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The asymptotic downstream flow of plane
turbulent wall jets without external stream
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The plane turbulent wall-jet flow without externally imposed stream is considered.
It is assumed that the wall jet does not emerge from a second wall perpendicular
to the velocity vector of the initial wall jet. The (kinematic) momentum flux K(x)
of the wall jet decreases downstream owing to the shear stress at the wall. This
investigation is based on the hypothesis that the total friction force on the wall is
smaller than the total inflow momentum flux. In other words, the turbulent wall
jet tends to a turbulent ‘half-free jet’ with a non-zero momentum flux K∞ (m3 s−2)
far downstream. The fact that the turbulent half-free jet is the asymptotic form of a
turbulent wall jet is the basis for a singular perturbation method by which the wall-jet
flow is determined. It turns out that the ratio between the wall distance ym of the
maximum velocity and the wall distance y0.5 of half the maximum velocity decreases
downstream to zero. Dimensional analysis leads immediately to a universal function
of the dimensionless momentum flux K(Rex)/K∞ that depends asymptotically only
on the local Reynolds number Rex=

√
(x− x0)K∞/ν, where x0 denotes the coordinate

of the virtual origin. When the values K and ν at the position x− x0 are known, the
asymptotic momentum flux K∞ can be determined. Experimental data on all turbulent
plane wall jets (except those emerging from a second plane wall) collapse to a single
universal curve. Comparisons between available experimental data and the analysis
make the hypothesis K∞ 6= 0 plausible. A convincing verification, however, will be
possible in the future, preferably by direct numerical simulations.

Key words: jets, shear layer turbulence, turbulent boundary layers

1. Introduction
The flow under consideration is the plane turbulent wall jet without externally

imposed stream (figure 1). The flow is steady and incompressible. Numerous papers
have dealt with the subject of turbulent wall jets. The review articles by Narasimha,
Narayan & Parthasarathy (1973), Launder & Rodi (1981, 1983) and Schneider &
Goldstein (1994) are worth mentioning. Unfortunately, not much can be found in the
literature about the asymptotic downstream flow of turbulent wall jets. It appears that
most authors hold the view that in this respect the turbulent wall jet behaves like
a laminar wall jet. The latter tends to a flow with self-similar velocity distribution
and vanishing jet momentum flux far downstream (cf. Schlichting & Gersten 2003,
p. 180). However, it is overlooked that the asymptotic behaviour of the turbulent wall
jet might be different from that of the laminar case.

† Email address for correspondence: K.Gersten@t-online.de
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FIGURE 1. Geometry and notations of the plane wall jet.

Myers, Schauer & Eustis (1963) were presumably the first who treated the
asymptotic behaviour of turbulent wall jets. They described the wall-jet flow by
an integral method. They concluded that, far downstream, the time-averaged velocity
is u ∼ (x− x0)

−1/2 and the half-maximum velocity distance is y0.5 ∼ (x− x0). In
other words, the wall jet tends to a turbulent half-free jet as limiting flow. As a
consequence of this finding, the turbulent wall jet has a non-zero momentum flux
far downstream. Furthermore, they found that the ratio ym/y0.5 (see figure 1) is not
constant but rather a function of the streamwise coordinate x, tending to zero far
downstream. The same result has been found by Hammond (1982) in his analysis.
When the velocity distribution shown in figure 1 is depicted in non-dimensional form,
i.e. u/um = F(y/y0.5), the wall distance of the point of maximum velocity decreases
in the downstream direction. Finally, the point of maximum velocity reaches the wall.
Consequently, the velocity distribution is like that of a bisected free jet. Therefore
the flow of the wall jet further upstream can be considered as a perturbation of the
turbulent half-free jet flow.

Gersten & Herwig (1992, p. 753) treated the turbulent wall jet by a singular
perturbation method. The problem is singular since the limiting solution (half-free
jet) does not satisfy the no-slip condition at the wall. The perturbation analysis by
Gersten & Herwig (1992) was limited to the first-order expansion and the theory was
not compared with experimental results. In addition, and unfortunately, in the most
important equation, the Greek letters κ and α got lost in the printing process. This
motivated the present corrected and considerably extended paper.

As mentioned above, many authors hold the view that the momentum flux K(x)
tends to zero for x→∞. Examples of these authors are Narasimha et al. (1973),
Wygnanski, Katz & Horev (1992), Schneider & Goldstein (1994) and George et al.
(2000). Karlsson, Eriksson & Persson (1993), Abrahamsson, Johansson & Löfdahl
(1994), George et al. (2000, cf. appendix B) and Barenblatt, Chorin & Prostokishin
(2005) investigated wall jets emerging from a wall perpendicular to the velocity vector
of the inflow. For this kind of wall jet the theory of the present paper is not valid. As
Schneider (1985) has shown, the momentum flux of turbulent free jets emerging from
orifices of plane walls decreases to zero far downstream. The same is, of course, true
for a turbulent half-free jet. Therefore, wall jets emerging from a wall perpendicular to
the inflow velocity vector have explicitly been excluded already in this investigation.

