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Abstract

In this paper, we provide an overview of research on multiword expressions (MWEs), from a natural lan-
guage processing perspective. We examine methods developed for modelling MWEs that capture some of
their linguistic properties, discussing their use for MWE discovery and for idiomaticity detection. We con-
centrate on their collocational and contextual preferences, along with their fixedness in terms of canonical
forms and their lack of word-for-word translatatibility. We also discuss a sample of the MWE resources
that have been used in intrinsic evaluation setups for these methods.
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1. Introduction

Multiword expressions (MWEs) have already been described as a pain in the neck (Sag et al. 2002)
and hard going (Rayson et al. 2010) for natural language processing (NLP), but also considered
to be much ado about nothing (de Marneffe, Padé and Manning 2009) and perhaps plain sailing
(Rayson et al. 2010) through the years. Despite any controversies, with a growing community and
various events dedicated to them, interest in MWEs shows no indication of slowing down, as they
can be viewed as providing not only challenges but also opportunities for designing new solutions
for more accurate language processing (Constant et al. 2017).

After almost two decades and thousands of citations since the publication of the Pain in the
Neck paper by Sag et al. (2002) what is it that makes them still an object of interest? First of all,
MWESs come in all shapes, sizes and forms, from a (long) idiom like keep your breath to cool your
porridge (as keeping to your own affairs) to a (short) collocation like fish and chips, and models
designed for one category of MWE may not be adequate to other categories. Secondly, they may
also display various degrees of idiosyncrasy, including lexical, syntactic, semantic and statistical
(Baldwin and Kim 2010), which may interact in complex ways. For instance, a dark horse, in addi-
tion to describing the colouring of an animal, may also be used to refer to an unknown candidate
who unexpectedly succeeds and this second meaning cannot be fully inferred from the component
words. As a consequence, their accurate detection and understanding may require knowledge
that goes beyond the individual words and how they can be combined together (Fillmore 1979).
However, for NLP tasks and applications that involve some level of semantic interpretation, ignor-
ing MWEs may result in information being lost or incorrectly processed (e.g., to kick the bucket
meaning to die being translated literally).

In this paper, we review some of the methods that have been adopted for computationally
modelling MWEs, concentrating on their discovery from corpora. The paper is structured as
follows: we start with a brief description of MWEs in Section 2. Methods for MWE discov-
ery are reviewed in Section 3, with focus on discovering information from their collocational
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and contextual profiles (Sections 4 and 5), as well as from the degree of rigidity of form and
translatability (Sections 6 and 7). We also discuss some of the MWE resources available (Section
8). We finish with some conclusions and discussion of future possibilities.

2. What s in a word/multiword?

MWE:s are all around. According to estimates, about four MWEs are produced per minute of
discourse (Glucksberg 1989). They feature prominently in the mental lexicon of native speakers
(Jackendoff 1997) in all languages and domains, in informal and in technical contexts (Biber ef al.
1999). They can be found in songs (Joshua Tree by U2, Knocking on Heaven’s Door by Guns “N”
Roses), in books (Much ado about nothing, All is well that ends well by Shakespeare), in newspaper
headlines (Spilling the beans about coffee’s true cost?) and in scientific texts (dentate gyrus, long-
term memory, word sense disambiguation). Moreover, these expressions have also been found to
have faster processing times compared to non-MWEs (compositional novel sequences) (Cacciari
and Tabossi 1988; Arnon and Snider 2010; Siyanova-Chanturia 2013). But what are they and how
can we recognise them?

Different definitions have been proposed for them that describe them as recurrent or typical
combinations of words that are formulaic (Wray 2002) or that need to be treated as a unit at
some level of description (Calzolari et al. 2002; Sag et al. 2002). In fact, there may not even be a
unified phenomenon but instead a set of features that interact in non-trivial ways and that fall in
a continuum from idiomatic to compositional combinations (Moon 1998).

