Corollary 2 of [3], the position of the
rightmost particle Xe

t of (η̄e
t ) at time t satisfies

lim
t→∞

Xe
t

t
→ γ for a certain γ ∈ (0, ∞). (3.4)

The conditions from Corollary 2 of [3] are satisfied due to Condition 2.1. Indeed, (η̄e
t ) is the

branching random walk with the birth kernel

āe(z) =
∫

y∈Rd−1
a(z ◦ y) dy,

that is, (η̄e
t ) is a birth process on R1 with birth rate

b̄(x, η) =
∑
y∈η

āe(x − y), x ∈ R, η ∈ �0(R).
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Note that ae(z) = a(z) if d = 1. Hence, in the notation of [3], for θ < 0,

m(θ, φ) =
∫

R×R+
e−θze−φτ āe(z) dz dτ

= 1

φ

∫
R

e−θ |z|āe(z) dz

= 1

φ

∫
R

e−θ |z| dz

∫
y∈Rd−1

a(z ◦ y) dy

= 1

φ

∫
Rd

e−θ |〈x,e〉|a(x) dx

≤ 1

φ

∫
Rd

e−θ |x|a(x) dx

and, thus, α(θ) < ∞ for a negative θ satisfying
∫

Rd e−θ |x|a(x) dx < ∞ (the functions m(θ, φ)

and α(θ) are defined in [3] at the beginning of Section 3).
Since (3.2) follows from (3.4), the proof of the proposition is now complete. �
Next, using a comparison with the Eden model (see [8]), we will show that the system grows

no slower than linearly (in the sense of Lemma 3.3 below). The Eden model is a model of tumor
growth on the lattice Zd . The evolution starts from a single particle at the origin. A site once
occupied stays occupied forever. A vacant site becomes occupied at rate λ > 0 if at least one
of its neighbors is occupied. We mention that this model is closely related to the first-passage
percolation model; see, e.g. [1] and [15]. In fact, the two models coincide if the passage times
have exponential distribution; see [15].

For z = (z1, . . . , zd) ∈ Zd , let |z|1 = ∑d
i=1 |zi |.

Lemma 3.1. Consider the Eden model starting from a single particle at the origin. Then there
exists a constant C̃ > 0 such that, for every z ∈ Zd and time t ≥ 4e2/λ2(e − 1)2 ∨ C̃|z|1,

P{z is vacant at t} ≤ e−√
t .

Proof. Let σz be the time when z becomes occupied. Let v be a path on the integer lattice
of length m = length(v) starting from 0 and ending in z, so that v0 = 0, vm = z, vi ∈ Zd ,
and |vi − vi−1| = 1, i = 1, . . . , m. Define σ(v) as the time it takes for the Eden model to
move along the path v; that is, if v0, . . . , vj are occupied then a birth can occur only at vj+1.
By construction, σ(v) is distributed as the sum of length(v) independent unit exponentials (the
so-called passage times; see, e.g. [1] or [15]). We have

σz = inf{σ(v) : v is a path from 0 to z}.
Hence, σz is dominated by the sum of |z|1 independent unit exponentials, say σz ≤ Z1 + · · · +
Z|z|1 .

We have the equality of the events

{z is vacant at t} = {σz > t}.
Note that

E exp

{
λ

(
1 − 1

e

)
Z1

}
= e.
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Using Chebyshev’s inequality P{Z > t} ≤ E exp{λ(1 − 1/e)(Z − t)}, we obtain

P{σz > t} ≤ P{Z1 + · · · + Z|z|1 > t}
≤ E exp

{
λ

(
1 − 1

e

)
(Z1 + · · · + Z|z|1 − t)

}
=

[
E exp

{
λ

(
1 − 1

e

)
Z1

}]|z|1
exp

{
−λ

(
1 − 1

e

)
t

}
= exp{|z|1} exp

{
−λ

(
1 − 1

e

)
t

}
.

Since
1

2
λ

(
1 − 1

e

)
t ≥ √

t,

for t ≥ 4e2/λ2(e − 1)2, we may take C̃ = 2e/λ(e − 1). �

We now continue to work with the Eden model.

Lemma 3.2. For the Eden model starting from a single particle at the origin, there are constants
c1, t0 > 0 such that

P{there is a vacant site in B(0, c1t) ∩ Zd at t} ≤ exp{− 4
√

t}, t ≥ t0.

Proof. By the previous lemma, for c1 < 1/C̃,

P{there is a vacant site in B(0, c1t) ∩ Zd at t} ≤
∑

z∈B(0,c1t)∩Zd

P{z is vacant at t}

≤ |B(0, c1t)| exp{−√
t},

where |B(0, c1t)| is the number of integer points (that is, points whose coordinates are integers)
inside B(0, c1t). It remains to note that |B(0, c1t)| grows only polynomially fast in t . �

Definition 3.1. Let the growth process (αt )t≥0 be a ZZ
d

+ -valued process with

α(z) → α(z) + 1 at rate λ1{∑
y∈Zd : |z−y|≤1 α(y)>0}, z ∈ Zd , α ∈ ZZ

d

+ ,
∑
y∈Zd

α(y) < ∞,

where λ > 0.

Clearly, Lemma 3.2 also applies to (αt )t≥0 since it dominates the Eden process. Recall that r
appears in (2.3), and (ξt ) is defined in (2.7).

Lemma 3.3. There exist c, s0 > 0 such that

P{B(0, cs) �⊂ ξs} ≤ exp{− 4
√

s}, s ≥ s0.

Proof. For x ∈ Rd , let zx ∈ (r/2d)Zd be uniquely determined by x ∈ zx +(−r/4d, r/4d]d .
Recall that c0 appears in Condition 2.4. Define

b̄(x, η) = c01{zx∼zy for some y∈η},
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where ‘zx ∼ zy’ means that zx and zy are neighbors on (r/2d)Zd . Let (η̄t )t≥0 be the birth
process with birth rate b̄. Note that, by (2.3), for every η ∈ �0,

b̄(x, η) ≤ b(x, η), x ∈ Rd ,

hence, a.s. η̄t ⊂ ηt by Lemma 5.1, t ≥ 0. Then the ‘projection’ process defined by

η̄t (z) =
∑
x∈η̄t

1{x∈z+(−r/4d,r/4d]d }, z ∈ r

2d
Zd ,

is the process (αt )t≥0 from Definition 3.1 with λ = c0(r/2d)d and the ‘geographic’ space

(r/2d)Zd instead of Zd , that is, taking values in Z(r/2d)Zd

+ instead of ZZ
d

+ . Since η̄t (zx) > 0
implies that x ∈ ξt , the desired result follows from Lemma 3.2 and the fact that Lemma 3.2
also applies to (αt )t≥0. �

Notation and conventions. In what follows, for x, y ∈ Rd , we define

[x, y] = {z ∈ Rd | z = tx + (1 − t)y, t ∈ [0, 1]}.
We call [x, y] an interval. Similarly, open or half-open intervals are defined, e.g.

