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EFFECTS OF LIMITING MEMORY CAPACITY
ON THE BEHAVIOUR OF EXEMPLAR DYNAMICS
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Abstract

Exemplar models are a popular class of models used to describe language change. Here
we study how limiting the memory capacity of an individual in these models affects
the system’s behaviour. In particular, we demonstrate the effect this change has on
the extinction of categories. Previous work in exemplar dynamics has not addressed this
question. In order to investigate this, we will inspect a simplified exemplar model. We will
prove for the simplified model that all the sound categories but one will always become
extinct, whether memory storage is limited or not. However, computer simulations show
that changing the number of stored memories alters how fast categories become extinct.
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1. Introduction

In spoken and written language, there are instances where there are two or more variants
of a word, each of which is equivalent from the point of view of communication. We can
think of instances of the word as belonging to one of two or more categories. For example, a
population might pronounce the word ‘either’as both ‘ee-ther’and ‘eye-ther’. Another example
is when there are different spellings of a word. In Figure 1, which was generated by Google
Books™ Ngram Viewer [7], we present a comparison between the usage of the word ‘cider’
and its archaic spelling ‘cyder’. In the year 1800, ‘cyder’ seems to have been the more popular
spelling but it has become practically extinct since then. As we see in this example, it is possible
for a category to become extinct, passing out of usage.

Here we study a model for just this kind of category extinction. One popular class of
models used to research the evolution of spoken and written language are exemplar models, first
introduced by Nosofsky [8], [9]. Nosofsky hypothesized that people store detailed memories of
stimuli they are exposed to which are called exemplars [15]. Johnson [5] showed that exemplar
theory could be applied to model speech perception.

Exemplar theory models language use in one individual. Exemplars are detailed memories of
utterances of sounds, each with its own category label. Categories are formed of all exemplars
with a given category label. Exemplars are represented as vectors where each dimension
represents a phonetic variable such as fundamental frequency or tongue height. Each exemplar
will have a weight (or activation) associated with it, representing how predominant or recent
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Figure 1: Comparison of the usage of ‘cider’ (solid) and its archaic spelling ‘cyder’ (dashed) within a
corpus of books between the years 1800 and 2000. The y-axis represents the percentage of the usage of

the words in the entire database. This image was generated by Google Ngram Viewer [7].

the memory of the sound is. In many exemplar models, these weights decay exponentially over
time [10].

Exemplar dynamics builds on exemplar theory by creating a production-perception loop
between two individuals with their own stored exemplars. Exemplar dynamics was first used by
Pierrehumbert [10] to model speech production and perception. Following this, many linguists
have used exemplar dynamics to model spoken and written language; see, for example, [3], [4],
[15], [16], and [17].

In exemplar dynamics, there are usually two individuals speaking to one another. Each
individual has a store of labelled exemplars. At every time-step a new sound is produced by
a speaker, which is then perceived by the listener and classified based on the listener’s stored
exemplars. The way in which the sound is produced varies depending on the model. Usually
a new sound is produced randomly by adding noise and bias to a preexisting exemplar. The
listener usually categorizes sounds based on their ‘closeness’ to the cloud of exemplars stored
for each category. The weights of the exemplars decay at each time-step, and the process
is repeated. Newly categorized sounds become a part of the perception process, continually
evolving the system [10].

The extinction of a category occurs when the weights for all the exemplars labelled in that
category approach zero. This represents the listener no longer remembering the category. The
listener will cease to produce tokens from that category. A necessary condition for the extinction
of a category is that the probability of classifying a sound as that category must approach zero.
In this paper we are particularly interested in when there is extinction of all but one category.

This paper is motivated by research in exemplar dynamics carried out by Tupper [15] and
Wedel [16]. They both studied the same exemplar dynamic model, but with a subtle difference.
In [16], categories were limited to a maximum of 100 stored exemplars, whereas in [15]
categories had no limitation on the number of stored exemplars. Tupper demonstrated that
if the number of exemplars stored is unlimited, then there is extinction of all but one category.
Wedel observed that there is no category extinction in simulations for a certain choice of
parameters when the exemplars stored per category is limited to 100. However, Wedel only
performed numerical simulations of his model up to 4000 iterations.
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This begs the question, when you limit the number of exemplars to be stored per category,
will categories eventually become extinct? In this paper we seek the answer to this question.
The models of [15] and [16] are too complicated to investigate rigorously, so we study a simpler
model which captures some of their essential features.

