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We examine the elliptic system given by

⎧⎪⎨
⎪⎩
−Δu = λf(v) in Ω,

−Δv = γf(u) in Ω,

u = v = 0 on ∂Ω,

where λ, γ are positive parameters, Ω is a smooth bounded domain in R
N and f is a

C2 positive, nondecreasing and convex function in [0,∞) such that f(t)/t → ∞ as
t → ∞. Assuming

0 < τ− := lim inf
t→∞

f(t)f ′′(t)
f ′(t)2

� τ+ := lim sup
t→∞

f(t)f ′′(t)
f ′(t)2

� 2,

we show that the extremal solution (u∗, v∗) associated with the above system is
smooth provided that N < (2α∗(2 − τ+) + 2τ+)/(τ+) max{1, τ+}, where α∗ > 1
denotes the largest root of the second-order polynomial

Pf (α, τ−, τ+) := (2 − τ−)2α2 − 4(2 − τ+)α + 4(1 − τ+).

As a consequence, u∗, v∗ ∈ L∞(Ω) for N < 5. Moreover, if τ− = τ+, then
u∗, v∗ ∈ L∞(Ω) for N < 10.
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1. Introduction

In this short note, we examine the boundedness of the extremal solutions to the
following system of equations:

(P )λ,γ

⎧⎪⎨
⎪⎩
−Δu = λf(v) in Ω
−Δv = γf(u) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in R
N and λ, γ > 0 are positive parameters. The

nonlinearity f satisfies

(R) f is smooth, increasing and convex with f(0) > 0 and superlinear at ∞.

Define Q := {(λ, γ), λ, γ > 0},
U := {(λ, γ) ∈ Q : there exists a smooth solution (u, v) of (P )λ,γ},

and set Υ := ∂U ∩ Q. M. Montenegro in [11] (for a more general system than
(P )λ,γ) showed that U �= ∅ and for every (λ, γ) ∈ U the problem (P )λ,γ has a min-
imal solution. Then, using monotonicity, for each (λ∗, γ∗) ∈ Υ one can define the
extremal solution (u∗, v∗) as a pointwise limit of minimal solutions of (P )λ,σλ with
σ := γ∗/λ∗, which is always a weak solution to (P )λ∗,γ∗ . Moreover, for a (λ, γ) ∈ U ,
the minimal solution (u, v) of (P )λ,γ is stable in the sense that there is a constant
η > 0 and 0 < ζ, χ ∈ H1

0 (Ω) such that

− Δζ = λf ′(v)χ + ηζ, −Δχ = γg′(v)ζ + ηχ, in Ω. (1)

For the proof see [11] (see also [5] for an alternative proof).

In [11] it is left open the question of the regularity of extremal solution (u∗, v∗). In
the case when f(t) = et, in [4] Cowan proved the extremal solutions to (P )λ,σλ are
smooth for 1 � N � 9 under the further assumption N − 2/8 < γ/λ < 8/N − 2;
Dupaigne, Farina and Sirakov in [9] then improved this result by removing this
restriction. The same result is also obtained by Dávila and Goubet [7]. Furthermore,
they proved that for N � 10, the singular set of any extremal solution of the system
(P )λ,γ has Hausdorff dimension at most N − 10. We now mention that some of the
motivation for our proof of Theorem 3 in the current paper comes from the work
of Dupaigne, Farina and Sirakov [9].
It is also worth mentioning here that the second-order scalar analogue of (Nλ) with
Dirichlet boundary conditions, that is,

(Q)λ

{−Δu = λf(u) in Ω,
u = 0 on ∂Ω,

is by now quite well understood whenever Ω is a bounded smooth domain in RN

and f is a nonlinearity of type (R), see for instance, [1–3,8,12,15,16]. In this
case, the best-known result is due to X. Cabré [4] who showed that for N < 5 the
extremal solution u∗ of (Qλ) is smooth for arbitrary nonlinearity f if in addition Ω
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is convex. In [15] Villegas proved the same replacing the condition that Ω is convex
with f is convex. However, it is still an open problem to establish an L∞ estimate
in dimensions 5 � N � 9, even in the case of convex domains Ω and convex nonlin-
earities satisfying (R).