As some of these definitions refer to words and the crossing of word boundaries (Sag et al.
2002), it is also important to adopt a clear definition of what a word is, either in terms of mean-
ing, syntax, or whitespaces (Church 2013; Ramisch 2015). For example, the PARSEME guidelines
(Ramisch et al. 2018) define a word as a “linguistically (notably semantically) motivated unit”® and
MWE:s as containing at least two words even if they are represented as a single token (e.g., snow-
man). Here for the sake of simplicity, we assume that words are separated by whitespaces in texts.
Adopting clear and precise definitions for these target concepts provides the basis for estimating
their occurrence in human language and consequently for determining adequate vocabulary sizes,
since the performance of many tasks seems to be linked to vocabulary size (Church 2013). They
are also important for designing clear evaluation setups for comparing different MWE processing
methods. Discussions of alternative definitions for these and related concepts (e.g., phraseologi-
cal units, phrasal lexemes and collocations) along with the implications of the combinations they
include can be found in (Moon 1998; Seretan 2011; Ramisch 2015) and (Constant et al. 2017).

Some of the core properties that have been used to describe MWEs include (Calzolari et al.
2002):

« High degree of lexicalisation, with some component words not being used in isolation (e.g.,
ad from ad hoc and sandboy from happy as a sandboy),

o Breach of general syntactic rules with reduced syntactic flexibility and limited variation
(e.g., by and large/*short/*largest). Although it may be possible to find a canonical form for
an MWE, it is not always easy to determine which elements form its obligatory core parts
and which elements can be varied (if any), as they may allow discontiguity and some degree
of modification (e.g., throw NP to the hungry lions/wolves as sacrificing someone),

2From the Guardian https://www.theguardian.com/xero-digital-connectivity/2018/dec/11/spilling-
the-beans-about-coffees-true-cost

Phttps://parsemefr.1lif .univ-mrs.fr/parseme-st-guidelines/1.1/?page=010_Definitions_and_
scope/010_Words_and_tokens

€Although simple to implement, this definition will not work for languages whose writing system does not use spaces
like Chinese and Japanese, or for agglutinative languages in which a single word can in fact be an MWE (e.g., single-token
compounds in Germanic languages) (Ramisch and Villavicencio 2018).
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o Idiomaticity or reduced semantic compositionality, possibly involving figuration like
metaphors, with the meaning of some expressions not being entirely predictable from their
component words.4 MWEs fall into a continuum of idiomaticity, from compositional expres-
sions like olive 0il (meaning an oil made of olive) to idiomatic expressions like to trip the light
fantastic (meaning to dance),

« High degree of conventionality and statistical markedness reflecting a preference for
some specific forms, or collocations, over plausible but low-frequency variations, or anti-
collocations (Pearce 2001), (e.g., strong tea and fish and chips vs. the less common powerful
tea and chips and fish).

Each of these characteristics may occur in varying degrees in a given expression. One clas-
sification of MWEs that takes into account how much variability they display was proposed
by Sag et al. (2002). In this classification, fixed expressions do not display any morphological
inflection or lexical variation (e.g., in addition/*additions and ad infinitum). Semi-fixed expres-
sions have fixed word order but display some morphological inflection (coffee machine/machines).
Syntactically flexible expressions exhibit a large range of morphological and syntactic variation
(rock the political/proverbial/family/Olympic boat).

To sum up, MWEs can be characterised as possibly discontiguous word combinations that
display lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasies (Baldwin and Kim
2010). These properties can be distributed in different ways in MWE categories such as:

« Proper names: Manchester United,

« Collocations: emotional baggage, heavy rain,

» Compounds: pinch of salt, friendly fire,

o Idioms: keep NP in NP’ toes, throw NP to the lions/wolves,
o Support verbs: wind blows, make a decision, go crazy,

« Prepositional verbs: look for, talk NP into,

o Verb-particle constructions: take off, clear up,

o Lexical bundles: I don’t know whether.

More detailed inventories of categories are discussed by Sag et al. (2002), Constant et al. (2017)
and Ramisch et al. (2018). For instance, the PARSEME annotation guidelines (Ramisch et al. 2018)
focus on verbal MWE:s in 20 languages including Bulgarian, French, Portuguese and Turkish.

