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Abstract. Collisionless magnetic reconnection via tearing instability in non-relativistic
electron–positron (pair) plasma with an anisotropic pressure is investigated. The
equilibrium magnetic field is considered to be sheared force-free, and a set of
linearized collisionless Magnetohydrodynamics equations describes the evolution of
reconnection dynamics. A linear analytical analysis, based on scaling, demonstrates
that in such a pair plasma, breaking the frozen in flow constraint for field lines
can be mainly provided by the non-gyrotropic pressure of electrons and positrons
(rather than the particle bulk inertia) when the current sheet width is smaller than
the particle Larmor radius (Δx < rL). This condition is satisfied when β > d 2

(d = c/ωp is the particle skin-depth with the electron/positron frequency ωp and
β = 8πP (0)/B2

0 � 1). Meanwhile, on top of the Lorentz force and in the absence of
the reconnection facilitating mechanism of the Hall effect, non-scalar pressure force
can accelerate bulk plasma into the diffusion region at the scale lengths of the order
of d. Therefore, the respective regime of tearing instability proceeds much faster
compared with the case of an isotropic pressure with a new dimensionless growth
rate of (γτA) ∼ d.

1. Introduction
Magnetic reconnection via tearing instability plays an
instrumental role in numerous laboratory and astrophys-
ical plasma physics phenomena. The stored magnetic
energy converts explosively into the kinetic and thermal
energy of plasma in short timescales (Priest and Forbes
2000; Zweibel and Yamada 2009; Yamada et al. 2010;
Lewis et al. 2012). The main problem is the observed
rate of reconnection, which typically exceeds by far the-
oretical predictions based on the single-fluid magneto-
hydrodynamic (MHD) models with classical resistivity
(Furth et al. 1963). Two-fluid description of a plasma
brings the Hall effect and the electron bulk inertia. The
former effect facilitates reconnection process, and the
latter one is an additional (on top of plasma resistivity)
mechanism of the magnetic field line breaking, usually
called collisionless reconnection.

There is, however, one special case in which the Hall
effect is absent from the outset, which is an electron–
positron plasma: equal masses of the negatively and
positively charged particles eliminate the Hall effect (see
Sec. 2). Although a pair plasma does not support the
Hall effect, fast reconnection in pair plasmas has been
reported in several simulations and theoretical works
(Bessho and Bhattacharjee 2007, 2010; Daughton and
Karimabadi 2007). In fact a pair plasma is an ideal
environment to study the physics of collisionless recon-
nection. On the other hand, the electron–positron plasma

is also of interest on its own in a number of astrophysical
objects such as jets from active galactic nuclei (Lesch
and Birk 1998; Wardle et al. 1998; Larrabee et al.
2003), plasma winds (Lyubarsky and Kirk 2001), gamma
ray bursts (Drenkhahn 2002), as well as in laboratory
experiments (Greaves and Surko 1995; Pedersen et al.
2012).

In a collisionless pair plasma, when the velocity dis-
tribution function of particles is not restored to an
isotropic one by sufficiently infrequent collisions, the
non-scalar pressure effects become important in re-
connection process. Some publications have discussed
magnetic reconnection in an electron–positron plasma
(Shukla et al. 1986, 1996; Stenflo et al. 1986; Yu et al.
1986; Pritchett 1995; Zenitani et al. 2001; Bessho and
Bhattacharjee 2005, 2007, 2010; Hosseinpour and Vek-
stein 2008; Karlicky 2008; Cai et al. 2009; Zenitani
et al. 2009), and, in particular, some of them considered
the anisotropic pressure effects (Bessho and Bhattachar-
jee 2005, 2007, 2010; Cai et al. 2009). Particle-in-cell
simulations of Bessho and Bhattacharjee (2005, 2007,
2010) showed that the fast reconnection can happen in
pair plasmas. Meanwhile, divergence of the electron–
positron pressure tensor essentially plays the role of
an effective collisionless resistivity in fast reconnection
process. Also, Cai et al. (2009) investigated the tearing
mode with pressure gradient effects in pair plasmas,
and concluded that in collisionless regime, where the
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electron inertia is dominant, effects of pressure gradient
are different for small and large pressure gradients.
Small pressure gradients can enhance the growth rate
of tearing mode, while the large pressure gradients
would reduce the growth rate. On the other hand,
Daughton and Karimabadi (2007) discussed that in the
large-scale electron–positron plasmas, the reconnection
rate is determined by the system size, the reconnection
is highly dynamic, and a steady-state reconnection is
never established. Furthermore, Shukla et al. (1996) by
assuming an isotropic pressure and a sheared magnetic
field found that the particle inertia can cause tearing
instability in a collisionless electron–positron plasma
even with negative values of the stability parameter,
Δ′ < 0.

