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Abstract

Bovine viral diarrhea virus (BVDV) is an important infectious disease agent that causes sig-
nificant reproductive and economic losses in the cattle industry worldwide. Although BVDV
infection is known to cause poor fertility in cattle, a greater part of the underlying mechan-
isms particularly associated with early reproductive losses are not clearly understood. Previous
studies reported viral compromise of reproductive function in infected bulls. In females,
BVDV infection is thought to be capable of killing the oocyte, embryo or fetus directly, or
to induce lesions that result in fetal abortion or malformation. BVDV infections may also
induce immune dysfunction, and predispose cattle to other diseases that cause poor health
and fertility. Other reports also suggested BVDV-induced disruption of the reproductive
endocrine system, and a disruption of leukocyte and cytokine functions in the reproductive
organs. More recent studies have provided evidence of viral-induced suppression of endomet-
rial innate immunity that may predispose to uterine disease. Furthermore, there is new evi-
dence that BVDV may potentially disrupt the maternal recognition of pregnancy or the
immune protection of the conceptus. This review brings together the previous reports with
the more recent findings, and attempts to explain some of the mechanisms linking this
important virus to infertility in cattle.

Introduction

Bovine viral diarrhea virus (BVDV) is one of the most important infectious disease agents of
cattle worldwide (Lanyon et al., 2014; Givens and Newcomer, 2015; Richter et al., 2017). It was
identified in 1957 as the causative agent for bovine viral diarrhea or BVD (Lee and Gillespie,
1957). BVDV is a single-stranded positive sense RNA virus classified in the genus Pestivirus of
the family Flaviviridae. BVDV strains of each distinct genotype (BVDV1 and BVDV2) are fur-
ther classified as one of two biotypes: cytopathic (cp) and non-cytopathic (ncp) as defined by
the lytic activity of the virus in cell culture (Gamlen et al., 2010; Ridpath, 2010b). Cp BVDV
strains are not common and are mainly involved in outbreaks of mucosal disease whereas ncp
BVDV strains are more common in nature and are often associated with the most clinically
severe form of acute infection (Ridpath, 2010b).

Cattle are the natural host for BVDV (Walz et al., 2010) and infections with the virus are
endemic in cattle populations in many different parts of the world (Chernick and van der
Meer, 2017; Velasova et al., 2017; Yesilbag et al., 2017; Aragaw et al., 2018; Han et al.,
2018; Scharnbock et al., 2018). The prevalence of BVDV infection based on serological surveys
in different geographic regions range from 40 to 90% in individual cattle and 28–66% in cattle
herds, while 0.5–2.5% of cattle were persistently infected (PI) with the virus (Walz et al., 2010;
Velasova et al., 2017; Scharnbock et al., 2018).

Although cattle with transient BVDV infection are important sources of virus, PI cattle play
a substantially larger role in the infection of susceptible cattle and maintenance of BVDV in
cattle populations (Lindberg and Houe, 2005). The most common route of BVDV
transmission is direct contact between animals (Laureyns et al., 2010). Infected cattle shed
BVDV in body fluids and excretions including nasal discharge, saliva, semen, urine, feces,
tears, milk, and uterine flushing (Thurmond, 2005; Lanyon et al., 2014). BVDV can also be
transmitted during rectal examination (Lang-Ree et al., 1994), as well as during natural breed-
ing or artificial insemination (AI) of cows with semen from infected bulls (Rikula et al., 2008;
Newcomer et al., 2014).

The outcome of BVDV infection depends on viral characteristics such as biotype, genotype
or strain (antigenic diversity), and virulence, and host factors such as species of host, immune
status, pregnancy status, and concurrent infections with other pathogens (Brownlie, 1991;
Liebler-Tenorio et al., 2003; Walz et al., 2010). Transient or acute infection is said to occur
when postnatal immunocompetent cattle are infected with BVDV. Cattle with acute infection
usually recover and eliminate the virus within 2 weeks post-infection although the clinical
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manifestations with acute BVDV infection may range from sub-
clinical infection, clinical disease to fatal disease (Baker, 1995;
Hansen et al., 2010). Vertical transmission of BVDV occurs
when the virus is transmitted from the infected dam to her off-
spring (Kennedy, 2005). Infection of susceptible pregnant cows
with the ncp virus before the development of fetal immunocom-
petence results in the birth of PI cattle (Lanyon et al., 2014). Apart
from BVDV presence in PI cattle, there is evidence that following
apparent recovery from transient infection, BVDV may maintain
prolonged or chronic infections within immunoprivileged sites
such as in tissues of the ovary, testes, central nervous system,
and in circulating white blood cells (Givens and Marley, 2013).
These apparently recovered animals can remain infectious for
BVDV-naïve cattle for months post-infection (Collins et al.,
2009) although it is not clear if such chronic infections may
reactivate future outbreaks of BVDV infections or predispose
the reproductive organs to invasion by other pathogens including
bacteria.

The focus of the review is on the impact of BVDV infection on
reproduction and fertility in cattle. This review seeks to highlight
possible mechanisms through which BVDV may interfere with
reproductive processes. The reference to biotypes offered a
broader means of discussing the effects of BVDV while maintain-
ing focus on the topic. Different strains of BVDV had various
effects as reported in numerous in vitro and in vivo studies.
This also depended on the viral biotype, virulence, and
host-related factors. Although outcomes of infection will
undoubtedly be influenced by viral strains and virulence, it is
largely unknown how these relate to herd fertility data.
Information is lacking on the influence of tissue types in deter-
mining factors likely to influence virulence, survival, and patho-
genicity for differing strains of BVDV within the female
reproductive tract.

Reproductive and economic losses associated with BVDV
infection in cattle

Reproductive losses in cattle due to BVDV infection were first
described in 1946 (Olafson et al., 1946). Although BVDV is
recognized as a major component of respiratory disease, particu-
larly in calves, it is the invasion of reproductive tissues by the
virus that have pronounced delayed effects (Brownlie et al.,
1998). BVDV can utilize the reproductive system to maintain
and spread itself in cattle populations (Grooms, 2004).