3. Can we detect them automatically?

There has been considerable work on describing MWEs and cataloguing their properties, and
some popular resources are discussed in Section 8. As their manual construction is time-
consuming and requires expert knowledge, much effort has been devoted to automatically
extracting MWEs from corpora. This task, known as MWE discovery®, aims to determine if a
given sequence of words forms a genuine MWE or if it can be treated as standard combina-
tion of words (e.g., small boy). For MWE discovery, the hope is that some form of salience is
present such that MWEs stand out and can be automatically detected. In this context, methods
based on statistical markedness have been particularly popular since they rely on association and

dThis property is also related to semantic decomposability (Nunberg, Sag and Wasow 1994): by considering non-standard
meanings for the components of an expression, its meaning can be compositionally constructed (e.g., spill beans as reveal
secrets with spill as reveal and beans as secrets.

€A related task, known as MWE identification, focuses on finding (and labelling) occurrences of a particular MWE in a text,

usually with the help of previously compiled MWE resources (Constant et al. 2017). In this paper, we concentrate on the task
of discovery, in particular in methods for finding MWEs and determining how idiomatic they can be.
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entropic measures calculated from corpus counts (Manning and Schiitze 1999; Kilgarriff et al.
2004a; Pecina 2010) and are inexpensive and independent of language and MWE category. These
methods have been used to detect preferences of various types, including:

o Collocational preferences. Given that the “collocations of a given word are statements of
the habitual or customary places of that word” (Firth 1957), these methods search for word
sequences that are particularly recurrent in corpora and can form MWZEs.

 Contextual preference. Assuming the distributional hypothesis that implies that you shall
know a (multi)word by the company it keeps (Firth 1957), these methods have been used to
detect discrepancies between the meaning of an MWE and those of its parts, as an indication
of idiomaticity.

 Canonical form preferences. As MWEs may display different types of inflexibility, evidence
of marked preferences for very few of the expected morphological, lexical and syntactic
variants can be used as indications of an MWE.

o Multilingual preferences. These methods are often based on detecting unexpected asymme-
tries in translations.

In the next sections, we present a general overview of these methods.

4. Collocational preferences

Assuming that words that like to co-occur more frequently than by chance are indicative of MWEs
(Manning and Schiitze 1999; Pecina and Schlesinger 2006), this statistical markedness can be
detected by measures of association strength. In a typical scenario, a list of candidate MWEs is
generated, for example, from n-grams (Manning and Schiitze 1999) or from relevant syntactic
patterns for the target MWE categories (Justeson and Katz 1995). The list of candidates is then
ranked according to the score of association strength, and those with stronger associations are
expected to be genuine MWEs.

Formally, we consider a candidate MWE as a generic n-gram with » word tokens w; through
Wwy. Its frequency in a corpus C of size N and lexicon L is denoted by f(w; ... w,). From the
corpus frequencies, it is possible to estimate probabilities using maximum likelihood estimation,
for instance, the unigram probability (p(w1)) and the n-gram probability (p(w; . .. wy)):

_ flwm) ~flwr o)
pwi)==—1— > plwr...wp) = e )
or the probability that the word w; occurs in the left of a bigram

Jflwi %)

(i) =122

P FOr #)
or even the probability that two words appear separated by a certain number of words

_ flwi x o wy)
PO = )

Here * represents the sum over all possible words in L in that position.

A central question of the collocation problem is whether the observed frequency of a given
combination of words is higher than what would be expected from pure chance. Of course lan-
guage is far from a random distribution of words, yet a notable discrepancy certainly represents
something special. To assess that, we have to measure the association strength between words,
and this demands the formalisation of a clear expression for the predicted frequency in the case
of pure chance, a baseline sometimes referred to as the null hypothesis. The usual choice is to

https://doi.org/10.1017/51351324919000494 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324919000494

Natural Language Engineering 719

consider statistical independence, or that the frequency of a sequence corresponds to the product
of the unigram probabilities’ of its members scaled by the size of the corpus,

Ho: fp(wr ... wy) =Np(wy) ... p(wy)

Therefore, the association measure has to be a function that gauges some kind of distance between
the observed data and the prediction. This can be formulated both in terms of frequencies

Awy .. .wy)=D[f(wr...wn), fa(wr ... wy)]

or in terms of probabilities

Awy...wy)=D'[pwy ... wy), p(wy) ... p(wy)]

However, we must have in mind that the true probabilities are not known, only the maximum
likelihood estimates that we can obtain from a finite sample - in this case a corpus. This fact raises
an important issue of statistical significance of the association itself in the case of low frequen-
cies. In order to circumvent this problem, there are many association measures that are deduced
from known statistical tests. This results in more generalised versions of association measures that
not only depend on unigram frequencies but also on other possible combinations, such as those
involving n-grams of lower orders than the target. In the next sections, we discuss some of these
measures.