Define

τ− := lim inf
t→∞

f(t)f ′′(t)
f ′(t)2

� τ+ := lim sup
t→∞

f(t)f ′′(t)
f ′(t)2

. (2)

Our main result is the following.

Theorem 1. Let f satisfy (R) with 0 < τ− � τ+ < 2, and Ω an arbitrary bounded
domain in R

N with smooth boundary and let (u∗, v∗) denote the extremal solution
associated with (P )λ,γ . Then u∗, v∗ ∈ L∞(Ω) for

N < N(f) :=
2α∗(2 − τ+) + 2τ+

τ+
max{1, τ+} (3)

where α∗ > 1 denotes the largest root of the second-order polynomial

Pf (α, τ−, τ+) := (2 − τ−)2α2 − 4(2 − τ+)α + 4(1 − τ+). (4)

As consequences,
i) u∗, v∗ ∈ L∞(Ω) for N < 5.
i) If τ− = τ+ := τ , then u∗, v∗ ∈ L∞(Ω) for N < 10. Indeed, in this case, we have

N(f) = 2 + 4
1 +

√
τ

τ
� 10.

For example consider problem (P )λ,γ with f(t) = et or etα

(α > 0), then τ+ =
τ− = 1, hence by theorem 1, u∗, v∗ ∈ L∞(Ω) for N < 10. The same is true for
f(u) = (1 + u)p (p > 1) as in this case, we have τ+ = τ− = p − 1/p. More precisely,
in the latter case, we have u∗, v∗ ∈ L∞(Ω) for

N < 2 +
4

p − 1

(
p +

√
p2 − p

)
.

This is exactly the same as the result obtained in [5] and [10] (corresponds to p = θ
according to their notation).

In the examples above, we had τ− = τ+, here we also give an example of f
with 0 < τ− �= τ+ < 2. Take arbitrary a, b > 0 with 0 < b < a � 1, and define f :
[0,∞) → (0,∞) as

f(t) = e
∫ t
0 ((ds)/((1−a)s+b sin s+1)), t � 0.

Note that we have f(0) = 1, and since for every s ∈ [0,∞) we have 0 < 1 − b �
(1 − a)s + b sin s + 1 � (1 − a)s + b + 1 then for t > 0, we have

f(t) � e
∫ t
0 ((ds)/((1−a)s+b+1)) =

(
1 +

1 − a

1 + b
t

)1/1−a

, when a < 1
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and

f(t) � et/1+b, when a = 1,

thus f is superlinear. Also for every t � 0, we have f ′(t) = (f(t))/((1 − a)t + b
sin t + 1) > 0 and f ′′(t) = (a − b cos t)/(((1 − a)t + b sin t + 1)2)f(t) > 0, hence f is
an increasing convex function, and

f(t)f ′′(t)
f ′(t)2

= a − b cos t, t � 0.

Thus τ− = a − b > 0 and τ+ = a + b < 2. For example, take a = 1, then τ− = 1 −
b > 0 and τ+ = 1 + b < 2. Now by theorem 1, we see that u∗, v∗ ∈ L∞(Ω) for

N < 2α∗(1 − b) + 2(1 + b), where α∗ =
2(1 − b) + 2

√
(1 − b)2 + b(1 + b)2

(1 + b)2
.

Note also that if we tend b → 0 in the above, then τ−, τ+ → 1 and α∗ → 4, then
2α∗(1 − b) + 2(1 + b) → 10. Hence u∗, v∗ ∈ L∞(Ω) for N < 10 for b close to 0, as
we expected.