The basis of the following analysis is the hypothesis that the asymptotic momentum
flux K∞ is not equal to zero. In § 2 it is shown by dimensional analysis that one
single curve in the representation K/K∞ = f (Rex) is valid for all turbulent wall jets
far downstream. The analysis is based on a four-layer structure described in § 3. For
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Downstream flow of plane turbulent wall jets 353

known global functions ym(x), y0.5(x), um(x) and uτ (x), which quite frequently can
be found as results of experimental investigations, the details of the flow field are
given in § 4. Here, self-similar velocity distributions are assumed for each of the four
layers separately. In § 5 it is shown how the universal asymptotic formula for K/K∞
can be derived from the momentum-integral equation. In §§ 6–8 the four functions
mentioned above are determined by a singular perturbation method. Finally, the theory
is compared with experimental data in § 9.

2. Dimensional analysis (for K∞ 6= 0)
The maximum velocity um of the turbulent wall jet with the asymptotic kinematic

momentum flux K∞ (m3 s−2) has the form

um = f (x− x0, ν,K∞), (2.1)

where x0 is the coordinate of the virtual origin and ν the kinematic viscosity. The
asymptotic formula (2.1) is by definition independent of the slot width b and the inlet
momentum flux Kj.

Dimensional analysis leads to
um ν

K∞
= F(Rex), (2.2)

where the Reynolds number is defined as

Rex =
√
(x− x0)K∞

ν
. (2.3)

The one and only curve in the representation of (2.2) is universal and valid for all
possible plane turbulent wall jets.

Also the following dimensionless combinations can depend only on the Reynolds
number:

y0.5/(x− x0), ym/y0.5 (figure 2), um y0.5/ν (figure 5),
√
(x− x0)K/ν

Rem = um ym/ν, cf /2= τw/ρ u2
m (figure 2), τw ν

2/ρ K2
∞, K/K∞ (figure 5),

}
(2.4)

where K is the (kinematic) momentum flux (see definition in (4.14)), ρ the density,
τw the wall shear stress, ym the wall distance of the maximum velocity and y0.5 the
wall distance of the point with velocity um/2. All dimensionless combinations in (2.4)
are also universal functions of Rem (examples in figure 2).

3. Flow model
The flow field consists of two parts: (i) the lower part (y< ym) behaves like a

turbulent boundary layer; (ii) the upper part (y> ym) behaves like a half-free jet.
Similar to turbulent boundary layers the lower part of the wall jet can be divided
into three layers: the viscous wall layer, the overlap layer and the so-called defect
layer. Hence, the model of the wall-jet flow field under consideration has a four-layer
structure. Furthermore it is assumed that the velocity distribution is self-similar, but
separately in each of the four layers.

In many experimental investigations of turbulent wall jets the results focus on the
global functions ym(x), y0.5(x), um(x) and uτ (x). In § 4 the flow field will be described
in detail for the case that these four functions are given.
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FIGURE 2. Skin friction law cf (Rem) and thickness ratio ym/y0.5 for turbulent plane wall
jets. —— after (4.28), - - - - after Hammond (1982), – – – after Launder & Rodi (1981),
-·-·- asymptote, G = 1 in (4.28), · · · · · · after (6.1). Bars refer to experiments mentioned
in table 1 presented in § 9; triangles are selected points for agreement with theory.

4. Flow field
4.1. Asymptotic solution far downstream

As already mentioned in the introduction, the turbulent wall-jet flow will be considered
as a perturbation of the turbulent half-free jet flow. Turbulent free shear flows are
slender, i.e. the mean local lateral velocity component is small compared to the
dominant mean flow velocity. The flow spreads gradually, thus axial gradients are
small in comparison to lateral gradients. These features allow the application of
boundary-layer equations in place of the full Navier–Stokes equations (see Pope
2000, p. 111). Since the turbulent half-free jet flow is surrounded by quiescent fluid,
the continuity equation and the momentum equation for the x-direction are

∂u
∂x
+ ∂v
∂y
= 0 (4.1)

u
∂u
∂x
+ v ∂u

∂y
= ∂

∂y

(
τt

ρ

)
, (4.2)

where τt is the turbulent shear stress. It is assumed that the velocity distribution of
the turbulent half-free jet is self-similar:

u=UN(x) Ḟ(η̃). (4.3)

In (4.3) the similarity variable is

η̃= k
y

y0.5(x)
. (4.4)

The dot in (4.3) refers to differentiation with respect to η̃. The constant k is defined
by

Ḟ(k)= 1
2 . (4.5)
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Downstream flow of plane turbulent wall jets 355