4.1 Pointwise mutual information

By far the most widely used association measure is the pointwise mutual information (PMI)
(Church and Hanks 1990) and its variations. PMI is derived for bigrams directly from the
mutual information between two random variables, using the log-ratio between the observed
co-occurrences of the sequence and of the individual words.

plwiwz) 1o f(wiws)
pwi 2 )p(ews) 2 fy(wiwn)

PMI values can be positive, denoting affinity between the words, 0 denoting independence
between them, or negative, denoting lack of affinity. Moreover, the closer the counts for the
sequence are to the word counts, the stronger the association between the words and the more
exclusively they like to co-occur.

One well-known issue with PMI is its bias towards infrequent events. Its upper bound, corre-
sponding to the case of perfect association (f(w; ) =f(* wj) = f(w;iwj)), is — log ( f(wiw;)/N).
Therefore, a moderately associated low-frequency bigram could, in principle, have a better score
than a highly associated high-frequency bigram (Bouma 2009). To correct this, alternative sta-
tistical measures based on suitable normalisation of PMI have been proposed (Bouma 2009).
One popular variant is the lexicographer’s mutual information (LMI), or salience score (Kilgarriff
et al. 2004b), which adjusts a PMI value by multiplying it by the frequency, reintroducing the
importance of meaningful recurrence.

So far we have discussed association between two words. One option for handling larger can-
didates is the generalisation of the mutual information to account for many variables. However,
as this generalisation is not unique (Van de Cruys 2011), various proposals have been made for
calculating the equivalent of PMI for n-grams larger than two words. One of these is the specific
total correlation (STC), which is the direct extension of the formula above for w; ... w, and it is

PMI =log

fRigorously, the quantities of interest should be marginal probabilities such as p( s w; % ) for words occurring in the inner
part of the MWE candidate, and p(w; * ) and p(* w,) for words occurring at the extremes, where the symbol * represents
any word in the corpus. In a very large corpus, however, it is expected that the marginal probabilities are not significantly
different from the unigram probabilities.
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Table 1. Common association measures, including, in the first three lines, PMI for
bigrams and its variants for trigrams

Association measures

Name Formula

1. Pointwise mutual information (PMI)  log WI‘;V)lpM(/iWZ =log f;((wwll"vvfz)

2. Specific total correlation (STC) 0g s ;:z}«xif)iz)(**wg log 7 ”I;}l"v"'fz";f;)
3. Sbecﬁ‘ic informavtiovn‘ interactiovn (sh) log __plunwa ol s ol )

p(wisx)plxwa*)p(xxws3)p(wiwows)

4. Student’s t-test-based association (t) Wl falw1...wa)

f(W1 Wn)
5. Dice Tt i +1+f(Wn)
6. x2-based association Z %
ve(w,wi1)
ue(wz,w2)

based on the so-called total correlation proposed by Watanabe (1960). Another alternative gener-
alisation is the specific interaction information (SII) (Van de Cruys 2011), which is based on the
interaction information measure proposed by McGill (1954). One important difference between
STC and SII is that the former is zero only if all words are independent while the latter is zero if at
least one is not associated with the others. Table 1 displays these two measures for trigrams.
Another alternative for n-grams is to maintain the original PMI formulation with two vari-
ables (w; and w;) but to allow each variable to contain nested expressions as one word (e.g.,
wi=first_class and wy=lounge, and w; =recurrent and wy=neural_network) (Seretan 2011).

