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The effect of an externally applied electric field on the motion of an interface between
two viscous dielectric fluids is investigated. We first develop a powerful, efficient and
widely applicable boundary integral method to compute the interface dynamics in a
general multiphysics model comprising coupled Laplace and Stokes flow problems in
a periodic half-space. In particular, we exploit the relevant Stokes and Laplace Green’s
functions to reduce the problem to one defined on the interfacial part of the domain alone.
Secondly, motivated by recent experimental work that seeks to underpin the development
of switchable liquid optical devices, we concentrate on a fluid–air interface and derive
asymptotic approximations suitable to describe the behaviour of a thin film of fluid above
an array of electrodes. In this case, the problem is reduced to a single nonlinear partial
differential equation describing the film height, coupled to the electrostatic problem
via suitable numerical solution or via an asymptotic formula for electrostatic forcing.
Comparison against numerical simulations of the full problem shows that the reduced
models successfully capture key features of the film dynamics in appropriate regimes; all
three approaches are shown to reproduce experimental results.
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1. Introduction

Dielectrophoresis is defined as the motion of matter caused by polarisation effects
in a non-uniform electric field (Pohl 1958, 1978). The use of dielectrophoresis forces
to stimulate fluid motion is of interest in optics due to potential applications in the
development of novel switchable liquid optical devices (Brown et al. 2009). In particular,
the motivation for the present study relates to tracking the motion of an oil–air interface
arising from switching on an electric potential at the base of the oil film, as studied
experimentally for a set of interdigitated electrodes at the base of thin film of hexadecane
in Brown et al. (2009). This ‘switch on problem’ has been further studied in relation to the
dynamics of thin sessile drops by Corson et al. (2016), and related steady-state analysis
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901 A35-2 D. J. Chappell and R. D. O’Dea

of such drops in both an experimental and theoretical setting is given by Corson et al.
(2014) and Tsakonas et al. (2014). We consider a general multiphysics model describing
the dynamics of an interface between two viscous fluids in a periodic half-plane, under the
influence of dielectrophoresis forces. The time-dependent interface position is given as the
solution of a so-called transmission problem for a Stokes flow with a kinematic boundary
condition along the interface. We enforce continuity conditions on the stress field at the
interface by solving an associated transmission problem for the Laplace equation for the
normal and tangential derivatives of the potential on the interface (Chappell 2015).

Related work on the simulation of electrified fluid droplets and liquid bridges has been
carried out using a range of techniques including asymptotic approaches (Yeo & Chang
2006), level set methods (Walker & Shapiro 2006), finite element approaches for coupled
fluid flow and dynamic interface models (Falk & Walker 2013) and boundary integral
methods for coupled potential and dynamic interface problems (Volkov, Papageorgiou &
Petropoulos 2005; Sorgentone, Tornberg & Vlahovska 2019). A number of researchers
have proposed nonlinear long-wave asymptotic theories for two-fluid systems, where one
fluid region is assumed to be slender and the other region has an electric field applied; see,
for example Papageorgiou, Maldarelli & Rumschitzki (1990) and Kalogirou et al. (2016).
In addition, leaky dielectric two-fluid systems, where there is the possibility of free charge
conduction between the fluids, have been studied in the long-wave limit (Pease & Russel
2002; Shankar & Sharma 2004) as well as more generally (Papageorgiou & Petropoulos
2004). The presence of non-zero conductivity has been found to have a significant effect
on the interface stability, giving rise to pattern formation (Craster & Matar 2005; Wang &
Papageorgiou 2016). More recent studies have considered the application of electric fields
on perfectly conducting liquid films to control travelling wave flows on vertical fibres
(Ding & Willis 2019) or to suppress dripping from inverted substrates (Tomlin, Cîmpeanu
& Papageorgiou 2020).

A comprehensive summary of the literature on electrified film flows can be found in
the recent review article (Papageorgiou 2019). Of particular relevance to the study here is
the simplified analysis of Brown, McHale & Mottram (2011) and the dynamic thin-film
asymptotic models proposed by Tseluiko & Papageorgiou (2006, 2007) and Tseluiko et al.
(2008, 2010). In the former, a theoretical treatment of the static wrinkle formation observed
experimentally in Brown et al. (2009) is given, in which both the applied potential at the
film base and the surface deformation are assumed to be steady sinusoids, thereby allowing
analytical expressions to be obtained in the steady-state case. In the latter, a perfectly
conducting viscous film in contact with a solid surface on one side and a semi-infinite
passive dielectric medium on the other side is considered. A rigorous study of a thin-film
asymptotic model showing the global boundedness of positive periodic smooth solutions
for a film on a horizontal plate in the presence of a vertical electric field is given in Tseluiko
& Papageorgiou (2007). The effect of a normal electric field on the gravity driven flow
of a thin viscous film down an inclined plane is considered in Tseluiko & Papageorgiou
(2006) and parameter ranges that support travelling wave solutions and chaotic interfacial
oscillations are identified. This study is then extended to model flow down an inclined
plane with periodic indentations in Tseluiko et al. (2008) and flow in the presence of finite
electrodes in Tseluiko et al. (2010). Here, the thin-film asymptotic model for a viscous film
flow over a step on an inclined plane is compared to a Stokes flow based boundary element
model.

In this work, we consider both asymptotic and boundary integral techniques to study
the motion of a thin viscous film under the influence of dielectrophoresis forces arising
from a spatially periodic potential applied at its base, and apply these formulations to
the experimental results of Brown et al. (2009) wherein the potential arises from an
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array of interdigitated electrodes. Thereby, we provide both fully numerical and reduced
descriptions that allow consideration of the full film surface dynamics for arbitrary
(periodic) electrode arrangement, and which are valid across a range of film thicknesses.
We note that the dynamic problem considered here has received little attention within the
experimental community until relatively recently (see, for example, Saxena 2017) because
accurately tracking the dynamics of thin films through time is rather more challenging
than measuring the static steady-state profile. The models we provide can be used to study
the influence of various experimentally controllable parameters on the growth rates of the
film disturbance amplitude as well as the evolution of the interface position itself, from
which we envisage useful future contribution to the design of liquid optical devices.

The boundary integral formulation that we employ comprises the coupling, via
a temporally discretised kinematic boundary condition, of that for the electrostatic
problem (considered in Chappell 2015) and for the Stokes flow (adapted from Pozrikidis
1992). A commonly cited advantage of boundary integral methods is the reduction in
dimensionality (by one) to the boundary of the domain being studied. Here, we go one
step further and reduce our study to the interfacial part of the boundary only by making
use of the Green’s functions for the Laplace and Stokes flow problems in a periodic
half-space. There are three further major reasons that a boundary integral approach is
favourable here. Firstly, the relevant Green’s functions are available in a closed form
(Newhouse & Pozrikidis 1990; Pozrikidis 1992) making it relatively simple to implement
a boundary integral method (compared to, for example, Volkov et al. (2005), where the
periodic Green’s function must be approximated via fast summation methods). Secondly,
the infinite domains are dealt with intrinsically in the boundary integral formulation, both
along and perpendicular to the direction of periodicity. This means that the imposition
of artificial boundaries, as would be required for finite element and finite difference
approaches, is not necessary. Thirdly, the dynamic interface is dealt with very naturally by
the boundary integral method where the updated position of the interface curve becomes
the new region of integration after each time step and the re-meshing effort is therefore
very simple in comparison to re-meshing both fluid domains at each time step for a finite
difference or finite element method.

While the boundary integral method is a natural choice for numerically solving the full
problem, the complexity of the model at hand means that we are essentially solving three
coupled partial differential equations (PDEs) including the kinematic boundary condition
for describing the interface motion. In order to simplify the model and permit some
analytical progress, we concentrate on an oil–air interface, and derive two asymptotic
reductions of the model, which both apply under the assumption of an asymptotically
thin viscous film with a fluid of significantly lower viscosity surrounding it. The first
model simplifies the fluid flow problem to one described by a single thin-film PDE for
the interface motion (see, e.g. Oron, Davis & Bankoff (1997) for an excellent review of
thin-film approaches), coupled to the electrostatic problem via an inhomogeneous forcing
term that is obtained via the Laplace equation boundary integral model described above.
Subsequently, we go one step further and consider the corresponding asymptotic limit
for the potential problem, thereby obtaining a formula for the electrostatic forcing in
terms of the (known) applied potential at the electrodes. By comparison with numerical
solutions of the full model in suitable parameter regimes, we investigate the validity of
these approximations. Finally, we present results for a parameter choice with practical
relevance for the experiments of Brown et al. (2009).