2. Preliminary estimates

To prove the main result, we use the following stability inequality. For the proof
see lemma 1 in [5,6] and lemma 3 in [9].

Lemma 1. Let (u, v) denote a semistable solution of (P )λ,γ . Then

√
λγ

∫
Ω

√
f ′(u)f ′(v)φ2 �

∫
Ω

|∇φ|2, (5)

for all φ ∈ H1
0 (Ω).

We also need the following lemmas.

Lemma 2. Assume λ � γ. Then for any smooth solution to the system (P )λ,γ , we
have

v � u � λ

γ
v.

Proof. Take w = u − v. Then w = 0 on ∂Ω and

−Δw = λf(v) − γf(u) � λf(v) − λf(u) = −λ
f(u) − f(v)

u − v
w := −λa(x)w,

where a(x) = (f(u) − f(v))/(u − v) � 0 because f is increasing. Then by the max-
imum principle w � 0 in Ω. Now take w̃ = λ/γv − u. Then w̃ = 0 on ∂Ω and using
the above that u � v, we have

−Δw̃ = λf(u) − λf(v) � 0,

hence w̃ � 0 in Ω. �
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For the proof of the next lemma, we use the following standard regularity result,
for the proof see theorem 3 of [13] and theorems 4.1 and 4.3 of [14].

Theorem 2. Let u ∈ H1
0 (Ω) be a weak solution of

{
Δu + c(x)u = g(x) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(6)

with c, g ∈ Lp(Ω) for some p � 1.
Then there exists a positive constant C independent of u such that if p > N/2 then

‖u‖L∞(Ω) � C(‖u‖L1(Ω) + ‖g‖Lp(Ω)).

Lemma 3. Assume for every semistable solution (u, v) of (P )λ,γ with λ � γ, we
have

‖v‖L1(Ω) � C and ‖f ′(v)‖Lp(Ω) � C,

for some p > N/2, where C is a constant independent of (u, v). Then u∗, v∗ ∈
L∞(Ω).

Proof. We rewrite the first equation in (P )λ,γ as

Δu + λ
f(v) − f(0)

u
u = −λf(0).

Taking c(x) := λ(f(v(x)) − f(0))/(u(x)) then using lemma 2 and the convexity of
f , we have

0 � c(x) � λ
f(v(x)) − f(0)

v(x)
� λ∗f ′(v).

Thus by the assumption and theorem 2, we get u∗ ∈ L∞(Ω), and by lemma 2 we
also get v∗ ∈ L∞(Ω). �

3. Proof of the main result

Proof of Theorem 3. Fix an α > 1 such that Pf (α, τ−, τ+) < 0. Such an α exists
since we have Pf (1, τ−, τ+) = (2 − τ−)2 − 4 < 0 and Pf (+∞, τ−, τ+) = +∞ . Hence
we can take positive numbers τ1 ∈ (0, τ−) and τ2 ∈ (τ+, 2) such that

Pf (α, τ1, τ2) < 0. (7)

Now let (u, v) be a semistable solution of (P )λ,γ and take φ(x) =
(f̃(u)α)/(f ′(u)α/2) in the semistability inequality (5), where f̃(u) := f(u) − f(0).
Note that here for simplicity, we assumed that f ′(0) > 0, this does not cause any
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problem, as in what follows we need only the behaviour of f and f ′ at infinity. We
have

|∇φ(x)|2 = α2f̃(u)2α−2f ′(u)2−α

(
1 − f̃(u)f ′′(u)

2f ′(u)2

)2

|∇u|2,

and then taking

θ(t) := α2

∫ t

0

f̃(s)2α−2f ′(s)2−α

(
1 − f̃(s)f ′′(s)

2f ′(s)2

)2

ds,

we can write

|∇φ(x)|2 = θ′(u)|∇u|2 = ∇θ(u) · ∇u.

