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NS SATURATED AND ∆1-DEFINABLE

STEFAN HOFFELNER

Abstract. We show that under the assumption of the existence of the canonical inner model with one

Woodin cardinalM1, there is a model of ZFC in which NSù1 is ℵ2-saturated and ∆1-definable with ù1 as

a parameter which answers a question of S. D. Friedman and L. Wu. We also show that starting from an

arbitrary universe with a Woodin cardinal, there is a model with NSù1 saturated and ∆1-definable with a

ladder system EC and a full Suslin tree T as parameters. Both results rely on a new coding technique whose

presentation is the main goal of this article .

§1. Preliminaries.

1.1. Introduction. The investigation of the nonstationary ideal on ù1 and its
saturation has a long history in set theory. Recall that NSù1 being (ℵ2-)saturated
means that P(ù1)/NSù1 seen as a Boolean algebra has the ℵ2-cc. That ù1 can carry
a normal, ó-complete and saturated ideal was already noted by Kunen in 1970. He
obtained the result assuming the existence of a huge cardinal. Using completely
different methods which served as the starting point for the later development
of Woodin’s Pmax , Steel and Van Wesep obtained a decade later that already the
nonstationary ideal on ù1 can be saturated. Considering the problem from a very
different perspective again, Foreman, Magidor and Shelah showed a couple of
years later that Martin’s Maximum MM, whose consistency can be derived from a
supercompact cardinal, implies outright that NSù1 is saturated. Eventually Shelah
found that already a Woodin cardinal is sufficient to force a model in which NSù1
is saturated, an assumption which turned out to be sharp in terms of consistency
strength, as shown in 2006 by Jensen and Steel.
There are several interesting and deep interactions, connecting assertions related

to “NSù1 is saturated” with definability properties of certain important families
of sets in the H (ù2) of the surrounding universe. As a paradigmatic example we
mentionWoodin’s famous result that in the presence of a measurable cardinal, NSù1
being saturated implies the definable failure of the continuum hypothesis.
Goal of this paper is the proof of the following theorem:

Theorem. Assume the existence ofM1, then there is a model of ZFC in which NSù1
is ℵ2-saturated and ∆1-definable with parameter ù1.

In fact the coding methods we will introduce will work over an arbitrary ground
model with a Woodin cardinal once we allow more parameters. So the above
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26 STEFAN HOFFELNER

theorem is an application of the more general theorem we shall prove in this
paper.

Theorem. Assume that V is a universe with aWoodin cardinal, EC is a ladder system
on ù1 and T is a full Suslin tree. Then there is a generic extension V [G ] of V such that
in V [G ], the nonstationary ideal NSù1 is ℵ2-saturated and ∆1-definable over H (ù2)

with parameters EC and T.

Starting point for this work was the following remarkable theorem of H. Woodin
[23] who showed that from ù-many Woodin cardinals one can get a model in which
NSù1 is ù1-dense, which in particular implies the following:

Theorem. Con(ZFC+ “there are ù-many Woodin cardinals”) implies Con(ZFC+
“NSù1 is both ℵ2-saturated and ∆1-definable with parameters inH (ù2)”).

Friedman and LiuzhenWu [7] asked whether the assumption of ù-manyWoodin
cardinals can be replaced by a milder large cardinal axiom. Partial progress was
made in [5], where it is proved that from the existence of M1 one can construct
a model in which NSù1 is ∆1-definable with parameter Kù1 while for a previously
fixed stationary, co-stationary A ⊂ ù1, the restricted nonstationary ideal NSù1 ↾ A
is ℵ2-saturated, however the methods used there did not give an answer for the full
nonstationary ideal.
This paper presents a new approach to the problem, using a new coding technique

and a different set up of the proof, in order to yield the desired result. Its main idea
is to use robust coding forcings to first generically create a suitable ground model
over which a second coding forcing is applied to yield the desired result. This is
in contrast to the traditional approaches, whose codings usually take place over
some core model, whose definition comes along with a certain degree of generic
robustness, which enables the possibility of finding the information created with the
coding forcings.
Put in greater context this work can be seen as a new instance of the general quest

of set theory (see e.g., [2, 4, 7]) which aims for the construction of models with
interesting features, usually obtained by assuming the existence of a large cardinal
in the ground model, and additionally allow some robust description of some of
its most important families of sets. The investigation of such problems has a long
history in set theory. As mentioned already, the usual procedure for obtaining such
results (as in [2] or [4]) is starting with a suitable inner model whose definition is
absolute for generic extensions (e.g., Gödel’sL or some coremodel below a (not too)
large cardinal) and apply some iterated forcing constructions to encode the desired
information. This method has its limitations in the presence of more complicated
inner models due to the lack of a sufficient amount of generic absoluteness and
condensation of the inner model. This work is an attempt to circumvent these
difficulties.
The question of NSù1 being ∆1-definable came to prominence after the

introduction of the canary tree by Mekler and Shelah. In [15] they proved that
consistently NSù1 is ∆1-definable with parameters in H (ù2)

1. On the other hand if
V = L and κ > ù1, NSκ can not be ∆1-definable with parameters inH (κ

+) (see [6]

1The proof of [15] has a flaw which was found and corrected by Hyttinen and Rautila, see [9].

https://doi.org/10.1017/jsl.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.23


NS SATURATED AND ∆1-DEFINABLE 27

Theorem 49.3). In [8] it is proved that, starting from L as the ground model and
with κ a successor cardinal, there is a cardinal and GCH-preserving forcing notion
P such that in LP, NSκ is ∆1-definable over H (κ

+) with H (κ) as the parameter.
In the context of large cardinals it is proved in [7] that given a measurable cardinal
there is a model in which NSù1 is precipitous and ∆1-definable with parameters
from H (ù2). It is also observed there that under the assumption of the existence
of P(ù1)

# and “NSù1 is saturated,” NSù1 can not be ∆1-definable with parameter
ù1. The argument utilizes Woodin’s Pmax-forcing. In the light of the last result, the
theorem of this paper is somewhat optimal.
There aremore and very recent results which show that under strong assumptions,

the nonstationary ideal NSù1 can not be ∆1(ù1)-definable. First the result of
Friedman and Wu has been extended by Lücke et al. in [14], where they prove
under the assumption of a Woodin cardinal and a measurable cardinal above, that
no subfamily of P(ù1) which is ∆1(ù1)-definable over H (ù2) can separate the club
filter onù1 from the nonstationary ideal. Secondly, a very recent and yet unpublished
result fromLarson et al. shows that ifBMM holds and aWoodin cardinal exists, then
NSù1 can not be ∆1(X ) definable for any parameter X ⊂ ù1. Their argument uses
Woodin’s stationary tower forcing. Consequentially a very interesting picture starts
to emerge connecting the (impossibility of) ∆1-definability of NSù1 with forcing
axioms, large cardinals and their consequences.
We end the introduction noting that all the results previously obtained for NSù1

being ∆1(ù1) definable hold only in the presence of CH, which prompted a question
in [8] whether there are models of “NSù1 is ∆1(ù1)-definable” and the failure of CH.
As in the models we will construct 2ℵ0 = ℵ2 holds, we can answer it in the positive.

§2. Peliminaries.

2.1. Some results on Suslin trees. Suslin trees are one of the three coding
techniques we will use during the proof. Recall that a set theoretic tree (T, <)
is a Suslin tree if it is a normal tree of height ù1 and no uncountable antichain. All
the trees which appear in this paper will be normal, thus whenever we talk about
trees it is implicitly assumed that these trees are normal. It is central for our needs to
have a criterion which guarantees that a Suslin tree Swill remain Suslin after passing
to a generic extension of the universe. Recall that for a forcing P andM ≺H (è), a
condition q ∈ P is (M,P)-generic iff for every maximal antichain A⊂ P, A ∈M , it
is true that A∩M is predense below q. The key fact is the following (see [17] for the
case where P is proper)

Lemma 1. Let T be a Suslin tree, S ⊂ ù1 stationary and P an S-proper poset. Let
è be a sufficiently large cardinal. Then the following are equivalent:

1. P T is Suslin and
2. if M ≺ Hè is countable, ç =M ∩ù1 ∈ S, and P and T are in M, further if
p ∈ P∩M , then there is a condition q < p such that for every condition t ∈ Tç,
(q,t) is (M,P×T )-generic.

Proof. For the direction from left to right note first that P T is Suslin implies
P T is ccc, and in particular it is true that for any countable elementary submodel
N [ĠP] ≺ H (è)

V [ĠP], P ∀t ∈ T (t is (N [ĠP],T )-generic). Now if M ≺ H (è) and
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28 STEFAN HOFFELNER

M ∩ù1 = ç ∈ S and P,T ∈M and p ∈ P∩M then there is a q < p such q is (M,P)-
generic. So q  ∀t ∈ T (t is (M [ĠP],T )-generic, and this in particular implies that
(q,t) is (M,P×T )-generic for all t ∈ Tç.
For the direction from right to left assume that  Ȧ⊂ T is a maximal antichain.

Let B = {(x,s) ∈ P×T : x P š ∈ Ȧ}, then B is a predense subset in P×T . Let
è be a sufficiently large regular cardinal and letM ≺H (è) be countable such that
M ∩ù1 = ç ∈ S and P,B,p,T ∈M . By our assumption there is a q <P p such that
∀t ∈ Tç((q,t) is (M,P×T )-generic). So B ∩M is predense below (q,t) for every
t ∈ Tç, which yields that q P ∀t ∈ Tç∃s <T t(s ∈ Ȧ) and hence q  Ȧ ⊂ T ↾ ç, so
P T is Suslin. ⊣

As for iterations, Miyamoto (see [16]) defined a generalization of the usual
iterations with revised countable support which he called nice iterations which share
the useful properties of iterations with revised countable support and additionally
satisfy that whenever the factors of a nicely supported iteration do not kill Suslin
trees then the nice limit will preserve Suslin trees as well. As nice iterations are quite
technical and complicated, we refer the interested reader to the next section of this
paper where we introduce the concept more thoroughly and prove the properties of
nice iterations we use and which are not already proved in [16]. The reader should
be able to follow everything below as long as she is willing to accept the usage of
four facts about nice iterations.

Fact 2. Let ((Pα,Q̇α) : α ≤ ë) be a nice iteration of length ë ∈ Lim. Then

1. If ë is an inaccessible cardinal and for every α< ë, Pα has the ë-cc, then Pë is the
direct limit of the Pα ’s.

2. If ë is Mahlo and every factor of the iteration has size less than ë, then the nice
iteration has the ë-c.c.

3. If α < ë and if Pαë denotes the tail iteration of ((Pα,Q̇α) : α ≤ ë), then α ”Pαä
is a nice iteration.”

4. Let S be a Suslin tree. If for all α, α “Q̇α is semiproper and S is a Suslin tree,”
then ë “S is a Suslin tree.” Also the ë-length iteration Pë will be a semiproper
forcing as well.

Recall that for two trees (T0, <T0) and (T1, <T1) their tree-product T0×T1 is
defined to be the tree which consists of nodes {(t0,t1) : t0 ∈ T0 ∧ t1 ∈ T1∧ height
(t0) = height (t1)}, ordered by (t0,t1) <T0×T1 (s0,s1) if and only if t0 <T0 s0 and
t1 <T1 s1. From now on whenever we talk about a product of trees, it is always
the tree product which is meant. For our purposes it is necessary to iteratively
add sequences of blocks of Suslin trees (T̄α : α < κ) such that T̄ is itself an ù-
length sequence of Suslin trees whose finite subproducts are Suslin again. One can
construct such sequences using Jech’s forcingwhich adds a Suslin treewith countable
conditions.

Definition 3. Let PJ be the forcing whose conditions are countable, normal trees
ordered by end-extension, i.e., T1 < T2 if and only if ∃α < height(T1)T2 = {t ↾ α :
t ∈ T1}.

It is wellknown that PJ is ó-closed and adds a Suslin tree. In fact more is true, the
generically added tree T has the additional property that for any Suslin tree S in the
ground model S×T will be a Suslin tree in V [G ].
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Lemma 4. Let V be a universe and let S ∈V be a Suslin tree. If PJ is Jech’s forcing
for adding a Suslin tree and if T is the generic tree then

V [T ] |= T ×S is Suslin.

Proof. Let Ṫ be the PJ -name for the generic Suslin tree. We claim that PJ ∗ Ṫ
has a dense subset which is ó-closed. As ó-closed forcings will always preserve
ground model Suslin trees, this is sufficient. To see why the claim is true consider the
following set:

{(p,q̌) : p ∈ PJ ∧height(p) = α+1∧ q̌ is a node of p of level α}.

It is easy to check that this set is dense and ó-closed in PJ ∗ Ṫ . ⊣

A similar observation shows that a we can add anù-sequence of such Suslin trees
with a fully supported iteration. Even longer sequences of such trees are possible if
we lengthen the iteration but for our needs ù-blocks are sufficient.

Lemma 5. Let S be a Suslin tree in V and let P be a fully supported iteration of
length ù of forcings PJ . Then in the generic extension V [G ] there is an ù-sequence of
Suslin trees ET = (Tn : n ∈ ù) such that for any finite e ⊂ ù the tree S×

∏

i∈e Ti will

be a Suslin tree in V [ ET ].