4.2 Other measures

In addition to PMI, n-gram frequency has also been used for MWE discovery. However, as it does
not distinguish meaningful occurrences from chance occurrence of frequent words, it has been
used in conjunction with other measures like PMI, generating LML

Two other popular measures are the Student’s t-test based measure and the Dice coefficient
(Table 1), which in common with PMI, also take into consideration the expected counts to detect
meaningful co-occurrences. For instance, Student’s t-test is based on hypothesis testing, assuming
that if the words are independent, their observed and expected counts are identical. The Dice
coefficient, also known as normalised expectation (Pecina and Schlesinger 2006), differs from
both of these measures by having an upperbound of 1 for perfect correlation.

There are also measures based on contingency tables that record not only the marginal fre-
quencies of the words (w;) in an n-gram, but also the probability of their “non-occurrence” (w;
- all words but w;). These measures, which include Pearson’s x2 (Table 1) and the most robust
log-likelihood ratio (Dunning 1993), compare the co-occurrence of two words with all other
combinations in which they occur.

Over the years, many other association measures have been defined for MWE discovery, and
Pecina and Schlesinger (2006) compiled as many as 82 measures for bigram collocation discovery
found in the literature. They show that these measures capture different aspects of MWEs, and
as a consequence, when combined together, they can generate better results in terms of MWE
discovery than if used in isolation. In fact, in comparative evaluations, no single measure has
been found to be the best for extracting MWEs of any category or in any language, confirming
that an empirical exploration of these measures is needed for a particular category and language
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combination (Pearce 2002; Evert and Krenn 2005; Villavicencio et al. 2007). Likewise, as these
measures can be used to produce ranked lists of MWE candidates, as discussed before, defining a
threshold that separates genuine MWEs from non-MWEs, also seems to depend on the particular
target MWESs, and on whether the task benefits more from recovering more MWE:s at the expense
of allowing more noise, or not. Evaluation of how closely a given measure captures the MWEs of
a particular domain and language is usually done by means of gold standard resources or manual
validation by expert judges.

5. Contextual preferences

When deriving the meaning of a combination of words, one widely adopted strategy is to build it
from the meanings of the parts, following the principle of compositionality.8 This principle allows
a meaning to be assigned to larger units and sentences, even if they contain unseen combina-
tions of words. However, it is not adequate for handling idiomatic MWEs since it may lead to an
unrelated meaning being derived (e.g., for trip the light fantastic). Considerable effort has been
employed in methods for detecting idiomaticity, both at the level of MWE types, discovering the
degree of idiomaticity that an MWE usually displays, and at the level of MWE tokens, deciding for
that the meaning of access road can, in general, be inferred from its parts (a road for giving access
to a place), while the second task would be to decide if in a sentence like the exam was a piece
of cake the occurrence of piece of cake should be interpreted literally as a slice of a baked good,
or idiomatically as something easy. For both tasks, information about the contexts in which an
MWE occurs has been found to be a good indicator of idiomaticity and we now discuss some of
the measures that have been proposed for these tasks.

5.1 Type idiomaticity

If a word can be characterised by “the company it keeps” (Firth 1957) and given that words that
occur in similar contexts have similar meanings (Turney and Pantel 2010), we can approximate
the meaning of an MWE by aggregating its affinities with its contexts. We can also find words
and MWESs with similar meanings measuring how similar their affinities are. These affinities can
be determined from distributional semantic models (or vector space models) which have been
used to represent word meaning (and possibly subword and phrase meaning) as numerical mul-
tidimensional vectors in a putative semantic space (Lin 1998; Mikolov et al. 2013; Pennington,
Socher and Manning 2014). These models are capable of reaching high levels of agreement
with human judgements about word similarity (Baroni, Dinu and Kruszewski 2014; Camacho-
Collados, Pilehvar and Navigli 2015; Lapesa and Evert 2017). They vary according to factors like
the following":

« Type of model: count-based and predictive models (Baroni et al. 2014). Count-based models
generate vectors derived from co-occurrence counts between words and their contexts (Lin
1998; Pennington et al. 2014). Predictive models represent words as real-valued vectors pro-
jected onto low-dimensional space whose distances are adjusted as part of learning to predict
words from contexts (or vice-versa) (Mikolov et al. 2013; Baroni et al. 2014).