In this study, by taking the electron and positron
anisotropic pressure effects into account, we analytically
analyze the linear evolution of reconnection dynam-
ics (i.e., studying evolution of the in-plane perturbed
magnetic fields and the plasma flow) due to tearing
instability in a sheared force-free magnetic field. We are
interested in a reconnection regime, for which the off-
diagonal components of the non-scalar pressure break
the frozen in flow condition rather than the bulk iner-
tia. On the other hand, the force exerted by the non-
scalar pressure, besides the Lorentz force, can accelerate
plasma flow toward the reconnection site, and therefore
the corresponding growth rate of this regime of tearing
mode so that the respective reconnection rate could
modify. Here the main aim is to investigate the instability
growth rate of tearing mode in the presence of non-
scalar electron/positron pressure tensor in governing
MHD equations (e.g., the generalized Ohm’s law and the
equation of plasma motion). To do so, we have made
some simplifying assumptions in our analysis (see Sec.
2), the major of which is the constant-ψ approximation.
In Sec. 2, we sketched the model and basic equations.
Then Sec. 3 gives analytical analysis of MHD equations
and discussion of this analysis, and a brief summary is
followed in Sec. 4.

2. The model and basic equations
We consider a tearing unstable slab of a highly conduct-
ive electron–positron plasma, which is embedded in a
sheared force-free magnetic field,

B(0)(x) = ẑB(0)
z (x) + ŷB(0)

y (x), (2.1)

with

B(0)
y = B0f(x), B

(0)
z = B0[1 − f2(x)]1/2, (2.2)

and surrounded by two perfectly conducting walls at
x = ±l. It is assumed that f(x) is an odd function of
x, so for the tearing perturbation of the form exp(iky +
γt) reconnection occurs at the resonant surface, x = 0,
where the poloidal field component B(0)

y changes its sign.
The dynamics of an electron–positron plasma follows

from the equation of motion for these two species,

nm

(
∂Ve

∂t
+ Ve · ∇Ve

)
= −ne

(
E +

1

c
Ve × B

)
− ∇ · Pe,

(2.3)

nm

(
∂Vp

∂t
+ Vp · ∇Vp

)
= ne

(
E +

1

c
Vp × B

)
− ∇ · Pp.

(2.4)
By summing up (2.3) and (2.4), one gets the equation of
motion of a pair plasma,

ρ

[
dV

dt
+

1

4n2e2
(j · ∇)j

]
=

1

c
j × B − ∇ · (Pe + Pp), (2.5)

while their subtraction yields the generalized Ohm’s law,

E +
1

c
V × B =

m

2ne2

[
∂j

∂t
+ (V · ∇)V + (j · ∇)V

]

+
1

2ne
∇ · (Pp − Pe). (2.6)

Here V = (Ve + Vp)/2 is the plasma bulk velocity and
j = ne(Vp − Ve) is the current density, which represents
the rotation of magnetic field via the Ampère’s law,
j = (c/4π)∇ × B. Together with the induction equation

∂B

∂t
= −c∇ × E, (2.7)

(2.5)–(2.7) provide a coupled set of equations describ-
ing collisionless reconnection in a non-relativistic pair
plasma. As seen from (2.6), a pair plasma does not
support the Hall effect (i.e., the absence of j × B term):
The magnetic field lines remain frozen into bulk plasma
flow unless the electron/positron bulk inertia or non-
scalar pressure tensor are taken into account. The Hall
effect cancellation means that there is no perturbation
in the z component of magnetic field (quadruple guide
field). Furthermore, plasma motion in the (x– y) plane
can be assumed incompressible. The electron/positron
thermal pressure is defined as

