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Magnetic field ripple is inherent in tokamaks since the toroidal magnetic field is
generated by a finite number of toroidal field coils. The field ripple results in
departures from axisymmetry that cause radial transport losses of particles and
heat. These ripple losses are a serious concern for alphas near their birth speed v0
since alpha heating of the background plasma is required to make fusion reactors
into economical power plants. Ripple in tokamaks gives rise to at least two alpha
transport regimes of concern. As the slowing down time τs is much larger than the
time for an alpha just born to make a toroidal transit, a regime referred to as the
1/ν ∝ τs regime can be encountered, with ν the appropriate alpha collision frequency.
In this regime the radial transport losses increase as v0τs/R, with R the major radius
of the tokamak. The deleterious effect of ripple transport is mitigated by electric and
magnetic drifts within the flux surface. When drift tangent to the flux surface becomes
significant another ripple regime, referred to as the

√
ν regime, is encountered where

a collisional boundary layer due to the drift plays a key role. We evaluate the alpha
transport in both regimes, taking account of the alphas having a slowing down rather
than a Maxwellian distribution function and their being collisionally scattered by a
collision operator appropriate for alphas. Alpha ripple transport is found to be in the
√
ν regime where it will be a serious issue for typical tokamak reactors as it will be

well above the axisymmetric neoclassical level and can be large enough to deplete
the alpha slowing down distribution function unless toroidal rotation is strong.

Key words: fusion plasma, plasma confinement

1. Introduction
Tokamak fusion reactors desire to operate such that the alpha particles born at

high energy slow down by electron and then ion drag and thereby deposit nearly
all their energy in the background plasma before being lost. However, near the edge
of a tokamak, magnetic field ripple, δ � 1, due to the finite number, N � 1, of
toroidal field coils can result in trapping in small localized ripple wells that can
lead to collisional ripple losses (larger than the axisymmetric collisional losses) by
mechanisms considered by Galeev et al. (1969), Stringer (1972), Connor & Hastie
(1973), and Ho & Kulsrud (1987). These collisional ripple loss calculations did not
consider alpha particles which have a slowing down tail background distribution
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2 P. J. Catto

function rather than a Maxwellian background distribution. In the following sections
we formulate and solve for collisional transport in a ripple tokamak by considering
both the 1/ν and

√
ν regimes, where ν refers to the relevant collision frequency and

the regime is characterized by the ν dependence of its diffusivity.
In the 1/ν regime the radial magnetic drift departure or step, primarly due to

the gradient of the magnetic field (that is, the ∇B magnetic drift), is determined by
collisions. The evaluation of ripple transport of alphas in the 1/ν regime when pitch
angle scattering by the ions dominates is a re-application of the method of Stringer
(1972) as substantially improved by Connor & Hastie (1973). When electron drag
dominates a similar, but approximate, calculation is performed. Ripple transport of
alphas in the

√
ν regime is based on a careful collisional boundary layer analysis as

recently put forth by Calvo et al. (2017), rather than the approximate treatments of
Galeev et al. (1969) and Ho & Kulsrud (1987). In the

√
ν regime the E×B drift in a

flux surface reduces the radial step so it is no longer determined by collisions where
E and B are the electric and magnetic fields. In this regime the E× B drift is large
enough that a narrow velocity space boundary layer arises so that only pitch angle
scattering collisions need be considered. Our evaluation in the 1/ν regime allows
general ripple, qNδ ∼ ε � δ; while that in the

√
ν regime assumes strong ripple,

qNδ� ε� δ, where ε' a/R is the inverse aspect ratio with a the minor radius near
the separatrix, R the major radius, and q the safety factor. We do not consider the
weak ripple limit (qNδ � ε) of Linsker & Boozer (1982) that evaluates 1/ν ripple
transport due to small radial magnetic drift steps causing small poloidal angle phase
shifts in banana turning point locations after many bounces. The transport associated
with this effect differs from the weak ripple (qNδ � ε) limit of our general 1/ν
regime evaluation because we do not consider ripple effects on the turning points of
alphas with banana trapped orbits in the nearly axisymmetric tokamak magnetic field.
Indeed, based on the Linsker & Boozer (1982) estimate of their equation (5) or (26)
such effects are expected to be rather small. In the pedestal, if q∼ 5–7, ε∼ 1/3, and
δ ∼ 1/100, with N ∼ 16–20 (see Paul et al. (2017) for more specific numbers), then
ε/qNδ ∼ 1/3 − 1/4. Toroidal field coil ripple can be somewhat smaller (by adding
coils, for example) so we will order ε/qNδ∼ 1 when it is possible to do so and still
obtain simple analytic results that are useful for insight and numerical checks.

Sections 2 and 3 present some background on alpha particle behaviour and the
drift kinetic formalism we use to consistently retain the various collisional transport
processes. These sections also serve to introduce most of the notation. In § 4 we
give phenomenological estimates for all the transport processes we evaluate in the
latter sections. In § 5 we briefly review axisymmetric tokamak collisional transport as
evaluated in greater detail by Hsu, Catto & Sigmar (1990). We then go on to § 6 to
consider 1/ν transport in the pitch angle scattering and electron drag dominated limits,
and give a brief explanation of the difficulty of treating both at the same time, even
with a boundary layer analysis about the ripple trapped–passing boundary. Section 7
presents the evaluation of transport in the

√
ν regime for qNδ� ε� δ. The analysis

is performed by assuming the E×B drift in a flux surface is strong enough to create
a boundary layer narrower than that due to ripple, δ1/2. Due to the careful boundary
layer analysis the

√
ν regime picks up a logarithmic correction that depends on ripple,

collisions, and E × B drift as first pointed out by Calvo et al. (2017). Our results
are summarized in § 8, where we indicate that the two ripple transport mechanisms
considered are a serious concern for tokamak reactors. Appendix A gives more details
on the procedure of Stringer (1972) and Connor & Hastie (1973) as needed to extend
their analysis to handle particle transport.
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Ripple modifications to alpha transport in tokamaks 3

2. Alpha background
The isotropic slowing down tail solution fs = fs(r, v) satisfies

Ze
Mc

v×B · ∇v fs =C{fs} +
Sδ(v − v0)

4πv2
, (2.1)

where the coefficient of the δ(v − v0) function is the fusion birth rate for alphas:

S= S(ψ)= nT(ψ)nD(ψ)〈σv〉DT . (2.2)

The alphas of mass M and charge number Z are born with birth speed v0. The alpha
collision operator is C, with c the speed of light, e the charge on a proton and B the
magnetic field.

We expect alphas to be born on surfaces of constant pressure so that they have the
usual slowing down distribution function on a flux surface to lowest order for small
poloidal gyroradius and ripple (δ ∼ ε/qN):

fs = fs(ψ, v)=
S(ψ)τs(ψ)H(v0 − v)

4π[v3 + v3
c (ψ)]

, (2.3)

with ψ the poloidal flux function, H(v0− v) the Heaviside step function, τs the alpha
slowing down time

τs = τs(ψ)=
3MT3/2

e (ψ)

4(2πm)1/2Z2e4ne(ψ)`nΛ
(2.4)

and vc the critical speed defined by summing over background ions

v3
c = v

3
c (ψ)=

3π1/2T3/2
e (ψ)

(2m)1/2ne(ψ)

∑
i

Z2
i ni(ψ)

Mi
. (2.5)

Electron and bulk ion densities and temperatures are denoted by nj and Tj, with m
the electron mass and Mi the mass of a bulk ion of charge Zi. The density of slowing
down alphas is

ns =

∫
d3v fs = Sτs

∫ v0

0

v2 dv
(v3 + v3

c )
=

Sτs

3
`n[1+ (v3

0/v
3
c )] ' Sτs`n(v0/vc), (2.6)

where we assume v3
0 � v3

c as is the case for the deuterium–tritium (D–T) fusion
reaction. Self-collisions are unimportant for the alphas. They are effectively a trace
population since ns/ne ∼ Ti/Mv2

0 � 1, based on the alpha heating estimate nsMv2
0 ∼

neTi.
To obtain the slowing down distribution function the usual collision operator for

alphas is employed (see Cordey 1976), namely,

C{f } =
1
τs
∇v ·

[(
v3
+ v3

c

v3

)
vf +

v3
λ

2v3
(v2I− vv) · ∇v f

]
, (2.7)

where

v3
λ = v

3
λ(ψ)=

3π1/2T3/2
e (ψ)

(2m)1/2Mαne(ψ)

∑
i

Z2
i ni(ψ). (2.8)

To obtain this form and generalizations of it expansions of the collision operator are
employed for ve� v� vi, where ve=

√
2Te/m and vi=

√
2Ti/Mi are the electron and

typical bulk ion thermal speeds. Typically, v0 & vc∼ vλ, with v0/vc∼ 3 for D–T fusion.
Equation (2.3) is the solution of (2.1) with (2.7) inserted since a delta function sink
resides in τ−1

s v3
c∇v · (v

−3vf )→−4πτ−1
s v3

c f (ψ, v = 0)δ(v) as v→ 0.
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3. Drift kinetic formulation
For the Vlasov operator we use the drift kinetic equation of Hazeltine (1973) in r,

v or

E= v2/2+ ZeΦ(ψ)/M, (3.1)
µ= v2

⊥
/2B, (3.2)

and gyrophase ϕ variables, with an electrostatic electric field

E=−∇Φ(ψ)−∇φ(r), (3.3)

where the total electrostatic potential is Φ(ψ)+ φ(r) with φ(r) a periodic function of
the poloidal, ϑ , and toroidal, ζ , angles that also depends on the poloidal flux function
ψ . Then

(v‖b+ vd) ·

(
∇f −

Ze
Mv

∂f
∂v
∇φ

)
=
v‖

B
∇ ·

{
f
[

B+
Mc
Ze
∇× (v‖b)

]}
−

Ze
Mv

v‖b · ∇φ
∂f
∂v
=C{f } +

Sδ(v − v0)

4πv2
, (3.4)

where f is the alpha distribution function, C{f } is the linear collision operator (2.7)
for alphas, and

vd =
v‖

Ω
∇× (v‖b)=

c
B2

B×∇Φ +
µ

Ω
b×∇B+

v2
||

Ω
b× (b · ∇b)+

v2
‖

Ω
bb · ∇× b. (3.5)

The preceding form of the drift kinetic equation is adequate for our purposes as it
gives the correct electric and magnetic drifts. It does not give the proper small parallel
velocity correction (v2

⊥
/2Ω)bb · ∇× b, to the parallel streaming term, as discussed in

Boozer (1980), Parra & Catto (2008), and Landreman & Catto (2013). We neglect
this small parallel streaming correction from here on as it is of no importance, and
we assume Zeφ� ZeΦ ∼ Ti ∼ Te. In addition, we may view v = v(E, ψ) by using

v =
√

2[E− ZeΦ(ψ)/M] (3.6)

whenever we need to keep non-radial components of the (c/B)b×∇Φ drift. Moreover,
we use

v2
‖
= v2
− 2µB= 2[E− (ZeΦ/M)−µB]. (3.7)

The turning points of a trapped particle are always at the same value of B as it moves
on a flux surface even in the presence of precession.

In the preceding, the magnetic field is

B=B(ψ, ϑ, ζ )= Bb= |B|b, (3.8)

and the alpha gyrofrequency is

Ω = ZeB/Mc. (3.9)

Using ψ , ϑ , and ζ as the variables, with

α = ζ − qϑ, (3.10)
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Ripple modifications to alpha transport in tokamaks 5

and q= q(ψ) the safety factor, the Clebsch and Boozer (1981) representations for the
magnetic field are

B=∇α×∇ψ =K(ψ, ϑ, ζ )∇ψ +G(ψ)∇ϑ + I(ψ)∇ζ , (3.11)

with K(ψ, ϑ, ζ ) periodic in ϑ and ζ . The preceding give

B · ∇ϑ =∇α×∇ψ · ∇ϑ =∇ψ ×∇ϑ · ∇ζ (3.12)

and
B · ∇ζ = q∇ψ ×∇ϑ · ∇ζ = qB · ∇ϑ, (3.13)

as well as B · ∇α = 0=B · ∇ψ . In addition,

B2
= (G+ qI)B · ∇ϑ, (3.14)

with G/qI ∼ rBp/qRBt ∼ ε
2/q2
� 1, ε the inverse aspect ratio, and Bp and Bt the

poloidal and toroidal magnetic fields. In addition, we are ignoring finite gyroradius
corrections, but will retain finite poloidal gyroradius effects by assuming q/ε� 1.