In Section 2 we describe our simple exemplar model. Our model depends only on three
parameters: the number of categories k, the decay rate λ, and the number of exemplars stored
per category N . Two particular cases of this general model will be studied: one where we
limit the number of exemplars (N < ∞, as in [16]) in Section 3, and another where we do not
(N = ∞, as in [15]) in Section 4. We prove in both cases that all categories but one will become
extinct. In Section 5 we discuss computational results, which demonstrate how limiting the
number of exemplars affects the system’s evolution. The numerical simulations in this section
will help us explain the effect N and λ have on the expected time to extinction.

2. Simple exemplar weight model

In this section we describe a simplified exemplar model. The parameters for the system
are the number of categories k, the number of exemplars stored per category N , and the decay
rate λ. The listener starts with some exemplars with associated weights in each category, and
then receives a stream of new inputs (sounds). The listener in this model will decide how
to classify new sounds only using the total weights of the exemplars in each category. The
phonetic information stored in exemplars will not be utilized in the categorization process.

At time n, let wn
j,m be the weight of the mth exemplar, where m ∈ N, for category j .

At time n, these k infinite sequences of real numbers comprise the state of the system. Note
that throughout this paper, superscript n is an index referring to time n and not the exponent n.
Let N be the maximum number of exemplars per category the listener is permitted to store. Let
λ > 0 be the decay rate of the weights, so that at each time-step n, the weights of old memories
will decay by a factor of β = e−λ. New exemplars are given a weight W0 = 1. Additionally,
when N < ∞, if there are N + 1 exemplars in a category with nonzero weight upon adding a
new exemplar, then the exemplar with the lowest weight is discarded.

We assume that exemplars are ordered by weight at all times, so that 0 ≤ wn
j,m+1 ≤ wn

j,m ≤ 1
for all n ∈ N0, j ∈ {1, . . . , k}, and m < N . The initial conditions of the weights are nonrandom,
and can be any such that 0 ≤ w0

j,m ≤ 1 for all j ∈ {1, . . . , k} and m ≤ N . At least one of the
weights in one category must be nonzero, and if N < ∞ then w0

j,m = 0 for all j ∈ {1, . . . , k}
and m > N .

Let Wn
j := ∑N

m=1 wn
j,m be the total weight of exemplars in category j ∈ {1, . . . , k}, and

Wn
tot := ∑k

j=1 Wn
j be the total weight of all exemplars.

Let xn be the category we classify as the nth sound at time n. For example, xn = j

means we classified the nth sound as category j . We let the probability of classifying the
nth sound at category j (xn = j ), given the state of the system in the previous time-step, be
Wn

j /Wn
tot. This classification procedure is the Luce choice rule [6]. As such, the categorization

of sounds depends only on the weights of the exemplars, unlike other models where the phonetic
information stored in exemplars is used to classify sounds.

To aid in the analysis of our model, we define a filtration to which the processes {wn
j,m}n≥0

are adapted. First, let F be the σ -field generated by all random variables in the model. We then
define the sequence of σ -fields Fn for n ≥ 0 by

Fn = σ(w
q
j,m, 0 < q ≤ n, j ∈ {1, . . . , k}, m ∈ N). (1)

This sequence of σ -fields forms a filtration since, for all n, Fn ⊂ Fn+1 ⊂ F ; see [2, p. 458].
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Another way to describe the process is as follows. At time-step n,

P(xn = j | Fn) = Wn
j

Wn
tot

for each j ∈ {1, . . . , k}.

If xn = j then we have the following.

• Let wn+1
j,m+1 = βwn

j,m for all m < N and wn+1
j,1 = W0 = 1. If N < ∞, the exemplar

corresponding to the N th position of category j from the previous time-step will be
discarded: Thus, if N < ∞, we let wn+1

j,N+1 = 0.