Pe,p = m

∫
(u − V)e,p(u − V)e,pf(u, r, t)e,pd

3ue,p, (2.8)

where Ve,p =
∫

ue,pf(u, r, t)e,pd
3ue,p/

∫
f(u, r, t)e,pd

3ue,p, and
f(u, r, t)e,p is the electron/positron anisotropic distri-
bution function. Temporal evolution equation for the
pressure tensor of particles can be derived by taking the
second moment of the Vlasov equation in the center of
mass system of electrons/positrons, which yields

∂P
e,p
αβ

∂t
= − ∂

∂xl

(
Q
e,p
αβl + Vl,epP

e,p
αβ

)
− P

e,p
αl

∂Vβ,ep

∂xl

−P
e,p
βl

∂Vα,ep

∂xl
− e

mc
Bl

(
εαjlP

e,p
jβ + εβjlP

e,p
jα

)
,

(2.9)

where the electron heat flux tensor is

Qe,p = m

∫
(u − V)e,p(u − V)e,p(u − V)e,pf(u, r, t)e,pd

3ue,p.

(2.10)
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Our present analysis concentrates on a closure at the
level of the second-order moment and, therefore, we
ignore the electron/positron heat flux tensor contribu-
tion for the sake of simplicity. One can assume that in
the vicinity of the resonant surface, x = 0, the initial
magnetic field B(0) has a uniform shear: f(x) ≈ αx, i.e.,
B(0)
y ≈ B(0)αx, B(0)

z ≈ B(0), where α−1 is the magnetic
shear length. An initially almost uniform plasma with a
gyrotropic pressure tensor (P (0),e,p

αβ = δαβP
(0)) is assumed.

In what follows, it is useful to introduce two non-
dimensional parameters: ε ≡ αl, which is a measure of
the magnetic shear inside the reconnection current sheet,
and d ≡ d/l, the scaled inertial skin-depth of particles,
which is always small (d� 1) for all applications of
interest. It is convenient to express the magnetic field
as

B(x, y, t) = ∇ψ(x, y, t) × ẑ + Bzẑ, (2.11)

where the poloidal flux function is

ψ(x, y, t) = ψ0(x) + ψ1(x) exp (iky + γt) (2.12)

[ψ0 = −B0

∫
f(x)dx ≈ −B0αx

2/2]. In addition, the bulk
velocity of incompressible plasma V is represented as

V = (∇φ× ẑ) + Vzẑ, (2.13)

where the stream function φ(x, y, t) = φ(x) exp (iky+ γt)
corresponds to the vortical component of the poloidal
plasma flow. Note that initially the equilibrium plasma
flow is zero.
The linearized version of (2.5) and (2.7) reads as

γψ1 = −cE(1)
z = ikB0αxφ+

γmc2

4πn2
∇2ψ1

+
c

2ne

(
∂P (1),p

xz

∂x
+
∂P (1),p

xy

∂y
− ∂P (1),e

xz

∂x
−
∂P (1),e

xy

∂y

)
,

(2.14)

γφ1 =
icB0αx

8πnmk
∇2ψ1

− 1

2nm

(
∂P (1),p

xx

∂x
+
∂P (1),p

yx

∂y
+
∂P (1),e

xx

∂x
+
∂P (1),e

yx

∂y

)
.

(2.15)

Equations (2.14) and (2.15) are the x components of
(2.7) and (2.5) respectively. The first term on the right-
hand side of (2.14) is due to the advective bulk plasma
flow, the second term is due to the particle bulk inertia,
and the last term is related to the non-scalar pressure
of electrons and positrons. A contribution made by
the advective part of the inertial term (V · ∇)V is of
the order of ε2 and, therefore, can be neglected here.
Similar to this, the corresponding contributions due
to (j · ∇)j and (j · ∇)V terms in (2.14) and (2.15) are
also of the order of ε2. Furthermore, the two terms on
the right-hand side of (2.15) are related, respectively,
to the Lorentz force and the non-gyrotropic pressure

gradients. In order to analyze (2.14) and (2.15) one needs
to find out the pressure tensor perturbations, P (1),ep

αβ .
This can be done by linearizing (2.9) about the initial
equilibrium. We assume that the tensor perturbation
components have the form P