From the continuity equation (4.1) it follows that

v =−1
k

d(UNy0.5)

dx
F+ UN

k
dy0.5

dx
η̃ Ḟ. (4.6)

The momentum equation (4.2) leads to the shear stress:

τt

ρ
= y0.5

k
UN

dUN

dx
F Ḟ+ 2

3
UN

k

(
2y0.5

dUN

dx
+UN

dy0.5

dx

)
F3. (4.7)

Dimensional analysis requires that y0.5 is proportional to x − x0, where x0 is the
coordinate of the virtual origin of the half-free jet:

y0.5 = 4αk(x− x0). (4.8)

The rate of spreading of the half-free jet is 4αk, and α is a slenderness parameter.
As will be mentioned later, several turbulence models applied to turbulent free jets

can be found in the literature. In the turbulence model used here it is assumed that
the eddy viscosity νt is independent of η̃ (see Pope 2000, p. 137).

Dimensional analysis then yields the ansatz

νt(x)= αk UN(x) y0.5(x). (4.9)

Therefore it follows for the shear stress that

τt

ρ
= k

νt

y0.5

∂u
∂η̃
= α U2

N(x) F̈(η̃). (4.10)

Combination of (4.7) and (4.10) leads to a differential equation for the function
F(η̃). With UN(x)∼ (x− x0)

−1/2 the following ordinary differential equation results:

F̈+ 2 F Ḟ= 0, (4.11)

because the factor in front of F3 in (4.7) vanishes.
The boundary conditions for F(η̃) are

η̃= 0: F= 0, Ḟ= 1, F̈= 0
η̃→∞: F= 1, Ḟ= 0, F̈= 0.

}
(4.12)

The solution of (4.11) is

F= tanh η̃, Ḟ= 1− (tanh η̃)2 . (4.13a,b)

A comparison of this solution with experimental results will be discussed later in § 4.5.
The momentum flux

K(x)=
∫ ∞

0
u2(x, y) dy (4.14)

can now be determined for the turbulent half-free jet:

K∞ = 8
3α (x− x0)U2

N(x), (4.15)
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356 K. Gersten

which is independent of x. This leads to the formula

UN(x)=
√

3 K∞
8α (x− x0)

. (4.16)

The turbulence model expressed by (4.9) has been chosen here because of the
simple solution for the velocity distribution Ḟ(η̃). Solutions for turbulent free jet
flows with alternative turbulence modelling can also be found in the literature,
for example Tollmien (1926), Saffman (1970), Schneider & Mörwald (1987) and
Schneider (1991). These solutions lead to different differential equations for F(η̃)
and, hence, to different constants in (4.16). However, the hypothesis K∞ 6= 0 proposed
here would not be affected by the choice of the turbulence model for the half-free
jet flow.

4.2. Viscous wall layer
In this case results for the viscous wall layer of turbulent boundary layers can be
adopted, see Schlichting & Gersten (2003, pp. 572, 523). The x-component of the
velocity is given by the universal distribution

u+(y+)= u(x, y)
uτ (x)

= F(y+) (4.17)

where
y+ = y uτ

ν
(4.18)

and

uτ (x)=
√
τw

ρ
. (4.19)

The limiting form of the function F(y+) is

lim
y+→∞

u+(y+)= 1
κ

ln y+ +C+ (4.20)

where κ is called the Kármán constant and C+ is a further universal constant,
determined from numerous experiments to be C+ = 5.0 for smooth walls. In the
literature, (4.20) is denoted as the ‘logarithmic law of the wall’. For high Reynolds
numbers the y-component of the velocity vanishes in the viscous wall layer, and the
shear stress τ(x) is independent of y+ and, hence, equal to the wall shear stress τw(x),
see Schlichting & Gersten (2003, p. 573). An analytic description of the universal
function F(y+) is given in Schlichting & Gersten (2003, p. 524).

4.3. Overlap layer
The wall layer (y 6 ym) of turbulent wall jets has the same three-layer structure as
turbulent boundary layers. These layers are the viscous wall layer, the so-called defect
layer (0 6 y 6 ym) and the overlap layer in between. The latter is part of the viscous
wall layer and hence independent of ym, as well as part of the defect layer and hence
independent of the kinematic viscosity ν. Therefore the gradient of the velocity u+ in
the overlap layer is independent of ν and ym.
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Downstream flow of plane turbulent wall jets 357

Hence, the matching condition for the velocity gradient reads as follows:

lim
η→0

η
∂u+

∂η
= lim

y+→∞
y+
∂u+

∂y+
= 1
κ
, (4.21)

where
η= y

ym
(4.22)

is the dimensionless distance from the wall. Integrating the wall-layer part in (4.21)
leads to (4.20). Integrating the defect-layer part in (4.21) leads to

lim
η→0

u+(η)= um

uτ
+ 1
κ

ln η− C̄, (4.23)

where the integration constant is defined as

C̄= lim
η→0

∫ 1

η

(
du+

dη
− 1
κη

)
dη. (4.24)