The ripple δ due to N toroidal field coils is defined as

δ = (Bmax − Bmin)/(Bmax + Bmin), (3.15)

with δ� ε. We consider the ripple trapping wells as being due to the toroidal magnetic
field that is produced by the N toroidal field coils. We will often make use of the
simple form

B= B0[1− ε(ψ) cos ϑ − δ(ψ) cos(Nζ )], (3.16)

to obtain explicit results. This simple form allows magnetic field minima away from
ϑ=0. For ripple extending to the magnetic axis a form such as δ' δ0+ (δa− δ0)(r/a)p
can be used with p an integer and poloidal variation of the ripple ignored. Forms with
poloidally dependent ripple are not considered in order to obtain carefully evaluated
analytic results. However, the evaluations in the 1/ν are performed quite generally,
with the simple form of (3.16) only being used to get explicit results in the final
steps. Following Stringer (1972) and Connor & Hastie (1973), the extrema in the
magnetic field are found from B · ∇B= 0 at fixed α to be given by ε sin ϑB · ∇ϑ +
Nδ sin(Nζ )B · ∇ζ = 0 or

ε sin ϑ + qNδ sin(Nζ )= 0. (3.17)

If qNδ � ε then the ripple wells are only near ϑ = 0 and ϑ = ±π. However,
for qNδ > ε ripple wells exist for all ϑ . To see this more clearly we note that
because N � 1 the ripples have a short toroidal extent compared to the tokamak
circumference so the variation ϑ of a trapped alpha during its bounce motion in
a ripple is small while Nζ varies by a full bounce period. To introduce magnetic
field minima containing ripple trapped particles at all ϑ requires qNδ > ε|sin ϑ |> ε.
Consequently, we will assume the ordering qNδ∼ ε when possible, and use qNδ � ε
to further simplify expressions. Retaining a slow poloidally varying ripple introduces
a small order δ correction to (3.17). We do not expect it to result in a qualitative
change in our results.

In an axisymmetric tokamak of inverse aspect ratio ε there is a single well and the
fraction of particles that are trapped is ε1/2. In a tokamak with N field ripples the
trapped fraction in each ripple well is δ1/2. Consequently, transit averages in simple
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6 P. J. Catto

ripple wells such as B ' B0[1 − δ cos(Nζ )] are very similar to those in standard
axisymmetric tokamak wells B' B0(1− ε cos ϑ).

To retain axisymmetric and ripple transport systematically it is convenient to
separate f into two terms by introducing one function f∗ that only depends on
what would be the constants of motion if we were in the axisymmetric limit and a
remainder function h. Therefore, we let

f = f∗(ψ∗, v)+ h(r, v, µ, σ ), (3.18)

where f∗ ' fs� h,
σ = v‖/|v‖|, (3.19)

and a variable that is not the drift kinetic constant of the motion in the presence of
ripple,

ψ∗ ≡ψ − I(ψ)v‖/Ω. (3.20)

Because our tokamak is rippled (v‖b+ vd) · ∇ψ∗ 6= 0. Then we may write

(v‖b+ vd) · ∇f∗ +
v‖

B
∇ ·

{
h
[

B+
Mc
Ze
∇× (v‖b)

]}
−

Ze
Mv

v‖b · ∇φ
∂f
∂v
=C{f } +

Sδ(v − v0)

4πv2
, (3.21)

where in going from (3.4) to (3.21) only a small term proportional vd · ∇φ to is
neglected.

Recall that in an axisymmetric tokamak

B→ I(ψ)∇ζ +∇ζ ×∇ψ, (3.22)

and the alphas try to move on a surface of constant canonical angular momentum

ψ∗→ψ − (Mc/Ze)R2
∇ζ · v =ψ − I(ψ)v‖/Ω +Ω−1b×∇ψ · v 'ψ − I(ψ)v‖/Ω,

(3.23)
where we used R2∇ζ → B−1(I b− b×∇ψ) and neglect gyromotion in the last form
on the right.

To rewrite the kinetic equation we use

(v‖b+ vd) · ∇ψ∗ = vd · ∇(ψ − Iv‖/Ω)− v‖b · ∇(Iv||/Ω). (3.24)

In an axisymmetric tokamak vd · ∇ψ→ v‖b · ∇(Iv‖/Ω) and vd · ∇(Iv||/Ω)→ 0 (see
appendix B of Parra & Catto (2010)). Due to ripple we must keep the difference vd ·

∇ψ − v‖b · ∇(Iv‖/Ω). However, we can neglect vd · ∇(Iv‖/Ω) as small since it can
only depend on the departure from axisymmetry and it is also small in the drift. As
a result, we find

v‖b · ∇h+
[
vd · ∇ψ − v‖b · ∇

(
Iv‖
Ω

)]
∂f∗
∂ψ∗
+
v‖

Ω
∇ · [h∇× (v‖b)]

−
Ze
Mv

v‖b · ∇φ
∂f∗
∂v
=C{f } +

Sδ(v − v0)

4πv2
, (3.25)

where we have also neglected v‖b · ∇φ∂h/∂v as small since we assume both h and
φ are small.
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Ripple modifications to alpha transport in tokamaks 7

It is convenient to be able to relate fs and f∗ by Taylor expansion by defining

f∗ = fs(ψ→ψ∗, v)=
S(ψ∗)τs(ψ∗)H(v0 − v)

4π[v3 + v3
c (ψ∗)]

= fs(ψ, v)+ (ψ∗ −ψ)
∂fs

∂ψ
+ · · · , (3.26)

from which it follows that our kinetic equation becomes

v‖b · ∇h+
[
vd · ∇ψ − v‖b · ∇

(
Iv‖
Ω

)]
∂fs

∂ψ
+
v‖

Ω
∇ · [h∇× (v‖b)]

−
Ze
Mv

v||b · ∇φ
∂fs

∂v
=C{f∗ − fs + h}, (3.27)

where we use the approximations

∂f∗/∂ψ∗ ' ∂fs/∂ψ (3.28)

and
∂f∗/∂v ' ∂fs/∂v, (3.29)

that are consistent with assuming (Iv‖/Ω)f−1
s ∂fs/∂ψ� 1. In an axisymmetric tokamak

the left side of (3.27) reduces to

v‖b · ∇
(

h−
Zeφ
Mv

∂fs

∂v

)
' v‖b · ∇h, (3.30)

as the streaming term is larger than the drift term and the φ term is unimportant.
We always assume that to lowest order the slowing distribution function fs holds. In
the next section and in the summary we will discuss that the consistency of this
assumption requires that the radial diffusion is weak compared to slowing down and
results in an important constraint.

We will often make use of ψ , ϑ , and ζ independent variables. In these variables,
the divergence of an arbitrary vector A can be written as

∇ ·A=B · ∇ϑ
[
∂

∂ψ

(
A · ∇ψ
B · ∇ϑ

)
+
∂

∂θ

(
A · ∇ϑ
B · ∇ϑ

)
+
∂

∂ζ

(
A · ∇ζ
B · ∇ϑ

)]
. (3.31)

Then, for example,

∇ψ · ∇× (v‖b)=∇ · (v‖b×∇ψ)=B · ∇ϑ
[
∂

∂ϑ

(
I v‖
B

)
−

∂

∂ζ

(
Gv‖
B

)]
. (3.32)

Using these variables and assuming streaming dominates for the alphas gives the
lowest order equation to be

v‖b · ∇h̄= v||b · ∇ϑ

(
∂ h̄
∂ϑ
+ q

∂ h̄
∂ζ

)
= 0. (3.33)

For the passing alphas, h→ hp and it must be a periodic flux function to lowest order
as the passing trace out a flux surface. Therefore, we write

hp = h̄p(ψ, v, µ, σ )+ h̃p(ψ, ϑ, ζ , v, µ, σ ). (3.34)
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The lowest order trapped alpha distribution function, h→ h̄t, must be even in v‖ and
need not be periodic in ϑ and ζ . For it we must allow

ht = h̄t(ψ, α, v, µ)+ h̃t(ψ, α, ϑ, v, µ, σ ). (3.35)

To annihilate the streaming term to next order we introduce the transit average along
the exact B:

Ā=

∮
α

d`A/v‖∮
α

d`/v‖
=

∮
α

dτ A∮
α

dτ
=

∮
α

dϑ A/v‖b · ∇ϑ∮
α

dϑ /v‖b · ∇ϑ
=

∮
α

dζ A/v‖b · ∇ζ∮
α

dζ /v‖b · ∇ζ
, (3.36)

with A arbitrary, dτ = d`/v||= dϑ/v‖b · ∇ϑ = dζ/v‖b · ∇ζ , and q dϑ = dζ for α fixed
(as denoted by the subscript on the loop integral) for the trapped. Here the integrals
are over a full bounce for trapped particles and over all ϑ or ζ for passing particles
as they trace out a flux surface. We transit average by allowing B= B(ψ, ϑ, ζ ) and
v|| = v‖(ψ, ϑ, ζ ) with ϑ and ζ at fixed α related by α = ζ − qϑ .

Then, using

v‖b · ∇h= 0, (3.37)

v‖b · ∇
(

Iv‖
Ω

)
= 0, (3.38)

and
v‖b · ∇φ = 0, (3.39)

the transit averaged equation to the requisite order becomes

vd · ∇ψ
∂fs

∂ψ
+ vd · ∇α

∂ h̄t

∂α

∣∣∣∣∣
ζ

=C{f∗ − fs + h̄p + h̄t}, (3.40)

for the trapped and the passing. Our transit averaged equation retains all the ripple
neoclassical transport effects we are interested in as well as the standard axisymmetric
neoclassical banana regime transport. In the axisymmetric limit vd · ∇ψ → 0 and
∂/∂α→ 0 giving h̄t→ 0. The linearity of the collision operator allows (3.40) to be
split into the axisymmetric/passing and non-axisymmetric/trapped equations:

C{f∗ − fs + h̄p} = 0, (3.41)

and

vd · ∇ψ
∂fs

∂ψ
+ vd · ∇α

∂ h̄t

∂α

∣∣∣∣∣
ζ

=C{h̄t}. (3.42)

The axisymmetric equation for the passing contains only a drive f∗ − fs and response
h̄p odd in v||, while the non-axisymmetric equation has a drive vd · ∇ψ and response
h̄t even in v‖. When non-axisymmetric effects are present vd · ∇ψ = 0 for the passing
along with ∂ h̄p/∂α = 0. Consequently, there is no drive term for the passing and we
are left with the homogeneous equation C{h̄p} = 0 with ripple response h̄p = 0. For
the trapped, however, vd · ∇ψ 6= 0, so there is a drive term to make h̄t 6= 0. For the
trapped it is convenient to use ψ , α, and ζ variables for h̄t. As a result, we employ
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∇ ·A=B · ∇ζ

[
∂

∂ψ

(
A · ∇ψ
B · ∇ζ

)
+

∂

∂α

∣∣∣∣
ζ

(
A · ∇α
B · ∇ζ

)
+

∂

∂ζ

∣∣∣∣
α

(
A · ∇ζ
B · ∇ζ

)]
. (3.43)

We have also assumed ∂fs/∂ψ� ∂ h̄t/∂ψ .
For the passing it is useful to introduce the flux surface average

〈A〉 =

∮
dϑ dζ A/B · ∇ϑ∮
dϑ dζ/B · ∇ϑ

=

∮
dϑ dζ A/B2∮
dϑ dζ/B2

(3.44)

to rewrite the passing kinetic equation as〈
B
v‖

C{f∗ − fs + h̄p}

〉
= 0. (3.45)

The passing collisional constraint determines the velocity space dependence required
of the transit averaged h̄p in response to the poloidal as well as velocity space
variation of the radial drift drive term

f∗ − fs = (ψ∗ −ψ)∂fs/∂ψ + · · · '−(I v‖/Ω)∂fs/∂ψ. (3.46)

In this regime the radial magnetic drift of the passing across flux surfaces is disrupted
by collisions, but the collisional fluxes in velocity space across the trapped–passing
boundary must balance to maintain a vanishing perturbed axisymmetric trapped
distribution function h̄t = 0. The trapped response vanishes because v‖/B = 0, thereby
removing the drive term

C{v‖fs/B} =C{(v‖/B)fs} = 0. (3.47)

In (3.42) collisions cause radial steps that prevent the ripple trapped from returning
to their starting point making vd · ∇ψ 6= 0 (unless the departure from axisymmetry
is omnigeneous – see Landreman & Catto (2012), Calvo et al. (2014) and Helander
(2014), for example). The radial steps randomized by collisions generate the trapped
response h̄t. When drifts within a flux surface are negligible (vd · ∇α→ 0) the 1/ν
radial diffusivity regime is recovered. When the drifts within a flux surface become
significant the radial drift decreases and the radial diffusivity is reduced to roughly a
√
ν dependence. Normally only the E×B is retained in the

√
ν regime.