Infection with BVDV has been associated with a decline in the
fertility of affected cattle (McGowan and Kirkland, 1995; Fray
et al., 2000; Robert et al., 2004; Burgstaller et al., 2016). BVDV
infection was associated with increased incidence of embryonic
and fetal losses, calf losses, and retained placenta postpartum
(Larsson et al., 1994). Other observations include decreased con-
ception and pregnancy rates (Virakul et al., 1988; Houe et al.,
1993; McGowan et al., 1993a, 1993b; Burgstaller et al., 2016), pro-
longed calving interval (Niskanen et al., 1995; Burgstaller et al.,
2016), prolonged time to first calving (Valle et al., 2001), and
increased risk of late return to service (Robert et al., 2004).
Munoz-Zanzi et al. (2004) considered the overall impact of
endemic BVDV infection on fertility of dairy heifers to depend
on the type and timing of infection relative to reproductive devel-
opment. Infection with BVDV during the first 45 days of gesta-
tion had no effect on the rate of return to estrus but was
associated with increased mid-gestation abortion rates (7%) in
dairy cows (Rufenacht et al., 2001). A decrease in calving rate

and fertility was also reported in cows PI with BVDV (Kale
et al., 2006). Moreover, fertility was lowered in apparently healthy
heifers that had detectable BVDV antibodies, BVDV antigen, or
both (Kale et al., 2011). The presence of BVDV antigen but not
BVDV antibody in the blood of cows was associated with a
decrease from 71 to 28% in the first service conception rate
(Yavru et al., 2013). A meta-analysis of 41 studies from different
geographic regions revealed that, compared with unvaccinated
cattle, BVDV vaccination was associated with a 45% decrease in
the abortion rate, 85% decrease in the fetal-infection rate, and a
5% increase in pregnancy risk (Newcomer et al., 2015).

Reproductive losses contribute to the significant economic
damage associated with BVDV infection. These reproductive
losses vary from insidious reduction in reproductive performance
at the herd level to devastating abortion storms (Grooms, 2004).
BVDV infection may cause no obvious clinical signs or a broad
range of signs in association with other disease complexes,
thereby making assessment of its economic impact difficult and
likely to be underestimated (Laureyns et al., 2010). A review of
the studies carried out in different countries showed estimated
losses in individual dairy herd outbreaks varied from a few thou-
sands up to a hundred thousand US dollars while losses at the
national level ranged between $10 and 40 million per million calv-
ing (Houe, 2003). Losses in Scottish beef suckler herds were esti-
mated at £37 mean loss per cow per annum (Gunn et al., 2004). In
addition, a 10-year BVD eradication program increased milk yield
per cow for all herd sizes, and generated around £47 million in
discounted economic gain in Scotland (Weldegebriel et al.,
2009). In New Zealand, the rate of financial return when
BVDV was controlled compared with the cost of uncontrolled
BVDV infection was as high as 123% over a 10-year term
(Reichel et al., 2008). The analysis of a 6-year eradication program
revealed that the annualized benefits of BVDV eradication in
Ireland exceeded the costs by a factor of five in the beef suckler
sector and a factor of 14 in the dairy sector (Stott et al., 2012).
In Switzerland, the estimated annual financial losses in
BVDV-infected herds ranged CHF 85–89 per dairy cow and
CHF 1337–2535 for an average farm (Thomann et al., 2017). A
recent global review revealed that direct financial losses due to
BVDV infection in cattle in 15 countries were dependent on sev-
eral factors but ranged from US$0.50 to 688 per animal, with
naïve dairy cows having US$25 more direct losses per animal
than beef cows (Richter et al., 2017).

Mechanisms linking BVDV infection with infertility in cattle

BVDV is known to invade most organs of the reproductive tract
in infected cattle. BVDV or the viral-specific antigen was present
in testicular tissue (Givens et al., 2003), oviductal cells (Booth
et al., 1995), in macrophage-like cells in the endometrial stroma
(Firat et al., 2002), in vaginal mucus and uterine flush fluid
(Brock et al., 1991), and in both epithelial and non-epithelial
cells of the endometrium, myometrium, and placenta
(Fredriksen et al., 1999a). BVDV has also been demonstrated in
the epithelial, luteal, granulosa, and macrophage-like cells of the
ovary and in follicular fluid (Bielanski et al., 1993; Booth et al.,
1995; Grooms et al., 1996; Fredriksen et al., 1999a; Firat et al.,
2002; Gonzalez Altamiranda et al., 2013). Moreover, viral antigens
have been detected in the oocytes of infected cows (Brownlie
et al., 1997; Fray et al., 1998), in embryos (Gonzalez
Altamiranda et al., 2013), and in fetuses (Harding et al., 2002;
Morarie-Kane et al., 2018).
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Previous studies have suggested various mechanisms through
which BVDV infection can impact fertility. These include viral
effects on reproductive organs, gametes, embryo, and the fetus.
Many of the underlying mechanisms, particularly those associated
with early pregnancy losses have however not yet been described
clearly. Viral infection is also thought to predispose cattle to other
diseases. More recent studies have also provided evidence of viral
interference with endometrial functions during exposure to infec-
tion and also in the period of early pregnancy. These observations
are discussed further below.

Viral disruption of reproductive function in bulls

There is evidence that BVDV can infect tissues of the male repro-
ductive tract although there are varying reports on the conse-
quence of viral infection on testicular function and male
fertility. BVDV replicates in the seminal vesicles and the prostate
gland and can be shed in the semen of bulls following both acute
and persistent infection (Meyling and Mikél Jensen, 1988;
Kirkland et al., 1991; Kommisrud et al., 1996; Rikula et al.,
2008). BVDV can also localize in the testes of infected bulls to
cause a persistent testicular infection for several weeks, forming
potential sources of infection via semen (Voges et al., 1998;
Givens et al., 2003; Newcomer et al., 2014). Some studies reported
that neither acutely infected nor PI bulls showed any obvious
abnormalities in semen or sperm quality (Kirkland et al., 1991,
1994). In contrast, other studies reported abnormalities including
poor semen volume, decreased sperm concentration and motility,
and increased sperm abnormalities (Revell et al., 1988;
Kommisrud et al., 1996). A lower conception rate of 38% was
also recorded in cows bred with semen from a PI bull when com-
pared with a rate of 66% in those bred with semen from an unin-
fected bull (Kirkland et al., 1994). Therefore, BVDV infection has
the potential to disrupt testicular function to cause abnormalities
of spermatozoa. Semen from these infected bulls may also consti-
tute a potential source of infection to susceptible cows, in addition
to impacting negatively the conception rates and fertility in cows
following natural breeding or AI.