Thus, by the integration of part formula and the first equation of (P )λ,γ , we compute∫
Ω

|∇φ(x)|2dx =
∫

Ω

∇θ(u).∇udx =
∫

Ω

θ(u)(−Δu) = λ

∫
Ω

θ(u)f(v),

and using the above in the semistability inequality (5), we arrive at

√
λγ

∫
Ω

f ′(u)1/2−αf ′(v)1/2f̃(u)2α � λ

∫
Ω

θ(u)f(v). (8)

A first step in using (8) to obtain Lp estimates on u and v is to obtain an upper
bound for θ, which we now do. By the definitions of τ± there exists a T > 0 such
that τ1 � (f̃(t)f ′′(t))/(f ′(t)2) � τ2 for t > T implies that

0 < 1 − τ2

2
� 1 − f̃(t)f ′′(t)

2f ′(t)2
� 1 − τ1

2
, for t > T. (9)

Using (9), we get

θ(t) � θ(T ) + α2
(
1 − τ1

2

)2
∫ t

T

f̃(s)2α−2f ′(s)2−αds, for t > T. (10)

Take h(t) := f̃(t)2α−1f ′(t)1−α. Then we have

h′(t) = (2α − 1)f̃(t)2α−2f ′(t)2−α

(
1 − α − 1

2α − 1
f̃(s)f ′′(s)

f ′(s)2

)

� (2α − 1)
(

1 − α − 1
2α − 1

τ2

)
f̃(t)2α−2f ′(t)2−α, for t > T,

and integrating from T to t yields,

h(t) − h(T ) � (2α − 1)
(

1 − α − 1
2α − 1

τ2

)∫ t

T

f̃(s)2α−2f ′(s)2−αds, for t > T.
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Now using the above inequality in (10), we obtain

θ(t) � C + Af̃(t)2α−1f ′(t)1−α, where A :=
α2

(2α − 1)
(1 − τ1/2)2

(1 − α − 1/2α − 1τ2)

and C := θ(T ) − Ah(T ). (11)

Note that in the above we also used that 1 − α − 1/2α − 1τ2 > 0 which holds
since τ2 < 2. Now, the fact that the inequality f̃(t)f ′′(t)/f ′(t)2 � τ2 for t > T is
equivalent to d/dt(f ′(t)/f̃(t)τ2) � 0 for t > T , gives

f ′(t) � C1f̃(t)τ2 for t > T. (12)

From (12) we obtain, for t > T

f̃(t)2α−1f ′(t)1−α � f ′(t)(2α−1)/(τ2)−(α−1) → ∞, as t → ∞.

Now take an ε > 0. From the inequality above and (11), there exists Tε > T such
that

θ(t) � (A + ε)f̃(t)2α−1f ′(t)1−α, for t > Tε. (13)

Also, we can find T ′
ε > 0 such that

f(t) � (1 + ε)f̃(t), for t > T ′
ε . (14)

Without the loss of generality, we assume λ � γ, then from lemma 2, we get v �
u � λ/γv. Using this and taking T ′′

ε := max{Tε, T
′
ε} then from (13) and (14), we

obtain ∫
Ω

θ(u)f(v) =
∫

v�T ′′
ε

θ(u)f(v) +
∫

v>T ′′
ε

θ(u)f(v)

� Cε + (A + ε)(1 + ε)
∫

v>T ′′
ε

f̃(u)2α−1f ′(u)1−αf̃(v),

where

Cε = Cε(λ, γ) := θ

(
λ

γ
T ′′

ε

)
f(T ′′

ε )|Ω|.