Proof. Let G be a generic filter for P. First we observe that the fully supported
product

∏

n∈ù PJ followed by the fully supported forcing with the product of the
generically added trees Tn has a ó-closed dense subset which is defined coordinate-
wise as above, thus ground model Suslin trees are preserved. If we pick a finite
e ⊂ ù, then for an arbitrary Suslin tree S ∈ V ,

∏

i∈e Ti ×S is a Suslin tree in the
intermediate model generated by the trees Ti , i ∈ e over V. This is preserved when
passing to the generic extension V [G ]. ⊣

These sequences of Suslin trees will become important later in our proof, thus
they will get a name.

Definition 6. Let ET = (Tα : α < κ) be a sequence of Suslin trees. We say
that the sequence is an independent family of Suslin trees if for every finite set
e = {e0,e1,...,en} ⊂ κ the product Te0 ×Te1 ×· · ·×Ten is a Suslin tree again.

2.2. Nice iterations. This section contains a quick reminder of the main
definitions and properties of Miyamoto’s concept of nice iterations, which we use in
our proof. We will provide proofs for the three properties of nice iterations which we
took advantage of in the arguments before. Our notation will be parallel to [16]. In
particular we will use his definition of an iteration (see [16], Definition 1.6). Recall
that for conditions p in a forcing iteration, l(p) denotes the length of p as seen as a
sequence, and p ↾ α denotes the condition which is the sequence p cut at α.
The central concept to define what a nicely supported iteration is, is a nested

antichain.

Definition 7. Suppose that (Pα : α < í) be an iteration of length í. A nested
antichain in (Pα : α < í) is a triple (T,(Tn : n ∈ ù),(suc

n
T : n ∈ ù)) such that
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1. T =
⋃

n∈ù{Tn : n ∈ ù}.
2. T0 = {a0} for some condition a0 ∈

⋃

{Pα : α < í}.
3. Tn ⊂

⋃

n∈ù{Pα : α < í} and suc
n
T : Tn → P(Tn+1).

4. For a ∈ Tn and b ∈ suc
n
T (a), l(a)≤ l(b) and b ↾ l(a)≤ a.

5. For a ∈ Tn and b,b′ ∈ sucnT (a), b 6= b
′ iff b ↾ l(a) and b′ ↾ l(a) are incompatible

in Pl(a).
6. For a ∈ Tn, {b ↾ l(a) : b ∈ suc

n
T (a)} is a maximal antichain below a in Pl(a).

7. Tn+1 =
⋃

{sucnT (a) : a ∈ Tn}.

From now on we will simply write T for a nested antichain, and suppress the
mentioning of the levels Tn and the successor function suc

n
T . A nice limit Pí of

an iteration (Pα : α < í} will consist of conditions which correspond to nested
antichains in (Pα : α< í). To achieve that we need to write a nested antichain again
as a sequence.

Definition 8. Let T be a nested antichain in an iteration (Pα : α < í). Let â < í
be arbitrary, then we say that y ∈ Pâ is a mixture of T up to â iff for all i < â , y ↾ i
forces:

1. y(i) = a0(i), if i < l(a0) and a0 ↾ i ∈Gi , where T0 = {a0}.
2. y(i) = b(i), if there is a pair (a,b) such that a,b ∈T , b ∈ suc(a), l(a)≤ i < l(b)
and b ↾ i ∈Gi .

3. y(i) = 1, if there is a sequence (an : n ∈ ù) such that a0 ∈ T0 and for all n ∈ ù,
an+1 ∈ suc

n
T (an), l(an)≤ i and an ∈Gi ↾ l(an).

4. No requirements else.

It is important to note that for a given nested antichain T in (Pα : α < í), a
mixture of T up to some â need not to exist. One can weaken the requirements in
the following way.

Definition 9. Let (Pα : α< í) be an iteration, assume that T is a nested antichain
in (Pα : α < í), and let â ≤ í be a limit ordinal. Then a sequence y of length â is
(T,â)-nice iff for all α < â , y ↾ α ∈ Pα and y ↾ α is a mixture of T up to α.

Note that in the definition above, we do not demand that y is a condition inPâ . The
intuition is that our iteration at limits should consist of sequences which correspond
to nested antichains. This reasoning seems circular at first sight, the nested antichains
need an iteration already to even define them. But a careful definition takes care
of that. We define first conditions at limit stages using nested antichains of the old
sequence of posets, and then show that in the new limit, the new nested antichains
for that new poset are already represented as conditions automatically.
With these notions it is possible to define what a nice limit of an iteration is.

Definition 10. Assume that (Pα : α < í) is an iteration, í a limit ordinal. We
define a separative preorder, the nice limit (Pí,1í, <) of (Pα : α < í) as follows:

1. Pí := {x : x is a sequence of length í and there is a nested antichain T in
(Pα : α < í) such that x is (T,í)-nice}.

2. If x,y ∈ Pí then x ≤í y if and only if for all α < í, x ↾ α ≤α y ↾ α.
3. Maximal element 1í is defined to be the í-sequence

⋃

α<í 1α .

One can show the following fundamental properties:

https://doi.org/10.1017/jsl.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.23


NS SATURATED AND ∆1-DEFINABLE 31

Theorem 11 (2.9. pp. 1445 [16]). Let (Pα : α < í) be an iteration and Pí its nice
limit. Then (Pα : α≤ í) is an iteration and for every nested antichain T in (Pα : α≤ í),
and any í-length sequence x which is (T,í)-nice we have that x ∈Pí , thus x is amixture
of T up to í.

A nice iteration is defined as follows (see [16], Definition 3.6):

Definition 12. An iteration (Pα : α < í) is nice iff

1. For any i+1< í, if p ∈ Pi and ô is a Pi -name such that p i “ô ∈ Pi+1∧ ô ↾ i ∈
Ġi ,”then there is a q ∈ Pi+1 such that q ↾ i = p and p i “ô(i)≡ q(i).′′

2. For any limit ordinal â < í and any sequence x of length â , x ∈ Pâ holds iff there
is a nested antichain T in (Pα : α < í) such that x is (T,â)-nice.

One can produce nice iterations of length ä in the usual way: we form a sequence
(Pα,Q̇α : α < ä), where for every α < ä, Q̇α is a Pα-name for a separative partial
order in V Pα , and Pα+1 is isomorphic to Pα ∗ Q̇α+1, and Pâ is the nice limit of the
Pα ’s for α < â and limit ordinals â .
As usual, it is possible to cut an iteration (Pα : α < ä) at some intermediate

stage, and look at the tail iteration Pαä as seen from the new ground model V
Pα .

If Gα denotes a Pα-generic filter, then Pαä = {p ↾ [α,ä) : p ∈ Pä ∧p ↾ α ∈ Gα}. As
conditions in nice iterations correspond to nested antichains and nested antichains
can be cut in a canonical way (see Lemma 2.7 in [16]), we obtain that tail iterations
of nice iterations are nice iterations as seen from the intermediate stage where the
cut happend.

Theorem 13. For a nice iteration (Pα : α < ä), if α < ä then α “Pαä is a nice
iteration.”

Proof. We shall show that for an arbitrary α < ä and any limit â ≤ ä, α < â ,
α x ∈ Pαâ ⇔∃ nested antichain Ṫ in (Pαã : ã < â) such that x is (Ṫ ,αâ)-nice.
For the forward direction, we note that if x ∈ Pαâ then there is a p ∈ Pâ such that

p ↾ α  p ↾ [α,â) = x. As Pâ is a nice iteration, there is a nested antichain T such
that p is (T,â)-nice. As a result p ↾ α is a mixture of T up to α. Then there exists a
Pα-name Ṫ such that

p ↾ α α Ṫ is a nested antichain in (Pαã : ã < â)

and

p ↾ α α p ↾ [α,â)(= x) is (Ṫ ,αâ)-nice

which is what we wanted.
For the backward direction, let p ∈ Pα be such that

p α x is a sequence of length (â – α)∧∃Ṫ (Ṫ is a nested antichain in

(Pαã)ã<â such that x is (Ṫ ,αâ)-nice).

We shall show that p α x ∈ Pαâ . It is straightforward to turn the Pα-name Ṫ for a
nested antichain in (Pα,ã)ã<â into a nested antichainT in (Pã)ã<â such that a0 ofT is
p. As Pâ is a nice iteration, there is a condition p

′ ∈ Pâ such that p
′ is aT-mixture up

to â . As a0 of T is p, we know that p
′ ↾ α = p. Thus we arrive at a condition p′ ∈ Pâ

such that p′ ↾ α  p′ ↾ [α,â) is a Ṫ -mixture up to â , and by assumption p′ ↾ α  x
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is (Ṫ ,αâ)-nice, and as Ṫ uniquely determines the condition due to [16], Corrollary
2.6, we infer that p′ ↾ α  x = p′ ↾ [α,â), hence p  x ∈ Pαâ as desired. ⊣

We shall show that if κ is a Mahlo cardinal and (Pα : α< κ) is a nicely supported
iteration of length κ and every Pα has the κ-c.c. then the limit Pκ has the κ-c.c. as
well. To see this, note first that for an inaccessible ä and a nice iteration (Pα : α< ä)
such that every Pα has the ä-c.c. the nested antichains, and hence all the conditions
in the nice iteration are bounded below ä in terms of their support. It follows that
the nice limit of (Pα : α < ä) has size at most ä, and thus the ä

+-chain condition
and is the same as just taking the direct limit at such stages. Thus if κ is a Mahlo
cardinal, then the set of inaccessibles below κ is stationary, thus we have a stationary
set of stages for which we take the direct limit of our iteration and by a well-known
theorem (see e.g., Theorem 16.30 in [10]) the nice limit will satisfy the κ-c.c. As a
summary

Lemma 14. If κ is a Mahlo cardinal and (Pα : α < κ) is a nice iteration of factors
which have size less than κ then the nice limit will satisfy the κ-c.c.

2.3. Coding reals by triples of ordinals. We present a coding method invented by
Caicedo and Velickovic (see [3]) which we will use in the argument.

Definition 15. A EC -sequence, or a ladder system, is a sequence (Cα : α ∈
ù1,α a limit ordinal), such that for every α, Cα ⊂ α is cofinal and the ordertype of Cα
is ù.

For three subsets x,y,z ⊂ ù we can define an oscillation function. First turn
the set x into an equivalence relation ∼x , defined on the set ù – x as follows: for
natural numbers in the complement of x satisfying n ≤m let n ∼x m if and only if
[n,m]∩x = ∅. This enables us to define:

Definition 16. For a triple of subset of natural numbers (x,y,z) list the intervals
(In : n ∈ k ≤ ù) of equivalence classes of ∼x which have nonempty intersection with
both y and z. Then the oscillation map o(x,y,z) : k→ 2 is defined to be the function
satisfying

o(x,y,z)(n) =

{

0 if min(In ∩y)≤min(In ∩ z),

1 else.

Next we want to define how suitable countable subsets of ordinals can be used to
code reals. First we fix a ladder system EC for the rest of this section. Suppose that
ù1 < â < ã < ä are fixed limit ordinals of uncountable cofinality, and that N ⊂M
are countable subsets of ä. Assume further that {ù1,â,ã} ⊂ N and that for every
ç ∈{ù1,â,ã},M ∩ç is a limit ordinal andN ∩ç<M ∩ç.We canuse (N,M ) to code a
finite binary string. Namely let M̄ denote the transitive collapse ofM, let ð :M → M̄
be the collapsing map and let αM := ð(ù1), âM := ð(â), ãM := ð(ã)äM := M̄ . These
are all countable limit ordinals. Further set αN := sup(ð“(ù1 ∩N )) and let the
height n(N,M ) of αN in αM be the natural number defined by

n(N,M ) := card (αN ∩CαM ),
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where CαM is an element of our previously fixed ladder system. As n(N,M ) will
appear quite often in the following we write shortly n for n(N,M ). Note that as the
ordertype of each Cα is ù, and as N ∩ù1 is bounded below M ∩ù1, n(N,M ) is
indeed a natural number. Now we can assign to the pair (N,M ) a triple (x,y,z) of
finite subsets of natural numbers as follows:

x := {card (ð(î)∩CâM ) : î ∈ â ∩N}.

Note that x again is finite as â ∩N is bounded in the cofinal in âM -set CâM , which
has ordertype ù. Similarly we define

y := {card (ð(î)∩CãM ) : î ∈ ã ∩N}

and

z := {card (ð(î)∩CäM : î ∈ ä∩N}.

Again it is easily seen that these sets are finite subsets of the natural numbers. We
can look at the oscillation o(x\n,y\n,z\n) (remember we let n := n(N,M )) and if
the oscillation function at these points has a domain bigger or equal to n then we
write

sâ,ã,ä(N,M ) :=

{

o(x\n,y\n,z\n) ↾ n if defined,

∗ else,

where ∗ should simply be some error symbol. Similarly we let sâ,ã,ä(N,M ) ↾ l = ∗
when l > n. Finally we are able to define what it means for a triple of ordinals (â,ã,ä)
to code a real r.

Definition 17. For a triple of limit ordinals ù1 < â < ã < ä of uncountable
cofinality, we say that it codes a real r ∈ 2ù if there is a continuous increasing sequence
(Nî : î < ù1) of countable sets of ordinals whose union is ä and which satisfies that
there is a club C ⊂ù1 such that whenever î ∈C is a limit ordinal then there is a í < î
such that

r =
⋃

í<ç<î

sâ,ã,ä(Nç,Nî).