The matching condition for the velocity u+ in the overlap layer reads as follows:

um

uτ
− C̄+ 1

κ
ln η= 1

κ
ln y+ +C+ (4.25)

or
1
γ
= 1
κ

ln (γ Rem)+C+ + C̄ (4.26)

with

γ = uτ
um
=
√

cf

2
, Rem = um ym

ν
. (4.27a,b)

This implicit friction law cf = f (Rem) can be written in explicit form as√
cf

2
= γ = κ

ln Re m
G(Λm; Dm, Em) (4.28)

where

Λm = 2 ln Rem (4.29)
Dm = 2 [ln(2κ)+ κ (C+ + C̄)] = 2.036 (4.30)

Em = 0. (4.31)

The function G(Λ; D, E) has been defined and tabulated by Gersten & Herwig
(1992). More details are given in appendix A. The friction law according to (4.28) is
shown in figure 2. The agreement with experimental data by Launder & Rodi (1981)
and Hammond (1982) is very good. As will become apparent later, the limits Rem→
∞ and γ → 0 are equivalent to the limits x→∞ and Rex→∞, respectively.

The dotted line in figure 2 will be discussed in § 9.
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4.4. Defect layer (0< y 6 ym)

4.4.1. Flow field
In the limiting case of infinite Reynolds number (which is equivalent to ym/y0.5→0),

the velocity u(x, y) in the defect layer attains the value um(x). Therefore it seems
natural to write the velocity in the form of a defect law

u(x, η)= um(x)− uτ (x) f ′(η) (4.32)

with
η= y

ym
. (4.33)

The continuity equation (4.1) leads to

v(x, η)= dym

dx
uτ
(
f − η f ′

)+ ym
duτ
dx

f − ym
dum

dx
η. (4.34)

When the velocity components are known, the shear stress can be determined
by using the momentum equation (4.2). Transforming (4.2) into the x, η coordinate
system and using (4.32) leads to

ym um
dum

dx
+ u2

τ

(
Aηf ′′ + B f ′ +C f ′2 +D f f ′′

)= ∂

∂η

(
τt

ρ

)
(4.35)

where

A(x)= 1
uτ

d (ym um)

dx
, B(x)=−ym

u2
τ

d(uτ um)

dx
,

C(x)= ym

uτ

duτ
dx
, D(x)=− 1

uτ

d(uτ ym)

dx
,

 , (4.36a−d)

see Schlichting & Gersten (2003, p. 574).
Splitting the shear stress into two parts

τt(x, η)
ρ
= ym um

dum

dx
η+ u2

τ s(x, η) (4.37)

reduces the momentum equation (4.35) to

Aηf ′′ + B f ′ +C f ′2 +D f f ′′ = s′. (4.38)

The term s′ refers to differentiating s(x, η) with respect to η.
Using the condition s(x, 0)= 1, integration of (4.38) leads to

s(x, η)= 1+ A
(
η f ′ − f

)+ B f +C
∫ η

0
f ′2 dη+D

∫ η

0
f f ′′ dη. (4.39)

4.4.2. Determination of the function f (η)
The function f (η) represents the self-similarity of the velocity distribution in

the defect layer according to (4.32). This function must satisfy the differential
equation (4.38), which in this case must be independent of x. This means that A and
B in (4.38) must be constants, whereas C and D will become negligibly small and
s(η) depends only on η.
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Now one should keep in mind that the defect layer of turbulent wall jets behaves
like the defect layer of turbulent equilibrium boundary layers. The latter are defined
by the self-similarity of the velocity distribution, see Schlichting & Gersten (2003,
p. 580). For turbulent equilibrium boundary layers the functions A(x) and B(x)
are constant for high Reynolds numbers. It is therefore appropriate to assume the
analogous behaviour for the wall jet in the limit Rex→∞:

A(Rex→∞)= A∞ B(Rex→∞)= B∞, (4.40a,b)

which will be verified in (4.47) after the following lines of formulae.
Introducing the characteristic length

1̃(x)= um ym

uτ
(4.41)

leads to

A(x)= d1̃
dx
+ 1̃

uτ

duτ
dx
, B(x)=−

(
1̃

um

dum

dx
+ 1̃

uτ

duτ
dx

)

C(x)= γ 1̃
uτ

duτ
dx
, D(x)=−γ

(
A(x)+ 1̃

γ

dγ
dx

)
.