The paper is structured as follows: in the next section we outline the governing PDEs
describing the motion of a thin viscous film due to dielectrophoresis forces. In § 3 we
reformulate our PDE model as a set of boundary integral equations, making use of the
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FIGURE 1. A 2L-periodic wrinkle of a viscous film Ω1 beneath a semi-infinite fluid layer Ω2.
The two fluids meet at the interface ΓI , whose motion is driven by an imposed potential.

periodic half-space Green’s functions for the Laplace and Stokes flow models to reduce
the formulation to one posed on the interfacial part of the solution domain only. Section 4
provides two asymptotic reductions of the PDE formulation in § 2, which are both derived
under the assumption that the height of the periodic viscous film domain is small in
comparison to the period. In § 5, the discretisation methods employed for the models
presented in §§ 3 and 4 are detailed, before applying them to perform a series of numerical
experiments in § 6.

2. Governing partial differential equations

Let H = {(x, y) ∈ R
2|y > 0} and assume h : R × R≥0 → R defines a dynamic

interface at y = h(x, t) dividing H into Ω1 = {(x, y) ∈ H|y < h(x, t)} and Ω2 =
{(x, y) ∈ H|y > h(x, t)}. Here, Ω1 represents a thin film of viscous fluid with boundary
Γ1 = ΓI ∪ Γ0, where ΓI = {(x, y) ∈ R

2|y = h(x, t)} and Γ0 = {(x, y) ∈ R
2|y = 0}. The

domain Ω2 represents the surrounding fluid and has boundary Γ2 = ΓI . The problem setup
is shown in figure 1. We will assume that h is positive and Ck for some k ≥ 2. We consider
a multiphysics model comprising an electrostatic problem for the potential φα, α = 1, 2
coupled to a fluid flow uα = (uα, vα)

T, which drives the motion of the interface governed
by a kinematic boundary condition.

The problem for the electric potential is given by

Δφα = 0 in Ωα, (2.1)

[φα]2
α=1 = 0 on ΓI, (2.2)[

εα

∂φα

∂ν

]2

α=1
= 0 on ΓI. (2.3)

Here, εα is the dielectric constant in Ωα, ∂/∂ν denotes the derivative in the direction of the
unit normal vector ν = (νx , νy)

T pointing out of Ω1 and [·]2
α=1 denotes the jump between
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domains Ω1 and Ω2. In addition we prescribe the boundary conditions

φ1(x, 0) = f (x), (2.4)

lim
y→∞

∂φ2

∂y
(x, y) = 0. (2.5)

Here, f (x) is a 2L-periodic function representing an input voltage through an array of
electrodes applied at y = 0, giving rise to a potential in Ωα (α = 1, 2) and, in particular,
along ΓI , this henceforth being denoted by φ. We additionally assume that the induced
potential decays at infinity as described by (2.5). In general, the input voltage will
vary with time (to model switchable liquid optical devices, for example), imparting
quasi-time-dependence in the above electrostatic model; however, herein, we consider only
time-independent choices for f , with time-dependence imparted to the flow problem in the
sense of ‘switching on’ the input voltage only driving the evolution of the interface ΓI from
rest. We further assume that the function h(x, t) describing the interface ΓI is 2L-periodic
in space, thereby reducing the problem to the study of a single periodic cell of H with
−L ≤ x < L. This periodicity is physically reasonable, since in relevant experiments, the
potential is typically applied by a regularly spaced array of electrodes – see § 6.2.

The fluid is assumed to satisfy the following linear creeping-flow model

∇ · uα = 0 in Ωα, (2.6)

−∇pα + μαΔuα = 0 in Ωα, (2.7)[
ν · σ α · ν

]2
α=1 + γ κ = 0 on ΓI, (2.8)[

ν · σ α · τ
]2
α=1 = 0 on ΓI. (2.9)

Here, μα is the fluid viscosity and pα is the fluid pressure in Ωα. In addition, at the interface
ΓI we have denoted the unit tangent vector as τ , the curvature as κ and the surface tension
as γ . These fluid equations are connected to the electric potential problem through the
stress tensor σ α = σ α

v + σ α
M, wherein σ α

v denotes the standard stress tensor for a viscous
flow and σ α

M denotes the Maxwell stress arising due to the applied electric field; namely

σ α
v = −pα I + μα

(∇uα + ∇uT
α

)
, (2.10)

σ α
M = ε0εα

(
∇φα∇φT

α − 1
2
|∇φα|2I

)
, (2.11)

where I is the 2 × 2 identity matrix and ε0 is the permittivity of free space.
We also prescribe the following boundary conditions

u1 = 0 on Γ0, (2.12)

u2 → 0 y → ∞, (2.13)

∂h
∂t

+ u1
∂h
∂x

− v1 = 0 on ΓI, (2.14)

describing no slip of the viscous fluid at y = 0, no flow in the far field and a kinematic
condition describing the interfacial evolution, respectively.

In what follows, we consider the evolution of the interface h(x, t) under the action of
the applied voltage, from initial data comprising h(x, 0) = h0 > 0, uα(x, 0) = 0.
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901 A35-6 D. J. Chappell and R. D. O’Dea

3. Boundary integral formulation

In this section we recast the problem (2.2)–(2.14) described in the previous section as
a set of boundary integral equations on a single periodic section of the interface ΓI . We
highlight that the boundary integral model for the electrostatic problem is taken from
Chappell (2015) (note that therein, only electrostatics are considered) and that for the
Stokes flow is adapted from those summarised in Pozrikidis (1992); in the present work
these two models are coupled together via a (temporally discretised) kinematic boundary
condition.

3.1. Green’s functions and the periodic half-plane potential
A key ingredient in our boundary integral formulation will be the 2L-periodic (in x)
half-plane Green’s functions for the Laplace and Stokes equations. For the Laplace
equation we have the following expression for the 2L-periodic Green’s function (see, for
example, Linton 1999)

G(x, x0) = − 1
2π

ln
(

2
∣∣∣sin

( π

2L
(z − z0)

)∣∣∣) , (3.1)

where x = (x, y) ∈ H, z = x + iy, x0 = (x0, y0) ∈ H and z0 = x0 + iy0. The over-bar
notation is used to represent the closure of the set, here meaning the union of H and its
boundary y = 0. It follows from the method of images that the periodic Green’s function
on H may be written

GH(x, x0) = G(x, x0) − G
(
x, x ′

0

)
, (3.2)

where x ′
0 = (x0,−y0) is the mirror image of x0 in Γ0.

We also consider the problem (2.1)–(2.5) in the absence of an interface, which will be
useful for the boundary integral reformulation of the potential problem introduced in the
following section. In this case the problem reduces to the Laplace equation on Ω1 = H,
with boundary conditions comprising 2L-periodic Dirichlet data f along Γ0 (2.4), and
(2.5). Using Green’s representation formula for x ∈ H, the solution of this half-plane
problem φH may be expressed in the form (Chappell 2015)

φH(x) =
∫

Γ0

∂GH

∂y0
(x, x0)f (x0) dx0. (3.3)

In the sequel we make use of the following reduced notation A := G(x, x0) and A′ :=
G(x, x ′

0). For the Stokes equation, the 2L-periodic Green’s function is given by the matrix
(Pozrikidis 1992)

G(x, x0) =
[
−A − λ( y − y0)Ay − 1

2π
λ( y − y0)Ax

λ( y − y0)Ax −A + λ( y − y0)Ay

]
, (3.4)

where the wavenumber λ = π/L and the subscripts x and y denote partial derivatives
with respect to the variables λx and λy. In this case, the periodic Green’s function on the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.545


Numerical-asymptotic models of viscous films 901 A35-7

half-space H is given by (Pozrikidis 1992)

GH(x, x0) = G(x, x0) − G
(
x, x ′

0

)− 2λ2 y2
0 GD

(
x, x ′

0

)− 2λy0GS
(
x, x ′

0

)
, (3.5)

where

GD(x, x ′
0) =

[
A′

yy A′
xy

−A′
xy A′

yy

]
(3.6)

and

GS
(
x, x ′

0

) =
[ −λ( y + y0)A′

yy −A′
x − λ( y + y0)A′

xy

−A′
x + λ( y + y0)A′

xy −λ( y + y0)A′
yy

]
. (3.7)

In addition to the Green’s functions GH and GH , our boundary integral formulations will
also require the 2L-periodic normal stress term

T (x, x0) = 2νx

[−2Ax − λ( y − y0)Axy λ( y − y0)Axx − Ay

λ( y − y0)Axx − Ay λ( y − y0)Axy

]

+ 2νy

[
λ( y − y0)Axx − Ay λ( y − y0)Axy

λ( y − y0)Axy −λ( y − y0)Axx − Ay

]
. (3.8)

The periodic normal stress on the half-space H is then given by (Pozrikidis 1992)