We say that the sequence (Nî : î < ù1) is a reflecting sequence.

Witnesses to the coding can be added with a proper forcing. On the other hand
there is a certain amount of control for fixed triples of ordinals and the behavior of
continous, increasing sequences on them:

Theorem 18 (Caicedo–Velickovic).

(†) Given ordinals ù1 < â < ã < ä < ù2 of cofinality ù1, there exists a proper
notion of forcing Pâãä such that after forcing with it the following holds: There
is an increasing continuous sequence (Nî : î < ù1) such that Nî ∈ [ä]

ù whose
union is ä such that for every limit î < ù1 and every n ∈ ù there is í < î and
snî ∈ 2

n such that

sâãä(Nç,Nî) ↾ n = s
n
î

https://doi.org/10.1017/jsl.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.23


34 STEFAN HOFFELNER

holds for every ç in the interval (í,î). We say then that the triple (â,ã,ä) is
stabilized.
(‡) Further if we fix a real r there is a proper notion of forcing Pr such that the
forcing will produce for a triple of ordinals (âr,ãr,är) of size and cofinality ù1 a
reflecting sequence (Pî : î < ù1), Pî ∈ [är ]

ù such that
⋃

Pî = är and such that
there is a club C ⊂ ù1 and for every limit î ∈ C there is a í < î such that

⋃

í<ç<î

sârãrär (Pç,Pî) = r.

Both partial orders Pâãä and Pr which force (†) and (‡) respectively are actually
instances of a general class of notions of forcing which were investigated first by
Moore’s in his work on the Set Mapping Reflection Principle (MRP) (see [18]). We
shall see later that these forcings never kill Suslin trees. For that reason we have to
introduce a couple of notions from [18]. We need first the following local version of
stationarity:

Definition 19. Let è be a regular cardinal, X be an uncountable set, letM ≺Hè be
a countable elementary submodel which contains [X ]ù as an element. Then S ⊂ [X ]ù

is M-stationary if for every club subset C of [X ]ù , C ∈M it holds that

C ∩S ∩M 6= ∅.

Definition 20. Let X be an uncountable set,N ∈ [X ]ù and x ⊂N finite. Then the
Ellentuck topology on the set [X ]ù is generated by base sets of the form

[x,N ] := {Y ∈ [X ]ù : x ⊂ Y ⊂N}.

From now on whenever we say open we mean open with respect to the Ellentuck
topology.

Definition 21. LetX be an uncountable set, let è be a large enough regular cardinal
so that [X ]ù ∈Hè . Then a function Σ is said to be open stationary if and only if its
domain is a club C ⊂ [Hè ]

ù and for every countable M ∈ C , Σ(M ) ⊂ [X ]ù is open
and M-stationary.

Moore has shown that for any open stationary map Σ it is possible to force a
reflecting sequence (Nî : î < ù1) with a proper forcing PΣ (see [18], Theorem 3.1.).

Proposition 22 (Moore). Let Σ be an open stationary function defined on some
club C ⊂ [Hè ]

ù with range P([X ]ù) for some uncountable set X. Then there is a
proper notion of forcing PΣ which adds a continuous sequence of models (Nî : î < ù1)
(a reflecting sequence) in dom(Σ) such that for every limit ordinal î there is a í < î
such that for every ç with í < ç < î, Nç ∩X ∈ Σ(Nî).

The forcing PΣ is defined as expected: for an open stationary map Σ let PΣ consist
of conditions p which are functions p : α+1→ dom(Σ), α countable, which are
continuous and ∈-increasing, and which additionally satisfy theMRP-condition on
its limit points, namely that for every 0 < í < α, í a limit ordinal, there is a í0 < í
such that p(î)∩X ∈ Σ(p(í)) for every î in the interval (í0,í). The order is by
extension.
Now, as already mentioned above, both forcings Pâãä and Pr which will produce

(†) and (‡) respectively are of the form PΣ (see [3], Lemmas 1, 4 and 5).
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Proposition 23. There are two open stationary maps Σr and Σâãä such that Pâãä =
PΣâãä and Pr = PΣr .

As a consequence, if we show that PΣ always preserves Suslin trees for Σ an
arbitrary open stationary map, we will have proven that Pr and Pâãä preserve Suslin
trees. This is indeed the case as we will show now.

Proposition 24. Let Σ be an arbitrary open stationary map and let PΣ be as defined
above. Then PΣ preserves Suslin trees.

Proof. We fix an arbitrary Suslin tree T. For every countable M ≺ Hë, if ç =
M ∩ù1 and t ∈ Tç then by the Susliness of T, t is (M,T )-generic. As a consequence
we can consider the generic extensionM [t] and note thatM [t] will not add any new
countable sets of ordinals toM.
Let Σ be the open stationary map. Recall that PΣ was defined to consist of

conditions p : α+1→ dom(Σ), α < ù1, which are ∈-increasing and continuous
and which additionally satisfy that for every limit ordinal í, 0 < í < α there is a
í0 < í such that p(î)∩X ∈ Σ(p(í)) for every î in the interval (í0,í). The order is
by extension.
We let ë be sufficiently large and pick a countableM ≺Hë which contains T,Σ,

PΣ, a condition p ∈ PΣ, and the structure H|PΣ|
+ . Letting M ∩ù1 = ç, then our

goal is to produce a stronger condition q < p such that for every t ∈ Tç, (q,t) is an
(M,PΣ×T )-generic condition.
We list (tn : n ∈ù), the elements of Tç and build the according generic extensions

M [tn]. AsM andM [tn] have the same countable sequences ofM-elements, there is
no difference when talking about Σ and PΣ in eitherM orM [tn]. We list all the dense
subsets (D0,D1,..) of PΣ which we can find in

⋃

n∈ùM [tn] and build by recursion a
descending sequence of conditions (pi : i ∈ ù) inM, starting at p0 := p hitting the
corresponding Di–1.
Assume that we have already built conditions up to i ∈ ù. We consider the

collection ofmodelsN ′
i , where eachN

′
i is a countable elementary submodel ofH|PΣ|

+

containingHè ,Di , PΣ and pi , and build the club of countable structuresCi := {N ′
i ∩

X : N ′
i as just described}. Note that this club will be inM, henceM ∩Hè ∈Ci . Thus

the setM ∩Hè will be in the domain of Σ andby the definition of Σ, the set Σ(M ∩Hè)
isM ∩Hè -stationary and open. So there is an Ni =N

′
i ∩X ∈ Ci ∩Σ(M ∩Hè)∩M ,

and by the definition of the Ellentuck topology, there is a finite subset ofNi called xi
such that [xi,Ni ]⊂ Σ(M ∩Hè). We first extend the condition pi to qi := pi ∪{(æi +
1,hullHè (pi(æi)∪xi))}, for æi the maximum of the domain of pi . This condition qi
will also be in N ′

i as all its defining parameters are, thus as N
′
i also contains Di we

can extend the condition qi to a pi+1 ∈ N
′
i ∩Di . Note that as we are working in

N ′
i , no matter how we extend qi , the range of the extended condition intersected
with X will always be contained inNi =N

′
i ∩X , and as Σ(M ∩Hè)⊃ [xi,Ni ], it will

also be contained in Σ(M ∩Hè). Then if we set q = pù :=
⋃

i∈ù pi ∪ (ù,(M ∩Hè))
then this will be a condition in PΣ as it forms an ∈-increasing, continuous function
from ù+1 to dom(Σ), for which ∀n ∈ù(q(n)∩X ∈ Σ(q(ù)) =M ∩Hè) is true. By
construction q is below p and (M,PΣ×T )-generic, thus the forcing preserves the
arbitrary Suslin tree T. ⊣
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2.4. Almost disjoint coding. The following subsection quickly reintroduces the
almost disjoint coding forcing due to Jensen and Solovay [11]. We will identify
subsets ofùwith their characteristic function andwill use theword reals for elements
of 2ù and subsets of ù respectively. Let F = {fα : α < 2ℵ0} be a family of almost
disjoint subsets of ù, i.e., a family such that if r,s ∈ F then r∩ s is finite. Let X ⊂ κ
for κ ≤ 2ℵ0 be a set of ordinals. Then there is a ccc forcing, the almost disjoint
coding AF (X ) which adds a new real x which codes X relative to the family F in the
following way

α ∈ X if and only if x∩fα is finite.

Definition 25. The almost disjoint coding AF (X ) relative to an almost disjoint
family F consists of conditions (r,R) ∈ ù<ù ×F <ù and (s,S) < (r,R) holds if and
only if

1. r ⊂ s and R ⊂ S.
2. If α ∈ X then r∩fα = s ∩fα .

There is another variant which codes sets of reals relative to a new real. For the
following fix some definable bijection of finite sequences of integers and ù and for
b ∈ ùù write b̄(n) for the natural number which codes the finite sequence b ∩ n.
A subset b ⊂ ù gives rise to a new set S(b) ⊂ ù if we consider the set of the codes
of its initial segments {b̄(n) : n ∈ ù}.

Definition 26. Suppose that A⊂ [ù]ù , then the almost disjoint coding forcing for
A,A(A) is defined as follows. Conditions are pairs (s(0),s(1)) such that s(0) is a finite
set of natural numbers and s(1) is a finite subset of the fixed set of reals A. For two
conditions r,s ∈ A(A) we say s < r if and only if

• r(0)⊂ s(0) and r(1)⊂ s(1),
• ∀a ∈ r(1)(S(a)∩ s(0)⊂ r(0)).

Note that A(A) has the Knaster property, thus products of A(A) have the ccc.
Given a set of reals A in the ground model V, the effect of forcing with A(A) is the
following. The first coordinate of conditions in the generic filter G will union up
to a real a which codes the set A with the help of a predicate for ùù ∩V . In V [G ]
membership in A is characterized like this

x ∈ A↔ x ∈ V ∧S(x)∩a is finite.

This characterization will play an important role later. We will work towards a
universe whose H (ù2) will be definable in arbitrary generic extensions obtained
using ccc forcings. Consequentially, we can use the just defined forcing to encode
information into just one real, and the information can be correctly decoded in all
further ccc extensions of the universe.

2.5. NSù1 saturated. As our proof depends on Shelah’s argument to force NSù1
saturated from aWoodin cardinal we introduce very briefly some of the main ideas.
We later (see Theorem 40), assuming knowledege of [19], discuss in more detail how
the proof can be altered.
The crucial forcing notion which can be used to bound the length of antichains

in P(ù1)/NSù1 is the sealing forcing.
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Definition 27. Let ES = (Si : i < κ) be a maximal antichain inP(ù1)/NSù1 . Then

the sealing forcing for ES, S( ES) is defined as follows. Conditions are pairs (p,c) such
that p : α+1→ ES and c : α+1→ ù1, where the image of c should be closed, and
α < ù1. We additionally demand that ∀î < ù1 c(î) ∈

⋃

i∈î p(i), and conditions are
ordered by end-extension.

Thus, given a maximal antichain ES, S( ES) will collapse its length down toù1 while
simultaneously shoot a club through the diagonal union of ES. The latter has the
desired effect that ES remains a maximal antichain in all stationary set preserving
outer models, which is wrong if we would just collapse the length of ES down to ù1.
It is wellknown that S( ES) isù-distributive and stationary sets preserving if and only
if ES is maximal.

Theorem 28 (Shelah). Let V be a universe with a Woodin cardinal Λ. Then there
is a Λ-sized forcing notion P, such that in V P, NSù1 is saturated and ù2 =Λ.

More details of the proof will be discussed later after Theorem 40.

§3. Towards a proof of the theorem. In this section we shall prove the main
theorem of this work. We aim first to prove it starting from an arbitrary ground
model V with a Woodin cardinal. Later we will show how to reduce the parameters
used in the ∆1-definition when forcing over the canonical innermodel with aWoodin
cardinal,M1.

Theorem 29. Let V be an arbitrary universe with a Woodin cardinal ä. Let EC be a
ladder system on ù1 and let ET 0 be an ù-length sequence of independent Suslin trees.
Then there is ä-sized, semi-proper partial order P such that in the generic extension
V P of V the nonstationary ideal NSù1 is saturated and ∆1-definable over H (ù2) with

parameters EC and ET 0.

Note here that Lemma 5 shows that the assumptions of the last theorem can
always be met starting from a universe with a Woodin cardinal. The theorem has as
a corollary the following result which seems to be interesting in its own right, which
is why we state it explicitly.

Corollary 30. The statement “NSù1 is (boldface) ∆1-definable over H (ù2) and
saturated” is consistent with any large cardinal assumption as long as we assume the
existence of a Woodin cardinal.