 (4.42a−d)

From the definition of γ in (4.27a) it follows that

1̃

uτ

duτ
dx
= 1̃

um

dum

dx
+ 1̃
γ

dγ
dx
. (4.43)

Differentiation of (4.26) with respect to x leads to

1̃

γ

dγ
dx
=−A(x)

κ
γ +O(γ 2). (4.44)

For the limit γ → 0 the terms proportional to dγ /dx in (4.42a−d) and (4.43) are
small compared to the other terms and can be neglected. In the flow far downstream
um(x) changes into UN(x) according to (4.16). From (4.42b) and (4.43) it follows that

1̃

um

dum

dx
= 1̃

UN

dUN

dx
=− 1̃(x)

2 (x− x0)
=−B∞

2
. (4.45)

Therefore 1̃(x) is proportional to x− x0 or to y0.5(x) according to (4.8):

1̃(x)= A1 y0.5(x)= 4αkA1 (x− x0). (4.46)

The limiting constant A∞ = A(x→∞) reads as follows:

A∞ = B∞
2
= 2αkA1 (4.47)

and, hence, equation (4.44) reduces to

dγ
dx
=− γ 2

2κ (x− x0)
+O(γ 3), (4.48)
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which after integration leads to

γ = κ

ln Rex
[1+ o(1)], (4.49)

where Rex is defined in (2.3). This formula shows clearly that the limit Rex→∞ is
equivalent to the limit γ → 0. Combining (4.41) and (4.46) leads to

ym

y0.5
= A1

uτ
um
= A1 γ . (4.50)

The ratio ym/y0.5 tends to zero far downstream, as has been anticipated in the
present hypothesis for K∞ 6= 0.

In § 6 equation (4.50) will be extended to an asymptotic series expansion (6.1). By
using this extension it can be shown that the functions A(x) and B(x) have for γ → 0
the following asymptotic form:

A(x)= A∞ +O(γ ), B(x)= B∞ +O(γ ). (4.51a,b)

The function f (η) has to satisfy the following ordinary differential equation, which
results from (4.39) for the limit x→∞:

s(η)= 1+ A∞ (η f ′ − f )+ B∞ f . (4.52)

In order to enable the solution of the ordinary differential equation (4.52), a turbulence
model is needed that provides a relation between f (η) and s(η). Instead of that, an
indirect turbulence model will be applied here. A plausible function f (η) will be
chosen and the corresponding function s(η) can then be determined from (4.52).

The function f (η) must satisfy the following boundary conditions:

η= 1: f = fm, f ′ = 0, f ′′ = 0, f ′′′ = 0 (4.53)

η→ 0: f = 0, f ′ = C̄− 1
κ

ln η, f ′′ =− 1
κη
. (4.54)

For η→ 0 the condition f = 0 follows from (4.34) for v(x, η→ 0)= 0; the conditions
for f ′ and f ′′ have been derived in (4.23).

In particular the physical significance of the integration constant C̄ is apparent in
(4.24). The condition f ′′′(η = 1) = 0 results from ‘patching’ the term ∂2u/∂y2 of the
defect layer and the outer layer at y= ym (see (4.63)).

For η = 1 the value fm is a measure of v(x, η= 1), and the conditions f ′ = 0 and
f ′′ = 0 result from u= um.

The following function consisting of a logarithmic term and a power series satisfies
all boundary conditions appearing in (4.53) and (4.54):

f ′(η)= 1
κ

(
−ln η− 5

6
+ 3

2
η2 − 2

3
η3

)
(4.55)

with

κ = 0.41, C̄=− 5
6κ
=−2.033, fm = 1

2κ
= 1.220. (4.56a−c)
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Equation (4.55)
Experimental points: Wygnanski et al. (1992),

FIGURE 3. Self-similar distribution of the defect velocity in the defect layer.

In figure 3 the defect velocity

um − u
uτ
= f ′(η) (4.57)

is compared with experimental data of Wygnanski et al. (1992). The difference
between theory and experiment may be attributed to the fact that the experiments
refer to fairly low Reynolds numbers. The maximum of the absolute difference for
f ′(η) = 5 is about 1y = 0.2 mm, which is surprisingly small. The theoretical curve
f ′(η) does not depend on any empirical constant. It is proportional to 1/κ according
to (4.55), where κ is the well-defined ((4.21), Re → ∞, zero pressure gradient)
universal Kármán constant κ = 0.41.

4.5. Outer layer (y > ym)

It is assumed that the distribution of the velocity is again self-similar:

u= um(x) Ḟ(η̄) (4.58)

where the similarity variable is

η̄= y− ym(x)
1(x)

(4.59)

with
1(x)= y0.5 − ym

k
. (4.60)

The dot designates differentiation with respect to η̄. The variable η̄ is a generalization
of the variable η̃ in (4.4) for ym 6= 0.

From the continuity equation it follows that

v =−d(um1)

dx
F+ um

dym

dx
Ḟ+ um

d1
dx

η̄ Ḟ+ d(ym uτ )
dx

fm − d(ym um)

dx
. (4.61)
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FIGURE 4. Self-similar velocity distribution in the outer layer.