An alternate form of (3.42) can be found by introducing the second adiabatic
invariant J,

J= J(ψ,α, v,µ)=
Mc
Ze

∮
α

d` v||=
Mc
Ze

∮
α

dτ v2
||
=

Mc
Ze

∮
α

dζ v‖
b · ∇ζ

=
Mc
Zeq

(G+qI)
∮
α

dζ v‖
B

,

(3.48)
with the last form using Boozer coordinates. Then for f̄ = f̄ (ψ, α, v, µ)

v‖

Ω
∇ · [f̄ ∇ × (v||b)] =

Mc

Ze
∮
α

dτ

[
∂ f̄
∂α

∂

∂ψ

∣∣∣∣∣
α

(∮
α

dζv‖
b · ∇ζ

)
−
∂ f̄
∂ψ

∂

∂α

∣∣∣∣
ψ

(∮
α

dζv‖
b · ∇ζ

)]

=
1∮
α

dτ

(
∂ f̄
∂α

∂J
∂ψ

∣∣∣∣∣
α

−
∂ f̄
∂ψ

∂J
∂α

∣∣∣∣
ψ

)
. (3.49)
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10 P. J. Catto

The J integral is to be performed at fixed α such that J = J(ψ, α, v, µ). Neglecting
the ∂ h̄t/∂ψ term as small compared to the ∂fs/∂ψ term leads to our trapped kinetic
equation with

vd · ∇ψ =−
1∮
α

dτ

∂J
∂α

∣∣∣∣
ψ

(3.50)

and

vd · ∇α =
1∮
α

dτ

∂J
∂ψ

∣∣∣∣
α

. (3.51)

The α dependence of J acts as the drive for the ripple transport, or said another way,
it is responsible for the departure from omnigenity.

In the next section we will use the preceding expressions to make estimates of the
neoclassical and ripple transport levels.

4. Phenomenological transport estimates

In the following subsections we modify the standard diffusivity estimates to make
them appropriate for alphas in the axisymmetric and ripple transport regimes. In
making these estimates we treat `n(v0/vc)∼ 1 for simplicity.

4.1. Axisymmetric regime
For an axisymmetric tokamak, collisional alpha transport is evaluated by solving the
passing equation C{f∗ − fs + h̄p} = 0 with h̄t = 0 for the trapped. For the passing
f∗ − fs ∼ (ρp0/aα)fs, with ρp0 ' qρ0/ε the poloidal gyroradius at birth, ρ0 = v0/Ω the
gyroradius at birth, ε∼ a/R in the ripple region of minor radius a, and ∂fs/∂r∼ fs/aα,
where the radial scale of the alpha density aα is allowed to be less than the minor
radius a for near axis burn or within the pedestal. Assuming pitch angle scattering
dominates gives the trapped fraction as ε1/2, the step size as a banana width qρ0/ε

1/2,
so that h̄p ∼ fsqρ0/ε

1/2aα, and an effective collision time of ετs. The diffusivity (D∼
F∆2/τ with F the trapped fraction, ∆ the step, τ the correlation time) is then

Dpas
axi ∼ (qρ0)

2/ε3/2τs = ε
1/2ρ2

p0/τs, (4.1)

as in Catto (1988). The pitch angle scattering pre-factor (vλ/v)3 plays no role because
in this limit it only enters as a multiplier in the solubility constraint.

However, if electron drag dominates then this estimate must be modified in
accordance with the Nocentini, Tessarotto & Engelmann (1975) evaluation. In this
case the trapped fraction and banana width step remain unchanged, but the effective
collision time is just the slowing down time, giving the ε smaller result

Ddrag
axi ∼ (qρ0)

2/ε1/2τs = ε
3/2ρ2

p0/τs. (4.2)

The v‖ > 0 passing alphas are moving to larger ψ surfaces to keep ψ∗ constant as v
is reduced by drag, while the v‖< 0 passing alphas move to smaller ψ surfaces. More
alphas move out then in, resulting in transport due to electron drag.
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Although the ratio
Ddrag

axi /D
pas
axi ∼ ε (4.3)

is small, in practice the neoclassical diffusivity is between Dpas
axi and Ddrag

axi as shown
by Hsu et al. (1990). Their plots compare their exact results with the Nocentini et al.
(1975) and Catto (1988) results, given by their equations (33a) and (33b), and in rough
agreement with the preceding estimates.

To maintain a slowing down distribution function we need the slowing down time
to be short compared to the time for diffusive losses to takes to place, that is, we
need τsD

pas
axi/a2

α� 1 or
ε1/2ρ2

p0� a2
α. (4.4)

Consequently, we need to keep the alpha poloidal gyroradius at birth comparable or
less than the radial scale length of the alpha density.

4.2. The 1/ν regime
To evaluate transport in the 1/ν regime we solve the trapped equation with no toroidal
rotation

vd · ∇ψ
∂fs

∂ψ
=C{h̄t}, (4.5)

when the passing response is zero, h̄p = 0. Pitch angle scattering dominates when
δ(v3

0/v
3
λ)� 1, where the boundary layer width due to ripple is of order δ1/2. Using

C{h̄t} ∼ h̄tv
3
λ/v

3
0τsδ this equation gives the estimate

h̄t

fs
∼
ρ0v

4
0τsδ

aαRv3
λ

=
ρ∗δ

ν∗p
� 1, (4.6)

with ρ∗ = ρ0/aα� 1, vd ∼ v0ρ0/R, and a normalized pitch angle scattering frequency
ν∗p of

ν∗p = Rv3
λ/τsv

4
0� 1. (4.7)

The N toroidal field coils result in ripple wells of depth δ resulting in a trapped
fraction of F ∼ δ1/2. The pitch angle scattering time is (v3

0/v
3
λ)τs is larger than the

slowing down time, but the effective ripple trapped collision time τ ∼ (v3
0/v

3
λ)τsδ is

smaller. The radial magnetic drift estimate for the alphas, v0ρ0/R, is insensitive to the
number of coils since it is due to the nearly axisymmetric toroidal field. It gives the
radial ∇B drift as V ∼ v0ρ0/R (the poloidal gyroradius does not enter in the absence
of axisymmetric banana motion). Then a smaller step ∆ ∼ Vτ ∼ δ (v3

0/v
3
λ) ρ0v0τs/R

occurs because δ (v3
0/v

3
λ)� 1. As a result, we expect an alpha diffusivity D∼F∆2/τ

of
Dpas

1/ν ∼F∆2/τ ∼ δ3/2(v3
0/v

3
λ) τsv

2
0 ρ

2
0/R

2 (4.8)

due to pitch angle scattering.
Our estimate assumes large ripple δ� ε/qN and is the same as Galeev et al. (1969),

and also the same as the Ho & Kulsrud (1987) estimate for electrons when their power
of εh= δ in (3) is corrected to read ε1/2

h as would be expected by their argument. This
estimate is consistent with the large ripple tokamak limit of Stringer (1972) and the
more general treatment of Connor & Hastie (1973). Interestingly, it is smaller than the
very near quasisymmetry stellarator estimate from equation (7) of Calvo et al. (2014)
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12 P. J. Catto

that implies DCPAV
1/ν ∼ δ(v

3
0/v

3
λ)τsρ

2
0v

2
0/R

2, but larger than the Calvo et al. (2013) less
quasisymmetric stellarator estimate that suggests DCPVA

1/ν ∼ δ2(v3
0/v

3
λ)τsρ

2
0v

2
0/R

2.
To keep 1/ν ripple losses due to pitch angle scattering from depleting the lowest

order slowing down distribution during a slowing down time we need the ripple to be
small enough to keep τsD

pas
1/ν/a2

α� 1. Needing h̄t� fs with δ(v3
0/v

3
λ)� 1 this gives a

condition that is difficult to satisfy,

δ3/2(v3
λ/v

3
0) ρ

2
∗
� ν2

∗p� 1. (4.9)

The ratio of pitch angle scattering 1/ν ripple transport to neoclassical,

Dpas
1/ν/D

pas
axi ∼ δ3/2(v3

λ/v
3
0)(ε

3/2/ν2
∗pq2), (4.10)

implies that 1/ν regime ripple transport dominates at small collisionalities when
Dpas

1/ν > Dpas
axi or

qν∗p < ε3/4δ3/4(v3
λ/v

3
0)

1/2. (4.11)

Our estimate does not account for electron drag, which does not trap and de-trap
alphas, but does change their radial step size as they slow. Electron drag dominates
when δ (v3

0/v
3
λ)� 1. Using τ ∼ τs, V ∼ v0ρ0/R, ∆ ∼ Vτ ∼ ρ0v0τs/R, and F ∼ δ1/2

gives the estimate
Ddrag

1/ν ∼F∆2/τ ∼ δ1/2τsv
2
0 ρ

2
0/R

2. (4.12)

Electron drag ripple loss and pitch angle scattering of ripple trapped are comparable
when

Dpas
1/ν/D

drag
1/ν ∼ δ(v

3
0/v

3
λ)∼ 1. (4.13)

For D–T fusion v0/vc∼ 3 with vλ∼ vc, indicating that for a ripple δ > 1/30, electron
drag could dominate.

Keeping 1/ν ripple losses due to electron drag from depleting the lowest order
slowing down distribution during a slowing down time requires τsD

drag
1/ν /a2

α� 1 or

δ ρ2
∗
� R2/v2

0τ
2
s = ν

2
∗d� 1. (4.14)

This inequality is difficult to satisfy in this electron drag dominated limit since it
requires

h̄t

fs
∼
ρ0v0τs

aαR
=
ρ∗

ν∗d
� 1 (4.15)

to find a self-consistent solution.
Electron drag ripple loss compares and axisymmetric neoclassical compare as

Ddrag
1/ν /D

drag
axi ∼ δ1/2 ε1/2 (v0τs/qR)2 = δ1/2 ε1/2/q2ν2

∗d. (4.16)

Consequently, Ddrag
1/ν > Ddrag

axi when

qν∗d < δ1/4ε1/4, (4.17)

which differs by δ1/2ε1/2v
3/2
0 /v

3/2
λ from the pitch angle scattering inequality.