Viral disruption of reproductive physiology and endocrine
functions in cows

Regulation of the reproductive cycle and ovarian activity in cows
is mainly under the control of hormones secreted by the hypo-
thalamic–pituitary–ovarian axis via important negative and posi-
tive feedback control mechanisms (Noakes, 2001a). A previous
review (Fray et al., 2000) highlighted that BVDV may persist in
the ovary of cows for several weeks following infection and was
likely to impede ovarian function and fertility by disrupting the
physiologic and endocrine functions of reproductive organs.
BVDV infection has been associated with oophoritis (Ssentongo
et al., 1980; Grooms et al., 1998b), ovarian cyclic inactivity
(Grooms et al., 1996), retarded follicular growth (Grooms et al.,
1998a; Gonzalez Altamiranda et al., 2013), and reduced ovulation
rate in response to superovulation (Kafi et al., 1997). It is not clear
how BVDV infection affects fertility by influencing ovarian func-
tion. BVDV infection caused necrosis of ovarian granulosa cells
(McGowan et al., 2003) that may lead to a reduction in ovarian
estradiol secretion in infected cows (Fray et al., 1999; McGowan
et al., 2003). Suppression of estradiol secretion may impair estrus
and ovulation by negatively affecting the magnitude or timing of
the pre-ovulatory luteinizing hormone (LH) surge (McGowan

et al., 2003). Whereas acute infection with ncp BVDV was not
found to alter serum concentrations of progesterone or estradiol
(Grooms et al., 1998a; Fray et al., 1999), another study reported
a decrease in the post-ovulatory plasma progesterone concentra-
tion in infected cows (Fray et al., 2002). Although a previous
study observed decreased thyroid hormone levels associated
with pituitary gland infection with the related border disease
virus (Anderson et al., 1987), it is unknown if BVDV can invade
the hypothalamus and pituitary gland to induce alterations in
the secretion of gonadotrophin-releasing hormones or the
gonadotrophins.

Leukocytes including macrophages are present in the ovary,
and their distribution varied with the stage of the cycle suggesting
important roles in ovarian activities (Wu et al., 2004). Leukocytes
are known to secrete cytokines and other inflammatory mediators
in a tightly regulated manner to regulate critical ovarian processes
such as follicular growth, ovulation, luteinization, and luteolysis
(Wu et al., 2004; Richards et al., 2008; Jabbour et al., 2009). It
is likely that a massive depletion of leukocytes during acute
BVDV infections may impede the deployment of leukocytes to
the ovary thereby compromising these reproductive processes
(Kelling et al., 2002).

The oviducts have important functions in bovine fertility
including the transport, storage, and capacitation of spermatozoa,
the pick-up of the newly ovulated oocyte by the infundibulum and
the transport, maturation and fertilization of the oocyte. The
secretory products of the oviducts should also provide an opti-
mum environment for the sustenance of the spermatozoa,
oocytes, and the early embryo that is undergoing cleavage
(Senger, 2003; Rodriguez-Martinez, 2007). BVDV infection was
associated with salpingitis in infected non-pregnant cows
(Archbald et al., 1973). Inflammation of the oviducts can interfere
with the secretive and other physiologic functions of the oviducts,
thereby compromising the ideal environment required for oocyte
and sperm transport, and for fertilization.

Viral degradation of the oocyte, embryo, and fetus

BVDV infection may cause infertility by adversely affecting the
viability of the oocyte or the conceptus at the embryonic or
fetal stages, although this depends on several factors including
the viral genotype, biotype (ncp versus cp), and the stage of repro-
ductive events during which infection occurred. Unlike ncp
BVDV, cp biotypes express non-structural protein 3 (NS3)
which induces apoptosis in infected cells (Gamlen et al., 2010).

Infection prior to the time of breeding or conception is fol-
lowed by viral invasion of the ovary, cumulus cell population,
and the oocytes maturing in primordial, primary, and secondary
follicles (Fray et al., 1998). There was evidence of necrosis of
oocytes in the follicles of cows infected with ncp BVDV
(McGowan et al., 2003). One study also reported that oocytes
from PI heifers in an in vitro fertilization (IVF) procedure showed
a decrease in both the cleavage and embryo production rates
(Gonzalez Altamiranda et al., 2013). Infection with BVDV may
also have harmful effects on sperm–oocyte integrity and inter-
action at the time of fertilization. An in vitro study observed
that infection with cp and ncp BVDV induced detrimental effects
on sperm attachment to the zona pellucida (ZP) of bovine oocytes
and on the fertilization rate during bovine IVF (Garoussi and
Mehrzad, 2011).

Following fertilization, BVDV infection can also affect the
developing embryo, although viral invasiveness and the effects
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on viability and quality of embryos at different stages of develop-
ment have been controversial. The ZP is an extracellular glycopro-
tein matrix surrounding the oocyte and the early embryo that
exerts several important functions during fertilization and early
embryonic development (Sinowatz et al., 2001). BVDV-like parti-
cles were detected in the ZP of embryos from BVDV-infected
uterine horns (Archbald et al., 1979) or in association with
un-hatched in vitro-infected embryos (Givens et al., 2000).
Virus released from washed embryos can also be infective to
cell culture in vitro (Givens et al., 2000). Over 50% of recipient
cows that received embryos exposed to BVDV type 2 became
infected after embryo transfer, and a large proportion of the preg-
nancies in these cows were lost (Bielanski et al., 2009). On the
other hand, embryos recovered from PI donor cows (Brock
et al., 1997) or from cows inseminated with BVDV-infected
semen (Bielanski et al., 2013) when washed remained un-infective
to the recipient cow or the produced calf. The failure of infection
was attributed to the washing process, which significantly reduced
virus copies associated with the embryos (Gard et al., 2009). In
addition, both cp and ncp BVDV infection did not affect in
vitro oocyte fertilization or embryo development in the presence
of the complete ZP (Tsuboi and Imada, 1996; Stringfellow
et al., 1997). In contrast, both cp and ncp BVDV invade and rep-
licate in ZP-free embryos or in hatched blastocysts but not in
ZP-intact embryos, in vitro (Vanroose et al., 1998). Therefore,
the consensus is that the ZP protects the oocyte and the
unhatched embryo from infection by BVDV.