(x, y] = {z ∈ Rd | z = tx + (1 − t)y, t ∈ (0, 1]}.
We also adopt the convention B(x, 0) = {x}.

For x ∈ Rd and λ ∈ (0, 1), we define a stopping time Tλ(x) (here and below, all stopping
times are considered with respect to the filtration (St ) introduced after (5.3)) by

Tλ(x) = inf{t > 0 : |ηt ∩ B(x, λ|x|)| > 0}, (3.5)

and, for x, y ∈ Rd , we define

Tλ(x, y) = inf{t > Tλ(x) : |ηTλ(x), {zλ(x)}
t ∩ B(y + zλ(x) − x, λ|y − x|)| > 0} − Tλ(x), (3.6)

where zλ(x) is uniquely defined by {zλ(x)} = η
Tλ(x)

∩ B(x, λ|x|). Note that {zλ(x)} is an
STλ(x)-measurable finite random set. Also, Tλ(0) = 0 and Tλ(x, x) = 0 for x ∈ Rd . To reduce
the number of double subscripts, we will sometimes write z(x) instead of zλ(x).

Since, for q ≥ 1,

{x1 + x2 : x1 ∈ B(x, λ|x|), x2 ∈ B((q − 1)x, λ(q − 1)|x|)} = B(qx, λq|x|),
we have, by attractiveness (recall (2.6)),

Tλ(qx) ≤ Tλ(x) + (inf{t > 0 : |ηTλ(x), ηTλ(x)

t ∩ B(qx, λq|x|)| > 0} − Tλ(x))

≤ Tλ(x) + (inf{t > 0 : |ηTλ(x),{zλ(x)}
t ∩ B(zλ(x) + (q − 1)x, λ(q − 1)|x|)| > 0}

− Tλ(x)),

that is,
Tλ(qx) ≤ Tλ(x) + Tλ(x, qx), x ∈ Rd \ {0}. (3.7)

Note that, by the strong Markov property (Proposition 5.2 and Corollary 5.1), we have an
equality in distribution:

Tλ(x, qx)
d= Tλ((q − 1)x). (3.8)

The following elementary lemma is used in the proof of Lemma 3.5.
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Figure 1: Representation of Lemma 3.4(i).

Lemma 3.4. Let B1 = B(x1, r1) and B2 = B(x2, r2) be two d-dimensional balls.

(i) There exists a constant cball(d) > 0 depending on d only such that if B1 and B2 are two
balls in Rd and x1 ∈ B2, then

vol(B1 ∩ B2) ≥ cball(d)(vol(B1) ∧ vol(B2)),

where vol(B) is the d-dimensional volume of B.

(ii) The intersection B1 ∩ B2 contains a ball of radius r3 provided that

2r3 ≤ (r1 + r2 − |x1 − x2|) ∧ r1 ∧ r2.

Proof. (i) Without loss of generality we can assume that r1 ≤ r2. Indeed, if r1 > r2
then x2 ∈ B1, so we can swap B1 and B2. Let B ′

1 = B(x′
1, r1) be the shifted ball B1 with

x′
1 = x1 + r1((x2 − x1)/|x2 − x1|) (see Figure 1). The intersection B ′

1 ∩ B1 is a subset of B2
and is a union of two identical d-dimensional hyperspherical caps with height r1/2. Using the
standard formula for the volume of a hyperspherical cap, we see that we can take

cball(d) = V (B ′
1 ∩ B1)

V (B1)
= 2

�(d/2 + 1)√
π�((d + 1)/2)

∫ π/3

0
sind(s) ds.

(ii) We have B3 ⊂ B1 ∩ B2, where B3 = B(x3, r3) and x3 is the middle point of the interval
[x1, x2] ∩ B1 ∩ B2. �

Lemma 3.5. For every x ∈ Rd and λ > 0, there exist Ax,λ, qx,λ > 0 such that

P{Tλ(x) > s} ≤ Ax,λ exp{−qx,λ
4
√

s}, s ≥ 0.

Proof. Let
τx = inf{s > 0 : x ∈ ξs}
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(recall that (ξt ) is defined in (2.7)), that is, τx is the moment when the first point in the ball
B(x, r) appears. By Lemma 3.3, for s ≥ s0 ∨ |x|/c,

P{τx > s} ≤ P{x /∈ ξs} ≤ P{B(0, |x|) � ξs} ≤ P{B(0, cs) � ξs} ≤ exp{− 4
√

s}. (3.9)

In the r ≤ λ|x| case, we have a.s. Tλ(x) ≤ τx , and the statement of the lemma follows from
(3.9) since, for s ≥ s0 ∨ |x|/c,

P{Tλ(x) > s} ≤ P{τx > s} ≤ exp{− 4
√

s}.
We now consider the r > λ|x| case. Denote by x̄ ∈ B(x, r) the place where the particle is

born at τx . For t ≥ 0 on {t > τx}, we have∫
y∈B(x,λ|x|)

b(y, ηt ) dy ≥
∫

y∈B(x,λ|x|)
b(y, {x̄}) dy ≥

∫
y∈B(x,λ|x|)

c01{y∈B(x̄,r)} dy,

so that, by Lemma 3.4 on {t > τx},∫
y∈B(x,λ|x|)

b(y, ηt ) dy ≥
∫

y∈B(x,λ|x|)
c01{y∈B(x̄,r)} dy

= c0 vol(B(x, λ|x|) ∩ B(x̄, r))

≥ c0cball(d) vol(B(x, λ|x|))
= c0cball(d)Vdλd |x|d ,

where Vd = vol(B(0, 1)), hence,

P{Tλ(x) − τx > s′} ≤ P{inf{t > 0 : η
τx,{x̄}
t ∩ B(x, r) �= ∅} − τx > s′}

≤ exp{−c0cball(d)Vdλd |x|ds′}.
Combining this with (3.9) yields the desired result. �

We fix an x ∈ Rd , x �= 0, and define, for k, n ∈ N, k < n,

sk,n = Tλ(kx, nx).

Note that the random variables sk,n are integrable by Lemma 3.5. The conditions of Liggett’s
subadditive ergodic theorem, see [17], are satisfied here. Indeed, Equation (1.7) of [17] is
ensured by our (3.7), while Equations (1.8) and (1.9) of [17] follow from our (3.8) and the strong
Markov property of (ηt ) (Proposition 5.2 and Corollary 5.1). Thus, there exists μλ(x) ∈ [0, ∞)

such that a.s. and in L1,
s0,n

n
→ μλ(x). (3.10)

Lemma 3.6. Let λ > 0. For every x �= 0,

lim
t→∞

Tλ(tx)

t
= μλ(x).