Plugging the above inequality in (8), we obtain

√
λγ

∫
Ω

f ′(u)1/2−αf ′(v)1/2f̃(u)2α

� λ(Cε + (A + ε)(1 + ε)
∫

v�T ′′
ε

f̃(u)2α−1f ′(u)1−αf̃(v)), (15)

Letting

I = I(u, v) :=
∫

Ω

f ′(u)1/2−αf ′(v)1/2f̃(u)2α,
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and replacing the integral on the right-hand side of inequality (15) with integral
over the full region Ω, we get√

γ

λ
I � Cε + (A + ε)(1 + ε)

∫
Ω

f̃(u)2α−1f ′(u)1−αf̃(v), (16)

By symmetry, taking

J = J(u, v) :=
∫

Ω

f ′(v)1/2−αf ′(u)1/2f̃(v)2α,

we then also get√
λ

γ
J � C ′

ε + (A + ε)(1 + ε)
∫

Ω

f̃(v)2α−1f ′(v)1−αf̃(u), (17)

where the constant

C ′
ε = C ′

ε(λ, γ) := f

(
λ

γ
T ′′

ε

)
θ(T ′′

ε )|Ω|

is independent of u, v.
Now we write

f̃(u)2α−1f ′(u)1−αf̃(v) =
(
f ′(u)1/2−αf ′(v)1/2f̃(u)2α

)(2α−1)/(2α)

×
(
f ′(v)1/2−αf ′(u)1/2f̃(v)2α

)1/2α

.

Then, by the Hölder inequality, we obtain∫
Ω

f̃(u)2α−1f ′(u)1−αf̃(v) � I(2α−1)/(2α)J1/2α,

and using this in (16), we get√
γ

λ
I � Cε + (A + ε)(1 + ε)I(2α−1)/(2α)J1/2α. (18)

Similarly, from (17), we obtain√
λ

γ
J � C ′

ε + (A + ε)(1 + ε)J (2α−1)/(2α)I1/2α. (19)

Multiplying inequalities (18) and (19), we get

(1 − (A + ε)2(1 + ε)2)IJ � C ′′
ε

(
1 + I(2α−1)/(2α)J1/2α + J (2α−1)/(2α)I1/2α

)
, (20)

where

C ′′
ε = C ′′

ε (λ, γ) := max{CεC
′
ε, Cε(A + ε)(1 + ε), C ′

ε(A + ε)(1 + ε)}
is independent of u, v.
Now let (λ∗, γ∗) ∈ Υ, σ = λ∗/γ∗ and suppose that (u, v) denotes a minimal solu-
tion of (P )λ,γ on the ray Γσ := {(λ, σλ); λ∗/2 < λ < λ∗. Then by the definition of
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C ′′
ε (λ, γ), we see that it is uniformly bounded on the ray Γσ independent of λ. Then

from (20), we deduce that if both of I and J are unbounded then we must have
1 − (A + ε)2(1 + ε)2 � 0, and since ε > 0 was arbitrary, we get A � 1. But A � 1 is
exactly equivalent to Pf (α, τ1, τ2) � 0, which contradicts (7). Hence, either I or J
must be bounded with a bound independent of λ, implies that

f ′(u)1/2−αf̃(u)2αf ′(v)1/2 ∈ L1(Ω) or f ′(v)1/2−αf̃(v)2αf ′(u)1/2 ∈ L1(Ω), (21)

with a uniform bound in L1(Ω) independent of λ.
Now note that by our choice of α and the assumption that τ+ < 2, the function
y(t) := f ′(t)1/2−αf̃(t)2α is an increasing function for t large. Indeed, we have

y′(t) =
(

α − 1
2

)
f̃(t)2α−1f ′(t)3/2−α

(
4α

2α − 1
− f(t)f ′′(t)

f ′(t)2

)

�
(

α − 1
2

)
f̃(t)2α−1f ′(t)3/2−α (2 − τ+) > 0,

for t sufficiently large. Hence, from (21) and our assumption that u � v, we get

f ′(v)1−αf̃(v)2α ∈ L1(Ω), (22)

with a uniform bound in L1(Ω) independent of λ.
Now note that from the inequality (12) and α > 1, we also get

f ′(t)1−αf̃(t)2α � f̃(t)(2−τ2)α+τ2 , t > T,

and

f ′(t)1−αf̃(t)2α � f ′(t)((2−τ2)α+τ2)/(τ2), t > T.