Viral-induced damage to embryos was previously linked to
infection with the cp biotype. Infection with cp but not ncp
BVDV was observed to cause embryonic cell death (Brock and
Stringfellow, 1993) or inhibited embryonic development
(Vanroose et al., 1998). In other studies on ncp BVDV, Booth
et al. (1998) observed a reduction in the initial cleavage of zygotes
but an increased blastocyst yield whereas Stringfellow et al. (2000)
reported reduced cleavage in zygotes, embryos beyond the 4-cell
stage and blastocyst yield. There was variation in cleavage, blasto-
cyst development, and hatching among cultures contaminated
with different strains of ncp virus but none of these effects was
considered prominent (Givens et al., 2000). Recently, infection
with ncp BVDV was also observed to cause early embryonic
death and marked decline in serum progesterone levels in experi-
mentally infected cows (Tsuboi et al., 2013). Both BVDV1 and 2
were present in 100% of degenerate embryos produced in vitro
from infected oocytes while 20–100% of viable embryos carried
the virus but appeared to develop normally (da Silva Cardoso
Pinto et al., 2017).

BVDV infection of the fetus via the placenta depends on the
fetal age at the time of infection, the immunocompetence of
the developing fetus, and the biotype, strain, and virulence of
the infecting BVDV (Brownlie et al., 1998; Grooms, 2004;
Lanyon et al., 2014). BVDV can invade the placentome and access
the fetus following acute (Fredriksen et al., 1999b) and persistent
infections (Fredriksen et al., 1999a). Infection of fetuses of sero-
positive cows is rare due to the presence of maternal antibodies
that can prevent viral invasion of the placentome (Brownlie
et al., 1998). Infection with BVDV can result in fetal death
(Done et al., 1980; Sprecher et al., 1991; Lanyon et al., 2014).
Depending on the time of infection, fetal death is followed by
fetal reabsorption, mummification, or expulsion usually within
the first trimester of pregnancy (Sprecher et al., 1991; Grooms,
2004). The mechanisms of viral-induced fetal death and abortion
are not clear but may be due to cp effects in fetal and placental

tissues, degeneration, and separation of the feto-maternal unit
or a viral-induced inflammatory environment that is unfavorable
for fetal survival and development. Some of the lesions observed
were considered to be non-specific as the primary cause of abor-
tion and included inflammatory cell infiltration of the fetal eyelid,
lung, myocardium, and peribronchiolar and inter-alveolar tissues
and placental vasculitis, degeneration, and necrosis (Murray,
1991).

Apart from causing fetal death, BVDV infection can also lead
to persistent fetal infection if dams are infected during the period
of development of fetal immunocompetence. Infection of suscep-
tible pregnant cows within days 18–125 of pregnancy with the ncp
virus biotype has been associated with transplacental and persist-
ent fetal infection (Brownlie et al., 1998; Harding et al., 2002;
Grooms, 2004; Lanyon et al., 2014). The mechanism of persistent
infection is not clear. There was evidence of hepatic immune
response to fetal infection by 14 days post-infection of the dam
(Morarie-Kane et al., 2018). Moreover, persistent infection has
been related to the ability of the ncp virus biotype to inhibit
fetal induction of type-I interferon (IFN) response to the virus
(Charleston et al., 2001; Peterhans and Schweizer, 2013) thereby
permitting fetal immunotolerance to BVDV and the birth of PI
calves. Although some PI cattle may appear clinically normal,
there are reports of poor growth, poor milk production, poor sur-
vivability, and increased susceptibility to other diseases as well as
mucosal disease in PI cattle (Houe, 1993; Baker, 1995; Voges
et al., 2006). Moreover, BVDV infection can also result in fetal
malformations in dams infected during the period of fetal
organ formation, most probably due to viral-induced lesions,
and disruption of embryogenesis. As previously described, trans-
placental BVDV infection of the fetus within 80–150 days of preg-
nancy can lead to the development of congenital defects of several
organ systems including cerebellar hypoplasia, hydrocephalus,
ocular degeneration, thymic hypoplasia, pulmonary hypoplasia,
brachygnathism, arthrogryposis, and growth retardation (Baker,
1995; Blanchard et al., 2010; Lanyon et al., 2014). These congeni-
tal deformities invariably lead to significant reproductive losses in
the form of fetal losses, decreased calf yield, decreased availability
of replacement heifers, dystocia that may be associated with
increased maternal mortality, and cows culled for reproductive
problems.

Viral-induced immune dysfunction and susceptibility to
diseases

There is no doubt that both male and female cattle that readily
succumb to prevalent diseases will have compromised reproduct-
ive efficiency. Males with clinical or subclinical disease will have
poor libido and mating capacity. Moreover, the reproductive pro-
cess imposes significant biological demands on the female; there-
fore, it should not be surprising that the reproductive activities are
often the first to be arrested when the health of the female is com-
promised (Pineda, 2003).

There is evidence that infection with BVDV can render host
cattle more susceptible to secondary infection with other patho-
gens. The presence of BVDV infection is known to increase the
severity of respiratory disease in calves infected with bovine her-
pes virus 1, bovine respiratory syncytial virus, and the bacteria
Mannheimia haemolytica and Histophilus somni (Edwards
et al., 1986; Potgieter, 1997; Brodersen and Kelling, 1998;
Ridpath, 2010a).
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Infection with BVDV also increased the severity of enteric dis-
eases in cattle infected with bovine rotavirus (de Verdier
Klingenberg, 2000) and Salmonella typhimurium (Wray and
Roeder, 1987; Penny et al., 1996). Calves predisposed to other sys-
temic diseases are prone to be unthrifty with poor reproductive
development and delayed onset of puberty.

Immune dysfunction following BVDV infection in heifers and
cows may also increase the severity of reproductive tract disease
by facilitating placental invasion by specific and opportunistic
pathogens or by exacerbating fetal lesions. Intercurrent infections
of BVDV with some bacteria such as Trueperella pyogenes and
Bacillus spp., or other fungi have been demonstrated in some
aborted fetuses (Kirkbride, 1992). Other studies also reported
increased severity of abortions or fetal lesions when BVDV infec-
tion coexisted with other bacteria such as Leptospira hardjo and
Coxiella burnetii (Pritchard et al., 1989) or Campylobacter fetus
(Jeffrey and Hogg, 1988). Co-infections of BVDV with the proto-
zoan parasite Neospora caninum (Bjorkman et al., 2000) or the
bacteria H. somni (Headley et al., 2015) were also associated
with abortions in dairy cows. Increased susceptibility of the
dam to specific and opportunistic pathogens of the reproductive
tract can result in reproductive abnormalities such as puerperal
metritis, endometritis, pyometra, embryonic and fetal death, abor-
tion and retained fetal membranes.