T H(x, x0) = T (x, x0) − T (x, x ′
0) − 2λ2 y2

0 T D(x, x ′
0) − 2λy0T S(x, x ′

0), (3.9)

where

T D(x, x ′
0) = νx

[
2A′

yyx 2A′
xyx

A′
yyy − A′

xyx 2A′
xyy

]
+ νy

[
A′

yyy − A′
xyx 2A′

xyy

−2A′
xyy 2A′

yyy

]
(3.10)

and

T S(x, x ′
0) = νx

[−2A′
xy − 2λ( y + y0)A′

yyx 4A′
yy − 2λ( y + y0)A′

xyx

λ( y + y0)(A′
xyx − A′

yyy) −2A′
xy − 2λ( y + y0)A′

xyy

]

+ νy

[
λ( y + y0)(A′

xyx − A′
yyy) −2A′

xy − 2λ( y + y0)A′
xyy

−2A′
xy + 2λ( y + y0)A′

xyy −2λ( y + y0)A′
yyy

]
. (3.11)

3.2. Boundary integral model
We now detail the interface-only boundary integral formulation of (2.2)–(2.14). The
advantages of such a formulation are that it provides a significant increase in
computational efficiency though reducing the size of the domain to be discretised, as
well as alleviating problems due to near singularities associated with boundary integral
methods in long slender domains.

For the fluid problem (2.6)–(2.14), the simplest formulation is an indirect model using
a single layer potential solution ansatz (Pozrikidis 1992, chap. 5). In addition to giving
a relatively simple interface-only formulation of the problem, this approach also has the
advantage that the same equation can be used to determine the fluid velocity on both sides
of the interface ΓI . This is a consequence of the continuity of the Green’s function (3.5)
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901 A35-8 D. J. Chappell and R. D. O’Dea

across the interface. We therefore assume that for x ∈ �α (α = 1, 2), the fluid velocity uα

may be expressed in the form (Pozrikidis 1992)

uα(x) =
∫

Γα

GH(x, x0)q(x0) dΓα(x0) =
∫

ΓI

GH(x, x0)q(x0) dΓI(x0), (3.12)

where the second equality follows from the property that GH(x, x0) vanishes for x0 ∈ Γ0.
The vector q is an unknown density term to be computed by solving the second-kind
boundary integral equation

− q(x) + (μ2 − μ1)

(μ1 + μ2)

∫
ΓI

T H(x, x0)q(x0) dΓI(x0) = (σ 2
v − σ 1

v) · ν

2π(μ1 + μ2)
, (3.13)

with x ∈ ΓI . The existence and uniqueness of solutions to (3.13) are discussed in Pozrikidis
(1992, § 5.4), and holds provided both μ1, μ2 > 0. We now make use of the symmetry
of σ α

v (α = 1, 2), the definitions ((2.10) and (2.11)) and the interface conditions ((2.8) and
(2.9)) to rewrite the right-hand side of (3.13) via(

σ 2
v − σ 1

v

) · ν = (ν · (σ 1
M − σ 2

M) · ν − γ κ)ν. (3.14)

Here, we have made use of the fact that τ · (σ 1
M − σ 2

M) · ν = 0 due to the interface
conditions ((2.2) and (2.3)), which provides

ν · (σ 1
M − σ 2

M

) · ν = ε0

2ε2
(ε2 − ε1)

(
ε1

(
∂φ1

∂ν

)2

+ ε2

(
∂φ1

∂τ

)2
)

. (3.15)

The final expression for the right-hand side of (3.13) is therefore

1
4π(μ1 + μ2)

(
ε0

ε2
(ε2 − ε1)

(
ε1

(
∂φ1

∂ν

)2

+ ε2

(
∂φ1

∂τ

)2
)

− γ κ

)
ν. (3.16)

For the electrical potential problem (2.1)–(2.5), a single layer potential solution ansatz
fails because GH vanishes on Γ0 where the boundary condition f is prescribed. A double
layer potential solution ansatz would lead to a more complicated equation for computing
the Neumann data on the interface ΓI and so we instead turn to a direct formulation based
on Green’s representation formula, as derived in Chappell (2015). This has the additional
advantage that the unknowns appearing in the boundary integral equations are the physical
quantities (potentials) that we wish to compute. In order to obtain an interface-only
formulation in this case we make use of the half-space solution φH . We obtain the
following second-kind Fredholm integral equation for the potential φ = φ1 = φ2 at a point
x ∈ ΓI:

φ(x) − 2
(ε2 − ε1)

(ε1 + ε2)

∫
ΓI

∂GH

∂ν0
(x, x0)φ(x0) dΓI(x0) = 2ε1

(ε1 + ε2)
φH(x). (3.17)

The notation ν0 is used to specify that the normal derivative in this case is taken at x0,
rather than at x as before. Clearly the case ε1 = ε2 reduces to φ = φH as expected. Note
that here we are effectively treating φH as our boundary data on ΓI and that, since φH

is harmonic, it is analytic. In the examples considered later, a closed form expression
will be available for φH; however, in general it may be necessary to approximate φH by,
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for example, a truncated Fourier series (if solving the half-plane problem via separation
of variables) or quadrature (if computing φH directly from the boundary integral formula
(3.3)). It is shown in Chappell (2015) that the integral equation (3.17) has a unique bounded
solution for any ε1, ε2 > 0.

In order to combine the above-described fluid and electric potential models, we note
that the fluid equations depend on the normal and tangential derivatives of φ on ΓI
(see (3.16)), rather than on φ itself. The tangential derivative may be computed from
φ relatively simply using interpolation of ΓI by trigonometric polynomials as discussed
later. The normal derivative will be computed from the result for φ by making use of the
Dirichlet-to-Neumann operator (Chappell 2015), which results from solving the following
first-kind integral equation for ∂φα/∂ν0, α = 1, 2:

εα

ε2

∫
ΓI

GH(x, x0)
∂φα

∂ν0
(x0) dΓI(x0) = −1

2
φ(x) +

∫
ΓI

∂GH

∂ν0
(x, x0)φ(x0) dΓI(x0). (3.18)

In Chappell (2015) it is shown that (3.18) has a unique bounded solution in the Sobolev
space H−1/2(ΓI) – see for example Kress (1989, § 8.2) for an introduction to Sobolev
spaces.

The solution procedure is thus to first find the potential φ correponding to the initially
flat interface y = h0 by solving (3.17), and to compute the required normal derivative via
(3.18). The associated flow u1 along ΓI is computed via (3.13) and the formula (3.12), and
the kinematic boundary condition (2.14) provides the updated interfacial position h. This
process is then repeated to obtain the time evolution of the interface h(x, t).

4. Long-wavelength reduction

In this section we describe a restriction and asymptotic reduction of the general
formulation described earlier. In particular, we restrict attention to a model appropriate
to the oil–air interface in Brown et al. (2009, 2011). Firstly, to permit some analytical
progress we adopt the long-wavelength limit that is typically applied in the context of
lubrication theory, thereby reducing the flow problem to a PDE describing the motion of
the free interface ΓI coupled to forcing supplied from the electrostatic problem. We then
consider a corresponding reduced representation for the electrical potential, consistent
with this limit, reducing the entire problem to a single PDE model at leading order.

4.1. Thin-film flow model
We first non-dimensionalise the governing equations by introducing the following
scalings:

(x, y) = L(x̃, δh̃(x, t)ỹ), t = μ1 Lγ −1δ−3 t̃, φ1 = Φφ̃1,

(u1, v1) = δ3γμ−1
1 (ũ1, δṽ1), p1 = γ δL−1p̃1,

}
(4.1)

where tildes denote dimensionless quantities and Φ denotes the amplitude of the applied
voltage f (x) appearing in (2.4). We highlight that we have chosen a frame of reference
where the interface is fixed (following Secomb 1978; O’Dea & Waters 2006); in particular,
the free interface ΓI has been mapped to the flat surface at ỹ = 1. The dimensionless
parameter δ = h0/L denotes the (mean) aspect ratio of the thin viscous film domain Ω1; to
simplify the governing equations, we adopt the long-wavelength limit, setting 0 < δ 	 1.
We assume, consistent with the oil–air interface application of interest, that the viscosity
and pressure in the thin film dominate those in the surrounding fluid (μ1 
 μ2, p1 
 p2),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.545


901 A35-10 D. J. Chappell and R. D. O’Dea

under which scaling the interface motion may be expressed entirely in terms of variables
defined in Ω1 and so we do not consider scalings for the dependent variables associated
with Ω2 here.