We shall sketch, omitting a lot of technical issues, a simplified idea of the proof
of the theorem first: We start with an arbitrary universe V with a Woodin cardinal
ä and an ù-sequence of independent Suslin trees ET 0 and fix a ladder system EC . The
idea is, instead of working over some generically absolute core model as is usually
done in such coding arguments, to first create a suitable ground model called W0
via forcing over V, and in a second iteration do the actual coding overW0.
The universeW0 will be obtained via first forcing a♦-sequence (aκ : κ< ä) which

will witness that ä is Woodin with ♦. One can use ä-Cohen forcing for this, which
will preserve ä being Woodin and the independence of ET 0. Then we use a ä-long,
nicely supported iteration which ensures that inW0 the nonstationary ideal NSù1 is
saturated, ä = ℵ2, H (ù2)

W0 is a boldface Σ1-definable object for all outer universes
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W ′ ofW0 obtained via ccc forcings and there is a definable sequence of length ù2
of independent Suslin trees.
In a second iteration overW0 we will use the definable list of independent Suslin

trees to code up all the characteristic functions of stationary subsets of ℵ1 with the
help of branching or specializing elements of the list. The fact that H (ù2)

W0 is Σ1-
definable in all ccc extensions ofW0 can be utilized to define (with a Σ1-definition) a
class of suitable, ℵ1-sized models of fragments of ZFC which are sufficient to define
the list of Suslin trees properly and consequentially enable a boldface Σ1 definition of
stationarity. Indeed the assertion “S is stationary”will be equivalent to the statement
that there is a suitable model which defines some ù1 block of independent Suslin
trees and this block has a pattern of branches and specializing functions which
correspond to the characteristic function of S.

3.1. The first iteration. We start with V as our ground model, let ä be its Woodin
cardinal and in a first step we force the existence of a ♦-sequence (aα : α < ä) on
Vä which witnesses that ä is Woodin with ♦ in the following sense:

Definition 31. Let ä be a Woodin cardinal then we say that ä is Woodin with♦ iff
there is a sequence (aκ : κ < ä) such that for each κ, aκ ⊂ Vκ and for every A ⊂ Vä
the set

{κ < ä : A∩Vκ = aκ ∧κ is A-strong up to ä}

is stationary in ä.

The ♦-sequence serves as our guideline for a nicely supported iteration of length
ä and can always be forced over V with a ä-Cohen forcing (see [19], Lemma 0.3).
We fix an independent ù-sequence of Suslin trees ET 0 (w.l.o.g it exists is V), and
an arbitrary ladder system EC on ù1. We use EC to define an almost disjoint family
of reals F of size ℵ1 from it in a well-known way: working in L[ EC ], for every
α < ù1 we let rα denote the <L[ EC ]-least real which codes α < ù1. We consider the

set {rα ∩n : n ∈ ù} and code every rα ∩n as a natural number mα,n. Then, setting
sα = {mα,n : n ∈ ù} we obtain an almost disjoint family of reals of size ℵ1. Note
that {F } is ∆1( EC )-definable. We emphasize that EC , F and ET 0 are fixed from now on
for the rest of the proof.
Starting from V we begin to define an iteration of length ä of semiproper forcings

which is nicely supported. As a consequence the iteration preserves semiproperness
(see [16], Lemma 4.2) and the Susliness of Suslin trees in the limit steps (see [16],
Lemma 5.0). We construct the factors by recursion: suppose we are at stage α of our
iteration, thus the forcing Pα is already defined and we want to define the forcing
Q̇α from which we will get Pα+1 = Pα ∗ Q̇α as usual. We define Q̇α by cases

• if α is a limit ordinal such that the α-th entry aα of the ♦-sequence is the
Pα-name of a maximal antichain ES in P(ù1)/NSù1 of length ≥ ℵ2 then we

let Q̇α be the sealing forcing S( ES), but only if the forcing S( ES) is semiproper.
Otherwise force with the usual Lévy collapseCol(ù1,2

ℵ2) (so Shelah’s original
proof can be adopted to the situation),

• if α ∈ Lim and aα is the Pα-name of an R ⊂ ù1, we let Q̇α be the almost
disjoint real coding which codes R into a real rR relative to the family F of
almost disjoint reals. Then we force with Col(ù1,2

ℵ2),
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• ifα ∈Lim andα is such that aα is the Pα-name of a real then force the existence
of a sequence (Nî : î < ù1) such that for a triple (â,ã,ä) < ù2, r is coded by

the triple in the sense of (‡). Then force with Col(ù1,2
ℵ2),

• if α is a limit ordinal and aα is the Pα-name of a triple of limit ordinals
(â,ã,ä) < ù2 of cofinality ù1 then force to stabilize the triple in the sense of
(†). Then force with Col(ù1,2

ℵ2),
• if α is a successor ordinal then we force with Jech’s forcing to obtain a Suslin
tree Tα . Again this is followed by forcing with Col(ù1,2

ℵ2), and
• else force with the usual collapse Col(ù1,2

ℵ2).

We will list a couple of easy properties of the iteration Pä := ((Pα,Q̇α) : α < ä).
As nice iterations of semiproper forcings are semiproper and as every factor of
the iteration is at least semiproper, this results in a semiproper, hence stationary
set preserving notion of forcing. Note further that the iteration has length the
Woodin cardinal ä, thus we will take stationarily often below ä direct limits and
consequentially Pä has the ä-c.c. Let G be the generic filter for the iteration, so that
we arrive at the modelW0 :=V [G ]. Note that every real r ∈W0 will have a Pç-name
for a ç < ä and this name will be hit stationarily often by the ♦-sequence. Once we
code a real into a triple (α,â,ã) in the sense of (‡), the triple will code r in all later
models of our iteration. Likewise once a triple of ordinals is stabilized, it will remain
stabilized for the rest of the iteration. To summarize the things just said:

Lemma 32. W0 = V [G ] satisfies:

1. ℵ2 = ä.
2. Every X ⊂ ù1 is coded by a real with the help of our fixed almost disjoint family
of reals F.

3. Every triple of limit ordinals (α,â,ã)<ù2 of uncountable cofinality is stabilized
in the sense of (†).

4. Every real is coded by a triple of limit ordinals (α,â,ã)<ù2.

Consequentially, in W0 there is a definable wellorder of P(ù1) using the fixed
ladder system EC and the fixed almost disjoint family F as parameters.

Definition 33. Let X,Y ∈ P(ù1)
W0 then let X ✂Y if the antilexicographically

least triple of ordinals (α0,â0,ã0) which code a real r0 which codes X with the help of
the a.d. family F is antilexicographically less or equal than the antilexicographically
least triple of ordinals (α1,â1,ã1) which codes a real r1 which in turn codes Y.

Note that ifM is an arbitrary countable transitivemodel containing EC such that it
satisfies the items 2,3 and 4 from the previous Lemma, thenM can define a wellorder
✂M on its P(ù1)

M in exactly the same way.
If we look closer we see that none of the forcings used in the iteration destroy

Suslin trees, consequentially the whole iteration preserves Suslin trees. This is shown
now in a series of Lemmas.

Lemma 34. Let T be a Suslin tree and let AF (X ) be the almost disjoint coding
which codes a subset X of ù1 into a real with the help of an almost disjoint family of
reals of size ℵ1. Then

AF (X )
T is Suslin

holds.
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Proof. This is clear as AF (X ) has the Knaster property, thus the product
AF (X )×T is ccc and T must be Suslin in V

AF (X ). ⊣

Lemma 35. Let ES = (Si)i<κ be a maximal antichain of stationary subsets of ù1.
Let S( ES) be the sealing forcing which seals off the maximal antichain. Let T be a Suslin
tree. Then


S( ES) T is Suslin

holds.

Proof. Recall first how the sealing forcing was defined. Conditions (p,c) ∈ S( ES)
are pairs of functions defined on successor ordinals belowù1 such that p :α+1→ ES
and c : α+1→

⋃

î<α Sp(î), such that c is continuous and c(î) ∈
⋃

i<î Sp(i) holds.
We note first that without loss of generality we can demand for every condition
(p,c) ∈ S( ES) that p(0) = S0. This has the consequence that S( ES) is S0-proper.
Indeed, assume M ≺ H (è) is such that it contains S( ES) and (p,c) ∈ S( ES) and
M ∩ù1 ∈ S0. We shall find a (q,d )< (p,c) which is (M,S( ES))-generic. Let (Dn)n∈ù
be a list of the dense subsets of S( ES) in M and let (p,c) := (p0,c0) > (p1,c1) > ···
be a descending sequence of conditions inM ∩S( ES) which lie in the corresponding
dense subset Di . We can always ensure that supn∈ùrange(cn) =M ∩ù1 which is
in S0. But now (

⋃

n∈ù cn)∪ (sup(dom(cn)),M ∩ù1) will be a closed subset of the
diagonal union of the family {Spn(în) : n ∈ ù} for în := max(dompn) and it can

be used in a straightforward way to produce a condition of S( ES) which is a lower
bound for the sequence (pn,cn)n∈ù , hence an (M,S( ES))-generic condition below p.
So S( ES) is S0-proper.
Because of Lemma 1, it is enough to show that for any regular and sufficiently

large è, every M ≺ Hè with M ∩ù1 = ç ∈ S0, and every p ∈ S( ES)∩M there is a
q < p such that for every t ∈ Tç, (q,t) is (M,S( ES)×T )-generic. Note first that as T
is Suslin, every node t ∈ Tç is an (M,T )-generic condition. Further, as forcing with
a Suslin tree is ù-distributive,M [t] has the sameM [t]-countable sets asM. By the
argument of the first paragraph of the proof we know that ifM ≺H (è) is such that
M ∩ù1 ∈ S0 then an ù-length descending sequence of S( ES)-conditions inM whose
domains converge toM ∩ù1 has a lower bound asM ∩ù1 ∈ S0.
We construct an ù-sequence of elements of S( ES) which has a lower bound which

will be the desired condition. We list the nodes on Tç, (ti : i ∈ ù) and consider the

according generic extensionsM [ti ]. In everyM [ti ] we list the S( ES)-dense subsets of
M [ti ], (D

ti
n : n ∈ù) andwrite the so listed dense subsets ofM [ti ] as anù×ù-matrix

and enumerate this matrix in an ù-length sequence of dense sets (Di : i ∈ ù). If
p = p0 ∈ S( ES)∩M is arbitrary we can find, using the fact that ∀i (S( ES)∩M [ti ] =
M ∩S( ES)), an ù-length, descending sequence of conditions below p0 in S( ES)∩M ,
(pi : i ∈ ù) such that pi+1 ∈M ∩ S( ES) is in Di . We can also demand that the
domain of the conditions pi converge toM ∩ù1. Then the (pi)’s have a lower bound
pù ∈ S( ES) and (t,pù) is an (M,T ×S( ES))-generic conditions for every t ∈ Tç as any

t ∈ Tç is (M,T )-generic and every such t forces that pù is (M [T ],S( ES))-generic;
moreover pù < p as desired. ⊣

We mentioned already in Proposition 23 that both forcings Pâãä and Pr which
guarantee the Caicedo–Velickovic property (†) and (‡) are forcings of the form PΣ
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for an open stationary set Σ. We proved already in Proposition 24 that such forcings
preserve Suslin trees.

Fact 36. Let Pâãä be the forcing which stabilizes the triple (â,ã,ä) via adding a
reflecting sequence (Ni)i<ù1 . Let T be a Suslin tree. Then

Pâãä
T is Suslin

does hold. The same is true for Pr , the forcing which codes the real r in some triple of
ordinals (âr,ãr,är) below ù2.

Since the Lévy Collapse Coll(2ℵ2,ℵ1) and the forcing PJ to add Suslin trees are
both ó-closed, all forcing which appear in our iteration preserve Suslin trees.

Lemma 37. The iteration as defined above preserves Suslin trees: every tree S which
is Suslin at some stage V Pα will remain Suslin in W0 = V [G ], where G denotes the
generic for the ä-length iteration.

Having established the preservation of Suslin trees we note the following: during
our iteration we cofinally often added Suslin trees Tα with the forcing PJ (where
α denotes the stage of the iteration where we adjoined Tα). We know already that
for an arbitrary finite list of trees Tα0,Tα1,...,Tαn adjoined this way, their product
Tα0 ×Tα1 × ···×Tαn is a Suslin tree again, and will remain to be one in the final
modelW0 we produce. The definable wellorder ✂ of P(ù1) unlocks a definition for
a canonical sequence of lengthù2 of independent Suslin trees. The first entry of that
sequence is, for technical reasons which will become clear later defined differently.
We start with our fixed independent ù-sequence ET 0 and let ET α be the ✂-least
ù1 sequence of Suslin trees such that

⋃

â<α
ET â concatenated with ET α remains an

independent sequence of Suslin trees.
As the wellorder ✂ in fact talks about the reals which are almost disjoint codes

for the corresponding elements of P(ù1) it will be useful to give that sequence of
reals a name as well. For every element X in P(ù1), the set of reals which are almost
disjoint codes for X is infinite. In the following we nevertheless talk about the real
rX which codes X ∈ P(ù1) by which we mean the ✂-least such real coding X.

Definition 38. InW0, let (ri : i < ù2) be the sequence of reals defined recursively
as follows:

• r0 is the real which codes a subset of ù1, which codes the independentù-sequence
of Suslin trees ET 0.

• rα , for α > 0 is the least real which is an almost disjoint code for the ✂-least
subset of ù1 which itself is a code for an ù1-sequence of independent Suslin trees
ETα , such that the concatenated sequence of the union of the Suslin trees coded in
(ri : i < α) and ETα forms an independent sequence again.

What is very important is that this definable ù2-sequence of independent Suslin
trees will be definable in certain outer models ofW0.