Pathogenic organisms can invade the reproductive tract of the
cow during breeding (Newcomer et al., 2014), during parturition
or the postpartum period (Bondurant, 1999; Bicalho et al., 2017b)
or through the blood circulation following a systemic microbial
infection (Jeon et al., 2017). For instance, the uteri of almost all
cows are contaminated within a few days postpartum with a var-
iety of both specific and non-specific bacteria including
Escherichia coli, T. pyogenes, and other anaerobes such as
Fusobacterium, Prevotella, and Bacteroides species (Huszenicza
et al., 1999; Williams et al., 2005; Bicalho et al., 2017a). In
most normal cows, the reproductive tract is protected by the
innate immune system which acts immediately and within
hours to prevent infection. Much later, usually after a few days,
the adaptive immune response sets in for weeks or months to pro-
vide a sustained protection.

Innate immune response involves the recognition of microbial
patterns by resident cells and migrant immune cells of the repro-
ductive tract which leads to increased expression of inflammatory
products and innate immune mediators such as antimicrobial
peptides (AMPs), mucins, pro-inflammatory cytokines, acute
phase proteins (APPs), type-I IFNs, and prostaglandins
(Oguejiofor et al., 2017b). This activation of an early inflamma-
tory cascade is critical in mobilizing specialized innate immune
cells such as granulocytes and macrophages from the blood circu-
lation toward the endometrium to phagocytize and eliminate the
pathogens (Butt et al., 1991; Singh et al., 2008; Oguejiofor et al.,
2017b). Subsequently, the innate immune response stimulates
the adaptive immunity resulting in the generation of pathogen-
specific B and T lymphocytes that drive the antibody and
cell-mediated immune response (Turvey and Broide, 2010;
Hickey et al., 2011). When innate immune response fails,
reproductive tract infection occurs and may persist until cleared
by the adaptive immunity often resulting in subsequent decrease
or absence of fertility in affected cows. However, uterine immune
function may become compromised resulting in bacterial
persistence and uterine diseases such as metritis, endometritis,
or cervicitis in up to 50% of postpartum cows (Sheldon et al.,
2009; LeBlanc, 2014).

The mechanisms via which BVDV-induced immune dysfunc-
tion may predispose the cow’s reproductive tract to infection and
infertility are not clearly understood, but may include
viral-induced leukocyte depletion (leukopenia), viral interference
with the functions of immune cells in affected animals, or viral
interference with innate functions of endometrial cells.

Viral-induced leukocyte depletion (leukopenia)
A massive depletion of leukocytes occurs in the systemic circula-
tion in cattle acutely infected (Kelling et al., 2002) or PI (Piccinini
et al., 2006) with BVDV. Immune dysfunction associated with
BVDV infection may be a consequence of the marked tropism
of the virus for antigen-presenting cells (APCs) (Brackenbury
et al., 2003). BVDV is lymphotropic, with acute infection result-
ing in lymphoid depletion in the thymus, spleen, lymph nodes,
and Peyer’s patches depending on the virus strain (Walz et al.,
2001). The leukopenia is mainly due to lymphopenia and neutro-
penia as a result of removal of BVDV-infected leukocytes by the
immune system, destruction of immune cells by BVDV, and
increased trafficking of immune cells into tissue sites of viral rep-
lication (Walz et al., 2010). It is possible that a significant deple-
tion of circulating leukocytes may decrease the number of
leukocytes mobilized to the cow’s reproductive tract during infec-
tion. This can compromise immune response to infection thereby
leading to the development of reproductive- tract disease and
infertility.

Viral interference with the functions of immune cells
There is abundant evidence that BVDV infects immune cells and
significantly alters their immune mechanisms and functions that
have critical roles in both innate and adaptive immune response
to infection. The reader is referred to previous reviews on the sub-
ject (Brackenbury et al., 2003; Chase et al., 2004; Peterhans and
Schweizer, 2010; Chase, 2013; Chase et al., 2015).

Immune cells possess pattern recognition receptors including
Toll-like receptors (TLRs) 3, 7, and 8 that recognize viral RNA
in endolysosomal compartments and retinoic acid inducible
gene I (RIG-I)-like receptors (RLRs), RIG-I and melanoma
differentiation-associated protein 5 (MDA5) that recognize viral
RNA in the cytoplasm (Berke et al., 2013). Viral recognition
induces host immune response by activating signaling pathways
that lead to the expression of pro-inflammatory cytokines,
type-I IFNs, and antimicrobial proteins to eliminate the virus
(Kumar et al., 2009). However, BVDV has evolved different
means of evading the host immune response to survive either
by avoiding detection by host cells or by disabling the antiviral
response of the host. Autophagy is a critical cellular process dur-
ing innate and adaptive immune response to pathogens including
viruses and bacteria (Deretic and Levine, 2009). Both cp and ncp
BVDV infection induces autophagy, which may impair the innate
immune response in bovine cells and facilitate BVDV replication
(Zhou et al., 2017). Depending on the virus biotype and strain,
infection with BVDV can interfere with several innate and adap-
tive immune mechanisms including IFN response, phagocytic
activity, antigen-presenting functions, and humoral and cell-
mediated functions of immune cells.

Type-I IFNs are important cytokines secreted by innate
immune cells to protect uninfected cells and prevent viral replica-
tion by activating macrophages, dendritic cells (DCs), and other
cells involved in the innate and adaptive immune interphase
(Randall and Goodbourn, 2008). These cytokines also serve as a
key link to the adaptive immune response by enhancing the
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differentiation of virus-specific cytotoxic T cells (Stetson and
Medzhitov, 2006). Type-I IFNs induce the expression of a large
number of IFN-stimulated genes (ISGs), which are responsible
for the antiviral and immunomodulatory properties of IFNs
(Hertzog and Williams, 2013). Infection with ncp BVDV is
known to inhibit the synthesis of IFN suggesting an important
mechanism by which ncp BVDV establishes a persistent infection
(Charleston et al., 2001; Schweizer and Peterhans, 2001; Baigent
et al., 2002). This virus survival strategy involves the production
of the viral protein Npro which degrades the transcription factor
IFN regulatory factor (IRF) 3, thereby preventing downstream sig-
naling and the activation of an IFN response (Chen et al., 2007;
Peterhans and Schweizer, 2010). A recent study also provided evi-
dence that BVDV Npro may suppress the activity of S100 calcium
binding protein A9 (S100A9, a cell protein that stimulates innate
immunity), resulting in reduced type-I IFN production
(Darweesh et al., 2018). Although the type-I IFNs are typically
considered to be most important in the host antiviral immune
response, they are also induced by almost all bacterial pathogens
(Perry et al., 2005; Monroe et al., 2010). These suggest mechan-
isms through which ncp BVDV inhibition of IFN response can
escalate other viral and bacterial infections in affected cows.