Once the ripple is large enough to satisfy qν∗d < δ1/4ε1/4 electron drag transport
enters the 1/ν ripple loss regime only if (4.15) is satisfied. Similarly, when qν∗ <
ε3/4δ3/4(v3

λ/v
3
0)

1/2 the ripple is large enough for pitch angle scattering to be in the 1/ν
ripple loss regime provided (4.6) is satisfied.
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4.3. The
√
ν regime

As the toroidal rotation increases we enter the
√
ν regime. Once again only the trapped

matter since vd · ∇ψ = 0 provides no drive for the passing. For the trapped we must
solve

vd · ∇ψ
∂fs

∂ψ
+ vd · ∇α

∂ h̄t

∂α
=C{h̄t}, (4.18)

where we expect
vd · ∇α∂ h̄t/∂α ∼ωh̄t/q, (4.19)

with ω=vd · ∇α the toroidal E×B drift frequency in a flux surface. In the
√
ν regime

C{h̄} � vd · ∇α∂ h̄t/∂α except in a narrow boundary layer requiring the toroidal drift
frequency to be fast compared to the effective pitch angle scattering frequency,

ωδτsv
3
0/v

3
λ� q. (4.20)

Moreover, away from the boundary layer

vd · ∇ψ
∂fs

∂ψ
∼ vd · ∇α

∂ h̄t

∂α
(4.21)

gives
h̄t/fs ∼ qv0ρ0/ωR aα� 1. (4.22)

A boundary layer narrower than δ1/2 is only possible if pitch angle scattering is the
dominant collisional process. Therefore, in the boundary layer we must balance

vd · ∇α
∂ h̄t

∂α
∼C{h̄t}. (4.23)

This balance between the strong E × B drift within the flux surface and collisions,
further reduces the width w in pitch angle λ of the boundary layer by enhancing the
pitch angle scattering time τsv

3
0/v

3
λ:

C{h̄} ∼
v3
λ

τsv
3
0

∂2h̄
∂λ2
∼

v3
λh̄

τsv
3
0w2

. (4.24)

The balance between collisions and E × B drift then gives the normalized width of
the boundary layer w to be

w∼ (q/ωτs)
1/2(vλ/v0)

3/2
� δ1/2, (4.25)

indicating that the alphas must E × B drift on a flux surface faster than they pitch
angle scatter off the ions. The effective trapped fraction is estimated from this
boundary layer width to be

F ∼w, (4.26)

with w� δ1/2 giving (4.20). Then the effective correlation time to move the alphas
out of the ripple traps is then the pitch angle scattering time multiplied by the fraction
squared,

τ ∼F 2(v0/vλ)
3τs ∼ q/ω. (4.27)

https://doi.org/10.1017/S0022377818000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000715


14 P. J. Catto

The effective step size in the presence of E×B drift is

∆∼ vd0τ ∼ qρ0v0/ωR, (4.28)

as the toroidal E × B drift now limits the radial step. The narrower boundary layer
results in F , τ , and ∆ being independent of δ. Therefore, the pitch angle scattering
diffusivity in the

√
ν regime is

Dpas
√
ν
∼F∆2/τ = (qvλ/v0)

3/2(ρ0v0/ωR)2( ω/τs)
1/2. (4.29)

These estimates are consistent with the Galeev et al. (1969) and Ho & Kulsrud (1987)
estimates for ions except they did not keep q. Like them, we assume large ripple,
δ � ε/qN. A more detailed boundary layer analysis presented later modifies this
estimate slightly because of boundary layer subtleties found by Calvo et al. (2017)
that introduce a [`n(δ1/2/w)]1/2 factor in the denominator of Dpas

√
ν
.

To avoid depleting the slowing down distribution function during
√
ν regime ripple

transport requires τsD
pas
√
ν
/a2

α� 1 or very strong toroidal rotation satisfying

ωR/qvλ� (ρ0/aα)4/3(v0τs/R)1/3. (4.30)

As vλ∼ vc� vi, sonic rotation seems required even though ρ0/aα� 1 since v0τs/R�
1.

Comparing
√
ν to axisymmetric banana regime neoclassical transport yields

Dpas
√
ν
/Dpas

axi ∼ (v0τs/qR)1/2(v0/ωR)3/2(εvλ/v0)
3/2, (4.31)

which will be larger than unity as we expect

(v0τs/qR)1/3 > ωR/εvλ. (4.32)

Normally the toroidal rotation frequency will be strong enough that the weaker
√
ν

regime transport replaces the stronger 1/ν regime transport. Even when δ(v3
0/v

3
λ)� 1,

the transition occurs at about Dpas
√
ν
∼Dpas

1/ν or

ω τsδv
3
0/v

3
λ ∼ q, (4.33)

as might be expected from (4.20). As τs ∼ 1 s, we expect there will normally be
enough toroidal rotation to make ω τsδv

3
0/v

3
λ� q unless δ is tiny.

If δ(v3
0/v

3
λ)� 1, then drag dominates in the 1/ν regime and the transition condition

becomes Dpas
√
ν
∼ Ddrag

1/ν , giving a lower toroidal rotation for the transition to the pitch
angle scattering dominated

√
ν regime of

ω τs(δv
3
0/v

3
λ)

1/3
∼ q. (4.34)

In the
√
ν regime we assume the E × B dominates over the ∇B by taking

Ze∂Φ/∂ψ >Mµ∂B/∂ψ or
ω R
v0

>
qρ0

a
, (4.35)

where ω ∼ c∂Φ/∂ψ ∼ c|E|/RBp. Consequently, to enter the
√
ν regime with E × B

the dominant drift requires a large electric field and/or the birth alpha gyroradius to
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be small compared to the minor radius. In H mode pedestals (Kagan & Catto 2008)

ωR∼ c|E|/Bp ∼ vi, (4.36)

so that using v0/vλ ∼ 3 and vi/vλ ∼ (m/M)1/6 ∼ 1/4, with vi = (2Ti/Mi)
1/2, we expect

qρ0/a < 1/10 or less to be required. If the E × B and ∇B drifts compete such
that vd · ∇α vanishes at isolated flux surfaces for µ ' λv2

0/2B0 with λ ' 1 to be in
the narrow boundary layer, then superbanana-plateau transport can occur in small
regions of phase space as discussed in detail in Calvo et al. (2017). We ignore
such effects. Also, we do not consider direct orbit losses or collisionless stochastic
diffusion in the vicinity of the separatrix since the difficult issue of the collisional
filling of the unconfined loss regions would need to be evaluated. Instead, we simply
assume the birth flux surface departure is small compared to the alpha radial scale.
This assumption also avoids the issue of stochastic diffusion in the vicinity of the
separatrix.

5. Neoclassical alpha transport simplifications and notation
For H mode operation the plasma density and ion temperature profiles are rather

flat until they approach the pedestal, where a rapid drop in the density occurs with
an often weaker drop in the ion temperature. Moreover, the radial variation of v3

c is
unimportant since v3

c�v
3
0 for D–T (v3

c ∼v
3
0 for D–He3). The ion and electron densities

enter as ratios in v3
c , with the electron and ion temperatures equilibrated. As a result,

for D–T we can assume the strongest radial variation of the alphas is due to Sτs and
we may approximate fs∗ by

f∗ '
ns(ψ∗)

ns(ψ)
fs(ψ, v). (5.1)

If we write the ψ dependence of the slowing down density as an exponential

ns(ψ)∝ e−κ(ψ), (5.2)

then for κ a slowly varying function we may use

ψ∗ =ψ − Iv‖/Ω (5.3)

to write
ns(ψ∗)/ns(ψ)= e−κ(ψ∗)+κ(ψ) ' e−(ψ∗−ψ) dκ/dψ

= eQ (5.4)

to retain finite orbit effects, by defining

Q= κ ′Iv‖/Ω ∼ ρp/aα . 1, (5.5)

with RBp∂ns/∂ψ ∼ ns/aα and aα the radial scale length of the alpha density profile.
Based on the preceding, for D–T we can use

f∗ − fs = (eQ
− 1)fs. (5.6)

We assume Q� 1 so we may use

ns(ψ∗)/ns(ψ)= 1+Q+Q2/2+ · · · . (5.7)
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We are, of course, assuming that gyroradius corrections from the full expression for
the canonical angular momentum will be small, that is, we assume that at birth

ρ0/aα � 1. (5.8)

The drag and pitch angle scattering collision operators are

Cdrag{g} =
1
τs
∇v ·

[(
v3
+ v3

c

v3

)
vg
]
=

1
τsv2

∂

∂v
[(v3
+ v3

c )g] (5.9)

and

Cpas{g} =
v3
λ

2τs
∇v ·

[
1
v3
(v2↔I − vv) · ∇vg

]
=

2v3
λB0

τsv3B
ξ
∂

∂λ

(
λξ
∂g
∂λ

)
, (5.10)

where λ= B0v
2
⊥
/v2B and ξ = v||/v, with B0 any convenient normalization constant or

flux function such as the on axis value or
√
〈B2〉. Transit averaging gives

Cdrag{g} =
1
τsv2

∂

∂v
[(v3
+ v3

c )ḡ] (5.11)

and

Cpas{g} =
2v3
λB0

τsv3

∮
α

dζ/ξB

∂

∂λ

[
λ

(∮
α

dζ ξ
B2

∂g
∂λ

)]
, (5.12)

with the subscribe a reminder that α and ψ are to be held fixed when transit
averaging.

6. Axisymmetric neoclassical alpha transport: a brief summary

The v3
0 � v3

c ∼ v3
λ limit of axisymmetric neoclassical alpha transport is briefly

summarized to indicate how it relates to the neoclassical ripple transport of alphas.
Keeping pitch angle scatter as well as drag, and expanding for Q� 1, we must

solve
C{h̄p +Qfs} = 0. (6.1)

However, h̄t=0 for the axisymmetric trapped response so we may employ flux surface
averages to obtain the passing equation

1
τsv2

∂

∂v
[(v3
+ v3

c )(h̄p + Q̄fs)] +
2v3
λB0

τsv5〈B/v‖〉
∂

∂λ

[
λ

〈
v‖
∂

∂λ
(h̄p +Qfs)

〉]
= 0. (6.2)

For this axisymmetric portion of the solution the ripples may be assumed small since
δ� ε� 1 and the flux surface average simplifies to

〈A〉→

∮
dϑ A/B · ∇ϑ∮
dϑ/B · ∇ϑ

=

∮
dϑ A/B2∮
dϑ/B2

. (6.3)
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To relate this equation to that of Hsu et al. (1990) we continue to use the odd
function

Q= σvξQ0B0/Bv0 (6.4)

and define the poloidal angle independent dimensionless function P via

h̄p = (σQ0vfs/2v0)P(ψ, v, λ), (6.5)

with
Q0 = v0I κ ′/Ω0 = v0IΩ−1

0 ∂κ/∂ψ, (6.6)

then
h̄p +Qfs = (σQ0vfs/2v0)[P+ 2ξ(B0/B)], (6.7)

and our axisymmetric passing equation becomes

(v3
+ v3

c )

2v3
λ

∂

∂v
[v(P+ 2B0ξ/B)H(v0 − v)]

+
B0H(v0 − v)

〈B/ξ〉
∂

∂λ

[
λ

〈
ξ
∂

∂λ
(P+ 2ξB0/B)

〉]
= 0, (6.8)

where ξ/B 〈B/ξ〉 = 1. Using ξ 2
= 1− λB/B0 gives 2ξ∂ξ/∂λ=−B/B0 so this becomes

(v3
+ v3

c )

v3
λ

∂

∂v

[
v

(
1− P

∂〈ξ〉

∂λ

)
H(v0 − v)

]
+H(v0 − v)

∂

∂λ

[
λ

(
〈ξ〉
∂P
∂λ
− 1
)]
= 0,

(6.9)
since

〈B/ξ〉 = 1/(ξ/B)=−2B0∂〈ξ〉/∂λ. (6.10)

The preceding equation for P is in agreement with equation (7) of Hsu et al. (1990)
in the large drag limit. For the passing in the large aspect limit

〈ξ〉 =

∮
dθ ξ/B2∮
dθ/B2

'

∮
dθ ξ

2π
=

4
√

2εE(k)
2π
√
(1− ε)k2 + 2ε

, (6.11)

with ε= r/R and k2
= 2ελ/[1− (1− ε)λ].

The drag only result of Nocentini et al. (1975) is

P(ψ, v, λ)|drag→ 1/(∂〈ξ〉/∂λ), (6.12)

while the pitch angle scattering only solution of Catto (1988) is

∂P(ψ, v, λ)/∂λ|pas→ 1/〈ξ〉, (6.13)

with P= 0 for the trapped. Hsu et al. (1990) point out that the drag solution fails at
the trapped–passing separatrix, and the pitch angle scattering solution does not satisfy
the jump condition obtained by integrating (6.8) across the delta function alpha birth
source.
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18 P. J. Catto

Hsu et al. (1990) solve the general problem for arbitrary aspect ratio concentric
circular flux surfaces by separation of variables and a Sturm–Liouville eigenvalue
procedure similar to that of Cordey (1976) by writing

P(ψ, v, λ)=
∞∑

k=1

Λk(ψ, λ)Vk(ψ, v). (6.14)

The eigenfunctions Λk satisfy the eigenvalue equation (Cordey 1976; Hsu et al. 1990)

∂

∂λ

(
λ〈ξ〉

∂Λk

∂λ

)
= κn

∂〈ξ〉

∂λ
Λk, (6.15)

with κn the nth eigenvalue associated with the normalization

Λk(ψ, λ= 0)= 1 (6.16)

and the trapped–passing separatrix (λ= λc) boundary condition

Λk(ψ, λ= λc)= 0. (6.17)

The associated orthogonality condition is∫ λc

0
dλΛkΛj∂〈ξ〉/∂λ= 0 (6.18)

for j 6= k. Continuing to follow Hsu et al. (1990) gives for our simplified version of
their (12a),

∂

∂v
[v(σk − Vk)H(v0 − v)] =

v3
λ(σk − κkVk)

(v3 + v3
c )

H(v0 − v), (6.19)

where integrating across v0 using

Vk(ψ, v > v0)= 0 (6.20)

yields the jump condition

Vk(ψ, v0)= σk ≡

∫ λc

0
dλΛk∫ λc

0
dλΛ2

k∂〈ξ〉/∂λ

. (6.21)

For the D–T case considered here the limiting solution for v3
0� v3

c ∼ v
3
λ is simply

Vk ' σk

[
1− (κk − 1)

v3
λ(v

2
0 − v

2)

2v3
0v

2

]
, (6.22)

with the more general solution given in Hsu et al. (1990). The first eigenvalue κ1 is
typically order unity and the other κn are typically large.

https://doi.org/10.1017/S0022377818000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000715


Ripple modifications to alpha transport in tokamaks 19

The axisymmetric neoclassical alpha radial particle (d = 0) and radial heat (d = 1)
fluxes are evaluated as in Hsu et al. (1990) from

Γ neo
d =−(I/Ω0)

〈∫
d3v(Mv2/2)dv‖C{Qfs + h̄p}

〉
. (6.23)

The results are typically above the Nocentini et al. (1975) and below the Catto (1988)
results.