Lemma 39. Suppose that W ∗ is a set-generic, ccc extension of W0. Then W
∗ is

still able to define the ù2-sequence of independentW0-Suslin trees ET .

Proof. Note first that if r ∈W ∗ is a real coded by a triple of ordinals in (α,â,ã)
inW ∗, then there is a reflecting sequence (Nî : î < ù1) inW

∗,
⋃

î<ù1
Nî = ã, such
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that for club-many î, r =
⋃

ç∈(í,î) sαâã(Nç,Nî). As W
∗ is a ccc-extension of W0,

there is a reflecting sequence (Pî : î < ù1) which is an element in W0, and such
that C := {î < ù1 : Pî = Nî} is club containing in W

∗. Indeed, every element
of (Nî : î < ù1) is a countable set of ordinals in W

∗, thus can be covered by a
countable set of ordinals from W0. As a consequence the sequence (Nî : î < ù1)
can be transformed into a continuous, increasing sequence (Pî : î < ù1) in W0
which coincides on its limit point with (Nî : î < ù1), just as desired.
But as ccc extensions preserve stationarity, the set







æ < ù1 : ∃í < æ





⋃

ç∈(í,æ))

sαâã(Pç,Pæ) = r











,

which is an element of W0 must contain a club from W0. Hence r is coded by the
triple (α,â,ã) already inW0.
As a consequenceP(ù1)

W0 is definable inW ∗, it will be precisely the set of subsets
of ù1 which have reals which code it with the help of the almost disjoint family F,
and such that these reals are themself coded by triples of ordinals below ù2 in the
sense of (‡).
ThusW ∗ can defineW0-Suslin trees and our wellorder< on P(ù1)

W0 , hence will
be able to define the ù2-sequence of independent Suslin trees ofW0. ⊣

As a last note we emphasize that the iteration, by the theorem of S. Shelah, will
ensure that inW0, NSù1 is ℵ2-saturated.

Theorem 40. The nonstationary ideal NSù1 is ℵ2-saturated inW0.

ProofSketch. This is basically just a repetition of Shelah’s argument.Wehave to
justify however that the added forcings, plus the fact that we use a nicely supported
iteration instead of an iteration with revised countable support do not ruin the
argument. At this point it is inevitable to refer the reader to [19]. For the following
it is necessary to have an understanding of the arguments presented there.
We summarize briefly the main outline. We force to ensure that the Woodin

cardinal ä in fact is Woodin with ♦, thus we have access to a sequence (aκ : κ < ä)
such that for every A⊂ Vä :

{κ < ä : A∩Vκ = aκ ∧κ is A-strong up to ä}

is stationary in ä. The ♦-sequence serves as a bookkeeping function to define an
RCS-iteration inductively as follows: assume we arrived at stage α < ä and we have
defined already the iteration Pα up to α. We split into cases

1. If aα = ô and ô is the Pα-name of a maximal antichain in P(ù1)/NSù1 , then

force with the sealing forcing S( ES)(ô) provided it is semiproper.
2. Otherwise force with Col(ù1,2

ℵ2).

The iteration has length ä, and the resulting universe V Pä satisfies that NSù1 is
saturated. For assume not, and let ô be a Pä-name for an ä-long antichain in
P(ù1)/NSù1 . Then, using the fact that at inaccessible stages of the iteration we
take the direct limit, there will be a stage κ < ä such that aκ = ô ∩Vκ and ô

Gκ is a
maximal antichain inV [Gκ]. Thus our rules tell us that the sealing forcing S( ES)(ô)

Gκ
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is not semiproper in V [Gκ]. But now an involved argument shows that the sealing
forcing in fact is semiproper at that stage, which gives a contradiction.
First a couple of words to justify the usage of nicely supported iterations instead

ofRCS-iterations. In Shelah’s proof, the following three properties ofRCS-iterations
are exploited:

1. RCS-iterations preserve semiproperness.
2. The tail of an RCS-iteration look like an RCS-iteration from the intermediate
models point of view.

3. At limit stages κ which are inaccessible, if the factors of the iteration below κ
have size below κ, then at stage κ the direct limit is taken.

Nice iterations share the properties 1 and 2. The third item is crucially used to ensure
a stage κ < ä such that aκ = ô∩Vκ and ô

Gκ is a maximal antichain in P(ù1)/NSù1 .
If we use a nicely supported iteration instead, we can still find such a stage κ, as
the set of Mahlo cardinals is stationary below ä. Indeed it suffices to intersect the
unbounded set C := {κ < ä : (ô ∩Vκ)

Gκ is a maximal antichain} with the set of
Mahlos below ä to obtain the desired stage κ. Having obtained such a κ, Shelah’s
proof just carries over word by word to obtain the desired contradiction.
The justification for using other semiproper forcings of size < ä is even easier

once one knows Shelah’s argument. Again everything carries over word by word
with only minimal notational alterations. ⊣

This ends our discussion of the first iteration Pä and the crucial properties of
the resulting model V [G ] =W0. In the next section we will discuss how the second
iteration, starting withW0 as the ground model does look like.

3.2. The second iteration.

3.2.1. An outline of the idea. Let us quickly describe the situation we are in. We
have obtained a modelW0 = V [G ] with the following properties:

1. InW0, NSù1 is saturated.
2. Every subset of ù1 is coded by a real.
3. Every real is itself coded by a triple of ordinals below ù2 relative to the ladder
system EC . This gives rise to a definable wellorder of P(ù1).

4. There is an independentù2-length sequence ET = ( ET α : α<ù2) of independent
ù1-blocks ET α of Suslin trees which is definable over W0 and which is still
definable in set-generic, ccc-extensions ofW0.

The patient reader will notice that we have not touched the issue of the definabilty
of the nonstationary ideal. The second iteration is entirely concerned with coding
stationary subsets of ù1. We will use the fact that a Suslin tree T can be destroyed
in two mutually exclusive ways using forcings with the countable chain condition:
either we add a branch to T or an uncountable antichain. This enables us to write
the characteristic function of stationary subsets ofù1 into the definable sequence ET .
The fact that ET is an independent sequence has as a consequence that the destruction
of fixed elements of ET will not affect the Suslinity of the other elements of ET .
Thus the following strategy is promising. We start an ù2-length iteration of

forcings which either specialize or shoot a branch through elements of ET . The
iteration uses finite support. We will enumerate in anù2-length list all the stationary
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subsets of ù1 in W0, pick the first stationary set listed (given by some fixed
bookkeeping function) and code the characteristic function of it into the first
ù1-block of our definable list of Suslin trees ET . This codingwill create new stationary
subsets which we list again and code up using fresh elements of ET which we have
not destroyed yet. Bookkeeping will yield that after ù2-many stages we will catch
our tail.
The result will be a generic extension W0[H ] of W0 by a forcing which has the

countable chain condition.W0[H ] can define its stationary subsets of ù1 in a new
way: S ⊂ ù1 is stationary if and only if there is an ù1-block in ET (note that ET is
still definable inW0[H ] by Lemma 39) such that the characteristic function of S is
written into this ù1-block of elements of ET .
A calculation yields that this new definition of stationarity is boldface Σ2 over the

H (ù2) ofW0[H ], thus it seems like we have not gained anything substantial. But it
will be possible to slightly alter the above iteration which makes a simple definition
of a class of ℵ1-sized, so-called suitable models possible, which can be utilized to
read off the created information on the sequence of Suslin trees. This will buy us
one quantifier and we eventually arrive at a Σ1( EC, ET 0)-predicate for stationarity.
Of course everything just said would be rendered pointless, if NSù1 stops to

be saturated after we perform the sketched iteration. We have to argue that NSù1
remains saturated after forcing with the coding forcings which are ccc.

3.2.2. Chang’s Conjecture and the indestructibility of the saturation of NSù1 under

ccc forcings. The indestructibility of the saturation of NSù1 under ccc forcings is
in fact a very delicate topic2 and tightly connected to Chang’s Conjecture (CC) and
the semiproperness of Namba forcing as noted by Shelah. First recall

Definition 41. CC says that for every function F : [ù2]
<ù → ù2, there is a set

X ⊂ ù2 of ordertype ù1 which is closed under F, i.e., F ′′[X ]<ù ⊂ X .

It is known that the indestructibility of the saturation of NSù1 follows from CC

(see [13] pp. 583 for a proof). Hence we shall argue that inW0CC is true.
We take advantage of the following results which can be found in [20]. First

recall Namba forcing, which is the canonical forcing for changing the cofinality
of ù2 to ù. The assertion “Namba forcing is semiproper” is known to have large
cardinal strength, it is equivalent to a strong form of CC,3 which itself is known to
be forceable from a measurable cardinal. Semiproperness of Namba forcing can be
characterized with winning strategies for player II in a certain two player game (see
[20], XII, Definition 2.1).

Definition42. The two player gamea({ℵ1},ù,ℵ2) of lengthù is defined as follows.
At turn n, Player I plays a functionfn :ù2→ù1 and player II responds with an ordinal
în <ù1. We say that player II wins iff the set

A := {i < ù2 : ∀n∃m(fn(i)< îm)}

is unbounded in ù2.

2We thank Lietz for pointing that out, for finding an error in an earlier version plus finding its fix.
3We caution the reader that the notation for various strengthenings of CC is very inconsistent across

the literature.
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Shelah has shown (see [20] XII, Theorems 2.2 and 2.5 (1)) the following results.

Theorem 43. Namba forcing is semiproper if and only if II has a winning strategy
in a({ℵ1},ù,ℵ2). If player II has a winning strategy in a({ℵ1},ù,ℵ2), then CC is true.

Beforewe continue one last definition of the semiproper gamewhich iswell-known
to characterize semiproperness. We will use Shelah’s original notation again, even
though several of his parameters are meaningless in our context.

Definition 44. Let P be a notion of forcing, p ∈ P, then the semiproper Game
Paù0 (p,P,ℵ1) is defined as follows: player I plays P-names of countable ordinals æ̇n,
n ∈ ù, player II responds with countable ordinals în. In the end player II wins if and
only if there is a condition q ∈ P, q < p and

q  ∀n ∈ ù∃m(æ̇n = îm).

As is well-known, a forcing P is semiproper if and only if for every p ∈ P, player
II has a winning strategy in Paù0 (p,P,ℵ1)
We finally collected the relevant notions to prove that inW0, CC is true. The proof

of the claim owes an obvious debt to Theorem 1.9 from chapter XIII of [20].

Theorem 45. In W0, CC is true and consequentially the saturation of NSù1 is
indestructible by ccc forcings.

Proof. The proof will make use of the following

Claim 46. Suppose that ë is a measurable cardinal and (Pα,Q̇α : α< ë) is a nicely
supported iteration such that

1. ∀α < ë(Pα Q̇α is semiproper).
2. ∀α < ë(|Pα |< ë).
3. For every α < ë, Pα+1

(2ℵ2)V [Pα ] = ℵ1.

then player II has a winning strategy in the game a({ℵ1},ù,ℵ2) in V [Gë], where Gë is
a Pë-generic filter over V. ⊣

Once we have shown the above, we can prove the theorem as follows. The set of
measurable cardinals below our Woodin ä is stationary. Moreover the iteration Pä
we used to obtainW0 satisfies the three items above. Any function F : [ù2]

<ù → ù2
in V [Gä ] =W0 has a name Ḟ of size ä, and, by the ä-cc of Pä , the set of measurable
ë < ä such that (Ḟ ∩Vë)

Gë is, in V [Gë], a function from [ℵ2]
<ù to ù2 is stationary

below ä. In particular, there is a ë < ä measurable as above and player II has a
winning strategy in a({ℵ1},ù,ℵ2) in V [Gë]. So CC is true in V [Gë]. Thus Ḟ ∩Vë as
evaluated by Gë has a closed subset X of ordertype ù1 in V [Gë]. But this X also
witnesses that CC is true inW0.
So we shall show the claim.We fix a normal, ë-complete ultrafilterU on ë. Ifα< ë

then, as the tail Pα,ë is a nice iteration of semiproper forcings, we know thatPα Pα,ë
is semiproper. Hence, player II has a winning strategy (in V Pα ) in the semiproper
game Paù0 (p,P,ℵ1) for any p ∈ Pα,ë.
We shall use these winning strategies to define a winning strategy for player II in

a({ℵ1},ù,ℵ2) in V [Gë]. Suppose the play of the game arrived at stage n < ù, and
player I chooses a function fn :ù2→ù1. Then player II responds with four setsAn,
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ḟn, αn and în, where în is the ordinal which is relevant as response in a({ℵ1},ù,ℵ2),
and which should satisfy:

1. αn is an ordinal less than ë, but bigger than all previous αm, m< n.
2. An ⊂ (αn,ë), An ∈ V [Gαn ], and An is in the ultrafilter generated by U in
V [Gαn ]. Moreover An is a subset of the previous Am and An consists entirely
of inaccessible cardinals κ such that ∀κ ∈ An∀i < κ(|Pi |< κ).

3. ḟn is a Pë-name of fn (say the least such name in some previously fixed
wellorder).

4. For every κ ∈ An, (ḟm(κ),îm)m≤n is an initial segment of a play of the game
Paù0 (1,Pκ,ë,ℵ1) in V [Gαn ], where player II uses his winning strategy.