• For all i �= j and m ∈ {1, . . . , N}, let wn+1
i,m = βwn

i,m.

We devote the next two sections to proving that the model just described always results in the
extinction of all but one category. In Sections 3 and 4 we will look at the cases where N < ∞
and N = ∞, respectively.

3. Finite stored exemplars model

In this section we will show that when N < ∞, all but one category will become extinct
with probability 1. That is, it will be proved that with probability 1, there exists an M and a j

such that xn = j for all n ≥ M .
In the following lemma we prove that if we classify p consecutive sounds as category j ,

then it only increases the probability of the next sound being classified as category j .

Lemma 1. If N < ∞ and Fn is the σ -field defined by (1) then

P(xn+p = j | xn+p−1 = j, . . . , xn = j, Fn) ≥ P(xn = j | Fn)

almost surely (a.s.) for all p ∈ N0 and j ∈ {1, . . . , k}.
Proof. We will prove this lemma using induction. Let S(p) be the statement that

P(xn+p = j | xn+p−1 = j, . . . , xn = j, Fn) ≥ P(xn = j | Fn) a.s.

We want to prove that S(p) holds for all p ∈ N0.
The initial statement S(0), which is P(xn = j | Fn) ≥ P(xn = j | Fn), holds since the two

sides are equal.
Now we assume that the inductive hypothesis S(p) holds; that is,

P(xn+p = j | xn+p−1 = j, . . . , xn = j, Fn) ≥ P(xn = j | Fn).

We want to show that S(p + 1) holds. If {xn+p = j, . . . , xn = j} then W
n+p+1
j = βW

n+p
j +

1 − βw
n+p
j,N and W

n+p+1
tot = βW

n+p
tot + 1 − βw

n+p
j,N . We can show that, via simple algebra and

using the facts that β−1(1 − βw
n+p
j,N ) > 0 and W

n+p
j ≤ W

n+p
tot ,

P(xn+p+1 = j | xn+p = j, . . . , xn = j, Fn) = W
n+p
j + β−1(1 − βw

n+p
j,N )

W
n+p
tot + β−1(1 − βw

n+p
j,N )

≥ W
n+p
j

W
n+p
tot

a.s. (2)

The right-hand side of (2) is equal to P(xn+p = j | xn+p−1 = j, . . . , xn = j, Fn), which
implies, by the induction hypothesis, that statement S(p + 1) holds. �
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Define An to be the event that we only classify input sounds as a single category from
time-step n onwards. More precisely,

An = {there exists j, xm = j for all m ≥ n}. (3)

The event An will be important throughout this section.

Lemma 2. If N < ∞ and Fn is the σ -field defined by (1) then there exists a Q > 0 such that
P(An | Fn) ≥ Q for all n, where An is the event defined by (3).

Proof. At time-step n, there must exist a category c ∈ {1, . . . , k} such that P(xn = c | Fn) ≥
k−1. By Lemma 1, we obtain

P(xn+N−1 = c, . . . , xn+1 = c, xn = c | Fn)

=
N−1∏
p=0

P(xn+p = c | xn+p−1 = c, . . . , xn = c, Fn)

≥ k−N. (4)

If xq = c for n ≤ q ≤ n + N − 1 then Wn+N
c = ∑N−1

q=0 βq , and if we continue to categorize
xq = c for q > n + N − 1, the weight for category c will stay constant. Let � = ∑N−1

q=0 βq .
Upon inspection, it is apparent that Wn

i ≤ � for all i and n > N − 1, since it is the maximum
total weight a category can have after there have been at least N time steps.

If xp = c for n ≤ p ≤ n + q, where q ≥ N − 1, then

W
n+q
tot =

k∑
p=1

W
n+q
p = W

n+q
c +

∑
p �=c

W
n+q
p ≤ � +

∑
p �=c

βq� < �(1 + kβq).