(1),ep
αβ = P

(1),ep
αβ (x) exp (iky +

γt). Inside the current sheet, the initial out-of-plane field
B(0)
z is dominant, so one can put there B(0) = B0ẑ. The

linearized (2.9) for P (1),ep
αβ takes the form

γP
(1),ep
αβ = −P (0)

(
∂V

(1)
β,ep

∂xα
+
∂V (1)

α,ep

∂xβ

)

−ωB
(
εαjzP

(1),ep
jβ + εβjzP

(1),ep
jα

)
, (2.16)

with ωB = eB0/mc. As seen from (2.16), the pressure
tensor perturbation is caused by the non-uniformity of
the bulk flow of particles, which is counter-balanced
by the isotropization effect of perpendicular (out-of-
plane) magnetic field. A straightforward solution of
(2.16) yields the following expressions for P (1),ep

αβ :

P (1),ep
xx = −P (1),ep

yy =
P (0)

2ωB

(
∂V (1)

y,ep

∂x
+
∂V (1)

x,ep

∂y

)

− γP (0)

2ω2
B

∂V (1)
x,ep

∂x
, (2.17)

P (1),ep
xy = −P (0)

ωB

∂V (1)
x,ep

∂x
− γP (0)

4ω2
B

(
∂V (1)

y,ep

∂x
+
∂V (1)

x,ep

∂y

)
,

(2.18)

P (1),ep
xz =

P (0)

ωB

∂V (1)
z,ep

∂y
− γP (0)

ω2
B

∂V (1)
z,ep

∂x
, (2.19)

P (1),ep
yz = −P (0)

ωB

∂V (1)
z,ep

∂x
− γP (0)

ω2
B

∂V (1)
z,ep

∂y
, (2.20)

where the electron and positron bulk velocity perturba-
tions, V(1)

e,p = V ∓ j/2ne, are

V (1)
x,ep =

∂φ

∂y
, V (1)

y,ep = −∂φ

∂x
,

(2.21)

V (1)
z,ep = − c

4πne

(
∂2ψ1

∂x2
− k2ψ1

)
.

After inserting (2.17)–(2.21) into (2.14) and (2.15), the
closed system of equations is obtained for the magnetic
field perturbation ψ1 and the stream function φ. By
introducing non-dimensional variables with length nor-
malized by l, ψ1 by B0l, φ by γl2, these equations then
become

ψ1(0) = ikεxφ+ d 2ψ′′
1 − 1

4
β d 4ψIV1 , (2.22)

φ = − iεx

k(γτA)2
ψ′′

1 +
1

4
β d 2φ′′. (2.23)

Here, τA = l/VA = l(4πnm)1/2/B0 is the Alfvèn transit
time, β = 8πP (0)/B2

0 . It is also assumed that ∇2 ≈ d 2/dx2

since k(Δx) � 1, where (Δx) is the current sheet width.
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We are restricted to the case of a moderate magnitude
of the stability parameter Δ′ so that the ‘constant-
ψ’ approximation can be used. To simplify analytical
analysis in the next section, we put k ∼ ε ∼ 1. It is
worth noting the symmetry of the functions involved in
(2.22) and (2.23). The poloidal flux function ψ(x) has
even parity, while the stream function φ(x) is an odd
function of x. Therefore, terms with ‘wrong’ parity are
omitted.

3. Analytical analysis and discussion
Three terms on the right-hand side of (2.22), as men-
tioned above, represent different effects involved in the
magnetic field evolution: advection by the bulk flow
of plasma (the first term), bulk inertia of electron (the
second term), and contribution of the particle pressure
tensor (the third term). The last two effects actually
can break the frozen in flow condition. Similar to this,
the two terms on the right-hand side of (2.23) are
related to the Lorentz force and the non-gyrotropic
electron/positron pressure force, which can accelerate
the plasma flow. We restrict discussion to the case where
the non-scalar particle pressure is the main mechanism
for breaking the frozen-in flow constraint rather than
the bulk inertia. It means that the following inequality
must be satisfied in (2.22):

d 2ψ′′
1 � β d 4ψIV1 ≈ β d 4 ψ′′

1

(Δx)2
,

or

(Δx) � β1/2 d = rL, (3.1)

where rL is the particle gyroradius. Hence, if the current
sheet width (Δx) is smaller than the particle gyroradius
rL, then the bulk inertial effect is not significant com-
pared to the non-gyrotropic pressure effect, and so can
be ignored in (2.22). The following analysis, basically,
considers such small scale-length processes.