Proof. We know that, for every x ∈ Rd \ {0},

lim
n→∞

Tλ(nx)

n
= μλ(x).
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Denote σn = infy∈[nx,(n+1)x] Tλ(y). Since there are only a finite number of particles born in a
bounded time interval, this infinum is achieved. So, let z̃n be such that ησn \ ησn− = {̃zn}. By
the definition of σn, the set

{y ∈ [nx, (n + 1)x] | z̃n ∈ B(y, λ|y|)}
is not empty. We see that {̃zn} is an Sσn -measurable finite random set, so we can apply
Corollary 5.1 here.

Define now another stopping time

σ̃n = inf{t > 0 : ξ
σn,{̃zn}
t ⊃ B(̃zn, λ|x| + |x| + 2r)}.

We show that
sup

y∈[nx,(n+1)x]
Tλ(y) ≤ σ̃n. (3.11)

For any y ∈ [nx, (n + 1)x],
|y − z̃n| ≤ |̃zn − nx| ∨ |̃zn − (n + 1)x| ≤ λ(n + 1)|x| + |x|.

Therefore, the intersection of the balls B(̃zn, λ|x| + |x| + 2r) and B(y, λ|y|) contains a ball B̃

of radius r by Lemma 3.4(ii), since

λ|x| + |x| + 2r + λ|y| − λ(n + 1)|x| − |x| ≥ λ|x| + 2r + λn|x| − λ(n + 1)|x| = 2r.

Since the radius of B̃ is r and ξ
σn,{̃zn}
σ̃n

⊃ B(̃zn, λ|x| + |x| + 2r) ⊃ B̃,

η
σn,{̃zn}
σ̃n

∩ B̃ �= ∅,

and, hence,
ησ̃n ∩ B̃ �= ∅. (3.12)

Since B̃ ⊂ B(y, λ|y|) for all y ∈ [n|x|, (n + 1)|x|], (3.12) implies (3.11).
For q ≥ (λ|x| + |x| + 2r) ∨ cs0, by Lemma 3.3,

P

{
σ̃n − σn ≥ q

c

}
= P

{
B(̃zn, λ|x| + |x| + 2r) � ξ

σn,{̃zn}
q/c+σn

}
≤ P

{
B(̃zn, q) � ξ

σn,{̃zn}
q/c+σn

}
≤ exp

{
− 4

√
q

c

}
,

hence,

P{̃σn − σn ≥ q ′} ≤ exp{− 4
√

q ′}, q ′ ≥
(

λ|x| + |x| + 2r

c

)
∨ s0.

By the Borel–Cantelli lemma,

P{̃σn − σn >
√

n for infinitely many n} = 0,

and since σn ≤ Tλ(nx) ≤ σ̃n, a.s. for large n,

σ̃n < Tλ(nx) + √
n and σn ≥ Tλ(nx) − √

n.
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By (3.11),

lim sup
n→∞

supy∈[nx, (n+1)x] Tλ(y)

n
≤ lim sup

n→∞
σ̃n

n
≤ lim sup

n→∞
Tλ(nx) + √

n

n
≤ μλ(x)

and

lim inf
n→∞

infy∈[nx, (n+1)x] Tλ(y)

n
= lim inf

n→∞
σn

n
≥ lim sup

n→∞
Tλ(nx) − √

n

n
≥ μλ(x). �

Lemma 3.7. The ratio μλ(x)/|x| in (3.10) does not depend on x, x �= 0.

Proof. First, note that, for every x ∈ Rd \ {0} and every q > 0,

μλ(x) = μλ(qx)

q
(3.13)

by Lemma 3.6.
On the other hand, if |x| = |y| then, by Proposition 5.1,

μλ(x) = μλ(y), (3.14)

since the distribution of (ηt ) is invariant under rotation and we can consider μλ(x) as a functional
acting on the trajectory (ηt )t≥0. The proof follows from (3.13) and (3.14). �

Set

μλ := μλ(x)

|x| , x �= 0.

As λ decreases, Tλ(x) increases and, therefore, μλ increases too. Denote

μ = lim
λ→0+ μλ. (3.15)

Lemma 3.8. The constants μλ and μ are strictly positive: μλ > 0, μ > 0.

Proof. By Proposition 3.1, for x with large |x|,
η(1−λ)|x|/Cupb ⊂ B(0, (1 − λ)|x|),

hence, for every λ ∈ (0, 1) for x with large |x|,

Tλ(x) ≥ (1 − λ)|x|
Cupb

.

Thus,

μλ ≥ 1 − λ

Cupb
and μ = lim

λ→0+ μλ ≥ 1

Cupb
. �

Lemma 3.9. Let q, R > 0. Suppose that, for all ε ∈ (0, 1) a.s. for sufficiently large n ∈ N,

ηqn

qn
⊂ (1 + ε)B(0, R)

(
(1 − ε)B(0, R) ⊂ ξqn

qn
, respectively

)
. (3.16)

Then, for all ε ∈ (0, 1) a.s. for sufficiently large t ≥ 0,

ηt

t
⊂ (1 + ε)B(0, R)

(
(1 − ε)B(0, R) ⊂ ξt

t
, respectively

)
.
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Proof. We consider the first case only – the proof of the other case is similar. Since ε ∈ (0, 1)

is arbitrary, (3.16) implies that, for all ε̃ ∈ (0, 1) a.s. for large n ∈ N,

ηq(n+2)

qn
⊂ (1 + ε̃)B(0, R).

Since a.s. (ηt )t≥0 is monotonically growing, it is sufficient to note that

ηt

t
⊂ (1 + ε)B(0, R) if

η�t/q�q+q

�t/q�q ⊂ (1 + ε)B(0, R). �

Recall that c is a constant from Lemma 3.3.

Lemma 3.10. Let ε ∈ (0, 1). Then a.s.

(1 − ε)B(0, μ−1) ⊂ ξm

m
(3.17)

for large m of the form m = (1 + λμ−1
λ /c)n, n ∈ N.

Proof. Let λ = λε > 0 be chosen so small that

(1 − ε)μ−1 ≤ 1 − ε/2

1 + λμ−1
λ /c

μ−1
λ .

Such a λ exists since

lim
λ→0+

μ−1
λ

1 + λμ−1
λ /c

= μ−1.

Choose a finite sequence of points {xj , j = 1, . . . , N} such that xj ∈ (1 − ε/2)B(0, μ−1
λ )

and ⋃
j

B

(
xj ,

ε

4
c

)
⊃

(
1 − ε

2

)
B(0, μ−1

λ ).