At leading order, the dimensionless versions of (2.6), (2.7) governing the flow in Ω1 are

h̃
∂ ũ1

∂ x̃
− ỹ

∂ h̃
∂ x̃

∂ ũ1

∂ ỹ
+ ∂ṽ1

∂ ỹ
= 0, (4.2)

∂ p̃1

∂ x̃
= 1

h̃2

∂2ũ1

∂ ỹ2
,

∂ p̃1

∂ ỹ
= 0. (4.3)

The leading-order dimensionless boundary conditions (2.8), (2.9), (2.12) and
(2.14) read

∂2h̃
∂ x̃2

= KM1 − p̃1 at ỹ = 1, (4.4)

∂ ũ1

∂ ỹ
= 0 at ỹ = 1, (4.5)

(ũ1, ṽ1) = 0 at ỹ = 0, (4.6)

∂ h̃
∂ t̃

+ ũ1
∂ h̃
∂ x̃

− ṽ1 = 0 at ỹ = 1. (4.7)

Here, M1 is the contribution from the Maxwell stress, given by

M1 = ε1

δ2h̃2

(
∂φ̃1

∂ ỹ

)2

+ ε2

(
∂φ̃1

∂ x̃
− ỹ

h̃

∂ h̃
∂ x̃

∂φ̃1

∂ ỹ

)2

(4.8)

evaluated at ỹ = 1, and the corresponding coefficient K is

K = ε0(ε2 − ε1)Φ
2

2γ ε2h0
. (4.9)

Note that the apparent O(δ−2) term in (4.8) is actually O(1) since, as we shall see in the
next section, ∂φ̃1/∂ ỹ = O(δ). We note that in (4.8) we have used the interface conditions
((2.2) and (2.3)) for the electrostatic problem to express M1 in terms of the potential in Ω1
only; this follows on from the procedure outlined in the previous section for the boundary
integral model (see (3.15) and (3.16)).

The second of (4.3) provides p̃1 = p̃1(x̃, t̃), in view of which, we may integrate (4.2) and
the first of (4.3), imposing the relevant no-slip and interface conditions, to obtain

ũ1 (x̃, t) = h̃2 ∂ p̃1

∂ x̃

(
ỹ2

2
− ỹ

)
, (4.10)

ṽ1 (x̃, t) = −h̃
∂

∂ x̃

(
h̃2 ∂ p̃1

∂ x̃

)(
ỹ3

6
− ỹ2

2

)
+ h̃2 ∂ h̃

∂ x̃

∂ p̃1

∂ x̃

(
ỹ3

3
− ỹ2

2

)
, (4.11)

where x̃ = (x̃, ỹ).
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Numerical-asymptotic models of viscous films 901 A35-11

The dimensionless kinematic boundary condition (4.7), exploiting (4.10) and (4.11) at
ỹ = 1, gives

∂ h̃
∂ t̃

= ∂

∂ x̃

(
h̃3

3
∂ p̃1

∂ x̃

)
. (4.12)

Applying the normal stress condition (4.4) gives a PDE for the interface position h̃ in
terms of input data from the solution of the electrostatic problem (2.1)–(2.5), that is

∂ h̃
∂ t̃

= ∂

∂ x̃

(
h̃3

3

(
K

∂M1

∂ x̃
− ∂3h̃

∂ x̃3

))
. (4.13)

The discretisation and numerical solution of (4.13) will be described in the subsequent
sections.

4.2. Reduced electrostatic model
We now consider a correspondingly reduced asymptotic model for the electrostatic
problem (2.1)–(2.5), in order to obtain an analytical expression for φ̃1 and thereby decouple
the numerical solution of (4.13) from the electrostatic problem.

Consider first the electrostatic problem in Ω1. Assuming an asymptotic expansion for
the potential of the form φ̃1 = φ̃10 + δφ̃11 + . . . , under the scalings (4.1), (2.1) and (2.5) at
leading order and at O(δ) read

∂2φ̃1i

∂ ỹ2
= 0 (4.14)

for 0 < ỹ < 1, i = 0, 1;

φ̃10(x̃, 0) = f̃ (x̃), φ̃11(x̃, 0) = 0. (4.15a,b)

We hence obtain

φ̃10(x̃, ỹ) = f̃ (x̃) + α(x̃)ỹ, (4.16)

φ̃11(x̃, ỹ) = β(x̃)ỹ, (4.17)

wherein f̃ = f /Φ is the dimensionless applied potential.
In (4.16) and (4.17), α and β are determined from the interface conditions ((2.2) and

(2.3)) on specification of φ̃2 = φ2/Φ, which we now consider. Firstly, we note that the
thin-film scaling is not appropriate for the potential model in Ω2, apart from in a thin
layer near the interface; instead we consider an alternative non-dimensionalisation y =
LỸ . Under this scaling, and since the oil film Ω1 is thin (δ 	 1), the interfacial conditions
are now applied at Ỹ = 0; Ω1 and Ω2 are ‘inner’ and ‘outer’ layers, the connection between
which occurring at ỹ = 1 or Ỹ = δh̃. To leading order in δ the electrostatic problem in Ω2
is therefore

∂2φ̃2

∂ x̃2
+ ∂2φ̃2

∂Ỹ2
= 0 (4.18)

for Ỹ > 0,
1
L

∂φ̃2

∂Ỹ
→ 0 (4.19)

as Ỹ → ∞, with interface conditions applied at Ỹ = 0.
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901 A35-12 D. J. Chappell and R. D. O’Dea

Applying the interface continuity condition yields φ̃2(x̃, 0) = f̃ (x̃) and hence φ̃2 is the
half-plane solution φH from (3.3) written in (x̃, Ỹ) coordinates

φ̃2(x̃, Ỹ) = 1
2

∫ 1

−1

sinh(πỸ)f̃ (x̃0)

cosh(πỸ) − cos(π(x̃ − x̃0))
dx̃0. (4.20)

Expressed in their respective coordinates for clarity, the normal derivative jump condition
reads

ε1

δh̃

∂φ̃1

∂ ỹ

∣∣∣∣∣
ỹ=1

= ε2
∂φ̃2

∂Ỹ

∣∣∣∣∣
Ỹ=0

, (4.21)

and hence α = 0, with β determined from φ̃2 via (4.21) as follows:

β = ε2h̃
ε1

∂φ̃2

∂Ỹ

∣∣∣∣∣
Ỹ=0

. (4.22)

We thereby obtain

φ̃1(x̃, ỹ) = f̃ (x̃) + πε2δh̃ỹ

2ε1

∫ 1

−1

f̃ (x̃0)

1 − cos(π(x̃ − x̃0))
dx̃0, (4.23)

and substitution into the expression for M1 (4.8), provides, to leading order in δ,

M1 = ε2
2π

2

4ε1

(∫ 1

−1

f̃ (x̃0)

1 − cos(π(x̃ − x̃0))
dx̃0

)2

+ ε2

(
df̃
dx̃

)2

. (4.24)

The expression (4.24) may then be applied in the equation for the interface position (4.13)
to model the evolution of the interface geometry.

We remark in passing that straightforward analytical progress can be made by taking
the additional limit of small amplitude variations in the applied voltage; e.g. f̃ (x̃) = 1 +
εF(x̃), for some |ε| 	 1. Here, one may solve the potential problem, and the associated
linear fourth-order PDE for h̃ directly; however, this additional linearisation procedure
results in simplified interfacial dynamics that does not reflect that observed experimentally
(in particular, the amplitude growth rate obtained is independent of the applied potential
amplitude) and so we do not pursue this here.

5. Discretisation procedures

In this section we describe the discretisation of the integral equations (3.13), (3.17) and
(3.18) using the Nyström method with suitable quadratures. The evaluation of the formula
(3.12) using appropriate numerical integration rules, and suitable finite difference methods
for the discretisation of the time evolution equations (2.14) and (4.13) will also be detailed.
With this in hand, we have three possible numerical solution approaches to the problem
under consideration. These are as follows:

(i) Full boundary integral approach.
Numerically solve (3.17) and (3.18) with a flat interface to provide the right-hand
side of (3.13). Here, we make use of expression (3.16) and note that the tangential
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Numerical-asymptotic models of viscous films 901 A35-13

derivative is computed using interpolation by trigonometric polynomials, as will be
discussed later in this section. Equation (3.13) is then solved using the Nyström
method, and the result is used to compute the fluid velocity components on the
interface via (3.12). The problem is then advanced to the next time step by using
a finite difference formula for the time derivative in (2.14) to obtain h(x,Δt), where
Δt is the step size for the time discretisation. This process is repeated until a desired
final solution time or termination criterion is reached.

(ii) Boundary integral approach with long-wavelength asymptotics.
Numerically solve (3.17) and (3.18) with a flat interface to provide the Maxwell stress
term M1, which in dimensional form can be expressed as

M1 = ε1

(
∂φ1

∂ν

)2

+ ε2

(
∂φ1

∂τ

)2

. (5.1)

The problem is then advanced to the next time step by using an appropriate finite
difference scheme for the PDE (4.13).