Let Gn,N = {xn+N−1 = c, . . . , xn+1 = c, xn = c}. The probability of categorizing the next
sound as c, given that we have only categorized as c since time-step n and have at least done
so N times in a row, can be bounded below as

P(xn+N−1+q = c | xn+N−2+q = c, . . . , xn+N = c, Gn,N , Fn) = �

W
n+N−1+q
tot

≥ �

�(1 + kβq)

= 1 − kβq

1 + kβq
(5)

for all n, q, N > 0. Note that we used the fact that W
n+N−1+q
j = �, since the event Gn,N had

already occurred.
Utilizing (4) and (5),

P(xm = c for all m ≥ n | Fn)

= P

( ∞⋂
q=0

{xn+q = c}
∣∣∣∣ Fn

)

= P

( ∞⋂
q=1

{xn+N−1+q = c}
∣∣∣∣ Gn,N , Fn

)
P(Gn,N | Fn)

https://doi.org/10.1017/jpr.2018.25 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.25


Effects of limiting memory capacity 395

≥ k−N
∞∏

q=1

P(xn+N−1+q = c | xn+N−2+q = c, . . . , xn+N = c, Gn,N , Fn)

≥ k−N
∞∏

q=1

(
1 − kβq

1 + kβq

)
. (6)

From Theorem 15.5 of [13], the product in (6) is strictly greater than 0 if and only if

∞∑
q=1

kβq

1 + kβq
< ∞.

By the ratio test we know this series is convergent. Therefore, there is a Q > 0 such that
P(xm = c for all m ≥ n | Fn) ≥ Q > 0.

Since

P(there exists : j, xm = j for all m ≥ n | Fn) ≥ P(xm = c for all m ≥ n | Fn) ≥ Q > 0,

we obtain the final result. �

Lemma 2 states that the probability of An (that is, (3)) occurring, given any event which
only depends on the events up to time-step n − 1, can be bounded below by a constant Q > 0.
In other words, the probability of xm being classified as the same category for all m ≥ n always
has at least a certain probability of happening no matter what occurs before it.

Note that if An holds for any value of n, the rest of the categories i �= j will become extinct.
If we prove that P(

⋃∞
n=1 An) = 1 then we have proved there is a.s. extinction of all but one

category when N < ∞.

Lemma 3. Let G be a σ -field, G ∈ G such that P(G) > 0, and X be an event. If there exists a
Q > 0 such that P(X | G) ≥ Q a.s. then P(X | G) ≥ Q.

Proof. By the definition of the probability of an event conditioned on a σ -field (see [12,
p. 155]),

P(X | G) = P(X ∩ G)

P(G)
= E[P(X | G) 1G]

P(G)
≥ E[Q 1G]

P(G)
≥ Q,

where 1A is the indicator function on the event A. �

Theorem 1. When N < ∞, all categories but one will become extinct with probability 1; that
is, P(

⋃∞
n=1 An) = 1, where An is given by (3).

Proof. The proof utilizes Murphy’s law, a general statement proven in [14]. Murphy’s law
states the following:

let (Gn, n ≥ 1) be any sequence of events satisfying the condition Gn ⊆ Gn+1 for all
n ≥ 1, and let G = ⋃∞

n=1 Gn. If P(G | Gc
n) ≥ ε > 0 for all n ≥ 1 then P(G) = 1.

We know that An ⊆ An+1 for all n ≥ 1. Let A = ⋃∞
n=1 An. By Murphy’s law, if we can

show that P(A | Ac
n) ≥ ε > 0 for all n then P(A) = 1, proving the theorem.
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Let Yn = min{m ∈ N : xn+m �= xn}, and if it is not defined then let Yn = ∞. The event
{Yn = m} is a subset of Ac

n = {there exists j > n such that xj �= xn} for all n, and Ac
n =⋃

m>0{Yn = m}. Using the fact that the events {Yn = i} and {Yn = j} are disjoint when i �= j ,
we obtain

P(A | Ac
n) = P(A ∩ Ac

n)

P(Ac
n)

= P(A ∩ (
⋃

m>0{Yn = m}))
P(Ac

n)

= P(
⋃

m>0{A ∩ {Yn = m}})
P(Ac

n)

=
∑

m>0 P(A ∩ {Yn = m})
P(Ac

n)