Let δ > 0 be so small that (1 + δ)(1 − ε/2) ≤ (1 − ε/4). Since a.s.

Tλ(nxj )

n|xj | → μλ,

for large n for every j ∈ {1, . . . , N},
Tλ(nxj ) ≤ n|xj |(1 + δ)μλ ≤ n

(
1 − 1

2ε
)
(1 + δ) ≤ n

(
1 − 1

4ε
)
, (3.18)

so that the system reaches the ball B(nxj , λn|xj |) before the time n(1 − ε/4). Let Qn be the
random event {

Tλ(nxj ) ≤ n
(
1 − 1

4ε
)

for j = 1, . . . , N
}

= {ηn(1−ε/4) ∩ B(nxj , λn|xj |) �= ∅ for j = 1, . . . , N}.
Note that P(Qn) → 1 by (3.18), and even

P

{ ⋃
m∈N

∞⋂
i=m

Qi

}
= 1. (3.19)

In other words, a.s. for large i, all Qi occur.
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Let z̄(nxj ) be defined as z(nxj ) on Qn and as nxj on the complement � \ Qn (recall that
z(x) = zλ(x), x ∈ Rd , was defined after (3.6)). The set {z̄(nxj )} is a finite random Sn(1−ε/4)-
measurable set.

Using Lemma 3.3, we will show that after an additional time interval of length (ε/4 +
λμ−1

λ /c)n, the entire ball (1 − ε/2)nB(0, μ−1
λ ) is covered by (ξt ), that is, a.s. for large n,(

1 − 1
2ε

)
nB(0, μ−1

λ ) ⊂ ξ
n(1−ε/4)+(ε/4+λμ−1

λ /c)n
= ξ

n+λnμ−1
λ /c

. (3.20)

Indeed, since

B

(
nxj , c

ε

4
n

)
⊂ B

(
z̄(nxj ), c

ε

4
n + λ|xj |n

)
⊂ B

(
z̄(nxj ), c

ε

4
n + λμ−1

λ n

)
,

the series∑
n∈N

P

{
B

(
nxj , c

ε

4
n

)
�⊂ ξ

(n(1−ε/4), {z̄(nxj )})
n+λμ−1

λ n/c
for some j

}

≤
∑
n∈N

P

{
B

(
z̄(nxj ), c

ε

4
n + λμ−1

λ n

)
�⊂ ξ

(n(1−ε/4), {z̄(nxj )})
n+λμ−1

λ n/c
for some j

}
converges by Lemma 3.3, thus, a.s. for large n,

B

(
nxj , c

ε

4
n

)
⊂ ξ

(n(1−ε/4), {z̄(nxj )})
n+λμ−1

λ n/c
, j = 1, . . . , N.

By (3.19), a.s. for large n,

B

(
nxj , c

ε

4
n

)
⊂ ξ

(n(1−ε/4), {z(nxj )})
n+λμ−1

λ n/c
, j = 1, . . . , N. (3.21)

Hence, the choice of {xj , j = 1, . . . , N} and (3.21) yield (3.20). Due to our choice of λ,

(1 − ε)nB(0, μ−1) ⊂ 1 − ε/2

1 + λμ−1
λ /c

nB(0, μ−1
λ ),

which, in conjunction with (3.20), implies that (3.17) holds a.s. for large m of the form (1 +
λμ−1

λ /c)n, where n ∈ N. �

Lemma 3.11. Let ε ∈ (0, 1). Then, a.s. for large n ∈ N,

ηn

n
⊂ (1 + ε)B(0, μ−1). (3.22)

Proof. Let λ = λε > 0 be so small that(
1 + 1

2ε
)
B(0, μ−1

λ ) ⊂ (1 + ε)B(0, μ−1). (3.23)

Let q ∈ (ε, ∞) and A be the annulus

A := (1 + q)B(0, μ−1
λ ) \ (

1 + 1
2ε

)
B(0, μ−1

λ ),
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and {xj , j = 1, . . . , N} be a finite sequence such that xj ∈ A and⋃
j

B(xj , λ|xj |) ⊃ A.

Define F := {ηn ∩ nA �= ∅ infinitely often}. On F there exists a (random) i ∈ {1, . . . , N}
such that the intersection ηn ∩ nB(xi, λ|xi |) is nonempty infinitely often. Define also

Fi := {ηn ∩ nB(xi, λ|xi |) �= ∅ infinitely often}.
Note that F ⊂ ⋃N

i=1 Fi .
On Fi , we have Tλ(nxi) ≤ n infinitely often, hence, our choice of A implies that

lim inf
n→∞

Tλ(nxi)

n|xi | ≤ lim inf
n→∞

n

(1 + ε/2)μ−1
λ n

= μλ

1

1 + ε/2
.

The last inequality and Lemma 3.6 imply that P(Fi) = 0 for every i ∈ {1, . . . , N}. Hence,
P(F ) = 0 too. Setting q = 2μλCupb + 1, so that the radius of the ball on the left-hand side of
(3.23) is

qμ−1
λ > 2Cupb,

by Proposition 3.1 and the definition of F , we obtain, a.s. for large n,

ηn

n
⊂ (

1 + 1
2ε

)
B(0, μ−1

λ ) (3.24)

and the statement of the lemma follows from (3.23) and (3.24). �
Proof of Theorem 2.1. The theorem follows from Lemmas 3.9–3.11. Note that

ξn

n
⊂ (1 + ε)B(0, μ−1)

is obtained from Lemma 3.11 by replacing ε in (3.22) with ε/2. �

4. Proof of Theorem 2.2

We precede the proof of Theorem 2.2 with an auxiliary lemma concerning Markovian
functionals of a general Markov chain.

Let (S, B(S)) be a Polish (state) space. Consider a (time-homogeneous) Markov chain
on (S, B(S)) as a family of probability measures on S∞. Namely, on the measurable space
(�̄, F ) = (S∞, B(S∞)) consider a family of probability measures {Ps}s∈S such that, for the
coordinate mappings,

Xn : �̄ → S, Xn(s1, s2, . . . ) = sn,

the process X := {Xn}n∈Z+ is a Markov chain such that, for all s ∈ S,

Ps{X0 = s} = 1, Ps{Xn+mj
∈ Aj , j = 1, . . . , l | Fn} = PXn{Xmj

∈ Aj , j = 1, . . . , l}.
Here Aj ∈ B(S), mj ∈ N, l ∈ N, and Fn = σ {X1, . . . , Xn}. The space S is separable, hence,
there exists a transition probability kernel Q : S × B(S) → [0, 1] such that

Q(s, A) = Ps{X1 ∈ A}, s ∈ S, A ∈ B(S).
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Consider a transformation of the chain X, Yn = f (Xn), where f : S → R is a Borel-
measurable function. We now provide sufficient conditions for Y = {Yn}n∈Z+ to be a Markov
chain. A very similar question was discussed by Burke and Rosenblatt [4] for discrete-space
Markov chains.