» Type of pre-processing applied to the input corpus: such as lemmatisation and part-of-
speech tagging. While state-of-the-art models for English have been constructed without

8 Attributed to Frege (1892 — 1960).
h A detailed discussion of these models can be found in (Clark 2015).
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any pre-processing, for morphologically richer languages like French and Portuguese pre-
processing the corpus can lead to better models (Cordeiro et al. 2019).

o Type of context: in bag-of-words models (Mikolov et al. 2013), the contexts of a target word
are represented as an unordered set of words that does not differentiate between their posi-
tions or relations to the target. In models based on syntactic dependencies (Lin 1998; Levy
and Goldberg 2014), contexts are further distinguished in terms of their syntactic relations to
the target (e.g., dog as subject vs. as object of the target).

o Window size: It defines the number of words around the target that are included as contexts
(Lapesa and Evert 2014). These windows can be symmetric or asymmetric in relation to the
target, and may incorporate a decay factor for prioritising words that are closer to the target.

o Number of vector dimensions used for representing words. These range from sparse vectors

with as many dimensions as the number of words in the vocabulary to denser and more com-

pact representations. Reductions in the number of dimensions can be obtained using explicit
context filtering, such as using only the #n more frequent or salient contexts (Padré et al.

2014; Salehi, Cook and Baldwin 2014), or adopting dimensionality reduction techniques like

singular value decomposition.

Measures of association strength between a target word and its contexts. These measures

help to detect more salient co-occurrences that are not just due to chance, and some of them

were discussed in the previous section such as x?2, t-score, PMI and Positive PMI (PPMI)

(Curran and Moens 2002; Padr6 et al. 2014).

Measures of similarity, distance or divergence between word vectors. These measures have

been used to find word vectors that display similar affinities with their contexts, like cosine

(explained below), Manhattan distance, Kullback-Leibler divergence, Jensen-Shannon, Dice

and Jaccard.

L]

L]

A major advantage of vector space models is the possibility of using algebra to model complex
interactions between words. Similarity or relatedness can be modelled as a comparison between
word vectors, for instance, as the normalised inner product (the cosine similarity):

siteos(W1, w2) = V(wy) - V(w2)

where ¥(w) is the normalised' word vector of the word w. Compositional meaning also can be
modelled as a mathematical function that composes the vectors of the words in an MWE, but this
time not to compare but to add information. The simplest of all is the additive model (Mitchell and
Lapata 2008) but there are alternative possibilities including other operations (Mitchell and Lapata
2010; Reddy, McCarthy and Manandhar 2011; Mikolov et al. 2013; Salehi, Cook and Baldwin
2015). For the additive model, the vector for a two-word compound (vg(w1, w2)) can be defined as

Vﬂ(WI’ w2) = B V(Wheaq) + (1 — B) V(Wyi04),

where Wpeuq (01 wy,,4) indicates the semantic head (or modifier) of the compound and g € [0, 1]
is an adjustable parameter (usually set to 1/2) that might control the relative importance of the
head to the compound semantics (Reddy et al. 2011). For example, in flea market, it is the head
(market) that has a larger contribution to the overall meaning, and  may be used to reflect this.

The degree of compositionality can be calculated between the corpus-derived vector of the
MWE, v(w;w,) (e.g., for rocket_science),) and the compositionally constructed vector containing
the combination of the component words, vg(w1, w2) (e.g., rocket and science):

comp(wiwz) = cos (v(w1w2), vg(wi, w2)).

$(w) =v(w)/||v(w)|| and || - || is the Euclidean norm.
JThis is usually done during pre-processing by connecting the words of the MWE using underscores so it corresponds to a
unit (for instance, rocket science becomes rocket_science).
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MWE:s that presented low values of comp are candidates to be idiomatic MWEs (Cordeiro et al.
2019).

This score can be used both to validate a given candidate MWE and also to assign a degree of
idiomaticity to it, since MWEs fall on a continuum of idiomaticity (McCarthy, Keller and Carroll
2003; Reddy et al. 2011; Salehi, Cook and Baldwin 2018). The success of this score hangs on how
linguistically accurate the compositional models and similarity measures used are. The good news
is that recent work has demonstrated that additive compositional models associated with cosine
similarity are suitable for detecting idiomaticity of noun compounds (Cordeiro et al. 2019) and
have outperformed other variants in similar tasks (Reddy et al. 2011; Salehi et al. 2015), including
in predicting intra-compound semantics (Hartung et al. 2017).