Professional phagocytes are effector cells that have important
roles in the innate immune clearance of intracellular and extracel-
lular pathogens. Macrophages and neutrophils produce several
enzymes and reactive oxygen species such as superoxide anion,
hydrogen peroxide, and nitric oxide that have critical roles in
the killing of invading pathogens (Dale et al., 2008). A suppres-
sion of these crucial functions can therefore predispose affected
cows to other diseases. There are several reports of various
forms of viral interference with the phagocytic and inflammatory
functions of phagocytes following infection with BVDV.
Neutrophils from cattle PI with BVDV were characterized by a
significant decrease in random migration, bacterial ingestion, oxi-
dant production, and antibody independent cell-mediated cyto-
toxicity (Brown et al., 1991). There was also a significant
decrease in polymorphonuclear leukocytes respiratory burst and
cellular enzymes NAGase and lysozyme in PI heifers (Piccinini
et al., 2006). Both ncp and cp BVDV decreased CD18 and
CD62L (L-selectin) expression in bovine neutrophils. Because
these two receptors are important for endothelial adhesion and
extravasation, this suggested a mechanism through which
BVDV could inhibit neutrophil migration (Chase et al., 2015).
In macrophages infected with BVDV in vitro, there was reduced
production of superoxide anion (Adler et al., 1994) and the
pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α)
(Adler et al., 1996) following lipopolysaccharide (LPS) treatment.
Fc receptor (FcR) and complement factors have important roles
in the opsonization and cytotoxic killing of bacteria by effector
cells (Ravetch and Clynes, 1998). FcR and complement receptor
(C3R) expression, phagocytosis and microbicidal activity and
the production of neutrophil chemotactic factors were all reduced
in macrophages recovered from BVDV-infected calves (Welsh
et al., 1995). In bovine monocytes, ncp BVDV infection sup-
pressed gene expression of pro-inflammatory cytokines TNF-α,
interleukin (IL)1-β, and IL6 and co-stimulatory molecules
CD80 and CD86 (Lee et al., 2008). BVDV type-2 infections
modulated mRNA responses and induced a suppression of
pro-inflammatory cytokine protein responses to TLR ligation in
monocyte derived macrophages with the exception of TLR7 liga-
tion (Schaut et al., 2016). Prostaglandins and leukotrienes are
lipid mediators that can regulate immunity. Leukotrienes have

immune modulatory and pro-inflammatory properties (Di
Gennaro and Haeggstrom, 2012). In general, PGE2 suppresses
acute inflammatory mediators and is predominant at the late or
chronic stages of immunity (Kalinski, 2012), although its immu-
nomodulatory effect may vary during other physiologic processes
such as in the uterus. Infection with BVDV stimulates the produc-
tion of PGE2 in bovine macrophages (Van Reeth and Adair, 1997)
and inhibits the synthesis of leukotriene B4 in bovine mono-
nuclear cells (Atluru et al., 1992). The alteration of these lipid
mediators suggests another mechanism through which BVDV
may disrupt immune response in infected cattle.

Classical APCs include macrophages, dendritic cells, and B
cells that process antigens and present them together with
major histocompatibility complex II (MHC II) to T cells thereby
facilitating antibody mediated and cell-mediated immune
response. In addition, cytokines produced by APCs serve as an
important link between the innate and adaptive immune response
(Parkin and Cohen, 2001). Infection with both cp and ncp BVDV
compromised antigen uptake in bovine monocytes (Boyd et al.,
2004). Monocytes infected with ncp BVDV were compromised
in their ability to stimulate T cell responses (Glew et al., 2003).
Ncp BVDV infection diminished the expression of CD80/CD86
and MHC II antigen presentation molecules on the surface of per-
ipheral blood mononuclear cells (Archambault et al., 2000).
Infection of monocytes with cp BVDV altered the expression of
multiple proteins involved in immune function of APCs including
cell adhesion, apoptosis, antigen uptake processing and presenta-
tion, APPs, and MHC molecules (Lee et al., 2009). The depression
of T and B lymphocytes in lymphatic tissues and in peripheral cir-
culation (Ellis et al., 1988; Brodersen and Kelling, 1999) can
inhibit cell-mediated and humoral immune response in affected
cows.

Taken together, BVDV alters the different aspects of innate
immunity including IFN and inflammatory pathways, and phago-
cytosis. BVDV also influences adaptive immunity by altering the
earliest phase of innate response involving pattern recognition,
antigen presentation, co-stimulatory signaling and lymphocyte
recruitment, and by inducing apoptosis of lymphoid tissues and
altered B and T cellular response (Chase, 2013). BVDV has
evolved this interference with the host’s immune mechanisms as
a means of survival by evading immune elimination by the
host. However, viral suppression of immune response can predis-
pose affected cows to other systemic secondary infections that can
inhibit fertility. Compromised migrant immune cells may also fail
to protect the cow from other secondary infections of the repro-
ductive tract following coitus, parturition or postpartum thereby
leading to reproductive tract infection and infertility.

Viral interference with innate immune functions of endometrial
cells
The epithelial cells and the underlying stromal cells are the major-
ity cell types that constitute the endometrium. The epithelial cells
comprise the first line of cells in contact with microbes that con-
taminate the uterine lumen, but erosion of the maternal caruncles
following placental separation postpartum can also expose both cell
types to the contents of the uterine lumen (Noakes, 2001b). The
innate immune response of the endometrium constitutes an
important barrier to infection by pathogens that contaminate the
uterus following breeding, at parturition and during the post-
partum period (Singh et al., 2008; Oguejiofor et al., 2017b).
During early pregnancy, genes of the innate immune response
may function to protect the uterus against infection (Walker
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et al., 2010). Endometrial epithelial cells and stromal cells express
the extra-cytosolic receptors, TLRs 1–10 (Davies et al., 2008;
Swangchan-Uthai et al., 2012; Oguejiofor et al., 2015b, 2017a), as
well as the cytosolic receptors: IFN-induced with helicase
C domain 1 (IFIH1 also known as MDA5), DExD/H-box helicase
58 (DDX58, also known as RIG-I), and leucine-rich repeat (in FLII)
interacting protein 1, LRRFIP1 (Cheng et al., 2017; Oguejiofor
et al., 2015b, 2017a). These receptors are known to detect extracel-
lular and intracellular pathogen-associated molecular patterns
(PAMPs) during innate immunity (Kumar et al., 2011).