Lemma 4.1. Assume that, for any bounded Borel function h : S → S,

Esh(X1) = Eqh(X1) whenever f (s) = f (q). (4.1)

Then Y is a Markov chain.

Remark 4.1. Condition (4.1) is the equality of distributions of X1 under two different measures
Ps and Pq .

Proof of Lemma 4.1. For the natural filtrations of the processes X and Y , we have an
inclusion

F X
n ⊃ F Y

n , n ∈ N, (4.2)

since Y is a function of X. For k ∈ N and bounded Borel functions hj : R → R, j =
1, 2, . . . , k,

Es

[ k∏
j=1

hj (Yn+j )

∣∣∣∣ F X
n

]

= EXn

k∏
j=1

hj (f (Xj ))

=
∫

S

Q(x0, dx1)h1(f (x1))

∫
S

Q(x1, dx2)h2(f (x2)) · · ·
∫

S

Q(xn−1, dxn)hn(f (xn))

∣∣∣∣
x0=Xn

.

To transform the last integral, we introduce a new kernel: for y ∈ f (S), choose x ∈ S with
f (x) = y, and then, for B ∈ B(R), define

Q̄(y, B) = Q(x, f −1(B)).

The expression on the right-hand side does not depend on the choice of x due to (4.1). To obtain
the kernel Q̄ defined on R × B(R), we set

Q̄(y, B) = 1{0∈B}, y /∈ f (S).

Then, setting zn = f (xn), we obtain, from the change of variables formula for the Lebesgue
integral, ∫

S

Q(xn−1, dxn)hn(f (xn)) =
∫

R

Q̄(f (xn−1), dzn)hn(zn).

Likewise, setting zn−1 = f (xn−1), we obtain∫
S

Q(xn−2, dxn−1)hn(f (xn−1))

∫
S

Q(xn−1, dxn)hn(f (xn))

=
∫

S

Q(xn−2, dxn−1)hn(f (xn−1))

∫
R

Q̄(f (xn−1), dzn)hn(zn)

=
∫

R

Q̄(f (xn−2), dzn−1)hn(zn−1)

∫
R

Q̄(zn−1, dzn)hn(zn).
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Figure 2: The plot of b(·, ηt ).

Proceeding further, we obtain∫
S

Q(x0, dx1)h1(f (x1))

∫
S

Q(x1, dx2)h2(f (x2)) · · ·
∫

S

Q(xn−1, dxn)hn(f (xn))

=
∫

R

Q̄(z0, dz1)h1(z1)

∫
R

Q̄(z1, dz2)h2(z2) · · ·
∫

R

Q̄(zn−1, dzn)hn(zn),

where z0 = f (x0).
Thus,

Es

[ k∏
j=1

hj (Yn+j )

∣∣∣∣ F X
n

]

=
∫

R

Q̄(f (X0), dz1)h1(z1)

∫
R

Q̄(z1, dz2)h2(z2) · · ·
∫

R

Q̄(zn−1, dzn)hn(zn).

This equality and (4.2) imply that Y is a Markov chain. �
Remark 4.2. From the proof, it follows that Q̄ is the transition probability kernel for the chain
{f (Xn)}n∈Z+ .

Remark 4.3. Clearly, this result holds for a Markov chain which is not necessarily defined on
a canonical state space since for the property of a process to be a Markov chain depends on its
distribution only.

Proof of Theorem 2.2. Without any loss of generality, we will consider the speed of prop-
agation in one direction only, say toward +∞. Let x1(t) and x2(t) denote the positions of
the rightmost particle and the second rightmost particle, respectively (x2(t) = 0 until the
first two births occur inside (0, +∞)). We observe that b(x, ηt ) ≡ 2 on (0, x2(t) + 1]
(see Figure 2), and X = (x1(t), x2(t)) is a continuous-time pure jump Markov process on
{(x1, x2) | x1 ≥ x2 ≥ 0, x1 − x2 ≤ 1} with transition densities

(x1, x2) → (v, x1) at rate 1, v ∈ (x2 + 1, x1 + 1],
(x1, x2) → (v, x1) at rate 2, v ∈ (x1, x2 + 1],
(x1, x2) → (x1, v) at rate 2, v ∈ (x2, x1]

(to be precise, the above holds from the moment the first birth inside R+ occurs).
Furthermore, z(t) := x1(t) − x2(t) satisfies

E{f (z(t + δ)) | x1(t) = x1, x2(t) = x2} = E{f (z(t + δ)) | x1(t) = x1 + h, x2(t) = x2 + h}
for every h > 0 and every Borel bounded function f . In other words, the transition rates of
(z(t))t≥0 are entirely determined by the current state of (z(t))t≥0. Therefore, by Lemma 4.1,
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(z(t))t≥0 is itself a pure jump Markov process on [0, 1] (Lemma 4.1 ensures that the embedded
Markov chain of (z(t))t≥0 is indeed a discrete-time Markov process). The transition densities
of (z(t))t≥0 are

q(x, y) =
{

41{y≤x} + 21{x≤y≤1−x} + 1{y≥1−x}, x ≤ 1
2 , y ∈ [0, 1],

41{y≤1−x} + 31{1−x≤y≤x} + 1{y≥x}, x ≥ 1
2 , y ∈ [0, 1].

Note that the total jump rate out of x is q(x) := ∫ 1
0 q(x, y) dy = 2 + x. The process

(z(t))t≥0 is a regular Harris recurrent Feller process with the Lebesgue measure on [0, 1] being
a supporting measure (see, e.g. [14, Chapter 20]). Hence, a unique invariant measure exists
and has a density g with respect to the Lebesgue measure. The equation for g is∫ 1

0
q(x, y)g(x) dx = q(y)g(y). (4.3)

Set

f (x) = g(x)q(x)

(∫ 1

0
g(y)q(y) dy

)−1

, x ∈ [0, 1].
It is clear that f is again a density (as an aside we point out that f is the density of an invariant
distribution of the embedded Markov chain of (z(t))t≥0). Equation (4.3) becomes

f (y) =
∫ 1

0

q(x, y)

q(x)
f (x) ds,

which after some calculation transforms into

f (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∫ 1/2

0

f (x) dx

2 + x
+ 2

∫ 1/2

y

f (x) dx

2 + x
+ 3

∫ 1

1/2

f (x) dx

2 + x

+
∫ 1−y

1/2

f (x) dx

2 + x
, y ≤ 1

2 , (4.4)∫ 1/2

0

f (x) dx

2 + x
+

∫ 1−y

0

f (x) dx

2 + x
+

∫ 1

1/2

f (x) dx

2 + x

+2
∫ 1

y

f (x) dx

2 + x
, y ≥ 1

2 . (4.5)

Differentiating (4.4) and (4.5) with respect to y, we find that f solves the equation

df

dx
(x) = −2

f (x)

2 + x
− f (1 − x)

3 − x
, x ∈ [0, 1]. (4.6)

Let
ϕ(x) := [(2 + x)2(3 − x)2]f (x), x ∈ [0, 1].