We shall show that player II can always play as described above. Assume that for
m ≤ n – 1, Am,ḟm,îm,αm is defined. For every κ ∈ An–1, consider the instance of
Paù0 (1,Pκ,ë,ℵ1) in V [Gκ]:

I ḟ0(κ) ḟ1(κ) ḟ2(κ) ··· ḟn(κ)
II î0 î1 î2 ··· în–1

Note here that we play the game for the tail forcing Pκ,ë which is still semiproper.
Hence player IImust have awinning strategy for each gamePaù0 (1,Pκ,ë,ℵ1),κ ∈An–1.
Let î(κ) denote the Pκ-name of an ordinal<ù1 which II has to play when following
his winning strategy.
Now for every κ ∈ An–1, Pκ =

⋃

α<κ Pα , as we assumed that every Am consists
entirely of inaccessible cardinals and we use a nice iteration.Moreover the ultrafilter
U on ë generates an ultrafilter on ë inV [Gκ], which we will denote again withU. As
U is normal, there will be a stage αn < ë and a set An ∈U , An–1 ⊃An, such that for
every κ ∈An–1, every Pκ name î(κ) is in fact a Pαn -name. We can assume that every
î(κ) is a nice Pκ-name for a countable ordinal, thus there are only < ë-many such
nice names, and as a consequence there is a setAn ∈U ,An ⊂ [αn,ë) and a Pαn -name
î such that αn î < ù1, such that for every κ ∈ An, if player II plays according to
her winning strategy then the play looks like

I ḟ0(κ) ḟ1(κ) ḟ2(κ) ··· ḟn(κ)
II î0 î1 î2 ··· în–1 î

We set în := î
Gαn . It is clear that An, αn, în and ḟn are as desired.

We shall show that the just defined strategy is indeed a winning strategy for player
II in a({ℵ1},ù,ℵ2) in the universe V [Gë]. Let f0,f1,... be the functions from ù2 to
ù1 which are played by player I. Let ḟn be the Pë-names. Player II plays according
to the strategy defined above. In the course of the play, II will construct a sequence
of quadruples (An)n∈ù,(ḟn)n∈ù,(αn)n∈ù,(în)n∈ù . We let Aù :=

⋂

n∈ùAn and note
that Aù ∈U , hence Aù is unbounded in ë. Likewise, supn∈ùαn < ë. If κ ∈Aù , then
the play
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I ḟ0(κ)
Gë ḟ1(κ)

Gë ḟ2(κ)
Gë ···

II î0 î1 î2 ···

is a play in V [Gαù ], where player II follows his winning strategy in Pa
ù
0 (1,Pκ,ë,ℵ1),

hence for any p ∈ Pκë there is a q < p such that

q Pκë
∀n ∈ ù(ḟn(κ)< sup

n∈ù
în).

In particular, in V [Gë], ∀n ∈ ù(fn(κ)< supn∈ùîn). Thus we found an unbounded

set Aù ⊂ ë = ℵ
V [Gë]
2 such that ∀i ∈ Aù(∀n ∈ ù∃m ∈ ù(fn(i) < îm)), so for

a({ℵ1},ù,ℵ2), there is a winning strategy for player II in V [Gë], as desired.

3.2.3. Suitability. We begin to define thoroughly how the second iteration, using
W0 as a ground model does look like. We already hinted that, in order to lower the
complexity of a description of stationarity we need a new notion for suitable models
which will be able to define the sequence of Suslin trees ET correctly. With the notion
of suitability it will become possible to witness stationarity already in ℵ1-sized ZFC

–

models, as we shall see soon.

Definition 47. Let M be a transitive model of ZFC– of size ℵ1. We say that M is
pre-suitable if it satisfies the following list of properties:

1. { EC, ET 0} ⊂M .
2. ℵ1 is the biggest cardinal in M andM |= ∀x(|x| ≤ ℵ1).
3. Every set inM has a real inMwhich codes it in the sense of almost disjoint coding
relative to the fixed family of almost disjoint reals F.

4. Every real in M is coded by a triple of ordinals in M, i.e., if r ∈M then there is
a triple (α,â,ã) ∈M and a reflecting sequence (Nî : î < ù1) ∈M which code r.

5. Every triple of ordinals in M is stabilized in M: for (α,â,ã) there is a reflecting
sequence (Pî : î < ù1) ∈M which witnesses that (α,â,ã) is stabilized.

Note that the statement “M is a pre-suitable model” is completely internal inM
and hence a Σ1( EC, ET 0)-formula. Further note that by the proof of Lemma 39, ifW ∗

is a ccc extension ofW0 andM is a pre-suitable model inW
∗ thenM ⊂W0, as ccc

extensions will not add new reflecting sequences.

Definition 48. Let M be a pre-suitable model. We say that M isW0-absolute for
Susliness ifT ∈M is an element fromW0 andM |=T is Suslin, then T is Suslin inW0.
Likewise we say that M isW0-absolute for stationarity if S ∈M and M thinks that S
is a stationary subset of ù1 then S is a stationary subset of ù1 inW0. A pre-suitable
model which isW0-absolute for stationarity and Susliness is called suitable.

We have already seen in Lemma 39 that ccc extensions of W0 will still be able
to define our ù2-sequence of independent W0-Suslin trees ET . With the notion of
suitability we can localize this property in the following sense:

Lemma 49. LetW ∗ be a ccc extension ofW1, and letM ∈W ∗ be a suitable model.
If M computes the ù2-length sequence of independent Suslin trees fromW0 using its
local wellorder ✂M , then the computation will be correct, i.e., ETM = ET ∩M .

https://doi.org/10.1017/jsl.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.23


48 STEFAN HOFFELNER

Proof. We shall show inductively that for every ç ∈M , the ç-th block of ET , ET ç

will be computed correctly byM (if an element ofM). For ç = 0 this is true as ET 0

is by definition of suitability an element ofM. Let ç ∈M and assume by induction
that the sequence ET up to the ç-th block is computed correctly byM. We shall show
thatM computes the ç+1-th block correctly. Recall that ET ç+1 was defined to be the
✂-least ù1-block of independent Suslin trees such that

⋃

â≤ç
ET â concatenated with

ET ç+1 remains an independent sequence inW0.
Assume for a contradiction that the suitableM computes ET ′ as its own different

version of ET ç+1. Thus there is a real r′ which codes ET ′, and r′ itself is coded into
a triple of M-ordinals (α′,â ′,ã ′) < ùM2 . Let rç+1 be the real which codes

ET ç+1.
We claim that rç+1 < r

′ by which we mean that the least triple of ordinals which
codes rç+1 is antilexicographically less than the least triple which codes r

′. Otherwise
r′ < rç+1 and by the Suslin-absoluteness ofM the independent-M-Suslin trees coded
into r′ would be an independent ù1-sequence of Suslin trees inW0, moreover they
would still form an independent sequence when concatenated with ET ç inW0 which
is a contradiction to the way ET ç+1 was defined.
So rç+1 < r

′, so the least triple of ordinals (α,â,ã) coding rç+1 is antilexicograph-
ically less than (α′,â ′,ã ′). Note that the suitability of M implies that (α,â,ã) is
stabilized in M. Thus there is a reflecting sequence (Pî : î < ù1) in M witnessing
this. As W ∗ is a ccc extension of W0 we can assume that the sequence is in fact
an element of W0. At the same time there is a reflecting sequence (Nî : î < ù1)
in W0 which witnesses that rç+1 is coded by (α,â,ã). By the continuity of both
sequences, there is a club C in W0 such that ∀î ∈ C (Nî = Pî). Thus the limit
points of C witness that in fact the sequence (Pî : î < ù1) ∈M codes rç+1 as
well but the club C is in W0, so we need an additional argument to finish. Recall
that the suitability of M implies that M is absolute for stationarity, thus if the set
{î < ù1 : ∃í < î(

⋃

æ∈(í,î) sαâã(Pæ,Pî) 6= rç+1)} would be stationary in M it would
be stationary in W0 which is a contradiction. So M computes rç+1 correctly and
the rest of the inductive argument can be repeated exactly as above to show that
ETM = ET ↾ (M ∩Ord ) as desired. ⊣

So suitable models will compute ET correctly, and if we start to write information
into ET , a suitable model can be used to read it off. In W0 cofinally many suitable
model below ù2 exist.

Lemma 50. Work inW0. If we set

P := {ç < ù2 : ∃M (M is suitable ∧M ∩Ord = ç}

then P is unbounded in ù2.

Proof. Recall the iteration (Pα : α < ä) to force W0. Whenever we are at an
intermediate stage κ < ä such that κ is Mahlo then, if Gκ denotes the generic filter
forPκ,H (ù2)

V [Gκ ] will be a pre-suitablemodel.Moreover, by the properties of nicely
supported iterations, stationary subsets of ù1 in H (ù2)

V [Gκ ] will remain stationary
in W0 and Suslin trees in H (ù2)

V [Gκ ] will remain Suslin trees in W0, as the tail
iteration P[κ,ä) is a nicely supported iteration of semiproper, Suslin tree preserving

notions of forcing over the ground model V [Gκ]. Thus every H (ù2)
V [Gκ ], for κ

Mahlo, is a suitable model which gives the assertion of the Lemma. ⊣
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We shall use forcing to obtain a universe in which the just defined set of suitable
models

U′ := {M : ∃κ < ä(κ is Mahlo ∧M =H (ù2)
V [Gκ ]}

becomes easily definable. This will be our first forcing in the second iteration. We
note that everyM ∈U ′ is itself coded by a real relative to the almost disjoint family
F. We want to use the variant of almost disjoint coding forcing to code up

U := {rM : rM is the least almost disjoint code for a subset of ù1 which codes
M ∈U ′}

into one real rU . Recall that A(U ) is a forcing of size |U |= ä which is Knaster and

which adds a real rU such that inW
A(U )
0 the following holds:

(∗)∀x ∈ 2ù ∩W0 (x ∈U ↔ rU ∩S(x) is finite).

In a next step we will code the characteristic function of the real rU into a pattern on
ET 0. We use the fact that a Suslin tree can generically be destroyed in two mutually
exclusive ways. We can generically add a branch or generically add an antichain
without adding a branch. We fix the first ù-block of independent Suslin trees ET 0

and we let C :=
∏

n∈ù Pn with finite support, where

Pn =

{

T 0n if rU (n) = 1,

Sp(T 0n ) if rU (n) = 0

and T 0n denotes the forcing notion one obtains when forcing with nodes of T
0
n as

conditions, and Sp(T 0n ) denotes Baumgartner’s forcing which specializes T
0
n with

finite conditions and which is known to be ccc (see [1]). Iterations of the just
described form always have the countable chain condition.

Lemma 51. Let ET = (Tα : α < ç) be an independent sequence of Suslin trees of
length ç. Letf : ç→ 2 be an arbitrary function and let Tα also denote the partial order
when forcing with the tree Tα and let Sp(Tα) be the forcing which specializes the tree
Tα .
Then if we consider the finitely supported product C :=

∏

â<ç Pâ where

Pâ =

{

Tâ if f(â) = 1,

Sp(Tâ) if f(â) = 0

then C has the countable chain condition.

Proof. Fix an arbitraryf : ç→ 2.We prove the Lemma using induction over the
length ç. The limit case is true as we use finite support. Thus assume the assertion
of the Lemma is true for ç and we want to show it is true for products of length
ç+1. Assume for a contradiction that

∏

α<ç+1Pα (according to f ) does not have

the countable chain condition. Hence the tree Tç is not a Suslin tree in V
∏

α<ç Pα , as
otherwise both forcings Tç and Sp(Tç) would have the countable chain condition.
But

∏

α<ç Pα ∗Tç =
∏

α<ç Pα ×Tç = Tç×
∏

α<ç Pα , and the latter is a forcing with
the countable chain condition. Indeed as Tç does not touch the Susliness of any

member of ET besides Tç, (Tα : α < ç) is an independent sequence of Suslin trees in
V Tç , thus by induction hypothesis,

∏

α<ç Pα has the countable chain condition in

V Tç , so it has the countable chain condition in V. ⊣
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In particular this means that C as defined above is a forcing with the countable
chain condition which writes the real rU into a pattern of 0 and 1’s on the sequence
ET 0 of Suslin trees. We let H0 be a generic filter for AU over W0 and let H1 denote
aW0[H0]-generic filter for C. The resulting modelW1 :=W0[H0][H1] is the ground
model for a second iteration we define later.

Lemma 52. LetW1 be the universeW0[H0][H1]
ThenW1 :=W0[H0][H1] is a ccc extension ofW0 which satisfies:

• rU (n) = 1 if and only if T
0
n has a branch.

• rU (n) = 0 if and only if T
0
n is special.

Proof. It suffices to show that W0[H0] is a Suslin-tree-preserving extension of
W0. This is clear as A(U ) is Knaster. ⊣

To summarize we arrived at a situation where the real rU , which captures all the
information about a set of suitable models, is written into the sequence of Suslin
trees ET 0. Consequentially, any transitive, ℵ1-sized modelM which contains EC , ET 0

and which sees that every tree in ET is destroyed can compute the real rU and thus
has access to a set of suitable models, which in turn can be used to compute ET inside
M in a correct way. This line of reasoning remains sound in all outer ccc extensions
ofW1 as we shall see. Thus the ability of finding ET in suitable models gives rise to
the possibility of using ET for additional coding arguments overW1.