The momentum equation leads to the shear stress:

τt

ρ
= um1

dum

dx
F Ḟ+ 2

3
um

(
21

dum

dx
+ um

d1
dx

)
F3

+
[

d(ym uτ )
dx

fm − d(ym um)

dx

]
um Ḟ+ u2

τ +
d(ym u2

m )

dx

−
[

uτ
d(ym um)

dx
+ ym

d(uτ um)

dx
+ um

d(ym uτ )
dx

]
fm. (4.62)

Equations (4.61) and (4.62) reduce to (4.6) and (4.7) for the limit x → ∞,
when ym→ 0, um→UN(x) and 1→ y0.5/k are taken into account.

At y= ym the values for u, ∂u/∂y, v and τt/ρ for the defect layer (η= 1) and the
outer layer (η̄= 0) are equal (‘patching’). For ∂2u/∂y2 the patching condition is as
follows:

f ′′′(η= 1)= 2
[

k A1

1− A1 γ

]2

γ . (4.63)

In the limit γ → 0 it follows that f ′′′(1)= 0 in (4.53).
The function F(η̄) is identical with F(η̃). All results for F(η̃) in § 4.1 can be used

in this generalization. Figure 4 shows the comparison of the solution for the outer
layer with experimental results of Tailland & Mathieu (1967).

4.6. Determination of the momentum flux K(x)
The momentum flux

K(x)=
∫ ∞

0
u2(x, y) dy (4.64)

can now be determined if (4.32) and (4.58) are used for the integration. The result is

K(x)= 0.756 u2
m y0.5

(
1+ 0.322

ym

y0.5
− 2.644 fm

√
cf

2
ym

y0.5

)
. (4.65)
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The constants are

0.756= 2
3k
, 0.322= 3k

2
− 1, 2.644= 3k, k= 0.8814. (4.66a−d)

The formula (4.65) can be used to determine the momentum flux K when the global
values in the formula are known.

5. Momentum-integral equation
The momentum flux K(x) must satisfy the momentum-integral equation:

K(x)=K∞ +
∫ ∞

x

τw

ρ
dx. (5.1)

A dimensionless friction velocity

γG(x)= uτ (x)
UN(x)

(5.2)

is introduced, where UN(x) is given in (4.16). Then (5.1) can be written as

K(x)
K∞
= 1+ 3

8α

∫ ∞
x

γ 2
G(x) dx
x− xo

= 1+ 3
4α

∫ ∞
Λ

γ 2
G(Λ) dΛ, (5.3)

where
Λ= ln Rex = ln

(√
K∞(x− xo)/ν

)
. (5.4)

The integration leads to the final formula (see appendix A):

K(Λ)
K∞
= 1+ 3κ2

4α

{
γG(Λ)

κ
+
[
γG(Λ)

κ

]2

+O
(

1
Λ3

)}
. (5.5)

(This equation without the term O(γ 2
G) appears also in Gersten & Herwig (1992) and

in Schlichting & Gersten (2003). Unfortunately, there the Greek letters κ and α got
lost in the printing process.)

6. Wall-jet flow described by perturbation method
So far the flow field of the wall jet has been described for given functions

ym(x), y0.5(x), um(x) and uτ (x). These functions are known in the limiting case
x → ∞, see § 4.1. Now, for the general case, these functions will be described
by a perturbation method. From (5.5) it is obvious to use γG as the perturbation
parameter. The following power series expansions will be applied (with respect to A1
see (4.50)):

ym

y0.5
= A1 γG (1+ A2 γG + · · ·) (6.1)

um

UN
= 1+ B1 γG + B2 γ

2
G + · · · . (6.2)
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It is assumed that the asymptotic formula (see (4.8))

y0.5 = 4αk(x− x0) (6.3)

is generally valid, which is in accordance with experiments. Introducing (6.1) and (6.2)
into (4.27) yields

γ = γG
UN

um
, Rem = um

UN

ym

y0.5
P Rex, (6.4a,b)

where
P= k

√
6α. (6.5)

The skin friction law (4.26) is now transformed into

1
γG
= 1
κ

ln
(
γ 2

G Rex
)+ D̂+ Ê γG (6.6)

with
D̂= 1

κ
ln(A1 P)− B1 +C+ + C̄, Ê= 1

κ
A2 − B2. (6.7a,b)

In appendix A it is shown that the explicit solution of (6.6) is

γG = κ

ln Rex
G(Λ; D, E) (6.8)

where
Λ= ln Rex, D= 2 ln κ + κ D̂, E= κ2 Ê. (6.9a−c)

7. Determination of the universal constants
It is desirable to determine the universal constants α, A1, A2, B1 and B2 defined

in (4.8), (6.1) and (6.2) in such a way that the analysis is optimally concordant with
existing experiments. Unfortunately, all existing experimental data on plane turbulent
wall jets belong to rather low Reynolds numbers and, hence, are far away from the
asymptotic state. Despite this deficiency, matching of the analysis with experimental
data will be attempted.