(iii) Fully asymptotic approach.
Use the formula (4.24) for provide the Maxwell stress term M1 as well as its
derivative with respect to x̃ , and then use an appropriate finite difference scheme
for the PDE (4.13) and proceed as in approach (ii).

Note that we approximate the tangential derivative ∂φ1/∂τ appearing in (5.1), as well
as the derivative of M1 with respect to x̃ , by interpolating with trigonometric polynomials
and first computing the derivative with respect to x . This involves applying a fast Fourier
transform (FFT) and then differentiating the Fourier components, which is also the same
procedure that we carry out for approximating the derivative ∂h/∂x of the interface
position function h. One then obtains an approximation to the tangential derivative of φ1

by correcting for arclength via division by a factor of
√

1 + (∂h/∂x)2. A similar procedure
is described and rigorously analysed in Preston, Chamberlain & Chandler-Wilde (2011),
where super-algebraic convergence of the approximation is shown.

5.1. Discretisation for the full boundary integral approach
The discretisation of the integral equations (3.17) and (3.18) using spectrally convergent
Nyström methods is detailed in Chappell (2015); here we give a brief summary. Let us first
consider the second-kind Fredholm equation (3.17).

Under the assumption of an infinitely differentiable interface (in space), we also have
an infinitely differentiable kernel in (3.17) and as discussed in § 3.2, the data term φH is
also infinitely differentiable. In this situation a simple application of the trapezoidal rule
yields a super-algebraically convergent method (Preston et al. 2011; Atkinson 1997). To
implement this scheme we note that x = (x, h(x, t)) on ΓI , and hence the trapezoidal rule
approximation to the integral over ΓI of a function F(x) = F̂(x) may be written

∫
ΓI

F(x) dΓI(x) =
∫ L

−L
F̂(x)

√
1 +

(
∂h
∂x

(x, t)
)2

dx

≈ 2L
n

n∑
j=1

F̂
(
xj
)√

1 +
(

∂h
∂x

(xj, t)
)2

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.2)
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901 A35-14 D. J. Chappell and R. D. O’Dea

where xj = −L + 2L(j − 1)/n denotes a uniform spatial discretisation of the (dynamic)
interface ΓI , and we highlight that throughout this work we suppress the time dependence
of ΓI for concision. Note that because we have assumed above that h is given
by trigonometric interpolation, its derivative ∂h/∂x may be computed simply by
differentiating its Fourier components as described in Preston et al. (2011). Applying the
formula (5.2) to the integral in (3.17) yields the following approximation:

∫
ΓI

∂GH

∂ν0
(x, x0)φ(x0) dΓI(x0) ≈ 2L

n

n∑
j=1

ki,jφ̂(xj)

√
1 +

(
∂h
∂x

(xj, t)
)2

, (5.3)

where

ki,j = 1√
1 +

(
∂h
∂x

(xj, t)
)2

(
∂GH

∂y0
(x, x0) − ∂h

∂x
(xj, t)

∂GH

∂x0
(x, x0)

)∣∣∣∣
(x=xi, x0=xj)

(5.4)

for i /= j and φ̂(xj) := φ(xj). In addition, x i = (xi, h(xi, t)) (and similarly for x j) and ki,j
corresponds to the directional derivative of GH (3.2) with respect to ν at the quadrature
node x j. When i = j, the formula (5.4) contains an apparent singularity at xi = xj (see (3.1)
and (3.2)). However, one may utilise the smoothness of the interface profile h to derive the
following (non-singular) formula for kj,j in terms of h and its spatial derivatives (for similar
derivations see Preston et al. (2011) and Atkinson (1997, chap. 7)):

kj,j =
∂2 h
∂x2

(xj, t)

4π

(
1 +

(
∂h
∂x

(xj, t)
)2
) + 1

4L

√
1 +

(
∂h
∂x

(xj, t)
)2

coth
(π

L
h(xj, t)

)
. (5.5)

As with the first derivative, ∂2 h/∂x2 may be computed simply by differentiation of the
Fourier components for h. Applying the approximation (5.3) to the second-kind integral
equation (3.17) leads to the following Nyström scheme for the approximate solution φn:

φn(xi) + 4L(ε1 − ε2)

n(ε1 + ε2)

n∑
j=1

ki,jφ
n(xj)

√
1 +

(
∂h
∂x

(xj, t)
)2

= 2ε1φ
H(xi, h(xi, t))
(ε1 + ε2)

(5.6)

for i = 1, . . . , n. The super-algebraic convergence of φn to φ for increasing n is a
consequence of Preston et al. (2011, theorem 3.12).

We now consider a Nyström method for the solution of (3.18), which is a first-kind
integral equation for ∂φα/∂ν0, α = 1, 2. In particular, we note that the kernel function
GH contains a logarithmic singularity and (3.18) falls into the class of first-kind equations
analysed in Kress & Sloan (1993). The approach here is therefore based on the scheme
presented in Kress & Sloan (1993) (see also Kress (1989) and references therein).
Super-algebraic convergence rates will then be attained due to Kress & Sloan (1993,
theorem 2.3) if the right-hand side of (3.18) is infinitely differentiable. We note that φ

will be replaced by the numerical solution φn in the right-hand side of (3.18) and therefore
trigonometric polynomials will be used to obtain an infinitely differentiable interpolant.
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Numerical-asymptotic models of viscous films 901 A35-15

The right-hand side of (3.18) will then be infinitely differentiable for h(·, t) ∈ C∞([−L, L])
for all t ≥ 0 (Chappell 2015).

We now outline the quadrature rule we employ to approximate the integral on the
left-hand side of (3.18). We first define

V(x, x0) := 1
4π

ln
(

4 sin2
( π

2L
(x − x0)

))
+ G(x, x0) (5.7)

and note that on ΓI where y = h(x, t) and h(·, t) ∈ C∞([−L, L]), then V is infinitely
differentiable with respect to both x and x0 (Chappell 2015). We then decompose the
integral on the left-hand side of (3.18) as∫

ΓI

GH(x, x0)
∂φα

∂ν0
(x0) dΓI(x0) =

∫
ΓI

(V(x, x0) − G(x, x ′
0))

∂φα

∂ν0
(x0) dΓI(x0)

− 1
4π

∫
ΓI

ln
(

4 sin2
( π

2L
(x − x0)

)) ∂φα

∂ν0
(x0) dΓI(x0), (5.8)

where the logarithmic singularity of the integral on the left-hand side is only present in the
final integral on the right-hand side. In fact, V(x, x0) − G(x, x ′

0) is infinitely differentiable
with respect to both x and x0 on ΓI and so the first integral on the right of (5.8) may be well
approximated using the trapezoidal rule as before. For the term containing the logarithmic
singularity we employ a quadrature rule of the form

−1
4π

∫ L

−L
ln
(

4 sin2
( π

2L
(x − x0)

))
F̂(x0) dx0 ≈

2N∑
j=1

Rj(x)F̂
(
xj
)
, (5.9)

for positive integer N = n/2 (assuming n is even), with xj = −L + L(j − 1)/n, j =
1, . . . , n, as before. The quadrature weight function Rj(x) is given by

Rj(x) = L
2πn

{
N−1∑
m=1

1
m

cos
(mπ

L
(x − xj)

)
+ 1

n
cos

(
Nπ

L
(x − xj)

)}
. (5.10)

This choice of quadrature computes the integral in (5.9) exactly when F̂ has been replaced
by its trigonometric interpolation polynomial. To see this replace F̂ in (5.9) by the
Lagrange trigonometric polynomial of order j, then the formula (5.10) may be derived
for the integral on the left-hand side; see Kress & Sloan (1993) and Kress (1989, p. 208)
for details.