Lemma 53. Let W ∗ be a ccc extension of W1 then there is a Σ1( EC, ET 0)-formula
Φ(v) such that whenever x ∈ 2ù andW ∗ |=Φ(x) then x is the almost disjoint code for
a suitable model.

Proof. The formula Φ(x), is defined as follows:

Φ(x) if and only if there is a transitive, ℵ1-sized ZFC
– modelN which contains EC

and ET 0 such that the following holds in N:
– N sees a full pattern on ET 0, i.e., for every n ∈ù and every member T 0n , N
has either a branch through T 0n or a function which specializes T

0
n .

– The pattern on ET 0 corresponds to the characteristic function of a real
r and N thinks that there is a pre-suitable N ′ such that x ∈ N ′ and
(S(x)∩ r) is a finite set.

This is a Σ1( EC, ET 0)-formula, as it is of the form ∃N (N |= ···). We shall show that
whenever x is a real fromW ∗ such that Φ(x) holds then x is the almost disjoint code
for a suitable model. Recall the set U ′ and U we defined above. Note first that N
has access to the setU which is the set of reals which are codes for the set of suitable
modelsU ′. This is clear as ET 0 ∈N , thus ifN sees a pattern on ET 0, this pattern must
be the unique pattern from W1, which corresponds to the characteristic function
of the real rU . The statement “N

′ is a pre-suitable model” is a ∆1( EC ) formula in
N ′, thus absolute for the transitive N. So if N thinks that there is a pre-suitable N ′

which contains x as an element, then this is true inW ∗. AsW ∗ is a ccc extension
ofW1 and hence ofW0 as well, we know already that we can express the statement
“y ∈ 2ù ∩W0” inW ∗ as “∃P(P is pre-suitable and y ∈ P).” Thus if N thinks that
there is a pre-suitableN ′ which contains x as an element, then x ∈W0, and now (∗)
from above applies to conclude that indeed x ∈U which is what we wanted. ⊣
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3.2.4. Coding stationarity. We work now over W1 and start a finite support
iteration (Qα : α < ù2) of length ù2 = ä. We pick the Gödel pairing function
as our bookkeeping function F : ù2×ù2 → ù2. Recall that F is a bijection with
the additional property that ∀â < ù2(â ≥max((â1,â2)) = F –1(â). The iteration is
defined recursively as follows. Assume we are at stage α < ù2 and we have already
definedQα . LetHα be the generic filter forQα overW1. We also assume inductively
that the α-thù1-block ET α is still an independent sequence of Suslin trees inW1[Hα],
and thatW1[Hα] |= |P(ù1)/NSù1)|=ℵ2.Wewant to describe the next forcing notion

Q̇α we will use.
Let (α1,α2) = F

–1(α). We consider the universeW1[Hα1 ] and a fixed enumeration
(S
α1
i : i < ù2) of the stationary subsets of ù1 in W1[Hα]. Then we pick the α2-th

element S
α1
α2 of (S

α1
i : i < ù2) and code the characteristic function of S

α1
α2 into the

α-th ù1 block ET α = (T αi : i < ù1) of our fixed independent sequence of Suslin

trees ET .
To be more precise we let r

α1
α2 : ù1→ 2 denote the characteristic function of S

α1
α2 .

At stage α we will force with Q̇α :=
∏

â<ù1
Pâ with finite support, where

Pâ =

{

T αâ if r
α1
α2 (â) = 1,

Sp(T αâ ) if r
α1
α2 (â) = 0.

We let hα+1 be a generic filter for Ṙα over W1[Hα], set Hα+1 = Hα ∗ hα+1 and
continue. Note that Q̇α has the countable chain condition as we assumed that ET α

is an independent sequence of Suslin trees inW1[Hα] and by Lemma 51. We shall
prove now the property of (Qα : α < ù2) which was assumed inductively in the
definition of the iteration, namely that tails of ET always remain an independent
sequence of Suslin trees.

Lemma 54. Let (Qα : α ≤ ù2) be the just defined iteration over W1 and let ET be
our sequence of independent Suslin trees. We write ET>α for ( ET â : α < â < ù2). For
every α < ù2, if Hα is a generic filter for Qα then W1[Hα] is a ccc extension of W1
and

W1[Hα] |= ET>α is an independent sequence of (blocks of ) Suslin trees.

Moreover at stage α every element of ET ã , ã < α has been destroyed.

Proof. We prove the Lemma via induction on α < ù2. For α = 0 the Lemma
is true. Assume now that Qα is a ccc forcing and ET>α is an independent sequence
of Suslin trees in W Qα

1 . We shall show that Qα+1 = Qα ∗ Q̇α (where Q̇α is an ù1-
length product which codes some set in P(ù1)

W1[Gα ]) is ccc and that T>α+ù1 is an

independent sequence of Suslin trees inW
Qα+1
1 .

That Qα+1 = Qα ∗ Q̇α has the ccc follows from our inductive hypothesis and
Lemma 51, applied in the universeW Qα

1 .

That ET>α+ù1 remains independent in W
Qα+1
1 follows in a similar way. Assume

not, then there is an n ∈ù and {Ti : i ∈ n} ⊂ ET>α+ù1 , andT :=T0×···×Tn–1 is not

a Suslin tree any more inW
Qα+1
1 , hence T does not have the ccc inW

Qα+1
1 . But then

Qα ∗ (Q̇α×T ) is not ccc which contradicts our inductive hypothesis and Lemma 51.
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Assume now that α is a limit ordinal and that the assertion is true for every â< α.
First note thatQα must have the ccc by our inductive hypothesis and as we use finite
support.
To show that ET>α remains independent inW Qα

1 , assume the opposite. Thus there

is an n ∈ ù and {Ti : i ∈ n} ⊂ ET>α , and T := T0× ···×Tn–1 is not a Suslin tree
in W Qα

1 . In particular Qα ×T does not have the ccc. By our inductive hypothesis

for very â < α, T is Suslin in W
Qâ

1 , hence Qâ ×T is ccc, thus the direct limit of
(T ×Qâ)â<α , which is isomorphic to T ×Qα must have the ccc as well. This is a
contradiction as T ×Qα =Qα×T . ⊣

As a consequence the iteration (Qα : α ≤ ù2) is a finite support iteration of
forcings with the countable chain condition, thus Qù2 has the countable chain
condition as well. This, plus the fact that W1 |= 2

ℵ0 = 2ℵ1 = ℵ2 readily gives that
for every α < ù2, if Hα denotes the generic filter for Qα , thenW1[Hα] |= 2ℵ1 = ℵ2.
Indeed ifX ∈W1[Hα]∩P(ù1), thenX has aQα-name which is uniquely determined
by a sequence (Aç : ç < ù1) such that every Aç ⊂Qα is a maximal antichain. There
are [ℵ2]ℵ0 =ℵ2-many antichains inQα , thus there areℵ2-manyQα-names for subsets
of ù1. As a consequence we will catch our tail after ù2 many stages.

Lemma 55. Let Hù2 be anW1-generic filter for (Qα : α < ù2). Then inW1[Hù2 ],

every stationary subset of ù1 is coded into an ù1-block of ET , i.e., for each S stationary
there is an α < ù2 such that for every â < ù1 ( ET

α
â has a branch if and only if â ∈ S

and ET αâ is special if and only if â /∈ S). Here we write
ET αâ for the â-th element of the

α-th ù1-block of Suslin trees ET α from ET .

Recall that asW1[Hù2 ] is a ccc extension ofW0,H (ù2)
W0 is definable inW1[Hù2 ]

via the formula

x ∈H (ù2)
W0 if and only if ∃M (M is presuitable and x ∈M ).

As ET is definable over H (ù2)
W0 , ET is definable in W1[Hù2 ] as well and so it can

see the pattern that was written into ET . This hands us a new, definable predicate for
stationary subsets of ù1. Counting quantifiers yields that the statement of the last
Lemma is Σ2( EC ) over H (ù2). Using the Σ1( EC, ET 0)-definable set of suitable models
from Lemma 53 will yield a Σ1( EC, ET 0)-definition for stationarity inW1[Hù2 ].

Lemma 56. There is a Σ1( EC, ET 0)-formulaΨ(S) which defines stationary subsets of
W1[Hù2 ]:

Ø(S) if and only if there is an ℵ1-sized, transitive model N which contains EC and
ET 0 such that N models that
– There exists a real x such that Φ(x) holds, i.e., x is a code for a suitable
model M.
– There exists an ordinal α in the suitable model M such that ET ′ is the α-th
ù1 block of the definable sequence of independent Suslin trees as computed
in M and N sees a full pattern on ET ′.
– ∀â < ù1(â ∈ S if and only if ET ′(â) has a branch).
– ∀â < ù1(â /∈ S if and only if ET ′(â) is special ).

Note that Ψ(S) is of the form ∃N (N |= ···), thus Ψ is a Σ1-formula.
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Proof. We assume first that S ⊂ ù1 is a stationary set inW1[Hù2 ]. Then by the

last lemma, S is coded into an ù1-block of ET . The set of branches and specializing
functions which witness that S is coded into ET is a set of size ℵ1, thus there will be
a suitable modelM which will contain it. We ensured that this suitableM is coded
by a real x in W1[Hù2 ]. Then any uncountable, transitive N which contains r is a
witness for Ψ(S).
If, on the other hand Ψ(S) is true then the suitable model M which contains S

and witnesses that the characteristic function of S is written into an ù1-block of its
local M-Suslin trees is also a witness that the characteristic function of S can be
found in some block of ET in the real worldW1[Hù2 ]. This suffices as by definition

of the iteration (Qα : α < ù2), the patterns on ET code up stationarity on ù1. ⊣

This finishes the proof of the main theorem. We add as a remark that the coding
procedure is actually more general and is not restricted to code NSù1 . Indeed, fixing
W0 as our ground model, we can pick any subfamily F of P(ù1) and can code its
members into the independent sequence ET . If F is definable and is preserved under
ccc extensions (such asF =NS+ù1), then our proof works with almost no alterations.

§4. Forcing over M1. As stated already in the beginning of this paper, one can
apply the just introduced coding method to the canonical inner model with one
Woodin cardinalM1, and obtain better results in terms of the parameters which are
used in the definition of stationarity. We will introduce some of the properties of
M1 which are crucial for our needs, but assume from this point on that the reader is
familar with the basic notions of inner model theory. Recall thatM1 is a proper class
premouse containing a Woodin cardinal (see [21], pp. 81 for a definition of M1).

Every initial segment J
M1
â is ù-sound and one-small, where we say that a premouse

M is one-small iff whenever κ is the critical point of an extender on theM-sequence
then

JM
κ |= ¬∃ä(ä is Woodin).

The reals ofM1 admit a Σ
1
3-definable wellorder (see [21], Theorem 4.5), the definition

of the wellorder makes crucial use of a weakened notion of iterability, the so-called
Π12-iterability which we shall introduce.
LetM be a premouse, T be an ù-maximal iteration tree b a branch through T

and α an ordinal. Then b is α-good if, wheneverN =MT
b orN is the α-th iterate of

some initial segment P EMT
b using a single extender E (and its images under the

iteration map) on the P-sequence, then α is in the wellfounded part of N . Then we
say that a premouseM is Π12-iterable, if player II has a winning strategy in the game
G′
ù(M,1), where G

′
ù(M,1), is defined just as the ordinary weak two player game

WGù(M,1) (see e.g., [22] pp. 65 for a definition), with the exception that player I
not only plays an ù-maximal, countable putative iteration tree T but additionally

has to play a countable ordinal α < ℵ
M1
1 . Then player II does not have to play a

wellfounded branch through T (as it would be the case for iterability), but instead
can play a cofinal branch b through T such that b is α-good in order to win.
The winning strategy for II for G′

ù(M,1) guarantees thatM can be compared to
any countable premouse which is an initial segment ofM1, as we shall prove below.
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The proof works for any ù1-preserving generic extension ofM1, which is what we
need for our purposes.
We briefly introduce a couple of fundamental innermodel theoretic notions which

will play a crucial role in the arguments to come.

Definition 57. Let T be a k-maximal iteration tree of limit length on some
premouseM. Then we let

ä(T ) = sup{ET
α : α < lh(T }.

Moreover we let

M(T ) := unique passsive P such that OrdP = ä(T ) and

∀α < ä(T )(M(T ) agrees withMT
α below lh(E

T
α )).

We also need the so-called zipper lemma (see [22], Theorem 6.10).

Theorem 58. Let c and c′ be distinct cofinal branches of the k(≤ ù)-maximal
iteration tree T on the premouseM. Let A ⊂ ä(T ) and assume that ä(T ),A ∈wfp
(MT

c )∩wfp (M
T
c′
). Then

MT
c |= ∃κ < ä(T )(κ is A-strong up to ä(T )).

Last we recall what Q-structures are.

Definition 59. LetM be a premouse, T be a k(≤ ù)-maximal iteration tree on
M, let b be a cofinal, wellfounded branch through T and let ã be the least ordinal, if
there is one, such that either

ùã < OnM
T
b and J

MT
b

ã+1 |= ä(T ) is not Woodin,

or

ùã =OnM
T
b and ñn+1(J

MT
b

ã )< ä(T )

for some n < ù such that n+1≤ k if DT ∩b = ∅. We set

Q(b,T ) := J
Mb
ã

if there is such a ã, and let Q(b,T ) be undefined else.