Experimental results on six available turbulent wall-jet flows have been analysed.
The main global values are listed in table 1 below. The constant α (= dy0.5/dx/(4k))
introduced in (4.8) can be taken from Launder & Rodi (1981), who analysed about
20 experimental investigations. They found α= 0.021. This is in accordance with the
mean value resulting from the experiments in the table (k from (4.66d)):

α = 0.021, P= k
√

6α = 0.3129. (7.1a,b)

Taking into account (4.16), (6.1) and (6.2) and comparing (5.5) and (4.65) provide
the following two conditions that the constants A1, A2, B1 and B2 must satisfy:

0.322 A1 + 2 B1 = 3κ
4α

(7.2)

A1 (0.644 B1 − 2.644 fm)+ B2
1 + 2 B2 + 0.322 A1 A2 = 3

4α
. (7.3)
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FIGURE 5. Universal functions. K/K∞ according to (5.5) and (6.6), um y0.5/ν=Rem y0.5/ym,
Rem and γ according to (6.4), γG according to (6.6). Experiments: see table 1 for symbols.
1 denotes selected points for agreement with theory.

Two still missing relations between the constants follow from the condition that the
experimental values of two particular wall-jet velocity profiles should coincide with
the corresponding theoretical values. The following two points have been selected for
the agreement with the theory:

Point I (from Tailland & Mathieu 3, x− x0 = 1.06 m)

ym

y0.5
= 0.155,

um y0.5

ν
= 0.447× 105. (7.4a,b)

Point II (from Tailland & Mathieu 1, x− x0 = 1.05 m)

ym

y0.5
= 0.131,

um y0.5

ν
= 1.003× 105. (7.5a,b)

In addition to (7.2) and (7.3), the (6.1) and (6.2) specified for each of these points
lead finally to six nonlinear algebraic equations for A1, A2, B1, B2, γGI and γGII . The
results are the universal constants:

A1 = 1.4798, A2 = 1.7441, B1 = 7.1002, B2 =−8.7227. (7.6a−d)

The positions of the points are given by:

γGI = 0.08923 (Rex = 0.9091× 105, Rem = 6789)
γGII = 0.07944 (Rex = 2.1287× 105, Rem = 13 451).

}
(7.7)

The two selected points I and II are marked in figures 2 and 5 by triangles.
The numerical values of the universal constants should be considered preliminary

until experimental data for higher Reynolds numbers become available.
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8. Determination of the asymptotic momentum flux K∞
When the values um, y0.5 and ν at the position x − x0 are known, the asymptotic

momentum flux K∞ can be determined by using the universal function shown in
figure 5. The combination um y0.5/ν leads to the corresponding value Rex and, via
(2.3), to K∞. All positions x in a particular wall jet should lead to the same value
K∞. This would be true to a greater extent the further downstream the positions are.
The mean value K̄∞ of all analysed profiles of a particular wall jet is considered as
the asymptotic momentum flux of this wall jet.

When the values K and ν at the position x− x0 are known K∞ can be determined by
using the universal function for K(Rex)/K∞, also shown in figure 5. Here an iteration
process would lead to the solution K∞.

9. Comparisons with experiments

Six turbulent wall jets documented in the literature have been analysed. The K̄∞-
values and other characteristic parameters are listed in table 1. The values um y0.5/ν
of the analysed wall jets are in good agreement with the theoretical universal curve
in figure 5. The experimental results by Bradshaw & Gee (1960) are not shown in
figure 5 because they are practically identical with the results by Tailland & Mathieu
3 (1967). The universal relation between K/K̄∞ and Rex is also shown in figure 5.

The experimental data for the thickness ratio ym/y0.5 are given in table 1 for four
wall jets. They are compared with the present theory in figure 2. The short bars refer
to the values of ym/y0.5 according to the table averaged over the covered range of
Reynolds numbers Rem. The authors obviously assumed that the thickness ratio is a
constant for the entire wall jet. The analysis of this paper, however, shows that ym/y0.5
decreases monotonically with increasing Rem. The dotted line in figure 2 corresponds
to (6.1). It is a necessary condition for the hypothesis K∞ 6= 0 that ym/y0.5 tends to
zero for Rem→∞ (see u/um in figure 6).

The ratio of K∞/Kj is not a universal constant, but it varies in the table between
0.19 and 0.45. It depends mainly on the velocity distribution at the inflow. Narasimha
et al. (1973) have non-dimensionalized x− x0 by Kj rather than by K∞ as has been
done in the present investigation. Asymptotic formulae should not depend on Kj.