Notice that for the axisymmetric neoclassical particle fluxes ambipolarity is
automatically satisfied because if we sum over all species momentum conservation
gives 〈∑

all

M
∫

d3v v‖C{f }

〉
= 0. (6.24)

As a result, ∑
all

Z Γ neo
0 = 0, (6.25)

where here Γ neo
0 , Z, and M are the species particle flux, charge number and mass.

7. 1/ν ripple transport of alphas

In the 1/ν regime h̄p = 0 for the passing, while for the trapped we must solve

vd · ∇ψ
∂fs

∂ψ
=C{h̄t} (7.1)

for h̄t = h̄t(ψ, α, v, µ). We consider the two limits of pitch angle scattering and
electron drag dominating. In all situations considered for 1/ν transport both sets of
turning points (v‖ = 0) for a charge of fixed µ are at the same value of B as the
motion is on a fixed field line of constant ψ and α. For the simple form of (3.16)
this means the poloidal angle of the two turning points must be at the same value of
ε cosϑ + δ cos[N(α− qϑ)]. In the 1/ν regime trapped alphas in local wells cannot be
detrapped or trapped without collisions.

7.1. Pitch angle scattering dominates: δ(v3
0/v

3
λ)� 1

Our pitch angle scattering evaluation ignores drag in the alpha collision operator so
that

C{h̄t} =
2v3
λB0

τsv3

(∮
α

dζ/ξ B
) ∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ

]
(7.2)

and uses

vd · ∇ψ =−

B0v
2(∂/∂α)

(∮
α

dζ ξ/B
)

Ω0

(∮
α

dζ/ξ B
) . (7.3)

This limit is valid when δ(v3
0/v

3
λ)� 1.
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20 P. J. Catto

As a result of the preceding, we must solve

3v3
λ

τsv3

∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ

]
'

B0v
2

Ω0

∂fs

∂ψ

∂

∂λ

[
∂

∂α

(∮
α

dζ ξ 3/B2

)]
, (7.4)

where we use
∂ξ 3

∂λ
=

3ξ
2
∂ξ 2

∂λ
=−

3Bξ
2B0

. (7.5)

To keep ∂ h̄t/∂λ well behaved in the deeply trapped limit, the constant of integration
must vanish. This also avoids a jump at the trapped–passing boundary where we make
h̄t = 0 to match h̄p= 0 for the passing that must satisfy vd · ∇ψ = 0. Integrating once
gives

λ

(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ
'

B0τsv
5

3v3
λΩ0

∂fs

∂ψ

∂

∂α

(∮
α

dζ ξ 3/B2

)
. (7.6)

Integrating again from the trapped–passing boundary associated with the maximum
ripple magnetic field

_

B (where λ = B0/
_

B) to λ we obtain the pitch angle scattering
solution

h̄t =
B0τsv

5

3Ω0v
3
λ

∂fs

∂ψ

∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

) . (7.7)

We will continue to work with this general expression for now, rather than ignoring
curvature drift and using (3.16) to find the approximate results

∂B
∂α

∣∣∣∣
ζ

=−
B0ε

q
sin[(ζ − α)/q] '

B0ε

q
sin(α/q) (7.8)

and
∂ξ/∂α|ζ '−(ελ/2qξ) sin(α/q). (7.9)

These approximate results if used here give a slight difference with a final result
smaller by a factor 3/4. The approximate results of (7.8) and (7.9) follow the
procedure of Stringer (1972) and Connor & Hastie (1973) that take advantage of
the slow variation of ϑ while ζ varies between its two values at the lower of the
magnetic field maximums

_

B in ϑ = (ζ − α)/q for fixed α. Their procedure notes that
−π< Nζ < π implies −π/Nq<ϑ + (α/q) < π/Nq so that ϑ varies very little along
a ripple trapped orbit at fixed α for N� 1. It will be used shortly to simplify (7.20).

The alpha particle (d= 0) and heat (d= 1) ripple fluxes are calculated from

Γ
rip

d =

〈∫
d3v(Mv2/2)dh̄tvm · ∇ψ

〉
' (1/2Ω0)

〈∫
d3v(Mv2/2)dv2λh̄t∇ψ × b · ∇`nB

〉
, (7.10)

where vm is the magnetic drift and we use 〈
∫

d3v fsvd · ∇ψ〉 = 〈∇ · [Ω
−1b ×

∇ψ
∫

d3v fsv
2
‖
]〉 = 0. The last form of the ripple flux is obtained by using v‖ small to
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ignore the curvature drift compared to the ∇B drift. The E × B drift does not enter
even though it has been implicitly retained.

Using the Boozer representation for the field

∇ψ × b · ∇`nB= (G+ qI)−1(G∂B/∂ζ − I∂B/∂ϑ) (7.11)

and
d3v→ 2π(Bv2/B0ξ) dv dλ, (7.12)

where we sum over both signs of σ , yields

Γ
rip

d =
π

Ω0(G+ qI)

〈(
G
∂B
∂ζ
− I

∂B
∂ϑ

)
B
B0

∫ v0

0
dv v4

(
Mv2

2

)d ∫ B0/B

B0/
_
B

dλ λ
h̄t

ξ

〉
. (7.13)

To evaluate the fluxes we use ∂ξ/∂λ=−B/2ξB0 to integrate by parts to find

∫ B0/B

B0/
_
B

dλ
λ

ξ

∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

)


=
2B0

B

∫ B0/B

B0/
_
B

dλ ξ
∂

∂λ

λ ∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

)


=
2B0

B

∫ B0/B

B0/
_
B

dλ ξ

∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

)


+

(∂/∂α)
(∮

α

dζ ξ 3/B2

)
(∮

α

dζ ξ/B2

)
 . (7.14)

Integrating the first term on the right side by parts again using ∂ξ 3/∂λ=−3Bξ/2B0

yields

∫ B0/B

B0/
_
B

dλ
λ

ξ

∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

)


=
2B0

B

∫ B0/B

B0/
_
B

dλ ξ
(

1+
2B0ξ

2

3λB

) (∂/∂α)(∮
α

dζ ξ 3/B2

)
(∮

α

dζ ξ/B2

) . (7.15)

https://doi.org/10.1017/S0022377818000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000715


22 P. J. Catto

Neglecting curvature drift and other ξ 2 terms compared to order unity terms and
assuming (

∮
α

dζ ξ∂B/∂α)/(
∮
α

dζ ξ) is a slow function of λ, we integrate by parts
one final time to obtain

∫ B0/B

B0/
_
B

dλ
λ

ξ

∫ λ
B0/

_
B

dλ
(∂/∂α)

(∮
α

dζ ξ 3/B2

)
λ

(∮
α

dζ ξ/B2

)
' 4B2

0

3B2

_

ξ 3
(∂/∂α)

(∮
α

dζ
_

ξ
3
)

(∮
α

dζ
_

ξ

)

+ · · · '−2
_

ξ 3

(∮
α

dζ
_

ξ∂B/∂α|ζ

)
_

B
(∮

α

dζ
_

ξ

) , (7.16)

with
_

ξ ≡

√
1− B/

_

B.
Inserting the preceding, noticing G/I ' rBp/RBt ' ε

2/q, and using ∂(B/B0)/∂θ '

ε sin θ and ∂(B/B0)/∂ζ ' Nδ sin(Nζ ), gives the ripple driven radial particle (d = 0)
and heat (d= 1) fluxes associated with pitch angle scattering to be

Γ
pas

d '−
2πB2

0ετs

3Ω2
0 qv3

λ

(∫ v0

0
dv v9

(
Mv2

2

)d
∂fs

∂ψ

)〈
sin ϑ

_

ξ 3

(∮
α

dζ
_

ξ∂B/∂α|ζ

)
_

B
(∮

α

dζ
_

ξ

) 〉
. (7.17)

Using v0� vc to integrate we find

∫ v0

0
dv v9

(
Mv2

2

)d
∂fs

∂ψ
'

∂

∂ψ

(
Sτs

4π

) ∫ v0

0
dv v6

(
Mv2

2

)d

=
(Mv2

0/2)
dv7

o

4π(7+ 2d)
∂

∂ψ

[
ns

`n(v0/vc)

]
. (7.18)

Assuming
`n(v0/vc)

ns

∂ns

∂ψ
�

1
vc

∂vc

∂ψ
∼

1
ni

∂ni

∂ψ
, (7.19)

we obtain our most general form for the 1/ν fluxes due to pitch angle scattering to
be

Γ
pas

d '−
(Mv2

0/2)
dε2B2

0τsv
7
0(∂ns/∂ψ)

6(7+ 2d)q2Ω2
0v

3
λ`n(v0/vc)

〈
sin ϑ

_

ξ 3

(∮
α

dζ
_

ξ∂B/∂α|ζ

)
(εB0/q)

(∮
α

dζ
_

ξ

)〉 . (7.20)

To simplify we now use approximation (7.8) and assume the poloidal variation of
∂B/∂α is slow so we can use sin(ϑ − q−1ζ )' sin ϑ . The details are presented in the
appendix A and yield
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sin2 ϑ

√
[1− (B/

_

B)]3
〉
=

1
4π2

∫
all

dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]3

≡
4
√

2
3π

δ3/2W(ε/qNδ), (7.21)

with the ripple scattering coefficient defined as a function of a single parameter by

W(γ )=
3

16π
√

2 γ 2

∫ U

0

dX cos X sin2 X√
γ 2 − sin2 X

×

∫ Y1(X)

X
dY[cos X − cos Y + (X − Y) sin X]3/2→

{
1− 3γ γ � 1
0.02/γ 3 γ � 1. (7.22)

The upper limit U of the X integral is π/2 when γ = ε/qNδ > 1, while for γ =
ε/qNδ < 1 it is sin−1(ε/qNδ). The upper limit of the Y integral is the zero of cos X−
cos Y1+ (X− Y1) sin X= 0 adjacent to Y = X. This monotonically decreasing function
is plotted as G in figure 1 in Connor & Hastie (1973), where it is compared to the
similar, but somewhat less accurate result of Stringer (1972). Only accessible values
of ϑ and ζ are to be integrated over in the flux surface average. In particular, B>

_

B
are not accessible bythe ripple trapped so

_

ζ is the value of ζ for which B=
_

B. For
weak ripple, ε/qNδ > 1, some values of ϑ will not be accessible by the ripple trapped.
The relevant details of the Stringer (1972) and Connor & Hastie (1973) treatments are
given in appendix A.

Using the preceding we obtain

Γ
pas

d '−
2
√

2 δ3/2(Mv2
0/2)

dε2τsB2
0v

7
0W(ε/qNδ)

9π(7+ 2d)q2v3
λΩ

2
0`n(v0/vc)

∂ns

∂ψ
, (7.23)

yielding an alpha particle diffusivity due to pitch angle scattering of

Dpas
0 '

2
√

2 δ3/2

63π

(
τsv

3
0

v3
λ

)
ρ2

0v
2
0W(ε/qNδ)

R2`n(v0/vc)
, (7.24)

with W(ε/qNδ) 6 1. The preceding is in agreement with our phenomenological
estimate when W/`n(v0/vc)∼ 1, but with a rather small coefficient that seems to be
due to the slowing down distribution based on (7.18).