Alternative measures for approximating idiomaticity have included comparing the distribu-
tional neighbourhood of an MWE with those of the component words, that is, the words that are
closest to each of them in vector space. Assuming that compositional MWEs share more distri-
butional neighbours with their component words, the overlap between their neighbours has been
used as an indication of the degree of compositionality (McCarthy et al. 2003). Additionally, the
rank position of these neighbours can also be considered.

Semantic information about MWEs and their possible senses can also be obtained from
resources like dictionaries and thesauri, including synonyms, antonyms, definitions and examples.
Some resources, like WordNet (Fellbaum 1998), also include similarity measures like Wu-Palmer
(1994) and Leacock-Chodorow (1998). However, their coverage for MWEs may be limited, and
they may not be available for a given domain or language, restricting their applicability for
idiomaticity detection.

5.2 Token idiomaticity

So far we discussed methods for discovering MWEs and deciding how idiomatic they can be, and
these could be useful for building resources. However, when faced with a particular sequence of
words, a speaker (as well as an automatic system) must decide whether in that sentence they can
be treated as simple isolated words or if they are components of a unit, an MWE. Sometimes, the
syntactic context may help to disambiguate them, as in the sentence Does the bus stop here? where
bus stop could be flagged as a possible MWE occurrence except that stop is a verb and the MWE bus
stop is formed by two nouns. However, there are cases where both idiomatic and literal readings
are possible with exactly the same syntactic configuration. For instance, for kick the bucket more
information is needed to disambiguate if a kicking event took place with a literal interpretation
of the words, or a dying event with idiomatic interpretation. Although for some MWEs one of
the meanings will be predominant, ambiguity is not the exception: an analysis of idiomatic verb-
noun combinations (VNCs) revealed that many of them were also used with their literal senses in
corpus (Fazly, Cook and Stevenson 2009). Therefore, for a given MWE occurrence in a sentence,
we need to determine if it is used in a literal or an idiomatic meaning.

Token idiomaticity detection can be seen as a word sense disambiguation task, where informa-
tion from the surrounding words in the sentential context can be used to help disambiguate the
MWE sense. Returning to the case of kick the bucket, although both the literal and the idiomatic
senses are possible, sentences in which the idiomatic sense occurs will include words that may not
be compatible with the literal sense (e.g., illnesses, hospitals and funerals). In previous work on
token idiomaticity detection, this sentential context has been modelled in terms of lexical chains,
assuming that a literal sense displays strong cohesive ties with the context, which are absent for
the idiomatic sense (Sporleder and Li 2009).

To solve this ambiguity, something akin to compositionality prediction, described in the pre-
vious section, has to take place. But this time, instead of comparing the compositional vector of
the MWE formed by the combination of the parts with the corpus-generated vector for the MWE,
we must compare the vectors for the literal (e.g., hitting the bucket) and idiomatic (e.g., dying)
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senses with the vectors containing a representation of the sentential context in which the MWE
occurs. In this case, the sentential context can be represented using sentence-level distributional
models such as Skip-Thought Vectors (Kiros et al. 2015) as done by Salton, Ross and Kelleher
2016, or it can be compositionally constructed from the vector representations of the words in the
sentence using an operation like vector addition, as done by King and Cook (2018). In fact, for
token idiomaticity detection in VNC, King and Cook compared the use of different distributional
models for representing the target sentences in which the VNCs occur, from word-level (Mikolov
et al. 2013) to sentence-level models (Kiros et al. 2015). They found that representing a senten-
tial context using the additive model obtained the best results. Alternatives to the additive model
include concatenating word vectors of specific parts of the sentential context (Taslimipoor et al.
2017).

6. Canonical form preferences

Methods for MWE discovery have also used information about the fixedness displayed by some
MWEs in comparison with ordinary word combinations (Sag et al. 2002).X Characteristics like
limited lexical and syntactic flexibility (Sag et al. 2002) have been used as indicators in tasks such as
MWE discovery and idiomaticity detection. For instance, the expression to make ends meet can-
not undergo changes in determiners (*to make some/these/many ends meet), pronominalisation
(*make them meet), modification (*to make month ends meet), and so on.