We therefore arrive at the following approximation for the integral on the left-hand side
of (3.18) evaluated at the ith quadrature node for any i = 1, . . . , n:∫

ΓI

GH(x i, x0)
∂φα

∂ν0
(x0) dΓI(x0)

≈
n∑

j=1

∂φα

∂ν0
(x j)

(
Rj(xi) + 2L

n
si,j

)√
1 +

(
∂h
∂x

(xj, t)
)2

(5.11)

for α = 1, 2. Here, si,j = V(xi, x j) − G(x i, x ′
j) and x ′

j = (xj,−h(xj, t)). For the diagonal
case this may be reduced to

sj,j = −1
4π

{
ln

(
1 +

(
∂h
∂x

(xj, t)
)2
)

− ln
(

4 sinh2
(π

L
h(xj, t)

))}
. (5.12)
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Applying the approximation (5.11) to the first-kind integral equation (3.18) leads to the
following Nyström scheme for the approximate solution ∂φn

α/∂ν0:

n∑
j=1

∂φn
α

∂ν0
(xj)

(
Rj(xi) + 2L

n
si,j

)√
1 +

(
∂h
∂x

(xj, t)
)2

= ε2

εα

⎛
⎝−φn(xi)

2
+ 2L

n

n∑
j=1

ki,jφ
n(xj)

√
1 +

(
∂h
∂x

(xj, t)
)2
⎞
⎠ , (5.13)

for i = 1, . . . , n and α = 1, 2.
The vectorial boundary integral equation (3.13) may also be discretised via the Nyström

method following approaches analogous to that for (3.17) described above. Instead of the
directional derivative of GH = A − A′ with respect to ν0 found in (3.17), the matrix kernel
function T H (3.9) contains derivatives of A and A′ between first and third order with respect
to both λx and λy, as well as mixed derivatives. We note that in most cases there are no
singularities to consider in the integrand in (3.13); in the expression (3.9), the latter three
terms are all evaluated at x ′

0, which is the reflection of the point x0 in Γ0 and, as such,
can never coincide with the point x ∈ ΓI . In these cases we base our Nyström method
discretisation on the standard trapezoidal rule as outlined above. For the first term in (3.9),
however, we must take care of the singularities at x = x0 in the quadrature scheme for∫

ΓI
T (x, x0)q(x0)dΓI(x0). In particular, we need to evaluate Ax , Ay , λ( y − y0)Axx and

λ( y − y0)Axy in the case i = j, where i is the index of the quadrature node at which the
solution is sought and j is the index of the quadrature node for the numerical integration
over ΓI as above. To do so, we utilise the following relations:

(Ax)|(x=xj, x0=xj)
= 1
λ

(
∂G
∂x

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

= 0, (5.14)

(
Ay

)∣∣
(x=xj, x0=xj)

= 1
λ

(
∂G
∂y

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

=
∂2 h
∂x2

(xj, t)

4πλ

(
1 +

(
∂h
∂x

(xj, t)
)2
) , (5.15)

(λ( y − y0)Axx)|(x=xj, x0=xj)
= 1
λ

(
( y − y0)

∂2G
∂x2

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

= 0, (5.16)

(
λ( y − y0)Axy

)∣∣
(x=xj, x0=xj)

= 1
λ

(
( y − y0)

∂2G
∂x∂y

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

= 0. (5.17)

For the case i /= j, we simply employ a standard trapezoidal rule to evaluate∫
ΓI

T (x, x0)q(x0)dΓI(x0). For reasons of brevity we omit to write out the numerical
scheme for (3.13) in full, but instead note simply that it is analogous to the procedure
for the scalar equation (3.17), except using the relations above for the diagonal case.

Once (3.13) has been solved for q, the solution for the fluid velocity u on ΓI may be
evaluated using the formula (3.12). We evaluate this formula using a quadrature rule that
is consistent with the Nyström method scheme applied to solve (3.13). In particular, the
trapezoidal rule is applied, together with a treatment of singularities that is analogous the
scheme for (3.18) detailed above. We note that as for T H , it is only in the first of the four
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terms (G) that are summed to form the matrix GH (3.5) (the kernel function in (3.12))
that singularities can occur. For the four entries of the matrix G we need to evaluate A,
λ( y − y0)Ax and λ( y − y0)Ay in the case i = j, where i and j are as above. For the latter
two terms, it is clear from the above relations for (3.13) that we have

(λ( y − y0)Ax)|(x=xj, x0=xj)
=
(

( y − y0)
∂G
∂x

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

= 0, (5.18)

(
λ( y − y0)Ay

)∣∣
(x=xj, x0=xj)

=
(

( y − y0)
∂G
∂y

(x, x0)

)∣∣∣∣
(x=xj, x0=xj)

= 0. (5.19)

For the terms containing A, we need to evaluate∫
ΓI

G(x, x0)q(x0) dΓI(x0), (5.20)

where the function q can be either entry from the vector function q. This can be done using
an analogous splitting to the one in (5.8) as follows:∫

ΓI

G(x, x0)q(x0) dΓI(x0) =
∫

ΓI

V(x, x0)q(x0) dΓI(x0)

− 1
4π

∫
ΓI

ln
(

4 sin2
( π

2L
(x − x0)

))
q(x0) dΓI(x0). (5.21)

Following the same steps as for (3.18) leads to the following approximation for the integral
(5.20) evaluated at the ith quadrature node for any i = 1, . . . , n:∫

ΓI

G(x i, x0)q(x0) dΓI(x0)

≈
n∑

j=1

q(x j)

(
Rj(xi) + 2L

n
V(xi, x j)

)√
1 +

(
∂h
∂x

(xj, t)
)2

. (5.22)

For the diagonal case i = j we note that

V(x j, x j) = −1
4π

ln

(
1 +

(
∂h
∂x

(xj, t)
)2
)

. (5.23)

Finally, we describe the time evolution of the interface h(x, t) via a discretised form
of (2.14) with time step Δt and spatial mesh size Δx . We denote hk

i = h(xi, tk) for
i = 1, . . . , n, k = 1, 2, . . . and apply Euler’s method to approximate hk+1

i = h(xi, tk+1) as
follows:

hk+1
i = hk

i + Δt
(

u
∂h
∂x

− v

)∣∣∣∣
(xi,tk)

. (5.24)

Note that the flow u1 = u = (u, v)T corresponding to the interface position at t = tk is
obtained as described above, where the spatial variation of h at each time point is given
by trigonometric interpolation and hence its spatial derivative may be computed simply
by differentiating its Fourier components. We further remark that since the velocity terms
on the right-hand side of (5.24) are only known at the current time then we are somewhat
restricted in terms of our choice of time discretisation method. In the next section, we will
discuss the additional discretisation methods employed for the two asymptotic reductions
introduced above.
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5.2. Discretisation for the asymptotic approaches
In this section we describe two approaches for the discretisation of the interface evolution
equation (4.13).

First, we consider an explicit Euler scheme as follows:

h̃k+1
i = h̃k

i + Δt

(
∂

∂ x̃

(
h̃3

3

(
K

∂M1

∂ x̃
− ∂3h̃

∂ x̃3

)))∣∣∣∣∣
(x̃i,t̃k)

, (5.25)

with corresponding notation to that employed in (5.24), but with the tildes denoting the
non-dimensional variables in (4.13) as before. Note that the spatial derivatives of M1 are
computed either by Fourier interpolation in the case of scheme 2, or analytically in the
case of the (fully asymptotic) scheme 3.

The presence of a ‘stiff’ fourth-order spatial derivative on the right-hand side of
(4.13) places restrictive stability constraints on the time-stepping scheme. For example,
a standard von Neumann stability analysis reveals that an explicit finite difference
discretisation with n spatial mesh points leads to a requirement of the form Δt ∝ n−4.
We remark that such an analysis is presented in, for example, Momoniat, Harley & Adlem
(2010), in which the generalised lubrication equation (i.e. K = 0 in (4.13)) is considered;
however, the result can be extended to the inhomogeneous case under the assumption of
an upper bound on the maximal film height. We also find in practice that the scheme
(5.25) requires a time step Δt ∝ n−4 for stability, even when the spatial derivatives of h̃
are computed by Fourier interpolation in place of finite difference formulæ. Nonetheless,
the relevant terms may be evaluated relatively quickly, particularly in the case of scheme
3 (fully asymptotic), meaning that it is feasible to compute solutions within the confines
of the stability constraint, provided not too fine a spatial grid is required. Generally this
should be the case provided that the applied voltage f is smooth and periodic, since then
the interpolation by trigonometric polynomials should converge spectrally.

In order to circumvent the stability constraint when necessary, we additionally consider
the implicit–explicit finite difference scheme presented in Momoniat et al. (2010),
which treats the ∂3h̃/∂ x̃3 term in (4.13) implicitly. Alternative approaches include
Crank–Nicolson based schemes for both driven (Ha, Kim & Myers 2008) and interface
relaxation problems (Momoniat et al. 2010; Li & Kim 2013) or finite difference schemes
that preserve the positivity of the interface height (Zhornitskaya & Bertozzi 1999). In
higher-dimensional settings it may be preferable to consider finite element approximations
for nonlinear fourth-order degenerate PDEs, see for example Barrett, Blowey & Garcke
(1998).