≥
∑

m>0 P(An+m+1 ∩ {Yn = m})
P(Ac

n)

since An+m+1 ⊆ A. Using Lemma 2 with Lemma 3 (noting that {Yn = m} is in Fn+m), and
the fact that

⋃
m>0{Yn = m} = Ac

n, we obtain∑
m>0 P(An+m+1 ∩ {Yn = m})

P(Ac
n)

=
∑
m>0

P(An+m+1 | {Yn = m})P(Yn = m)

P(Ac
n)

≥ Q
∑
m>0

P(Yn = m | Ac
n)

= QP

( ⋃
m>0

{Yn = m}
∣∣∣∣ Ac

n

)

= Q

> 0. �

4. Infinite stored exemplars weight model

This section is devoted to studying the special case of the model where the listener stores an
infinite number of exemplars, so N = ∞. The proof for showing there is a.s. extinction of all
but one category in this special case will be different from the previous section.

Let Zn
j = P(xn = j | Fn) = Wn

j /Wn
tot, where Fn is as defined in (1). Note that the combined

weight of all categories which are not j is equal to Wn
tot − Wn

j . We will first re-describe the
model’s evolutionary process in terms of Wn

j and Wn
tot in order to simplify the proof. The

evolutionary process evolves as follows.

• If xn = j then the total weight of category j becomes Wn+1
j = 1 + Wn

j β, and the total
weight of all other categories besides j becomes

Wn+1
tot − Wn+1

j = (Wn
tot − Wn

j )β.

• If xn �= j then the total weight of all categories besides j is

Wn+1
tot − Wn+1

j = 1 + (Wn
tot − Wn

j )β,

and the total weight of category j is Wn+1
j = Wn

j β.
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We want to prove that there exists a category j such that Zn
j → 1 a.s. as n → ∞, and for the

rest of the categories q �= j , Zn
q → 0 a.s. We will then show that if Zn

j → 0 a.s. then Wn
j → 0

a.s. As such we would prove that all categories but one become extinct. In order to prove this
result, we require some additional lemmas.

Lemma 4. Let Zn
j = Wn

j /Wn
tot. If the number of exemplars per category stored is N = ∞

then the random variable Zn
j is a martingale with respect to the filtration {Fn}n≥1.

Proof. We know that Zn
j is Fn-measurable (see [2, p. 68]) and E[|Zn

j |] ≤ 1. Due to the fact
that Zn+1

j conditioned on Fn only depends on the values of Wn
j and Wn

tot, we obtain

E[Zn+1
j | Fn] = E[Zn+1

j | Wn
j , Wn

tot]

= Wn
j

Wn
tot

(
Wn

j β + 1

Wn
totβ + 1

)
+ Wn

tot − Wn
j

Wn
tot

(
Wn

j β

Wn
totβ + 1

)

= Wn
j

Wn
tot

= Zn
j ,

implying that Zn
j is a martingale with respect to the filtration {Fn}n≥1; see [2, p. 458]. �

Lemma 5. There exists a γ ∈ R depending only on λ and the initial total weight W 0
tot such

that Wn
tot ≤ γ for i = 1, 2, . . . , k and for all n ≥ 0.

Proof. We know that Wn
tot = ∑k

i=1 = Wn−1
tot e−λ + 1 for all realizations. Since e−λ < 1, we

know that Wn
tot converges to W := (1 − e−λ)−1. Since Wn

tot converges monotonically to W ,

Wn
tot ≤ max

{
W 0

tot,
1

1 − e−λ

}
= γ for all n.

This, in turn, implies the result. �

Using Lemmas 4 and 5, and the martingale convergence theorem (see [2, p. 468]), we are
able to prove Theorem 2.

Theorem 2. If N = ∞ then, for all j ∈ {1, . . . , k}, Zn
j converges a.s. to a random variable

Z∗
j a.s. Furthermore, the only values that Z∗

j can be with positive probability are 0 and 1.