The weak ripple limit reduces Dpas
0 by order (qNδ/ε)3 � 1. In this limit, when

(δ/ε)5/8 ∼ 1/qN, Dpas
0 becomes comparable to the result of Linsker & Boozer (1982)

who find a diffusivity of roughly (δ2/ε1/2qN)(τsv
3
0/v

3
λ)(ρ0v0/R)2 due to the effect of

very weak ripple on the turning points (at ϑ '±π) of the non-ripple trapped banana
regime alphas in the nearly axisymmetric limit (also see Davidson (1976) and Tsang
(1977)). By assuming εNδ/q� 1, that is, I∂B/∂ϑ � G∂B/∂ζ , we are ignoring the
radial drift effect evaluated by Davidson (1976), Tsang (1977), and Linsker & Boozer
(1982). This radial drift is of order δNaρ0v0/qR2 and appears to be negligible unless
(δ/ε)5/8< 1/qN. Stochastic effects due to ripple may play a role at low collisionalities
and were considered by Goldston, White & Boozer (1981).

The ripple departure from axisymmetry means that ambipolarity,∑
all

Z Γ rip
0 = 0, (7.25)
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is no longer intrinsic. However, the alpha density ns is so small they may be treated as
a trace population. Consequently, the radial electric field adjusts the ion and electron
particle transport to maintain ambipolarity as discussed for a plasma without alphas
by Galeev et al. (1969).

7.2. Electron drag dominates: δ(v3
0/v

3
λ)� 1

To make the electron drag estimate we ignore pitch angle scatter and ion drag by
keeping only

C{h̄t}→
1
τsv2

∂

∂v
(v3h̄t). (7.26)

In this limit δ(v3
0/v

3
λ)� 1 and we must solve

1
τsv2

∂

∂v
(v3h̄t)= vd · ∇ψ

∂fs

∂ψ
=−

B0v
2(∂/∂α)

(∮
α

dζ ξ/B
)

Ω0

(∮
α

dζ/ξ B
) ∂fs

∂ψ
. (7.27)

By performing the bounce averages in ζ at fixed α we will again be able to take
advantage of the slow variation θ of while ζ varies between its two values at the
lower of the magnetic field maxima. Again, the E× B does not enter even though it
is implicitly retained.

When solving for h̄t we must avoid a step at v0. Consequently, we integrate from
v to v0, where h̄t(v > v0)= 0, to find the piecewise continuous electron drag solution

h̄t =
B0τs(v

2
0 − v

2)

2Ω0

∂fs

∂ψ

(∂/∂α)

(∮
α

dζ ξ/B
)

(∮
α

dζ/ξ B
) {H[λ− (B0/

_

B)] −H[λ− (B0/B)]}, (7.28)

where we insert Heaviside step functions as a reminder that the trapped must
satisfy (B0/B)> λ> (B0/

_

B). In this case the radial alpha flux occurs because electron
drag acts to reduce flux surface departure of the larger (smaller) number of alphas
inside (outside) the flux surface. The result is outward particle and heat fluxes. The
boundary layer about λ = B0/

_

B is not expected to appreciably change this result. A
non-trivial boundary layer analysis is required to make h̄t(λ= B0/

_

B)= 0 and will be
discussed in the next subsection. The procedure is more involved than one used in
a later section since a separable solution of the homogeneous equation that vanishes
above the birth speed does not exist.

Neglecting curvature drift corrections by taking ξ 2
� 1, and assuming slow poloidal

variation of ∂B/∂α so we can use (7.9), gives

h̄t =
B0ετs(v

2
0 − v

2)λ

4qΩ0

∂fs

∂ψ
sin(ϑ − q−1ζ ){H[λ− (B0/

_

B)] −H[λ− (B0/B)]}, (7.29)

Using sinϑ sin(ϑ − q−1ζ )' sin2 ϑ in the flux expression (7.13) gives the electron drag
result

Γ
drag

d '−
πε2τsB2

0

4q2Ω2
0

[∫ v0

0
dv v4(v2

0 − v
2)

(
Mv2

2

)d
∂fs

∂ψ

]〈
sin2 ϑ

∫ B0/B

B0/
_
B

dλ
Bλ2

B0ξ

〉
. (7.30)
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Then ∫ v0

0
dv v4(v2

0 − v
2)

(
Mv2

2

)d
∂fs

∂ψ
'

v4
0(Mv

2
0/2)

d

8π(1+ d)(2+ d)`n(v0/vc)

∂ns

∂ψ
, (7.31)

and

B
B0

∫ B0/B

B0/
_
B

dλ
λ2

ξ
=−2

∫ B0/B

B0/
_
B

dλ λ2 ∂ξ

∂λ

= 2
B2

0
_

B2

{√
1− B/

_

B+
2+ 3B/

_

B
15

√
(1− B/

_

B3)

}
' 2
√

1− B/
_

B (7.32)

give

Γ
drag

d '−
(Mv2

0/2)
dε2τsB2

0v
4
0

16(1+ d)(2+ d)q2Ω2
0`n(v0/vc)

∂ns

∂ψ

〈
sin2 ϑ

√
[1− (B/

_

B)]
〉
, (7.33)

where 〈
sin2 ϑ

√
[1− (B/

_

B)]
〉
=

1
4π2

∫
all

dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]

≡
4
√

2
3π

δ1/2D(ε/qNδ) (7.34)

is the drag coefficient derived in appendix A to be

D (γ ) =

√
2

πγ 2

∫ U

0

dX cos X sin2 X√
γ 2 − sin2 X

∫ Y0

X
dY[cos X − cos Y + (X − Y) sin X]1/2

→

1−
πγ

3

[
`n
(

2
πγ

)
+

17
6

]
γ � 1

O(1/γ 3) γ � 1.
(7.35)

Using this result we obtain the flux due to drag to be

Γ
drag

d '−

√
2 δ1/2(Mv2

0/2)
dε2τsB2

0v
4
0D (ε/qNδ)

12π(1+ d)(2+ d)q2Ω2
0`n(v0/vc)

∂ns

∂ψ
, (7.36)

giving the alpha particle diffusivity due to drag of

Ddrag
0 '

√
2 δ1/2τs

24π

ρ2
0v

2
0D (ε/qNδ)

R2`n(v0/vc)
, (7.37)

with D (ε/qNδ) 6 1. The diffusivity due to drag is consistent with our earlier
phenomenological estimate when D/`n(v0/vc) ∼ 1 and again has a small coefficient
due to (7.31).

As expected, the ratio of the pitch angle scattering to electron drag results is

Γ
pas

d

Γ
drag

d

'
4(1+ d)(2+ d)δv3

0W(ε/qNδ)
(7+ 2d)v3

λD(ε/qNδ)
∼
δv3

0

v3
λ

, (7.38)
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which is larger (smaller) than unity when electron drag (pitch angle scatter) ripple loss
dominates.

The pitch angle scattering and electron drag solutions in the 1/ν regime are not
exact since in reality both effects will enter in combination while we have calculated
them separately. However, these results are a useful indication of when ripple starts
to become a problem.

7.3. Pitch angle scattering and drag
With both pitch angle scattering and drag the full equation must be solved:

2v3
λB0

τsv3

(∮
α

dζ/ξ B
) ∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ

]
+

1
τsv2

∂

∂v
[(v3
+ v3

c )h̄t]

=
2B2

0v
2

3Ω0

(∂2/∂λ∂α)

(∮
α

dζ ξ 3/B2

)
(∮

α

dζ/ξB
) '−

B0εv
2

qΩ0

∂fs

∂ψ
sin
(
α

q

)

×

(∂/∂λ)

(
λ

∮
α

dζ ξ
)

(∮
α

dζ/ξ
) . (7.39)

However, this general 1/ν does not seem to be an analytically tractable problem. To
see the reason we seek a separable solution to the homogeneous equation

2B0(∮
α

dζ/ξ B
) ∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂H
∂λ

]
+
v

v3
λ

∂

∂v
[(v3
+ v3

c )H] = 0, (7.40)

by taking
H =Λ(λ)V(v), (7.41)

then for the separation constant σ we would find

v

v3
λV

∂

∂v
[(v3
+ v3

c )V] = σ =−
2B0(∮

α

dζ/ξ B
)
Λ

∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂Λ

∂λ

]
. (7.42)

But demanding V(v > v0)= 0 means there is only the trivial solution V = 0.

8.
√
ν ripple transport of alphas

In the
√
ν regime vd · ∇ψ = 0 and ∂ h̄p/∂α = 0 for the passing, giving C{h̄p} = 0

and therefore h̄p= 0. Here we must be careful to keep the v∂v/∂ψ term to retain the
E×B drift within a flux surface. This toroidal drift results in a very narrow collisional
boundary layer in which alphas detrap and retrap.
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For the ripple trapped we must solve

vd · ∇ψ
∂fs

∂ψ
+ vd · ∇α

∂ h̄t

∂α
=C{h̄t} (8.1)

for the transit average trapped response h̄t= h̄t(ψ, α, v, µ). For simplicity we consider
only the case when the E×B drift dominates and define its associated toroidal rotation
frequency ω via

vd · ∇α =
Mc
Ze

(∂/∂ψ)

(∮
α

dζ v‖

)
(∮

α

dζ/v‖

) '−c
∂Φ

∂ψ
≡−ω. (8.2)

In a rippled tokamak the E × B drift in a flux surface is mostly toroidal. If ∇B
drifts dominate then ω→−(Mcµ/Ze)∂B/∂ψ ' (qλv2/2ΩaR) cos(α/q) and a similar
procedure can be employed. If E × B and ∇B drifts cancel superbanana-plateau
transport must retained (Calvo et al. 2017).

We also use the more complete expressions for

vd · ∇ψ =
2B2

0v
2

3Ω0

(∂/∂λ)(∂/∂α)

(∮
α

dζ ξ 3/B2

)
(∮

α

dζ/ξ B
) , (8.3)

and

C{h̄t} =
2v3
λB0

τsv3

(∮
α

dζ/ξ B
) ∂

∂λ

[
λ

(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ

]
. (8.4)

As a result, we are led to consider

−ω
∂ h̄t

∂α
=

2v3
λB0

τsv3

(∮
α

dζ/ξB
) ∂

∂λ

×

{
λ

[(∮
α

dζ ξ/B2

)
∂ h̄t

∂λ
−

B0τsv
5

3Ω0v
3
λ

∂fs

∂ψ

(
∂

∂α

∮
α

dζ
ξ 3

B2

)]}
. (8.5)

Notice that this form reduces to the solution in the 1/ν regime when E× B drift is
unimportant. We begin with this form to insure that the 1/ν regime is being properly
retained.