Then (4.6) becomes

(3 − x)
dϕ

dx
(x) + 2ϕ(x) + ϕ(1 − x) = 0, x ∈ [0, 1]. (4.7)

Looking for solutions to (4.7) among polynomials, we find that ϕ(x) = c(4 − 3x) is a solution.
By direct substitution, we can check that

f (x) = c(4 − 3x)

(2 + x)2(3 − x)2 , x ∈ [0, 1],
solves (4.4) and (4.5). The constant c > 0 can be computed but is irrelevant for our purposes.
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Hence, after some more computation

g(x) = 36(4 − 3x)

(2 + x)3(3 − x)2 , x ∈ [0, 1]. (4.8)

Note that we do not prove analytically that (4.4) and (4.5) have a unique solution. However,
uniqueness for nonnegative integrable solutions follows from the uniqueness of the invariant
distribution for (z(t))t≥0. Let l be the Lebesgue measure on R. By an ergodic theorem for
Markov processes, see, e.g. Theorem 20.21(i) of [14], for any 0 ≤ p < p′ ≤ 1,

lim
t→∞

l{s : z(s) ∈ [p, p′], 0 ≤ s ≤ t}
t

→
∫ p′

p

g(x) dx.

Conditioned on z(t) = z, the transition densities of x1(t) are

x1 →
{

x1 + v at rate 2, v ∈ (0, 1 − z],
x1 + v at rate 1, v ∈ (1 − z, 1].

Hence, by (4.8), the speed of propagation is∫ 1

0
g(z) dz

[∫ 1−z

0
2y dy +

∫ 1

1−z

y dy

]
=

∫ 1

0
g(z)

(
1 − z + 1

2z2) dz

= 144 ln(3) − 144 ln(2) − 40

25
. �

Remark 4.4. We see from the proof that the speed can be computed in a similar way for the
birth rates of the form

bk(x, η) = k ∧
(∑

y∈η

1{|x−y|≤1}
)

, (4.9)

where k ∈ (1, 2). However, the computations quickly become unwieldy.

5. The construction and properties of the process

We now proceed to construct the process as a unique solution to a stochastic integral equation.
Such a scheme was first carried out by Massoulié [19]. This method can be deemed an analog
of the construction from a graphical representation. Here we follow the approach of [2].

Remark 5.1. Of course, the process starting from a fixed initial condition we consider here can
be constructed as the minimal jump process (pure jump type Markov process in the terminology
of [14]) as was carried out in, e.g. [9]. Note, however, that we use coupling of infinitely many
processes starting at different time points from different initial conditions, so here we employ
another method.

Recall that
�0(R

d) = {η ⊂ Rd : |η| < ∞},
and the σ -algebra on �0 that was introduced in (2.1). To construct the family of processes
(η

q,A
t )t≥q , we consider the stochastic equation with Poisson noise:

|ηt ∩ B| =
∫

(q,t]×B×[0,∞)

1[0,b(x,ηs−)](u)N(ds, dx, du) + |ηq ∩ B|,

t ≥ q, B ∈ B(Rd), (5.1)
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where (ηt )t≥q is a càdlàg �0-valued solution process, N is a Poisson point process on R+ ×
Rd × R+, and the mean measure of N is ds × dx × du. We require the processes N and η0 to
be independent of each other. Equation (5.1) is understood in the sense that the equality holds
a.s. for every bounded B ∈ B(Rd) and t ≥ q. In the integral on the right-hand side of (5.1), x

is the location and s is the time of birth of a new particle. Thus, the integral over B from q to t

represents the number of births inside B which have occurred before t .
We assume for convenience that q = 0. We will make the following assumption on the

initial condition:
E|η0| < ∞. (5.2)

We say that the process N is compatible with an increasing, right-continuous, and complete
filtration of σ -algebras (Ft , t ≥ 0) if N is adapted, that is, all random variables of the type
N(T̄1, U), T̄1 ∈ B([0; t]), U ∈ B(Rd × R+), are Ft -measurable, and all random variables
of the type N(t + h, U) − N(t, U), h ≥ 0, U ∈ B(Rd × R+), are independent of Ft ,
N(t, U) = N([0; t], U).

Definition 5.1. A (weak) solution of (5.1) is a triple ((ηt )t≥0, N), (�, F , P), ({Ft }t≥0), where

(i) (�, F , P) is a probability space, and {Ft }t≥0 is an increasing, right-continuous, and
complete filtration of sub-σ -algebras of F ;

(ii) N is a Poisson point process on R+ × Rd × R+ with intensity ds × dx × du;

(iii) η0 is a random F0-measurable element in �0 satisfying (5.2);

(iv) the processes N and η0 are independent, N is compatible with {Ft }t≥0;

(v) (ηt )t≥0 is a càdlàg �0-valued process adapted to {Ft }t≥0, ηt |t=0 = η0;

(vi) all integrals in (5.1) are well defined,

E
∫ t

0
ds

∫
Rd

b(x, ηs−) dx < ∞, t > 0;

(vii) (5.1) holds a.s. for all t ∈ [0, ∞] and all Borel sets B.

Let

S0
t = σ {η0, N([0, q] × B × C), q ∈ [0, t], B ∈ B(Rd), C ∈ B(R+)}, (5.3)

and let St be the completion of S0
t under P. Note that {St }t≥0 is a right-continuous filtration

(see Remark A.1).

Definition 5.2. A solution of (5.1) is called strong if (ηt )t≥0 is adapted to (St , t ≥ 0).

Remark 5.2. In the definition above, we considered solutions as processes indexed by t ∈
[0, ∞). The reformulations for the t ∈ [0, T ], 0 < T < ∞, case is straightforward. This
remark also applies to many of the results below.

Definition 5.3. We say that joint uniqueness in law holds for (5.1) with an initial distribution ν

if any two (weak) solutions ((ηt ), N) and ((η′
t ), N

′) of (5.1), law(η0) = law(η′
0) = ν, have the

same joint distribution:
law((ηt ), N) = law((η′

t ), N
′).
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Theorem 5.1. Pathwise uniqueness, strong existence, and joint uniqueness in law hold for (5.1).
The unique solution is a Markov process.