Proof. To prove this theorem, we will require an expression for var(Zn+1
j | Fn), where Fn =

σ(w
q
j,m, q ≤ n, j ∈ {1, . . . , k}, m ∈ N), as in Lemma 4. First, we determine E[(Zn+1

j )2 | Fn];
that is,

E[(Zn+1
j )2 | Fn] = Wn

j

Wn
tot

(
Wn

j β + 1

Wn
totβ + 1

)2

+ Wn
tot − Wn

j

Wn
tot

(
Wn

j β

Wn
totβ + 1

)2

= (Wn
j )2Wn

totβ
2 + 2(Wn

j )2β + Wn
j

Wn
tot(W

n
totβ + 1)2 .
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This allows us to calculate the conditional variance,

var(Zn+1
j | Fn) := E[(Zn+1

j )2 | Fn] − E[Zn+1
j | Fn]2

= (Wn
j )2Wn

totβ
2 + 2(Wn

j )2β + Wn
j

Wn
tot(W

n
totβ + 1)2 −

(
Wn

j

Wn
tot

)2

= Wn
j (Wn

tot − Wn
j )(Wn

tot)
−2(Wn

totβ + 1)−2

= Zn
j (1 − Zn

j )(Wn
totβ + 1)−2. (7)

By the martingale convergence theorem, since Zn
j is a submartingale and supn E|Zn

j | ≤ 1, we

know that there is a random variable Z∗
j such that Zn

j → Z∗
j a.s. This implies that Zn+1

j −Zn
j →

0 a.s., and we know that |Zn+1
j − Zn

j | ≤ 2 for all n. By the dominated convergence theorem
(see [12]), this implies that E[|Zn+1

j − Zn
j |2] → 0 as n → ∞.

By Lemma 5, Wn
tot ≤ γ for all n. Since Zn

j is Fn-measurable and E[Zn+1
j | Fn] = Zn

j ,

E[|Zn+1
j − Zn

j |2] = E[(Zn+1
j )2 − 2Zn+1

j Zn
j + (Zn

j )2]
= E[E[(Zn+1

j )2 − 2Zn+1
j Zn

j + (Zn
j )2 | Fn]]

= E[var(Zn+1
j | Fn)]. (8)

Using (7) and (8), as well as Lemma 5, we obtain

E[|Zn+1
j − Zn

j |2] = E[Zn
j (1 − Zn

j )(Wn
totβ + 1)−2] ≥ (γβ + 1)−2

E[Zn
j (1 − Zn

j )].

Taking the limit as n → ∞ on both sides, we obtain E[Zn
j (1 − Zn

j )] → 0 as n → ∞. Since
convergence in L1 implies convergence in probability (see [11, p. 85]), we have

P(Zn
j (1 − Zn

j ) < ε) → 1 for all ε > 0.

This implies that there exists a subsequence such that Z
ni

j (1 − Z
ni

j ) → 0 a.s.; see [1, p. 7].
As such Z∗

j can only equal 0 or 1, since we know there must exist a Z∗
j such that Zn

j → Z∗
j a.s.

The proof is complete. �

This brings us to our final result.

Theorem 3. When N = ∞, in the model described in Section 2, all categories but one will
become extinct with probability 1.

Proof. From Lemma 5, we know that Zn
j = Wn

j /Wn
tot ≥ Wn

j γ −1 ≥ 0, implying that if
Zn

j → 0 then Wn
j → 0 as well. By Theorem 2, for every category j ∈ {1 . . . k}, Zn

j → Z∗
j a.s.,

where Z∗
j can only be 0 or 1, and we know that

∑
j Z∗

j = 1. As such Zn
j → 0 a.s. for every

category j but one. This implies all but one category will become extinct with probability 1.
The proof is complete. �

5. Simulations and time to extinction

In the last two sections we proved that extinction of all but one category occurs for our
model regardless of the value of N . In this section we will discuss some of the results obtained
by computer simulations of the simplified weight model. These simulations will demonstrate
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Figure 2: Plots of Zn
1 = Wn

1 /Wn
tot for single simulations when k = 2, λ = 0.06, and the weight threshold

is 10−4W0. For each value of N we have plotted Zn
1 against time-step n for three simulations.

how changing the variables N and λ affects how long it takes until there is only one nonextinct
category left in the system.