The next lemma is folklore, but we could not find a proof in the literature, this is
why we include it here.4

Lemma 60. LetM and N be ù-sound premice which both project to ù. Assume
thatM is an initial segment ofM1 andN isΠ12-iterable, and let Σ denote the winning
strategy for player II in Gù(M,ù1+1). Then we can successfully compareM and N
and consequentiallyM◁N or N EM.

Proof. We compare M and N via iterating away the least disagreement,
producing iteration trees T on the M-side and U on the N -side. We shall show
that at every limit stage â ≤ ù1, there is a cofinal and wellfounded branch for each
side and then use the usual finestructural argument to finish the proof. At limit

4We thank Schlutzenberg for several discussions on the topic which were very valuable.
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stages, if T is the tree we have created so far on theM-side, we pick the branch b
andMT

b according to the winning strategy Σ. We shall describe the strategy Γ for
player II on N which ensures a successful comparison ofM and N . For that it is
sufficient to determine which branch c player II should pick at limit length trees U
such that the resulting modelMU

c is wellfounded.
Assume that we arrive at a countable limit stage ã = lh(T ) = lh(U), where T and

U denote the trees we have created so far and assume first that ä(T ) = ä(U), where
ä(T ) = sup{lh(ET

α ) : α< ã}. AsM◁M1, and the latter is one-small, we know that
MT
b is one-small as well. Consequentially, there is a Q-structure Q(b,T ) E MT

b ,
which has to be of the form Lα(M(T )), for some α < ù1, as by one-smallness
you can not have another extender on the sequence until you destroy the Woodin
cardinal. Let α be the ordinal height of that Q-structure. Note that there is failure
of ä(T ) being Woodin which is definable over Lα(M(T )) by definition.
We shall now define which branch c player II shall pick in U . AsN is Π12-iterable,

we know that there is a branch c through U , such that α is in the wellfounded
part ofMU

c (or in a linear iteration of oneM
U
c ’s extenders, but we suppress this

case as it will eventually result in exactly the same argument using the elementary
embedding of the linear, iterated ultrapower). As T ,U are the result of iterating away
the least disagreement and ä(T ) = ä(U), we obtain thatMT

b |ä(T ) =MU
c |ä(U) =

M(T ) =M(U), and the Q(b,T )-structure Lα(M(T )) must also be contained
in the wellfounded part of MU

c . Hence there is a witness to ä(T ) not being
Woodin which is definable over Lα(M(T )), so the Q(c,U)-structure must equal
Lα(M(T )) as long asM

U
c ∩Ord > α (ifM

U
c ∩Ord = α, we are done as c will be

wellfounded). This argument is uniform for the branch cwe pick so thatLα(M(T ))
is also the Q(c′,U)-structure for any other sufficiently wellfounded branch c′

through U .
We claim thatMU

c is fully wellfounded. Indeed if we let α
′ >α be countable, then

there must be a branch c′ through U such that c′ is α′-good. But now c′ = c, as
otherwise the two distinct branches c and c′ through U will witness that ä(T ) = ä(U)
isA-strong inMU

c′
up to ä(T ) for everyA⊂ ä(T ),A∈wfp(MU

c )∩wfp(M
U
c′
). But

this contradicts the fact that there is a witness definable over Lα(M
T
b ) to the fact

that ä(T ) is not Woodin. This ends the discussion of the case where ä(T ) = ä(U)
being countable.
We shall now consider the second case, where one side stops to use extenders

at some point in the comparison process. If it is the N -side, which stops playing
extenders at some point then there is nothing to show. If it is theM-side who stops
playing extenders, then there is a last modelMâ , while on the N -side, N (U) exists
and is contained inMâ . But then there is a model of the form Lα(Mâ |ä(U)) which
codes a failure of ä(U) being Woodin, and the model can be used on theN -side just
as above to find the unique, wellfounded branch through U .
What remains to show is that player II can find a wellfounded branch through U

after ù1 many stages. Assume that this is not the case, then after ù1-many rounds
of the comparison game, there is a putative, ù-maximal iteration tree U on N with
no wellfounded branch. We force with the Lévy collapse Col(ù,ù1), and let g be
an (M1,Col(ù,ù1))-generic filter. As N ∈M1 is Π12-iterable, which is a Π

1
2-notion,

we know that N is Π12-iterable in M1[g] as well. Thus, in M1[g], there is a cofinal
wellfounded branch for U and it has to be the unique one, by the argument above.
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Consequentially the branch b is ordinal definable in M1[g] using N ,M, U , T as
parameters, and by the homogeneity of the Lévy collapse, b ∈M1 as well, which is
what we wanted to show.
To finish the proof, we have to show that N E M or vice versa. This is just

a repetition of the finestructural fact that sufficiently iterable, ù-sound and ù-
projecting premice line up (see [22], Corollary 3.12).
As both premice must be countable, the above argument, together with the proof

of the comparison lemma (see [22], Theorem 3.11) shows that we can successfully
compare them in a <ù1-long process, while ensuring that the trees T onM and U
on N have last modelsMα and Nâ such that one is an initial segment of the other
and such that the branch leading up to the shorter one does not drop in model or
degree. Let us assume without loss of generality, thatMα ENâ and [0,α] does not
drop in model or degree. Then, asM projects to ù, there are no extenders overM
with critical point < ñù(M), hence if α would be greater than 0, there would be a
drop in model or degree in [0,α] which is a contradiction. So α = 0, and we turn
to â . If â 6= 0, then, as ñù(N ) = ù, Nç is not ù-sound, and consequentially Nâ is
not ù-sound, henceMα is a proper initial segment ofNâ and is countable there, as
ñù(M) =ù and by soundness. But then the iteration fromN leading up toNâ will
not moveM, andM is an initial segment of N , which is what we wanted. ⊣

It is relatively straightforward to check that the set of reals which codeΠ12-iterable,
countable premice is itself a Π12-definable set in the codes (see [21], Lemma 1.7).
Modulo the last lemma, this implies that there is a nice definition of a cofinal set of
countable initial segments ofM1 in ù1-preserving forcing extensionsM1[G ] ofM1,
(in fact this definition holds in all outer models ofM1 with the same ù1):

Lemma 61. LetM1[G ] be anù1-preserving forcing extension ofM1. Then inM1[G ]

there is Π12-definable set I of premice which are of the form J
M1
ç for some ç < ù1. I

is defined as

I := {M ctbl premouse :M is Π12-iterable, ù-sound and projects to ù},

and the set

{ç < ù1 : ∃N ∈ I(N = J
M1
ç )}

is cofinal in ù1.

In particularM1|ù1 is Σ1(ù1)-definable inù1-preserving generic extensions ofM1,
as x ∈M1|ù1 if and only if there is a transitive U |= ZFC

–, ù1 ⊂ U , ℵ
U
1 = ℵ1 such

that U |= ∃M∈ I ∧x ∈M, which suffices using Shoenfield absoluteness. A similar
argument also shows that {M1|ù1} is Σ1(ù1) definable, as we can successfully
compute it in transitive ù1-containing models, via the following Σ1(ù1)-formula:

(∗) X =M1|ù1⇔∃U (U is a transitive model of ZFC–∧ù1 ⊂U∧

U |= ∀α < ù1∃r ∈ I(α ∈ (r∩Ord ))∧

X is transitive and X ∩Ord = ù1∧

∀x ∈ I(x ⊂ X )∧∀y ∈ X∃x ∈ I(y ∈ x)).
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Indeed, if the left hand side of (∗) is true, then any transitive U which contains
M1|ù1 as an element and which models ZFC

– will witness the truth of the right hand
side, which is an immediate consequence of Shoenfield absoluteness.
If the right hand side is true, then, using the fact that Σ13-statements are upwards

absolute between U and the real world, U will contain an ù1-height, transitive
structure X which contains all countable initial segments of M1, and such that
every y ∈ X is included in some element of M1|ù1, in other words X must
equalM1|ù1.
We shall now apply the just obtained definability results to show that, once we

repeat the coding procedure described in the earlier sections of the paper, withM1
as the ground model, we can just use ù1 as parameter. For that it will be sufficient
to show, that there are Σ1(ù1)-definitions of an ù-sequence of independent Suslin
trees and a ladder system.
The first thing to note is thatM1|ù1 can define a ♦-sequence in the same way as

Lù1 can. Indeed, as M1 has a ∆
1
3-definable wellorder of the reals whose definition

relativizes to M1|ù1 we can repeat Jensen’s original proof in M1 to construct a
candidate for the ♦-sequence, via picking at every limit stage α < ù1 the <M1 -least
pair (aα,cα)∈P(α)×P(α) which witnesses that the sequence we have created so far
is not a ♦-sequence. The proof that this defines already a witness for ♦ is finished

as usual with a condensation argument. Hence we shall show that if J
M1
â is least

such that (aα : α<ù1) and (A,C ) ∈ J
M1
â , where (A,C ) is the<M1 -least witness for

(aα)α<ù1 not being a♦-sequence, then there is an countableN ≺J
M1
â such that the

transitive collapse N̄ is an initial segment ofM1.
To see that in fact every such N collapses to an initial of M1, recall the

condensation result as in [22], Theorem 5.1, which we can state in our situation as
follows:

Theorem 62. LetM be an initial segment ofM1. Suppose that ð : N̄ →M is the
inverse of the transitive collapse and crit(ð) = ñN̄ù , then either

1. N̄ is a proper initial segment ofM or
2. there is an extender E on theM-sequence such that lh(E) = ñN̄ù , and N̄ is a
proper initial segment of Ult0(M,E).

We shall argue, that in our situation, the second case is ruled out, hence every

N ≺ J
M1
â collapses to an initial segment ofM1. Indeed, due to the ù-soundness of

J
M1
â , every N ≺ J

M1
â will satisfy that

ñNù = ñ
J
M1
â
ù = ù

J
M1
â

1 ,

hence crit(ð) = ùN̄1 = ñ
N̄
ù by elementarity of ð.

But N̄ |ùN̄1 =N |ùN̄1 , and as N̄ |ùN̄1 thinks thatù is its largest cardinal,N |ùN̄1 must
believe this as well. But then there can not be an extender on the N-sequence which
is indexed at ùN̄1 , as otherwise N |ùN̄1 would think that ù

N̄
1 is inaccessible, which is

a contradiction. Hence, the condition lh(E) = ñN̄ù is impossible and all that is left is
case 1, so N̄ is an initial segment ofM1.
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This shows that Jensen’s construction of a ♦-sequence succeeds when applied to
M1. It is straightforward to verify that the recursive construction can be carried out
in M1|ù1 by absoluteness. Consequentially the ♦-sequence is a Σ1-definable class
overM1|ù1.
We can use the ♦-sequence to construct an independent ù-sequence of Suslin

trees due to a result of Jensen.

Definition 63. Let T be a tree and a ∈ T be a node, then Ta denotes the tree
{x ∈ T : x >T a}. A Suslin tree T is called full if for any level α and any finite
sequence of nodes a0,...,an on the α-th level of T, the tree Ta0 ×Ta1 ×· · ·×Tan is a
Suslin tree again.

A proof of the next result can be found in [12], Theorem 6.6.

Theorem 64. ♦ implies the existence of a full Suslin tree. Consequentially if ♦
holds then there is an ù-length sequence of Suslin trees ET = {T0,T1,...} such that any
finite product of members of ET is a Suslin tree again.

The above proof, which is a refinement of Jensen’s original construction of a
Suslin tree in that one recursively picks (using the definable wellorder) at limit stages
branches through T which are generic for finite products over the least countable
initial segment ofM1 which is able to see the construction up to that point, in fact
relativizes down toM1|ù1, as the ∆

1
3-definition of the wellorder of theM1-reals can

be applied inside M1|ù1, and the computation will always be correct. Hence, over
M1|ù1 one can always define a full Suslin tree just as inM1 and hence anù-sequence
of independent Suslin trees. If we recall the proof of the main theorem, we see that
the parameter ET 0 can be replaced by M1|ù1 as the latter can compute such an
independent ù-sequence of Suslin trees.
The second parameter in the statement of the theorem, namely the ladder system

EC can be replaced by M1|ù1 as well, for M1|ù1 can compute a canonical ladder
systemwith the help of theM1-wellorder of the reals. Thus, if we start withM1 as the
ground model, we end up with a universe where NSù1 is saturated and ∆1(M1|ù1)-
definable, and one can use (∗) to replace the parameter M1|ù1 with just ù1. We
finally obtained a proof of the main theorem of this paper.

Theorem 65. Suppose that the canonical inner model with one Woodin
cardinal, M1 exists. Then there is a model in which NSù1 is saturated and
∆1(ù1)-definable.

We end with a couple of open questions.

Question 1. Is it consistent that NSù1 is saturated, boldface ∆1-definable over
H (ù2) andMAù1 does hold? How about other forcing axioms asMRP?

Question 2. Is it consistent that NSù1 is saturated, boldface ∆1-definable over
H (ù2) and a projective wellorder of the reals exists?
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