Neglecting curvature drift and assuming weak ϑ variation during a ripple trapped
bounce leads to the simplified form

−ω
∂ h̄t

∂α
=

2v3
λ

τsv3

(∮
α

dζ/ξ
) ∂

∂λ

{(
λ

∮
α

dζ ξ
)[

∂ h̄t

∂λ
+

B0ετsv
5

2qΩ0v
3
λ

∂fs

∂ψ
sin
(
α

q

)]}
. (8.6)
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Ho & Kulsrud (1987) assume any field line between two mirror points is at fixed
poloidal angle (see their comments below equation (13)). Consequently, they are
assuming large ripple with ε/qNδ � 1 based on the Stringer (1972) and Connor &
Hastie (1973) treatments. Using this same assumption we can replace (3.16) by

B= B̃0[1− δ cos(Nζ )], (8.7)

with
B̃0 ' B0(1− ε cos ϑ)' B0, (8.8)

and then let ε→ δ and ϑ → Nζ in the usual tokamak bounce averages (see, for
example, the Appendix of Catto, Parra & Pusztai (2017)). Introducing the new
independent variable κ by

λ= 1/(1− δ + 2δκ2), (8.9)

with κ = 1 the ripple trapped–passing boundary and κ = 0 the deeply ripple trapped,
we use

dλ/λ2
=− 4δκ dκ (8.10)

to obtain

(∂/∂λ)(λ

∮
α

dζ ξ)(∮
α

dζ/ξ
) '−

1
2κK(κ)

∂

∂κ
[E(κ)− (1− κ2)K(κ)] −→κ→1 −

1
2
, (8.11)

where we use the full bounce results

N
∮
α

dζ ξ =
8
√

2δ
√

1− δ + 2δκ2
[E(κ)− (1− κ2)K(κ)] (8.12)

and

N
∮
α

dζ /ξ =
8
√

2δ

√
1− δ + 2δκ2 K(κ), (8.13)

with E(κ)→ 1+ (1− κ2)[`n(4/
√

1− κ2)− (1/2)]/2+· · · and K(κ)→ `n(4/
√

1− κ2)

+ · · ·. As a result, using

1(∮
α

dζ/ξ
) ∂

∂λ

[
λ

(∮
α

dζ ξ
)
∂

∂λ

]
'

1
8δκK(κ)

∂

∂κ

×

{
[E(κ)− (1− κ2)K(κ)]

κ

∂

∂κ

}
−→
κ→1

1

4δ`n
(

16
1− κ2

) ∂2

∂κ2
(8.14)

the equation for h̄t becomes

B0εv
2

2qΩ0

∂fs

∂ψ
sin
(
α

q

)
−ω

∂ h̄t

∂α
'

(v3
λ/τsv

3)

2δ`n[16/(1− κ2)]

∂2h̄t

∂κ2
. (8.15)
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Continuing to take κ→ 1 and defining

η= (1− κ)/8, (8.16)

k≡
64δ ω τsv

3

qv3
λ

� 1, (8.17)

and

L≡
32δ B0ε τsv

5

qΩ0v
3
λ

∂fs

∂ψ
, (8.18)

gives the boundary layer form of the equation to be

1
`n(η)

∂2h̄t

∂η2
− 2kq

∂ h̄t

∂α
'−2L sin

(
α

q

)
=−2LIm(eiα/q), (8.19)

which is valid when k� 1. Here Im denotes the imaginary part.
To solve the preceding equation in the boundary layer we take

h̄t = Im[H(η)eiα/q
] (8.20)

to obtain
1

`n(η)
∂2H
∂η2
− 2ikH =−2L, (8.21)

which has the particular solution

H|p =−iL/k. (8.22)

As this solution does not vanish at η= 0 we must use the homogeneous solutions to
satisfy this boundary condition.

For 1� `n(1/η)� 1/kη2 one homogeneous solution starts off as

H|he ' i (L/k){1+ ik η2
[`n(η)− 3

2 ] + · · · }, (8.23)

where the coefficient is chosen to cancel the particular solution at η = 0. The other
begins as

H|ho 'Cη{1+ i 32
3 kη2
[`n(η)− 5

6 ] + · · · }, (8.24)

with C an unknown constant (see appendix D of Calvo et al. (2017)). These represent
possible inner solutions. Defining a new variable

z≡ η
√

2k∼ 1, (8.25)

the homogeneous equation becomes

1

`n(z/
√

2k)

∂2H|h
∂z2
' iH|h, (8.26)

which slightly away from η= 0 can be approximated by

∂2H|h
∂z2
+ i`n(

√
2k)H|h ' 0 (8.27)
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since k� 1. The decaying solution to this equation is

H|h ' i(L/k)e−
√
−i`n(

√
2k) z
' i(L/k)e−(1−i)

√
2k`n(

√
2k) η, (8.28)

where the coefficient is chosen to cancel the particular solution as η→ 0 to satisfy
the boundary condition. Taking the inner limit of this outer solution gives

H|h ' i(L/k)[1− (1− i)
√

2k`n(
√

2k) η+ · · ·], (8.29)

which allows us to match the terms linear in η to determine the constant C to be

C=−(1+ i)L

√
2`n(
√

2k)
k

. (8.30)

Consequently, a adequate matched asymptotic solution for the trapped alphas up to
the trapped–passing boundary and away from it is

H =
iL
k
[e−(1−i)η

√
2k`n(

√
2k)
− 1], (8.31)

where both k and L are proportional to τs. Forming h̄t gives

h̄t =
B0εv

2

2Ω0ω

∂fs

∂ψ
Re{[e−(1−i)η

√
2k`n(

√
2k)
− 1] eiα/q

}, (8.32)

with Re denoting the real part is to be taken.
Next we evaluate the particle and heat fluxes

Γ
rip

d '
−π

Ω0q

〈
∂B
∂ϑ

∫ v0

0
dv v4

(
Mv2

2

)d ∫ B0/B

B0/
_
B

dλ λ
h̄t

ξ

〉
. (8.33)

To perform the pitch angle integral we let

sin(Nζ/2)= κ sin ϕ (8.34)

so that
ξ =

√
1− λ[1− δ cos(Nζ )] = κ

√
2λδ cos ϕ (8.35)

and

κ cos ϕ dϕ = cos(Nζ/2)d(Nζ/2)=
√

1− κ2 sin2 ϕ d(Nζ/2). (8.36)

Recalling that α/q ' −ϑ and noting that only sin(α/q) ' − sin ϑ terms contribute
when evaluating flux surface averages, we find

Re
〈

sin ϑ e−iϑ
∫ B0/B

B0/
_
B

dλ
λ

ξ
[e−(1−i)η

√
2k`n(

√
2k)
− 1]

〉
'−

1
2

Re
〈

i
∫ B0/B

B0/
_
B

dλ
λ

ξ
[e−8(1−i)(1−κ)

√
2k`n(

√
2k)
− 1]

〉
. (8.37)
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Then using

〈ξ−1
〉 =

∫ sin−1 κ

0
ξ−1d(Nζ/2)∫ π/2

0
d(Nζ/2)

=

√
2

π
√
δ

∫ π/2

0

dϕ√
1− κ2 sin2 ϕ

=

√
2 K(κ)

π
√
δ
'
`n[16/(1− κ2)]

π
√

2δ
, (8.38)

we obtain

Re
〈

sin ϑ e−iϑ
∫ B0/B

B0/
_
B

dλ
λ

ξ
[e−(1−i)η

√
2k`n(

√
2k)
− 1]

〉
'−

√
2δ
π

Re
{

i
∫ 1

0
dκ κ[e−8(1−i)(1−κ)

√
2k`n(

√
2k)
− 1] ln

(
8

1− κ

)}

'−

√
δ`n[64

√
2k`n(

√
2k)]

8π
√

k`n(
√

2k)
Re

i
∫ 8
√

2k`n(
√

2k)

0
dχe−(l−i)χ


=
√
δ
`n[64

√
2k`n(

√
2k)]

16π
√

k`n(
√

2k)
, (8.39)

where the imaginary integral does not contribute and χ = 8(1− κ)
√

2k`n(
√

2k).
We also make use of∫ v0

0
dv v9/2(Mv2/2)d

`n[64
√

2k`n(
√

2k)]√
`n(
√

2k)

∂fs

∂ψ
'

2v5/2
0 (Mv2

0/2)
d`n[64

√
2k0`n(

√
2k0)]

(5+ 4d)
√̀

n(
√

2k0) `n(v0/vc)

∂ns

∂ψ
,

(8.40)
where

k0 ≡
64δ ω τsv

3
0

qv3
λ

� 1. (8.41)

From the preceding we obtain

Γ
√
ν

d '−
ε2B2

0τsv
3/2
λ v

5/2
0 (Mv2

0/2)
d
[`n(64

√
2k0`n(

√
2k0))]

128(5+ 4d) q1/2Ω2
0ω
√
ωτs`n(2k0) `n(v0/vc)

∂ns

∂ψ
, (8.42)

which is valid in the limit of ε/qNδ� 1. Notice that the diffusivity is of order

D
√
ν

0 '
(qvλ/v0)

3/2
[`n(64

√
k0`n(2k0))](ρ0v0/R)2

640ω
√
ωτs`n(2k0) `n(v0/vc)

. (8.43)

Within logarithmic factors as in Calvo et al. (2017) this result agrees with our
phenomenological estimate, but notice that the coefficient is small due to the
collisional boundary layer analysis. Interestingly, D

√
ν

0 only depends logarithmically on
the ripple δ because (8.17) or (8.41) require a very narrow boundary layer of width
(qv3

λ/ω τsv
3
0)

1/2
� δ1/2. These boundary layers become comparable, (qv3

λ/ω τsv
3
0)

1/2
∼

δ1/2, at the transition between the
√
ν and 1/ν regimes.
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9. Summary
We formulate and solve for the neoclassical transport of alphas in a rippled tokamak

by evaluating the 1/ν and
√
ν regime modifications of Galeev et al. (1969), Stringer

(1972), Connor & Hastie (1973), and Ho & Kulsrud (1987) associated with alpha
birth and slowing. The formulation also retains the standard axisymmetric neoclassical
effects of Nocentini et al. (1975), Catto (1988), and Hsu et al. (1990). The ripple
transport of alphas differs from that of the bulk ions and electrons because of its
slowing down tail distribution function and the need to consider electron drag as well
as pitch angle scatter. Moreover, the approximate variational treatment of Galeev et al.
(1969) and boundary layer analysis of Ho & Kulsrud (1987) in the

√
ν regime is

avoided by a more complete and rigorous boundary layer analysis similar to that of
Calvo et al. (2017). Our

√
ν regime evaluation assumes large ripple (ε/qNδ� 1) and

the results are given by (8.42) and (8.43). In this
√
ν regime drag is unimportant.

The 1/ν regime evaluations presented here allow general ripple (ε/qNδ ∼ 1) and the
results with only pitch angle scattering (δv3

0/v
3
λ� 1) are given by equations (7.23) and

(7.24), while those keeping only electron drag (δv3
0/v

3
λ � 1) are given by equations

(7.36) and (7.37). When pitch angle scatter and electron drag compete in the 1/ν
regime (δv3

0/v
3
λ ∼ 1) and the ripple is strong (ε/qNδ � 1), the transition from the

axisymmetric banana regime to the 1/ν occurs when the time for an birth alpha to
travel a connection length is substantially smaller than the slowing down time, roughly
qR/τsv0 ∼ δ

1/4ε1/2, or more precisely

qR/τsv0 ' 0.3δ1/4ε1/2(δv3
0/v

3
λ)

1/2
∼ 0.3δ1/4ε1/2

� 1. (9.1)

For the axisymmetric banana regime we simplify by using δv3
0/v

3
λ ∼ 1 and taking

Dban
axi ' 0.25q2ρ2

0/ετs`n(v0/vc) (9.2)

to obtain an estimate between the Nocentini et al. (1975) and Catto (1988) limits to be
in better agreement with the precise results of Hsu et al. (1990). Our 1/ν calculation
assumes small alpha birth gyroradius,

δ1/4ρ0/aα� R/τsv0� 1, (9.3)

to keep the alpha distribution function near the slowing down distribution that
is assumed to have a radial scale length of aα. To keep τsDban

axi /a
2
α � 1 we need

ρ0/aα� ε1/2/q� 1, which is typically less restrictive than (9.3).
It is unlikely that (9.3) can be satisfied for any feasible δ. However, the inability

to satisfy (9.3) is good news! It means that for all practical purposes there is no
significant 1/ν regime so that axisymmetric neoclassical banana regime transport
transitions almost directly into less dangerous

√
ν regime for alpha ripple transport!

Moreover, for δv3
0/v

3
λ∼ 1 and ε/qNδ� 1, the transition from the 1/ν to

√
ν regime

happens when a significant fraction of a full toroidal rotation happens in a slowing
down time, roughly ωτs ∼ q, or more carefully

ωτs

q
∼

[
`n(64

√
k0`n(2k0))

40
√
`n(2k0)

]2/3

, (9.4)

where 2k0 ' 128ω τsδv
3
0/qv

3
λ ∼ 128ω τs/q � 1 is required for our boundary layer

analysis to be valid. Normally, ω τs� q.
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To remain near a slowing down distribution the
√
ν regime requires the alpha birth

gyroradius to satisfy the much stricter condition of

ωR
qvλ
�

[
`n(64

√
k0`n(2k0))

640`n(v0/vc)
√
`n(2k0)

]2/3 (
ρ0

aα

)4/3 (v0τs

R

)1/3
. (9.5)

Even with the small coefficient, rotation larger than the ∇B drift level (ωR>ρ0v0/R)
and small ρ0/aα may be required to avoid depletion of the alpha slowing down tail
distribution function.