Bovine endometrial cells respond to either E. coli or LPS
stimulation by increased expression of gene transcripts and pro-
teins of pro-inflammatory cytokines, type-I IFNs, AMPs, mucins,
APPs, and the prostaglandins PGF2α and PGE2 (Davies et al.,
2008; Swangchan-Uthai et al., 2012; Chapwanya et al., 2013; Fu
et al., 2013; Oguejiofor et al., 2015b). Bacterial LPS also induced
increased expression of many genes that may be involved in
innate defence against uterine bacterial infection including several
ISGs, IRFs, type-I IFN receptors, immunoproteasomes, comple-
ment factors, guanylate-binding proteins, cell adhesion molecules,
matrix metalloproteinases, growth factors, and genes involved in
the intracellular recognition of pathogens (Oguejiofor et al.,
2015b).

Recently, ncp BVDV has been established to readily infect
both epithelial and stromal cells of the bovine endometrium in
vitro, and to suppress the ability of these cells to mount an innate
immune response to bacterial LPS (Oguejiofor et al., 2015a). Viral
infection inhibited many genes that are typically up-regulated in
response to bacterial presence including genes involved in patho-
gen recognition, IFN response, inflammatory response, chemo-
kine activity, transcription regulation, tissue remodeling and cell
migration, and cell death/survival (Oguejiofor et al., 2015a). In
the bovine endometrial cells, type-I IFN stimulated expression
of many ISGs which play important roles in various immune,
especially antiviral pathways. However, in the cells infected with
ncp BVDV, the stimulatory effect was significantly inhibited or
neutralized (Cheng et al., 2017). Viral proteins produced by
BVDV are thought to interfere with TLR4 and myeloid differen-
tiation primary response 88 (MyD88) signaling pathways thereby
subverting cellular response to bacterial LPS (Schaut et al., 2015).
Consequently, viral suppression of endometrial innate immune
response may be another mechanism through which ncp BVDV
infection can compromise endometrial signaling, cytokine activ-
ity, and the mobilization of leukocytes toward the uterine
lumen to clear microbial contaminants.

Moreover, infection of endometrial cells with ncp BVDV
increased the mRNA expression of prostaglandin-endoperoxide
synthase 1 (PTGS1) and microsomal prostaglandin E synthase-1
(mPGES1), and attenuated aldo–keto reductase family 1, member
B1 (AKR1B1) expression, leading to increased PGE2 and
decreased PGF2α concentrations and an increase in PGE2:PGF2α
ratios in bovine uterine endometrium (Cheng et al., 2016).
Prostaglandins are known to modulate the immune response in
the endometrium. PGF2α enhances immune response whereas
PGE2 is an immune suppressor (Lewis, 2003; Herath et al.,
2009). In addition, PGE2 also inhibits luteal regression due to
its luteotropic effect on the corpus luteum (Arosh et al., 2004),
and persistent corpora lutea and over production of progesterone
in cases of uterine disease, can disrupt the reproductive cycle and
inhibit uterine immunity to cause subfertility (Opsomer et al.,
2000). Hence this switch in prostaglandin secretion may comprise
another mechanism whereby BVDV infection can predispose

affected cows to uterine infection. Inadequate endometrial innate
immune response leads to microbial persistence and endometritis
(LeBlanc, 2014). In addition, direct effects of bacterial LPS or
indirect effects of inflammatory mediators such as cytokines,
prostaglandins, and oxidative stress can disrupt sperm, ovarian,
uterine, and embryonic function leading to decreased fertility
(Gilbert, 2012).

Potential viral effects on maternal early pregnancy recognition

Infection of susceptible heifers and cows with BVDV a few days
before or after breeding was observed to cause significant decline
in conception rates. In BVDV-infected cows, animals bred before
they seroconverted had a 22% first-service conception rate com-
pared with a 79% rate in cows seropositive at the time of breeding
(Virakul et al., 1988). Moreover, the conception rates of 60% in
naturally infected cows and 44% in experimentally infected
cows were both lower than 79% observed in non-infected cows
at 21 days following insemination (McGowan et al., 1993a).
Hence, ncp BVDV infection of susceptible cows has been asso-
ciated with failure of early pregnancy (McGowan and Kirkland,
1995; Tsuboi et al., 2013) but the mechanisms have remained
largely undefined. Interestingly, recent in vitro studies have pro-
vided new evidence that may link BVDV infection with early
pregnancy losses in cows.

Following conception, the bovine embryo enters the uterus on
days 4–6 after breeding and must signal its presence for effective
maternal recognition and hence maintenance of pregnancy prior
to implantation. Interferon-τ (IFNT) is a member of the type-I
IFNs that have the same functional receptors in bovine endomet-
rium (Li and Roberts, 1994; Roberts et al., 2003). The bovine con-
ceptus trophectoderm begins IFNT secretion into the uterine
lumen on around day 8 of gestation, with secretion increasing sig-
nificantly during the period of trophectoderm elongation (Kimura
et al., 2004; Robinson et al., 2006). Following sufficient IFNT
stimulation of the endometrium (around day 16 of gestation),
there is inhibition of the development of oxytocin receptors
which prevents luteolysis and ensures the continued production
of progesterone needed for maintenance of pregnancy (Mann
et al., 1999; Forde et al., 2011; Lonergan and Forde, 2014).
Failure of pregnancy recognition results in luteolysis and loss of
progesterone, a significant risk factor for embryonic death
(Diskin et al., 2011). In addition to inhibition of luteolysis,
IFNT is thought to stimulate a receptive endometrium for
implantation by modulating maternal endometrial activity of hor-
mones and their receptors, type-I IFNs, cytokines, prostaglandins,
and nutrient transporters (Forde et al., 2011; Bazer, 2013;
Lonergan and Forde, 2014).