Hence, from (22) together with the above two inequalities, we deduce that
f̃(v)(2−τ2)α+τ2 ∈ L1(Ω) and also f ′(v)((2−τ2)α+τ2)/(τ2) ∈ L1(Ω), again with a uni-
form bound in L1(Ω) independent of λ. Now with the help of lemma 3 and the
standard elliptic regularity, we get u∗, v∗ ∈ L∞(Ω) for

N < max
{

2α(2 − τ2) + 2τ2,
2α(2 − τ2) + 2τ2

τ2

}
=

2α(2 − τ2) + 2τ2

τ2
max{1, τ2}.

(23)

And since we can choose τ2 arbitrary close to τ+ and α near to the largest root of
the polynomial Pf , then (23) completes the proof of the first part.
To see the second part, first note that we always have (since α∗ > 1)

N(f) > 2α∗(2 − τ+) + 2τ+ > 2(2 − τ+) + 2τ+ = 4.

Also, if τ− = τ+ := τ then

α∗ =
2 + 2

√
τ

2 − τ
.

Hence, N(f) = 2 + 4(1 +
√

τ)/(τ) � 2 + 8( 4
√

τ)/(τ). Thus, using the fact that τ � 1
(since we always have τ− � 1 by the assumptions on f), we get N(f) � 10, and the
proof is complete. �
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3 X. Cabré. Regularity of minimizers of semilinear elliptic problems up to dimension 4. Comm.
Pure Appl. Math. 63 (2010), 1362–1380.

4 C. Cowan. Regularity of the extremal solutions in a Gelfand systems problem. Adv.
Nonlinear Stud. 11 (2011), 695–700.

5 C. Cowan. Regularity of stable solutions of a Lane-Emden type system. Methods Appl.
Anal. 22(3) (2015), 301–311.

6 C. Cowan and N. Ghoussoub. Regularity of semi-stable solutions to fourth order nonlinear
eigenvalue problems on general domains, Calc. Var. Partial Differ. Equ., 49(1–2) (2014),
291–305.

7 J. Dávila and O. Goubet. Partial regularity for a Liouville system. Dscrete Contin. Dyn.
Syst. 34(6) (2014), 2495–2503.

8 L. Dupaigne. Stable solutions of elliptic partial differential equations. Chapman &
Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 2011.

9 L. Dupaigne, A. Farina and B. Sirakov. Regularity of the extremal solutions for the Liouville
system, Geometric Partial Differential Equations proceedings CRM Series, vol. 15, Ed.
Norm., Pisa, 2013, pp. 139–144.

10 H. Hajlaoui. On the regularity and partial regularity of extremal solutions of a Lane-Emden
system, https://arxiv.org/pdf/1611.05488.pdf.

11 M. Montenegro. Minimal solutions for a class of elliptic systems. Bull. London Math. Soc.
37 (2005), 405–416.

12 G. Nedev. Regularity of the extremal solution of semilinear elliptic equations. C. R. Acad.
Sci. Paris S‘er. I Math. 330 (2000), 997–1002.

13 J. Serrin. Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964),
247–302.

14 N. S. Trudinger. Linear elliptic operators with measurable coefficients. Ann. Scuola Norm.
Sup. Pisa 27(3) (1973), 265–308.

15 S. Villegas. Boundedness of extremal solutions in dimension 4. Adv. Math. 235 (2013),
126–133.

16 D. Ye and F. Zhou. Boundedness of the extremal solution for semilinear elliptic problems.
Commun. Contemp. Math. 4 (2002), 547–558.

https://doi.org/10.1017/prm.2018.101 Published online by Cambridge University Press

https://arxiv.org/pdf/1611.05488.pdf
https://doi.org/10.1017/prm.2018.101

	1 Introduction
	2 Preliminary estimates
	3 Proof of the main result
	References