Our implicit–explicit finite difference scheme may be derived by first approximating
the outer spatial derivative using a standard second-order central difference formula with
step size Δx , while evaluating the third-order spatial derivative at the advanced time as
follows:

h̃k+1
i = h̃k

i + KΔt
6Δx

((
h̃k

i+1

)3
−
(

h̃k
i−1

)3
)

∂M1

∂ x̃

∣∣∣∣
(x̃i,t̃k)

− Δt
6Δx

((
h̃k

i+1

)3 ∂3h̃k+1
i+1

∂ x̃3
−
(

h̃k
i−1

)3 ∂3h̃k+1
i−1

∂ x̃3

)
. (5.26)

Recall that the spatial derivatives of M1 are computed either by Fourier interpolation in
the case of scheme 2, or analytically in the case of scheme 3 and thus finite difference
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approximations of these derivatives are not required. The fully discrete scheme is then
obtained on application of the second-order central difference formula

∂3h̃k+1
i

∂ x̃3
≈ h̃k+1

i+2 − 2h̃k+1
i+1 + 2h̃k+1

i−1 − h̃k+1
i−2

2Δx3
, (5.27)

adjusted for the appropriate spatial grid positions. We note that this scheme is shown
to be unconditionally stable in the case of the homogeneous switch-off model (K = 0)
for the relaxation of an initially disturbed interface in Momoniat et al. (2010), providing
a significant improvement over an explicit scheme. However, in our case this comes
at the cost of a lower precision approximation of the spatial derivatives (second order
instead of spectral convergence). In the next section we consider the three numerical
solution approaches outlined above in order to understand the extent of the validity of
the asymptotic models and to perform tests with parameters corresponding to those used
in typical experimental set-ups (Brown et al. 2009, 2011).

6. Numerical experiments

6.1. Investigation of the asymptotic models
In this section we first perform a series of experiments to investigate the validity of the
asymptotic models derived in § 4. We test our models using the same boundary condition
for (2.4) as employed in Brown et al. (2011) for a static applied potential; namely: f (x) =
Φ cos(πx/L), where Φ is a constant amplitude term. Note that one can then derive the
half-space solution φH , either using separation of variables or directly from the boundary
integral formula (3.3), to obtain

φH(x) = Φ cos(πx/L) exp(−πy/L). (6.1)

One may also evaluate the asymptotic formula for the Maxwell stress M1 (4.24) as

M1 = ε2π
2

(
ε2

ε1
cos2(πx̃) + sin2(πx̃)

)
. (6.2)

In addition we set the parameter ε1 = 8 and ε2 = 1 to reflect typical values for oil and air
in our application of interest (Brown et al. 2011).

We use the methods described in the previous section to approximate the evolution
of the film profile h(x, t) from an initial constant profile h(x, 0) = h0 until the profile
reaches a steady-state wrinkle where the effect of the applied potential is exactly balanced
by the forces arising from the surface tension on a curved interface profile. Figure 2
shows the amplitude of the final steady-state wrinkle estimated by all three models:
full boundary integral approach for a Stokes’ flow, hybrid long-wavelength asymptotic
approach coupled to the boundary integral solution of the electrostatic problem and finally
the fully asymptotic approach. The effect of different force terms is assessed by varying
the magnitude of the surface tension γ , which enters the loading term in both the Stokes
flow model (3.16) and the asymptotic model via the parameter K in (4.13). In particular,
a larger surface tension will lead to lower steady-state amplitudes by amplifying the
curvature driven motion of the interface relative to the dielectrophoretic motion. We fix the
parameters L = 1, Φ = 1, μ1 = ε0 and μ2 = μ1 × 10−4 so that the assumption μ1 
 μ2
introduced in § 4.1 is valid for these results.

For all three forcing cases tested, one observes convergence of the numerical and hybrid
asymptotic approaches to the fully asymptotic (leading order in δ) result as δ → 0 and
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The influence of the film thickness and force amplitude on the

 steady-state wrinkle amplitude

Case 1: Stokes
Case 1: Hybrid
Case 1: Asymptotic
Case 2: Stokes
Case 2: Hybrid
Case 2: Asymptotic
Case 3: Stokes
Case 3: Hybrid
Case 3: Asymptotic

δ

FIGURE 2. Comparison of the results from all three models (full boundary integral approach
for a Stokes flow, hybrid long-wavelength asymptotic approach coupled to the boundary integral
solution of the electrostatic problem and fully asymptotic approach) for the final steady-state
wrinkle amplitude with three different force terms: case 1 with γ = ε0/50, case 2 with γ =
ε0/500 and case 3 with γ = ε0/5000.

the leading-order approximation becomes reasonable in the regime δ < 0.05. The fully
numerical (Stokes flow) simulation loses accuracy as δ becomes smaller, and the issue is
particularly evident for larger force terms. In these situations, a large number of quadrature
nodes may be required in the Nyström discretisation to obtain convergence to a steady
state. This imposed a practical limitation on the minimum δ value that could be simulated
in the full numerical model for each of the three forcing cases ranging from δ = 0.025
for the lightest forcing (case 3 in figure 2) to δ = 0.1 for the strongest forcing (case 1 in
figure 2). A similar limitation is present for the hybrid approach, although the computation
of each step is much quicker due to only employing the boundary integral method for the
electrostatic part of the simulation. The main computational limitation of this approach is
rather the very small time steps necessary for stability of the explicit time-stepping scheme
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Amplitude versus time: Case 1 with δ = 0.1

FIGURE 3. The time evolution of the wrinkle amplitude from flat to steady state (a,c) and the
final steady-state wrinkle profile (b,d). The rows represent the thinnest-film experiment shown
in figure 2 for two of the three forcing cases: case 1 with γ = ε0/50 (a,b) and case 3 with γ =
ε0/5000 (c,d). The dash-dot curve (Stokes viscous) shows the effect of reducing the viscosity
ratio between Ω1 and Ω2 in the Stokes flow boundary integral model from 104 to 2.

(5.25). In this case, the situation deteriorates further when using the implicit–explicit
scheme (5.26) due to a build up of numerical errors and the lower precision of the
finite difference approximation for the spatial derivatives; the situation could potentially
be improved with the development of a semi-implicit spectral approach in future work.
Stable calculations for the fully asymptotic approach can, however, be obtained using the
implicit–explicit scheme (5.26) without the strong time-step limitation and this was by far
the most computationally efficient approach of the three.

In figure 3 we investigate the thin-film cases more closely in order to examine not
only how close the final amplitudes are, but also the growth behaviour over time and the
match of the steady-state profile. In addition, we investigate the case of two viscous fluids
of comparable viscosity, replacing μ2 = μ1 × 10−4 with μ2 = μ1/2. Note that the two
asymptotic approaches are both independent of μ2, being derived under the assumption
that μ1 
 μ2, and so only one new curve appears on each panel labelled ‘Stokes viscous’.
In all cases we observe a similar final wrinkle profile for all four experiments with the
largest discrepancy occurring in the stronger forcing case (case 1) for the numerical
boundary integral simulation with a more viscous fluid in Ω2; here, the greater viscosity
leads to a slightly larger final wrinkle amplitude. The differences between the simulations
are more evident in the amplitude evolution plots in the left column. However, for the
lighter forcing case with δ = 0.025, we still see a good agreement between the two
asymptotic predictions and the fully numerical results with both μ2 values tested. For the
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FIGURE 4. The time evolution of the wrinkle amplitude from flat to steady state (a) and the
final steady-state wrinkle profile (b) for a thick film with δ = 0.5 and γ = ε0/5000.

stronger forcing case with δ = 0.1 we now observe clear differences in not only the time
taken to reach the steady state, but also the steady-state amplitude (due to the finer scale
on the vertical axis compared with the final profile plots). These differences can mainly
be attributed to the assumptions under which the asymptotic models are derived not being
fully satisfied for δ = 0.1, and additionally for μ2 = μ1/2 in the ‘Stokes Viscous’ case.

A perhaps surprising observation on the results in figure 2 is how closely the wrinkle
amplitudes predicted by the numerically simulated Stokes flow model and the hybrid
asymptotic approach agree for thick films, suggesting that it is the additional asymptotic
reduction of the electrostatic model that is more limiting. We investigate this further in
figure 4 where the growth behaviour of a thick film (δ = 0.5) over time and the match
of the steady-state profile predicted by the numerically simulated Stokes flow model and
the hybrid asymptotic approach are compared. The results show that both methods predict
essentially the same steady-state result, but the hybrid asymptotic approach is not able to
correctly capture the time dynamics and predicts a much faster onset of the steady state
than the full model. However, if only the steady state itself were of interest then either
method could reasonably be used.