Proof. Without loss of generality, assume that P{η0 �= ∅} = 1. Define the sequence of
random pairs {(σn, ζσn)}, where

σn+1 = inf

{
t > 0 :

∫
(σn,σn+t]×B×[0,∞)

1[0,b(x,ζσn )](u)N(ds, dx, du) > 0

}
+ σn, σ0 = 0,

and
ζ0 = η0, ζσn+1 = ζσn ∪ {zn+1}

for zn+1 = {x ∈ Rd : N({σn+1} × {x} × [0, b(x, ζσn)]) > 0}. The points zn are uniquely
determined a.s. Furthermore, σn+1 > σn a.s. and σn are finite a.s by (2.3). We define ζt = ζσn

for t ∈ [σn, σn+1). Then, by induction on n, it follows that σn is a stopping time for each n ∈ N,
and ζσn is Fσn -measurable. By direct substitution, we see that (ζt )t≥0 is a strong solution to (5.1)
on the time interval t ∈ [0, limn→∞ σn). Although we have not defined what is a solution, or
a strong solution, on a random time interval, we do not discuss it here. Instead, we are going
to show that

lim
n→∞ σn = ∞ a.s.

The process (ζt )t∈[0,limn→∞ σn) has the Markov property, since the process N has the strong
Markov property and independent increments. Indeed, conditioning on Iσn ,

E[1{ζσn+1=ζσn∪x for some x∈B} | Iσn ] =
∫
B

b(x, ζσn) dx∫
Rd b(x, ζσn) dx

,

thus, the chain {ζσn}n∈Z+ is a Markov chain, and, given {ζσn}n∈Z+ , σn+1 − σn are distributed
exponentially,

E{1{σn+1−σn>a} | {ζσn}n∈Z+} = exp

{
−a

∫
Rd

b(x, ζσn) dx

}
.

Therefore, the random variables γn = (σn − σn−1)
∫

Rd b(x, ζσn) dx constitute, independent of
{ζσn}n∈Z+ , a sequence of independent unit exponentials. Theorem 12.18 of [14] implies that
(ζt )t∈[0,limn→∞ σn) is a pure jump type Markov process.

The jump rate of (ζt )t∈[0,limn→∞ σn) is given by

c(α) =
∫

Rd

b(x, α) dx.

Condition 2.1 implies that c(α) ≤ ‖a‖1 · |α|, where ‖a‖1 = ‖a‖L1(Rd ). Consequently,

c(ζσn) ≤ ‖a‖1 · |ζσn | = ‖a‖1 · |η0| + n‖a‖1.

We see that
∑

n 1/c(ζσn) = ∞ a.s., hence, Proposition 12.19 of [14] implies that σn → ∞.
We have proved the existence of a strong solution. The uniqueness follows by induction on

jumps of the process. Namely, let (̃ζt )t≥0 be a solution to (5.1). From Definition 5.1(vii) and∫
(0,σ1)×Rd×[0,∞]

1[0,b(x,η0)](u)N(ds, dx, du) = 0,
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it follows that P{̃ζ has a birth before σ1} = 0. At the same time,∫
{σ1}×Rd×[0,∞]

1[0,b(x,η0)](u)N(ds, dx, du) = 1,

which holds a.s., yields that ζ̃ too has a birth at the moment σ1, and in the same point of space.
Therefore, ζ̃ coincides with ζ up to σ1 a.s. Similar reasoning shows that they coincide up to σn

a.s. and, since σn → ∞ a.s.,

P{̃ζt = ζt for all t ≥ 0} = 1.

Thus, pathwise uniqueness holds. Joint uniqueness in law follows from the functional
dependence between the solution to the equation, and the ‘input’ η0 and N . �
Proposition 5.1. If b is rotation invariant then so is (ηt ).

Proof. It is sufficient to note that (Mdηt ), where Md ∈ SO(d) is the unique solution to (5.1),
with N replaced by M−1

d N , defined by

M−1
d N([0, q] × B × C) = N([0, q] × M−1

d B × C), q ≥ 0, B ∈ B(Rd), C ∈ B(R+).

Then M−1
d N is a Poisson point process with the same intensity, therefore, by uniqueness in

law (Mdηt )
d= (ηt ). �

Proposition 5.2. (The strong Markov property.) Let τ be an (St , t ≥ 0)-stopping time and let
η̃0

d= ητ . Then
(ητ+t , t ≥ 0)

d= (̃ηt , t ≥ 0). (5.4)

Furthermore, for any D ∈ B(D�0 [0, ∞)),

P{(ητ+t , t ≥ 0) ∈ D | Sτ } = P{(ητ+t , t ≥ 0) ∈ D | ητ };
that is, given ητ , (ητ+t , t ≥ 0) is conditionally independent of (St , t ≥ 0).

Proof. Note that

|ητ+t ∩ B| =
∫

(τ,τ+t]×B×[0,∞)

1[0,b(x,ηs−)](u)N(ds, dx, du) + |ητ ∩ B|,

t ≥ 0, B ∈ B(Rd),

Since the unique solution is adapted to the filtration generated by the noise and initial
condition, the conditional independence follows, and (5.4) follows from the uniqueness in law.
We rely here on the strong Markov property of the Poisson point process; see Proposition A.1
below. �
Corollary 5.1. Let τ be an (St , t ≥ 0)-stopping time and {y} be an Sτ -measurable finite
random singleton. Then (

η
τ,{y}
τ+t − y

)
t≥0

d= (ηt )t≥0.

Proof. This is a consequence of Theorem 5.1 and Proposition 5.2. �
Consider two growth processes (ζ (1))t and (ζ (2))t defined on the common probability space

and satisfying equations of the form of (5.1),

|ζ (k)
t ∩ B| =

∫
(q,t]×B×[0,∞)

λ1[0,bk(x,ζ
(k)
s− )](u)N(ds, dx, du) + |ζ (k)

q ∩ B|, k = 1, 2.

(5.5)
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Assume that (5.5) and the rates b1 and b2 satisfy the conditions imposed on b in Section 2.
Let (ζ

(k)
t )t∈[0,∞) be the unique strong solution.

Lemma 5.1. Assume that a.s. ζ
(1)
0 ⊂ ζ

(2)
0 , and, for any two finite configurations η1 ⊂ η2,

b1(x, η1) ≤ b2(x, η2), x ∈ Rd . (5.6)

Then a.s.
ζ

(1)
t ⊂ ζ

(2)
t , t ∈ [0, ∞).

Proof. Let (σn)n∈N be the ordered sequence of the moments of birth for (ζ
(1)
t ), that is,

t ∈ (σn)n∈N if and only if |ζ (1)
t \ ζ

(1)
t− | = 1. It suffices to show that, for each n ∈ N, σn is a

moment of birth for (ζ
(2)
t )t∈[0,∞) too, and the birth occurs at the same place. We use induction

on n.
Here we deal only with the base case, the induction step is carried out in the same way.