Before discussing the results of our computer simulations, we will explain weight thresholds.
Analytically, a category j becomes extinct when Wn

j → 0 as n → ∞. Extinction of all but
one category means there exists a category j such that Wn

i → 0 as n → ∞ for all i �= j .
When running computer simulations, we cannot possibly know for certain if a category’s weight
approaches 0, but we do something else to detect if it is most likely to do so. In simulations,
once a category’s weight goes below a value we call a weight threshold, we assume that the
category becomes extinct. The time it takes for all but one of the category’s weights to go below
the weight threshold will be referred to as the extinction time. In Figures 2 and 3, the number
of categories is k = 2, so the extinction time is how soon one of the two categories goes extinct.

In Figure 2 we present three simulations each for three separate values of N , where the
number of categories is k = 2. We show the evolution of the random variable Zn

1 (defined in
Section 4) for the values N = 1, 10, and ∞. When Zn

1 hits either 0 or 1, the simulation ends,
representing that either category 1 or 2 has become extinct, respectively. Upon inspection, we
see that the larger N is, the faster categories become extinct.

In Figure 3 we see how the expected extinction time changes based on the values of our
decay rate λ, and the limitation on the number of exemplars N , when the number of categories is
k = 2. The expected value for the extinction time is found by averaging over 1000 simulations
for each value of N and λ. As N decreases, we observe, as in Figure 2, that the extinction time
increases. Likewise, as λ decreases the extinction time increases as well.

It is straightforward to explain how λ affects the extinction time, but the explanation for the
effect of N is more subtle. To help understand the effect of N on the extinction time, we will
consider two examples. For both examples, let β = 1

2 , k = 2 (two categories), and the initial
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Figure 3: A plot of the expected extinction time as we change variables N and λ. We use a weight
threshold equal to 10−4W0.

weight of the first two exemplars in each list is W0 = 1, while the rest of the exemplar weights
are 0.

(i) First consider the case where N = 2. If x0 = 2, the weights of category 2 will be
w2

2,1 = 1 and w2
2,2 = 1

2 , and the weights of category 1 will be w2
1,1 = w2

1,2 = β = 1
2 .

This implies the probability that x1 = 2, given that x0 = 2, is 60%.

(ii) Now consider the case where N = ∞. If x0 = 2 then the total weight of categories
1 and 2 respectively will be Wn

1 = 2β = 1 and Wn
2 = 2β + 1 = 2. This implies the

probability that x1 = 2, given that x0 = 2, is approximately 66.7%.

It is more probable, when N = ∞, for a category to be consecutively categorized. When
N = 2, it is rarer for the exemplar weights to decay close to 0 than when N = ∞. This
demonstrates why limiting the number of exemplars makes extinction take longer. When
N = ∞, exemplars getting stored in a category consecutively adds comparatively more weight
to the category. This explains the effect of N on the extinction time, as seen in Figures 2 and 3.

The behaviour of the expected extinction time increasing as λ decreases is much easier to
explain. The weights are decaying slower, so it will take longer for the weights to approach 0.
If λ = 0 then there would be no decay and thus no category extinction. Because of this, as
λ → 0, the expected extinction time will asymptotically approach infinity.

6. Discussion

The model studied in this paper is simpler than the ones studied by Tupper [15] and Wedel
[16], but it helps explain the behaviour we see in these models. Changing N in our model
does not affect whether all categories but one eventually become extinct, but it does affect the
time it takes to do so. Our results agree with the extinction result demonstrated in [15] for
N = ∞. However, our work suggests that the model studied in [16] will eventually show the
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same behaviour but on a longer time scale. This longer time scale may explain why category
extinction was not observed in Wedel’s simulation [16].

One natural direction we can take in future research is to apply our model to real-world data.
For example, in Figure 1 we illustrated the evolution of the usage of two spellings of the word
cider over 200 years [7]. The archaic spelling ‘cyder’ becomes extinct close to the year 1980.
Using the corpus of digitized texts put together in [7], one could determine what values of N

and λ best model this type of data.
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