To summarise, between the three approaches tested, at least one can give reasonably
accurate results for any possible δ value and for δ < 0.05 one can use the fully asymptotic
method for maximal computational efficiency. Note that here we have only presented
results where the steady-state amplitude has converged to three significant figures. We have
not reported any verification of the discretisation methods or their convergence properties.
For the boundary integral model of the electrostatic problem, such an analysis can be
found in Chappell (2015). We have also independently verified that the boundary integral
model employed for the fluid dynamical simulations here is in agreement with the solution
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Media Parameter Notation Value Units

Hexadecane Dielectric constant ε2 2.05 —
Dynamic viscosity μ2 3 m Pa s

Surface tension γ 0.027 J m−2

Air Dielectric constant ε1 1 —
Dynamic viscosity μ1 0.0198 m Pa s

TABLE 1. Parameters used in the hexadecane oil–air interface model.

of Orchard (1963) for the surface tension driven levelling of an initially perturbed oil–air
interface. Finally, the agreement between the three different models presented here for
appropriate parameter choices provides verification of their correctness.

6.2. Application to an experimental set-up
In this section we present results for a more experimentally realistic system where the
applied potential originates from an array of interdigitated electrodes. In particular, we
base our model set up on the experimental work presented in Brown et al. (2009) for the
dynamics of an oil–air interface using a thin film of hexadecane. Therein, an interdigital
array of striped coplanar electrodes was shown to spread a droplet of oil into a thin uniform
film at low voltage and that increasing the voltage drop between neighbouring electrodes
gave rise to a periodic undulation at the surface of the oil. A list of the relevant material
parameters for this set-up is provided in table 1; we direct the reader to Brown et al.
(2009) for a detailed description of the experimental set-up. We apply a modified form of
the potential model for interdigitated electrodes from den Otter (2002), but with a minor
modification in order to better model the electrode configuration in Brown et al. (2009).
Explicitly, we take

f (x) = 2Φ

π

∞∑
j=1

1
2j − 1

J0

(
(2j − 1)π

4

)(
1 + sin

(
(2j − 1)πx

L

))
, (6.3)

as shown in figure 5 with Φ = 400 and L = 240 μm. The infinite sum in (6.3) has been
truncated at N = 1, 3 and 11 terms for the different curves in the plot. For N = 1 we have
a simple (raised) sine curve and would expect similar profiles to those obtained in the
previous section and not the more interesting profiles observed experimentally in Brown
et al. (2009). We may further obtain that

φH(x) = 2Φ

π

∞∑
j=1

1
jo

J0

(π

4

)(
1 + sin

(
joπx

L

)
exp

(
− joπy

L

))
, (6.4)

where the notation jo = 2j − 1 has been introduced for brevity and J0 is the zeroth-order
Bessel function of the first kind as usual. The corresponding Maxwell stress is then be
derived as

M1 = 4ε2

⎛
⎝
⎛
⎝ ∞∑

j=1

J0

(
joπ

4

)
cos( joπx̃)

⎞
⎠

2

+ ε2

ε1

⎛
⎝ ∞∑

j=1

J0

(
joπ

4

)
sin( joπx̃)

⎞
⎠

2⎞
⎠ . (6.5)
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FIGURE 5. Modelling the electric potential from an array of interdigitated electrodes using (6.3)
with parameters Φ = 400 V, L = 240 μm and truncating the sum after N terms as specified in
the legend.

Figure 6 shows the steady-state wrinkle profiles for the set-up described above with
electrode pitch L = 240 μm and a variety of different applied voltages Φ between 275 V
and 550 V using (6.3) with the sums truncated after three terms. The small parameter
δ for the asymptotic models ranges from 0.025 with h0 = 6 μm up to 0.125 with h0 =
30 μm and so the results in the previous section suggest that the fully asymptotic model
should at least be appropriate in the former case. The plots are all scaled consistently, but
their position on the vertical axis has been shifted for ease of comparison between the
plots for different values of h0. Note that as before, convergence issues arise in the fully
numerical Stokes flow code for thin films in combination with relatively large applied
voltages leading to prohibitive computational costs in these cases. For this reason, the
profiles in this case are only calculated for the thickest film (30 μm) and for a limited range
of amplitudes for the 16.5 μm film. The fully asymptotic model has only been plotted for
the thinnest-film case since this is the only case where the leading order in δ result is
approximately valid. The hybrid numerical-asymptotic model can be applied to compute
the steady-state wrinkle profile throughout the range of applied voltages and different film
thickness values, but we note that as before, we only expect the growth behaviour with
respect to time to be well approximated for thinner films.

The results in figure 6 show that the steady-state profile predicted by the hybrid
numerical asymptotic model (figure 6b) agrees reasonably closely with both the numerical
Stokes flow model for the thicker films (figure 6a) and the fully asymptotic model for the
thinnest film with h0 = 6 μm at lower applied potentials (figure 6c). Some discrepancies
can also be observed, with the hybrid model typically predicting slightly lower wrinkle
amplitudes than the other two models; note that this observation is consistent with the
results from the previous subsection as shown in figure 2. The fully asymptotic model also
predicts larger amplitudes and a stronger influence of the higher-order expansion terms in
(6.3), which can be observed through the deeper trough in the wrinkle profiles at x = 0
in panel (c). The reason for this can be found by inspection of the asymptotic formula
for the Maxwell stress term M1 in (6.5) and recalling that inhomogeneous part of the thin
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FIGURE 6. The steady-state wrinkle profile of a hexadecane oil–air interface predicted by
(a) the Stokes flow numerical model, (b) the hybrid numerical-asymptotic model and (c) the
fully asymptotic model. The mean film height h0 is chosen as h0 = 6 μm, 16.5 μm, 30 μm,
corresponding to a small parameter δ ranging from 0.025 to 0.125, and results for each model
are presented in appropriate regimes (see text). A simulated array of interdigitated electrodes
is applied to excite the system via (6.3) and truncating the sum after three terms. The applied
potential is indicated in the legend of (c), and is consistent throughout all panels. The plots
are all scaled consistently, but their position on the vertical axis has been shifted for ease of
comparison between different values of h0.

film (4.13) depends on ∂M1/∂ x̃ and ∂2M1/∂ x̃2. After differentiation with respect to x̃ , the
sums in (6.5) become divergent and hence the match between the fully asymptotic model
and the other two will deteriorate if we include more terms in the sum (6.3) than the three
considered here. The other two models depend instead on the half-space solution (6.4) via
(3.17), in which the higher-order terms in (6.3) have increasing exponential decay rates.

Finally, we note that the results in figure 6 bear a strong similarity to the experimental
findings published in figure 5 of Brown et al. (2009), both in terms of the observed
profile shapes and amplitudes. In particular, the experimental results also show a simple
sinusoidal profile when h0 = 30 μm and a flattening of the peak at x = 0, followed by the
increasing emergence of a trough as h0 is decreased.

7. Conclusions

We have provided appropriate mathematical models to study the fluid motion of a
thin viscous film under the influence of dielectrophoresis forces, which are valid across
a range of film thicknesses. The first approach is to numerically solve the full Stokes
flow–electrostatic problem using a boundary integral method. This model has the widest
range of validity but provides a considerable challenge in the case of thin films since direct
numerical simulations for the Stokes flow problem become prohibitively costly. To address
this, we consider two asymptotic reductions, in the limit of a thin viscous film below a
fluid of significantly lower viscosity. The first of these (the ‘hybrid approach’) retains a
dependence on the film thickness from the electrostatic part of the model (the solution to
which is obtained numerically), while the fully asymptotic approach reduces the problem
to a single nonlinear PDE for the film height. For suitably thin films, both approaches
provide excellent approximations to the film dynamics and eventual steady state profile.
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For thicker films, the hybrid approach is able to describe the steady-state profile, but not
the correct time dependence of the wrinkle growth. All three approaches can be shown to
reproduce experimental measurements of the final steady-state profile within the ranges of
validity and practical applicability described above.

Future work from a numerical simulation perspective could consider modifications to
the boundary integral scheme to give better convergence for thinner films, or develop
a suitable accurate semi-implicit time discretisation for the hybrid method to avoid the
strong time-step restrictions. From an asymptotic perspective, our results suggest that
reduction of the electrostatic problem is the key factor affecting the accuracy of our fully
asymptotic scheme. The consideration of higher order contributions and, for example,
explicit treatment of the potential within regions near the film–air interface would be
of interest, and may permit the time-dependent dynamics observed in experiment, as
well as the decay in the steady-state film amplitude, to be captured. Finally, from an
applications perspective, future work (in progress) will consider the growth rate of the
film disturbance in the switch on problem considered here in comparison to the decay rate
for the corresponding switch off problem, where an initially disturbed film relaxes to a flat
profile. Furthermore, the evolution of the interface position to its final steady state will
be of interest for further study in order to understand the influence of various parameters
(electrode configuration, applied voltage, film thickness and material etc.) and ultimately
facilitate the design of profiles with particular optical properties.
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