In figure 6 the theoretical distributions of the axial velocity and the shear stress are
compared with experimental data of Tailland & Mathieu (1967). The corresponding
formulae (valid for all turbulent wall jets) are

u
um
= 1− (γG − 7.10 γ 2

G) f ′(η) η= y
ym

6 1 (9.1)

u
um
= Ḟ(η̄) η̄= 0.8814

y− ym

y0.5 − ym
> 0 (9.2)

τt

ρ U2
N
=−0.0548ηγG + [1+ 0.0548 (η f ′ + f )− 0.8734η]γ 2

G 0<η6 1 (9.3)

τt

ρ U2
N
= 0.021 F̈+ [0.534 F̈− 0.0548 Ḟ] γG

+ [0.757 F̈− 0.866 (F3 − 1)− 0.673 Ḟ] γ 2
G η̄> 0. (9.4)

It should be emphasized that the limiting solution does not satisfy the no-slip
condition at the wall and has zero wall shear stress. The solution including the
first-order disturbances satisfies the no-slip condition, but still has zero wall shear
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FIGURE 6. Distributions of velocity and shear stress at point II. —— γG= 0.0794, Rex=
2.1× 105, after (9.1)–(9.4),E experiment, after Tailland & Mathieu (1967).

stress. Only if the second-order disturbances are taken into account does the shear
stress have a finite value at the wall.

In figure 6 the special case γG = 0.0794 is plotted and compared with the limiting
curve γG = 0. Obviously, the comparisons between the analytical results and the
experimental data in figures 2–6 make the hypothesis K∞ 6= 0 plausible. A definitely
convincing verification, however, will be possible in the future, preferably by direct
numerical solutions of turbulent wall jets.
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Appendix A. Function G(Λ;D, E)

The following implicit equation for the function γ (Re) is considered:

1
γ
= 1
κ

ln(γ n Re)+ D̂+ Ê γ . (A 1)

In addition to the Kármán constant κ the equation contains three further constants:
n, D̂ and Ê. One can find this equation quite often in the context of the theory of
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turbulent shear flows near walls at high Reynolds numbers. The explicit solution of
(A 1) is

γ = κ

ln Re
G(Λ; D, E) (A 2)

where

Λ= 2
n

ln Re, D= 2 ln
(

2κ
n

)
+ 2κ

n
D̂, E=

(
2κ
n

)2

Ê. (A 3a−c)

The function G(Λ; D, E) has been defined and tabulated by Gersten & Herwig
(1992). It satisfies the implicit algebraic equation

Λ

G
+ 2 ln

Λ

G
−D=Λ+ E

G
Λ
, (A 4)

which is independent of κ and n. The asymptote for Λ→∞ is

G(Λ→∞;D, E ) = 1+ 1
Λ
[2 lnΛ−D] + 1

Λ2
[ 4 ln2 Λ− 4(1+D) lnΛ

+D2 + 2 D− E ] +O(Λ−3). (A 5)

Again for Λ→∞ the following integral has a rather simple solution:∫ ∞
Λ

G2

Λ2
dΛ= G

Λ
+
(

G
Λ

)2

+O(Λ−3). (A 6)

Appendix B. Comment on the investigation by George et al. (2000)

In the introduction of my paper it has been stated that the analysis by George
et al. refers to plane turbulent wall jets emerging from a wall perpendicular to the
jet. This statement has been based on the following facts: firstly, figure 1 in George
et al. shows a wall jet of this kind. Secondly, practically all experiments quoted in
that investigation refer to wall jets emerging from a perpendicular wall. Thirdly, it is
assumed in that investigation that ym/y0.5= 0.17 (table 1 in George et al. (2000)). This
is an arbitrary unproven assumption which forces K∞ to become zero.

Since the present analysis explicitly does not apply to wall jets emerging from
a perpendicular wall, the investigation by George et al. has not been given further
consideration in the present work.

If, however, one were to assume that the analysis of George et al. comprises also
wall jets in the absence of a perpendicular wall, then two different asymptotic analyses
are the consequence. Each asymptotic analysis is based on a different though unproven
assumption (hypothesis). In George et al. it is assumed that ym/y0.5 = 0.17, which
leads to K∞ = 0. In contrast, in the present analysis it is assumed that K∞ 6= 0 with
the consequence that ym/y0.5 tends to zero when the Reynolds number tends to infinity.
Another fundamental difference between the two analyses exists concerning the effect
of the inflow momentum flux Kj (=M0). In George et al. the Reynolds number is
built with M0 and hence all asymptotic formulae depend on M0. In contrast to this, in
the present work the asymptotic formulae are by definition independent of the inflow
values M0, U0 and b (= slot width).
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As has been mentioned above, it is hoped that direct numerical simulations will lead
to a clarification at some future date.
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