Now let us consider a case for which the non-scalar
particle pressure effect is as significant as the Lorentz
force in the reconnection dynamics. Thus, by putting
equal the two terms on the right-hand side of (2.23)

Δx

(γτA)2
ψ′′

1 ∼ β d 2φ′′, (3.2)

one gets

φ ∼ (Δx)3

β d 2(γτA)2
ψ′′

1 . (3.3)

By omitting the inertial term (the second term) in (2.22),
the first and third terms can balance each other as

(Δx)φ ∼ (Δx)4

β d 2(γτA)2
ψ′′

1 ∼ β d 4ψIV1 , (3.4)

with φ being replaced from (3.3), and it yields

(γτA) ∼ (Δx)3

β d 3
. (3.5)

In order to obtain the respective instability growth rate,
one needs to estimate the corresponding current sheet

width (Δx) as follows: The last term on the right-
hand side of (2.22), which can be written as β d 4ψIV1 ∼
β d 4ψ′′

1/(Δx)
2 ∼ β d 4ψ1(0)Δ′/(Δx)3 (note that Δ′ = ψ

(−1)
1

(0)
∫
ψ′′

1dx ≈ ψ′′
1Δx/ψ1(0)) provides the reconnected po-

loidal flux. Therefore, this term balances the left-hand
side of this equation

β d 4ψ1(0)Δ′/(Δx)3 ∼ 1,

i.e.,

(Δx) ∼ β 1/3d 4/3. (3.6)

Now, after inserting (3.6) into (3.5), the following scaling
for the growth rate of tearing instability obtains

(γτA) ∼ d. (3.7)

Note that in the absence of non-gyrotropic pressure of
electrons and positrons, the bulk inertial effect becomes
important. In this case, the growth rate of collision-
less tearing instability is (γτA) ∼ d 3 for ε ∼ 1 and
k ∼ 1 (Shukla et al. 1996). By reminding that d� 1,
the growth rate of collisionless tearing mode in the
presence of the non-scalar electron/positron pressure is
much greater than the case with a scalar pressure, i.e.,
(γ)nonscalar/(γ)scalar ≈ d/d 3 = d −2 � 1.

4. Summary
We investigated linear analytical analysis of the col-
lisionless tearing instability in an incompressible and
non-relativistic electron–positron plasma (pair plasma).
A planar slab of a uniform plasma is considered with a
sheared force-free equilibrium magnetic field. The non-
scalar electron and positron pressure tensors are kept
in governing MHD equations: the generalized Ohm’s
law and the equation of motion. Due to cancellation of
the Hall effect, there would not be a perturbed guide
magnetic field and, therefore, the reconnection dynamics
is described by the evolution of the poloidal magnetic
field and the plasma flow. Note that the initial out-
of-plane magnetic field tends to isotropize the plasma.
Under the parametric condition of β > d 2, which leads
to a current sheet width smaller than the particle Larmor
radius, one can ignore of the particle bulk inertial effect
in violation of the frozen in constraint. Instead, this
role can be played by the non-gyrotropic pressure of
particles. On top of the Lorentz force, non-gyrotropies
in the electron and positron pressure, at the scale length
of the particle inertial skin-depth, can force plasma flow
to accelerate. Subsequently, this flow advects field lines
to the diffusion region (reconnection site), where the
non-gyrotropic pressure effects support the reconnection
mechanism. For this regime of tearing mode, our scaling
resulted in a new dimensionless growth rate of (γτA) ∼ d,
which is, in fact, much faster than the case where the
non-gyrotropic effects are insignificant, or basically the
plasma pressure is scalar. In other words, the bulk
inertia-driven tearing mode grows with the rate of ∼ d 3

(Shukla et al. 1996), which is clearly much smaller than
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the growth rate of the non-scalar pressure driven mode,
∼ d, since d� 1.
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