One mechanism through which ncp BVDV infection may dis-
rupt early pregnancy is by alteration of endometrial prostaglandin
production and signaling during pregnancy recognition in cows. In
previous reports from bovine studies, IFNT stimulated increased
expression of prostaglandin-endoperoxide synthase 2 (PTGS2),
the rate-limiting enzyme in PG synthesis, in the endometrium dur-
ing the peri-implantation period (Arosh et al., 2004; Emond et al.,
2004). Increased biosynthesis of PGE2 was cell specific and tem-
poral in endometrium, myometrium, and corpus luteum, suggest-
ing important roles of PGE2 in endometrial receptivity, myometrial
quiescence, and luteal maintenance during maternal recognition of
pregnancy (MRP) (Arosh et al., 2004). Evidence from studies in
small ruminants (sheep) showed the importance of interaction
between prostaglandins produced by the conceptus and
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endometrial epithelial and stromal cells and IFNT in the regulation
of endometrial gene expression and functions that promote con-
ceptus elongation, development and implantation (Simmons
et al., 2010; Dorniak et al., 2012; Bazer, 2013). Therefore, PGs
play crucial roles in early pregnancy in ruminants. The intra-
uterine inhibition of PTGS2 suppressed uterine PG production
and led to failure of elongation of ovine conceptuses (Dorniak
et al., 2011) and decreased pregnancy rate (Erdem and
Guzeloglu, 2010). IFNT stimulates PGE2 production by ovine
endometrial cells (Dorniak et al., 2011). In a recent in vitro
study, IFNT treatment also increased PGE2 secretion, and in add-
ition up-regulated the expression of PTGS1 and the PGE2 receptor
PTGER3 in bovine endometrial epithelial and stromal cells, sug-
gesting that IFNT activates the PGE2 signaling pathway (Cheng
et al., 2016). However, ncp BVDV infection suppressed the
IFNT-induced production of PGE2 and the expression of its recep-
tor PTGER3 in infected endometrial cells (Cheng et al., 2016).
Furthermore, whereas IFNT inhibits the oxytocin-stimulated pul-
satile release of PGF2α by the ruminant endometrium, the basal
secretion of PGE2 and PGF2α is known to increase during early
pregnancy (Ulbrich et al., 2009; Dorniak et al., 2011). However,
ncp BVDV infection also suppressed basal PGF2α secretion and
the expression of AKR1B1, the predominant isoform for PGF2α
production (Cheng et al., 2016). These new observations therefore
suggest that ncp BVDV infection may disrupt the recognition or
maintenance of pregnancy by suppressing IFNT-induced PG pro-
duction and signaling in the endometrium during early pregnancy.

Interestingly, another mechanism through which ncp BVDV
infection may disrupt early pregnancy is by alteration of the activ-
ities of ISGs in the endometrium during pregnancy recognition in
cows. During the period of MRP, IFNT is known to differentially
regulate the endometrial expression of many genes of which the
most upregulated genes were ISGs. These include MX dynamin
like GTPase 2 (MX2), bone marrow stromal cell antigen 2 (BST2),
radical S-adenosyl methionine domain containing 2 (RSAD2),
ISG15 ubiquitin-likemodifier (ISG15), 2′,5′-oligoadenylate synthe-
tase 1 (OAS1), ubiquitin specific peptidase 18 (USP18),
IFN-induced protein 44 (IFI44), IFN-stimulated exonuclease gene
20 (ISG20), sterile alpha motif domain containing 9 (SAMD9),
eukaryotic translation initiation factor 4E (EIF4E), and
IFN-induced protein with tetratricopeptide repeats 2 (IFIT2)
(Mansouri-Attia et al., 2009; Forde et al., 2011; Lonergan and
Forde, 2014). ISGylation and the up-regulation of ISG15 is an
important maternal response to the developing conceptus that is
conserved across mammalian pregnancy (Hansen and Pru, 2014).
These ISGs are thought to have important roles in ruminants during
early pregnancy in the regulation of uterine immunity, endometrial
stromal remodeling, and the development of endometrial glands
and uterine vasculature (Hansen, 2011; Bazer, 2013). Infection of
endometrial cells with ncp BVDV significantly inhibited
IFNT-stimulated expression of many tested ISGs including
ISG15, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, MX1, MX2,
RSAD2,OAS1Y, and SAMD9, in addition to ISG15-secreted protein
(Cheng et al., 2017). Our recent studies demonstrated that BVDV
interfered with the ISG regulatory pathway of IRF-STAT1 and
IRF-STAT2 to inhibit IFNT-induced ISG expression in the bovine
endometrium. In the bovine endometrial cells, IFNT treatment sig-
nificantly stimulated the expression ofmany important genes in this
pathway, including STAT1, STAT2, IRF9, TYK2, etc. However, in
the cells infected with ncp BVDV, the IFNT-induced expression
of those genes was significantly suppressed (Cheng et al., 2018).
This suggests yet another mechanism through which ncp BVDV

infection may disrupt MRP and early pregnancy by suppressing
the functions of ISGs in endometrial immunity and development
in early pregnancy.

Summary

Reproductive diseases can have damaging consequences on fertil-
ity in both dairy and beef cattle. Reproductive losses associated
with BVDV infection contribute to significant economic damage.
Although infection with BVDV is known to cause poor fertility in
cattle, a greater part of the underlying mechanisms, and differ-
ences in effect due to strain variations are still being investigated.
Several mechanisms have been suggested through which BVDV
infection may cause decreased fertility in cattle (Fig. 1). BVDV
infections induce immune dysfunction, and predispose cows to
other diseases that cause poor health and reduced fertility. Viral
infection may also kill the oocyte, embryo, or fetus directly, or
induce lesions that result in fetal abortion, mummification, terato-
genesis, and the birth of malformed calves. BVDV infection is
also thought to disrupt the reproductive endocrine system and
leukocyte and cytokine functions in the reproductive organs.
Recent studies provided evidence of viral-induced suppression
of endometrial innate immunity that may predispose to uterine
disease. Furthermore, there is new evidence that BVDV may
potentially disrupt the MRP or the immune protection of the con-
ceptus. To better describe how BVDV infection causes losses in
early pregnancy, it is recommended that more investigation be
carried out to further understand the interaction between
BVDV and the bovine conceptus and endometrium during
MRP and early pregnancy. Nevertheless, progress has been
made in some regions of the world toward to control of BVDV
for instance through elimination of PI animals in cattle herds
(Wernike et al., 2017). However, even in countries where
BVDV has been intensively controlled there is significant risk
of reintroduction of BVDV (Santman-Berends et al., 2017) to a
large number of naïve and susceptible cattle, underscoring the
importance of continual testing, and vigilance of cattle movement
and trade.
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Fig. 1. Mechanisms linking BVDV infection with infertility in cattle.
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