Assume that
ζ (1)
σ1

\ ζ
(1)
σ1− = {x1}.

The process (ζ (1))t∈[0,∞) satisfies (5.5), therefore, N({x} × [0, bk(x1, ζ
(1)
σ1−)]) = 1. Since

ζ
(1)
σ1− = ζ

(1)
0 ⊂ ζ

(2)
0 ⊂ ζ

(2)
σ1−,

by (5.6),

N1({x} × {σ1} × [0, bk(x1, ζ
(2)
σ1−)]) = 1,

hence, ζ
(2)
σ1 \ ζ

(2)
σ1− = {x1}. �

6. Conjectures

In this section we collect some conjectures concerning the models treated in this paper and
related models.

W now set d = 1. Denote by s(k) the speed of propagation of the system with the birth
rate (4.9). Thus, s(k) is μ−1 in the notation of Theorem 2.1, if the birth rate is as in (4.9). In
Figure 3 we present plots of s(k) for the truncated birth rate (4.9).

Conjecture 6.1. We conjecture that

s(k) → s∗, k → ∞, (6.1)

Figure 3: The distance to the furthest particle divided by time against k for the birth rate (3.15) at time
t = 100.
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Figure 4: Positions of the occupied sites varying with time for the discrete-space model with the birth
rate (3.21) and (a) α = 2.8, (b) α = 3.5, and (c) α = 4.2.

where s∗ is the speed of propagation of the process with the birth rate b∞ given by

b∞(x, η) =
∑
y∈η

1{|x−y|≤1}.

Using the exact formula for the speed of propagation of a general branching random walk,
see Proposition 1 of [3], we obtain

s∗ = inf
a>0

{
inf
θ>0

(eθ − e−θ − aθ2) < 0
}

≈ 1.81 . . . .

The question concerning the speed of convergence in (6.1) is more subtle.

In Figures 4(a)–(c), we present representations of the evolution of the discrete version of the
truncated model (2.5): the process evolves in ZZ+ and the birth rate is

b(x, η) = k ∧
(∑

y∈η

apow(x − y)

)
with

apow(x) = cpow
1

(|x| + 1)α
, x ∈ Z \ {0}, apow(0) = 2cpow,
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where α > 2 and cpow = cpow(α) is the normalizing constant. We have α = 2.8, α = 3.5,
and α = 4.2 in Figures 4(a)–(c), respectively. These representations allow us to observe the
development of the set of occupied sites. We see that even for a large time, the set of occupied
sites is not a connected interval for α = 2.8, whereas the representation appears to be rather
smooth for α = 4.2. We conjecture that the speed of propagation is superlinear for α = 2.8,
but is linear for α = 4.2. The proof of this is the subject of a forthcoming paper.

We also think that the speed of propagation has superadditive structure. For a birth rate b

satisfying our assumptions, let s(b) be the speed of propagation.

Conjecture 6.2. For any birth rates b1, b2 satisfying our assumptions, we have

s(b1) + s(b2) ≤ s(b1 + b2).

Appendix A. The strong Markov property of a Poisson point process

We need the strong Markov property of a Poisson point process. Denote X := Rd × R+
(compare the proof of Proposition 5.2) and let l be the Lebesgue measure on X. Consider
a Poisson point process N on R+ × X with intensity measure dt × l. Let N be compatible
with a right-continuous complete filtration {Ft }t≥0 and τ be a finite a.s. {Ft }t≥0-stopping time.
Introduce another Point process N̄ on R+ × X,

N̄([0; s] × U) = N((τ ; τ + s] × U), U ∈ B(X).

Proposition A.1. The process N̄ is a Poisson point process on R+ × X with intensity dt × l,
independent of Fτ .

Proof. To prove the proposition, it suffices to show the following:

(i) for any b > a > 0 and open bounded U ⊂ X, N̄((a; b), U) is a Poisson random variable
with mean (b − a)l(U), and

(ii) for any bk > ak > 0, k = 1, . . . , m, and any open bounded Uk ⊂ X, such that
((ai; bi) × Ui) ∩ ((aj ; bj ) × Uj) = ∅, i �= j , the collection {N̄((ak; bk) × Uk)}k=1,m

is a sequence of independent random variables, independent of Fτ .

Indeed, N̄ is determined completely by values on sets of type (b − a)β(U), a, b, U as in (i),
therefore it must be an, independent of Fτ , Poisson point process if (i) and (ii) hold.

Let τn be the sequence of {Ft }t≥0-stopping times, τn = k/2n on {τ ∈ ((k − 1)/2n; k/2n]},
k ∈ N. Then τn ↓ τ and τn − τ ≤ 1/2n. Note that the stopping times τn take countably
many values only. The process N satisfies the strong Markov property for τn: the processes
N̄n, defined by

N̄n([0; s] × U) := N((τn; τn + s] × U),

are Poisson point processes, independent of Fτn . To prove this, take k with P{τn = k/2n} > 0
and note that on {τn = k/2n}, N̄n coincides with the Poisson point process Ñk/2n given by

Ñk/2n([0; s] × U) := N

((
k

2n
; k

2n
+ s

]
× U

)
, U ∈ B(Rd).

Conditionally on {τn = k/2n}, Ñk/2n is again a Poisson point process, with the same inten-
sity. Furthermore, conditionally on {τn = k/2n}, Ñk/2n is independent of Fk/2n , hence it is
independent of Fτ ⊂ Fk/2n .
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To prove (i), note that N̄n((a; b) × U) → N̄((a; b) × U) a.s. and all random variables
N̄n((a; b) × U) have the same distribution, therefore N̄((a; b) × U) is a Poisson random
variable with mean (b−a)λ(U). The random variables N̄n((a; b) × U) are independent of Fτ ,
hence N̄((a; b) × U) is independent of Fτ , too. Similarly, (ii) follows. �

Remark A.1. We assumed in Proposition A.1 that there exists an increasing, right-continuous
and complete filtration {St }t≥0 compatible with N . We show that such filtrations exist.

Introduce the natural filtration of N ,

S̄0
t = σ {Nk(C, B), B ∈ B(Rd), C ∈ B([0; t])},

and let S̄t be the completion of S̄0
t under P. Then N is compatible with {S̄t }. We claim

that {S̄t }t≥0, defined in such a way, is right-continuous (this may be regarded as an analog of
Blumenthal’s 0–1 law). Indeed, as in the proof of Proposition A.1, we can check that Ña is
independent of S̄a+. Since S̄∞ = σ(Ña) ∨ S̄a , σ(Ña) and S̄a are independent and S̄a+ ⊂ S̄∞,
we see that S̄a+ ⊂ S̄a . Thus, S̄a+ = S̄a .
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