To estimate the size of quantities for D–T fusion we use v0' 1.3× 109 cm s−1 for
a 3.5 MeV alpha, and τs = τeeM/Z2m' 0.63 s for Te ' 10 keV and ne ' 1014 cm−3,
with τee the electron collision time. We note that even if the alpha pressure was
comparable to the plasma pressure that the slowing down alpha density ns would
be small compared to the plasma density ns/ne ∼ 1/300. Consequently, the alphas
are not expected to play a role in ambipolarity so any radial electric field due to
ripple is due to the balance of 1/ν regime electron transport and

√
v regime ion

transport or the radial electric field associated with an axisymmetric tokamak and
determined by convservation of toroidal angular momentum (see Parra & Catto 2008,
2009, 2010, must be smaller in this situation), giving an inadequate rotation level of
ωR∼ qρivi/εa. Then the ∇B drift will dominant and is expected to play a role similar
to the E×B. The assumptions used to derive the alpha collision operator are satisfied
since v0� ve = (2Te/m)1/2 ' 6× 109 cm s−1 and v0� vi = (2Ti/Mi)

1/2
' 108 cm s−1.

Moreover, for equal amounts of D and T , v0/vc ' 3.25 and v3
λ/v

3
c ' 3/5, so our

assumptions that v3
0 � v3

c ∼ v
3
λ are satisfied. In addition, we note that for B0 = 5 T,

Ω0 ' 2.4 × 108 rad s−1, giving ρ0 ' 5.4 cm, which must be small compared to the
radial scale length aα of the alphas.

From the preceding numbers and R ' 10 m, we obtain R/τsv0 ' 1.2 × 10−6.
Consequently, based on (9.3), we expect that tokamaks will operate with the alphas
well into the

√
ν ripple transport regime with ωτs� q. Indeed, if we assume ωR' vi,

then we find ωτs ' 6.3× 104, giving
√
ν regime ripple transport. Then the key issue

becomes avoiding the depletion of the alpha slowing down distribution by satisfying
(9.5).

In summary, ripple transport of alphas will be in the
√
ν regime, rather than the

1/ν regime, thereby suppressing ripple transport well below the 1/ν level. However,
alpha ripple transport in the

√
ν regime will be a serious issue for tokamak reactors

as it will be well above the axisymmetric neoclassical level and can deplete the alpha
slowing down distribution function unless toroidal rotation is strong.
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Appendix A. Stringer (1972) and Connor & Hastie (1973)
The extremal along the magnetic field

B= B0[1− ε cos ϑ − δ cos(Nζ )] (A 1)

are found for fixed α from

ε sin ϑ + qNδ sin(Nζ )= 0. (A 2)

If qNδ� ε, then even if sin(Nζ )→±1, the minima must be near ϑ = 0. In this weak
ripple limit the well centres are near the equatorial plane and Nζ varies over less than
2π. In the qNδ� ε the strong ripple can localize the ripple well minima away from
the equatorial plane.

More precisely, the minima occur at

Nζ̆ = 2mπ− sin−1
[(ε/qNδ) sin ϑ̆] ' 2mπ− sin−1

[(ε/qNδ) sin ϑ], (A 3)

where m is an integer or zero satisfying 0 6 m 6 N to keep 2π > ζ̆ > 0 and we will
soon see that ϑ variation is weak for N� 1. The adjacent maxima occur at

N
_

ζ = (2m± 1)π+ sin−1
[(ε/qNδ) sin

_

ϑ] ' (2m± 1)π+ sin−1
[(ε/qNδ) sin ϑ]. (A 4)

The minima, maxima, and lower maxima are found by assuming that ϑ varies only
slightly during a bounce when N� 1. The minima and lower maxima must satisfy

|N(
_

ζ − ζ̆ )| ' | ±π+ 2 sin−1
[(ε/qNδ) sin ϑ]| =π− 2 sin−1

[(ε/qNδ)|sin ϑ |], (A 5)

giving
|
_

ϑ − ϑ̆ | ' {π− 2 sin−1
[(ε/qNδ)|sin ϑ |]}/qN� 1. (A 6)

Even for large ripple, qNδ� ε, the variation in |
_

ϑ − ϑ̆ | is small, even though |N(
_

ζ −

ζ̆ )| varies over almost a full 2π.
Only the lower maximum of the magnetic field,

_

B= B0[1− ε cos
_

ϑ − δ cos(N
_

ζ )] ' B0[1− ε cos
_

ϑ + δ

√
1− (ε/qNδ)2 sin2 ϑ], (A 7)

enters in our integrals, where we must choose the smaller of the two possible values
of ε cos

_

ϑ . Using the minimum field

B̆= B0[1− ε cos ϑ̆ − δ cos(Nζ̆ )] ' B0[1− ε cos ϑ̆ − δ
√

1− (ε/qNδ)2 sin2 ϑ] (A 8)

and expanding cos ϑ̆ about cos
_

ϑ at fixed α gives the lower maximato be

_

B' B0

{
1− ε cos ϑ̆ − (ε/qN)(π− 2 sin−1

[(ε/qNδ)|sin ϑ |])|sin ϑ |

+ δ

√
1− (ε/qNδ)2 sin2 ϑ

}
, (A 9)

where ϑ̆ ' ϑ except in cos ϑ̆ ,
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In addition, we can form

_

B− B̆ = B0{ε(cos ϑ̆ − cos
_

ϑ)+ δ[cos(Nζ̆ )− cos(N
_

ζ )]}

' 2B0δ

{√
1− (ε/qNδ)2 sin2 ϑ

− (ε/qNδ)[(π/2)− sin−1
[(ε/qNδ)|sin ϑ |]]|sin ϑ |

}
(A 10)

as in Stringer (1972) and Connor & Hastie (1973), where here the distinction
between

_

ϑ , ϑ̆ , and ϑ no longer matters on the right side.
Similarly, we can also form

_

B− B

(
_

B− B)/B0 ' ε(cos ϑ − cos
_

ϑ)+ δ

[
cos(Nζ )+

√
1− (ε/qNδ)2 sin2 ϑ

]
. (A 11)

Expanding using
_

ϑ ' ϑ gives

cos
_

ϑ ' cos ϑ − (
_

ϑ − ϑ) sin ϑ = cos ϑ − |
_

ϑ − ϑ ||sin ϑ | (A 12)

and
(
_

B− B)/B0 ' ε(
_

ϑ − ϑ) sin ϑ + δ[cos(Nζ )− cos(N
_

ζ )], (A 13)

where

cos(N
_

ζ )'−

√
1− (ε/qNδ)2 sin2 ϑ. (A 14)

Along the magnetic field q(
_

ϑ − ϑ)=
_

ζ − ζ giving for p= 1 and 3,∫
all

d(Nζ )
√
[1− (B/

_

B)]p ' δp/2
∫

all
d(Nζ )

×

{
(ε/qNδ)(N

_

ζ −Nζ ) sin ϑ + [cos(Nζ )−cos(N
_

ζ )]
}p/2

, (A 15)

where we can view
_

ζ =
_

ζ (ϑ).
To get the same signs and form as Connor & Hastie (1973) and conveniently keep

track of signs, we let Y=Nζ +π so that cos(Nζ )=−cos Y and ζ =0 is at π, and X=
N

_

ζ (ϑ)+π so that cos(N
_

ζ )=−cos X and we may take

sin X = (ε/qNδ) sin ϑ. (A 16)

Then∫
all

d(Nζ )
√
[1− (B/

_

B)]p ' δp/2
∫

all
dY[cos X −cos Y + (X − Y) sin X]p/2. (A 17)

Continuing, using

dX cos X = (ε/qNδ) cos ϑ dϑ =
√
(ε/qNδ)2 − sin2 X dϑ, (A 18)
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and the up–down symmetry of the ϑ integral, and then noting that the 0 to π/2 and
π/2 to π contributions to the ϑ integral are equal, gives∫

all
dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]p

=
4δp/2

(ε/qNδ)2

∫ U

0

dX cos X sin2 X√
(ε/qNδ)2 − sin2 X

×

∫ Y1(X)

X
dY[cos X −cos Y + (X − Y) sin X]p/2. (A 19)

The lower limit Y = X corresponds to B=
_

B (the lower maximum), while the upper
limit U also corresponds to B=

_

B but not at a maximum, instead it satisfies cos X −
cos Y1+ (X−Y1) sin X=0 (note for X→−X, Y1→−Y1). Consequently, like Connor &
Hastie (1973) we integrate between two maxima. The upper limit U of the X integral
is π/2 when ε/qNδ > 1, while for ε/qNδ < 1 it is sin−1(ε/qNδ).

To get the maximum value for normalization we consider ε/qNδ� 1∫
all

dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]p '
4δp/2

(ε/qNδ)2

×

∫ ε/qNδ

0

dX X2√
(ε/qNδ)2 − X2

∫ Y1

X
dY(1−cos Y − XY)p/2, (A 20)

where for X� 1, Y1 satisfies 1−cos Y1' Y1X giving Y1' 2π− 2
√

πX. Letting Y = 2y
and making use of X� 1 to neglect order X2 corrections gives∫ Y1

X
dY(1−cos Y − XY)p/2 = 2

√
2p

∫ Y1/2

X/2
dy(sin2 y− Xy)p/2. (A 21)

For the p= 3 case∫ Y1

X
dY(1−cos Y − XY)3/2 ' 4

√
2
(∫ Y1/2

X/2
dy sin3 y−

3X
2

∫ π

0
dy y sin y

)
'

16
3

√
2
(

1−
9π

8
X + · · ·

)
. (A 22)

Then letting X = (ε/qNδ)x and γ = ε/qNδ gives∫
all

dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]3 '
16π
√

2 δ3/2

3
(1− 3γ + · · ·), (A 23)

which for p= 3 agrees with Connor & Hastie (1973) and gives 16π
√

2 δ3/2/3 as the
normalization coefficient.

The case p= 1 is more involved. We split the integral∫ Y1/2

X/2
dy(sin2 y− Xy)1/2 =

∫ π/2

X/2
dy(sin2 y− Xy)1/2 +

∫ Y1/2

π/2
dy(sin2 y− Xy)1/2. (A 24)
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For the first term we use∫ π/2

X/2
dy(sin2 y− Xy)1/2 '

∫ π/2

X/2
dy sin y−

X
2

∫ π

0

dy y
sin y
= 1−CX + · · · , (A 25)

with C= 0.916 Catalan’s constant. For the second integral we let z=π− y to obtain

∫ Y1/2

π/2
dy
√

sin2 y− Xy=
∫ π/2

√
πX

dz
√

sin2 z+ X(z−π)

'

∫ π/2

√
πX

dz sin z+
X
2

∫ π/2

√
πX

dz
z−π

sin z
' 1+ X

{
C+

π

4

[
`n
(

πX
4

)
− 2
]}

. (A 26)

Consequently,

∫ Y1/2

X/2
dy(sin2 y− Xy)1/2 ' 2+

πX
4

[
`n
(

πX
4

)
− 2
]
. (A 27)

Then again letting X = (ε/qNδ)x we obtain∫
all

dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)] ' 16
√

2 δ1/2

×

∫ 1

0

dx x2

√
1− x2

{
1+

πγ x
8

[
`n
(πγ x

4

)
− 2
]}

' 4π
√

2 δ1/2

{
1+

πγ

3

[
`n
(πγ

2

)
−

17
6

]}
, (A 28)

where we use 4.241.2 of Gradshteyn & Ryzhik (2007),

∫ 1

0

dx x3`nx
√

1− x2
=

2
3

(
`n2−

5
6

)
. (A 29)

As a result, the normalization coefficient for p= 1 is 2π
√

2 δ1/2.
When ε/qNδ� 1 then U =π/2 and we must evaluate∫

all
dϑ sin2 θ

∫
all

d(Nζ )
√
[1− (B/

_

B)]p

'
4δ1/2

γ 3

∫ π/2

0
dX cos X sin2 X

[
1+

sin2 X
2γ 2

+ · · ·

]
×

∫ Y1

X
dY[cos X −cos Y + (X − Y) sin X]p/2, (A 30)

where ϑ ' 0 implies sin X' γϑ 6 1. Notice that for X= 0, Y1= 2π (or Nζ =π), and
for X =π/2, Y1 =π/2 (or Nζ =−π/2); while for X = 0= Y , Nζ =−π.
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