One common strategy to detect fixedness is to generate all variants that would be expected for a
given combination of words and verify which of them occurs in a very large corpus. The assump-
tion is that absence (or very limited presence) of expected variants is an indication of idiomaticity
(Ramisch et al. 2008a; Fazly et al. 2009). These variants can be of two types: lexical and syntactic
variants.

Lexical variants can be generated by lexical substitution of the component words using syn-
onyms from resources like WordNet (Pearce 2001; Ramisch et al. 2008a) and inventories of
semantic classes (Villavicencio 2005) or using similar words from distributional semantic mod-
els. For instance, for nut case variants would include hazelnut case, cashew case, nut briefcase and
nut luggage. A possible measure of lexical fixedness (LF) proposed by (Fazly et al. 2009) compares
how the PMI of a target MWE deviates from the average PMI of possible variants of this target

PMI(w;...w;,)) — PMI

opMI

LF(w;..wy) =

where PMI is the average on the variants and opyy is the standard deviation. LF was defined
in the context of detecting idiomaticity in VNCs and the variants were obtained from a certain
number of close synonyms of the verb and the noun, but it can be adapted to larger n-grams using
generalisations of PMI as discussed in Section 4. The reasoning behind using PMI is to avoid the
possible confound caused by high-frequency lexical substitutes.

Syntactic variants can be generated according to regular syntactic rules that apply to a given
MWE category, such as passivisation, pluralisation, change of determiners or adverbial modifica-
tion for verbal MWE:s (e.g., ?the bucket was kicked/?kick a bucket/?kick the buckets). Due to the fact
that syntactic variants may present different numbers of words, it is no longer suitable to compare
PMIs. Instead, (Fazly et al. 2009) defined a syntactic fixedness (SF) measure based on the prob-
ability of occurrence in the corpus of a given syntactic pattern (pt), among a set of m syntactic

KFor expert annotation, the PARSEME annotation guidelines use inflexibility for various MWE detection tests. For instance,
if a regular morphological change that would normally be allowed by general grammar rules lead to ungrammaticality or to an
unexpected change in meaning, this is an indication of a (morphologically inflexible) MWE (from the PARSEME annotation
guidelines (Ramisch et al. 2018)).
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patterns used to generate the syntactic variants. The proposed fixedness measure is the Kullback-
Leibler divergence between the probability distribution for the typical syntactic behaviour p(pt)
and the distribution of occurrences of syntactic patterns given that the target n-gram is involved

p(ptiwr..wy).

p(ptiwi..wy)

SEwi..wn) = Y p(ptiwy...w,) log 20D

pt=1
Large values of SF indicate that the target n-gram presents syntactic pattern frequencies that are
very different from the typical frequency distribution expected for that kind of n-gram and this is
interpreted as higher degree of SF (Fazly et al. 2009). If the syntactic patterns are approximately

uniformly distributed, SF is related to the Entropy of Permutation and Insertion (EPI) proposed
by (Ramisch et al. 2008b),

EPI(wy...w) = — Y p(ptiwi...wy) log (p(pt|wy...wy))
pt=0

Nonetheless, EPI can be used in more general contexts. Low values of EPI indicate some degree of
fixedness.

Similarly, for some types of MWEs, fixedness can be captured by entropic measures of word
order as the Permutation Entropy (Zhang et al. 2006) defined as

PE(W1..wn) =— Y _ p(wi...wy) log (pr(w1...wn))
k

where py(wi...wy) is the probability of occurrence in the corpus of the k' permutation of the
n-gram wyws...w,,. PE is also indirectly related to the association strength of the components of a
candidate, since if there is no special association between words, the probability of them appearing
in multiple orders should be similar, leading to high PE values (Villavicencio et al. 2007). One
of the advantages of using PE as an association measure is that it can be applied to MWEs of
arbitrarily large sizes, without the need to be redefined.

If an MWE candidate passes a criterion for fixedness (a rigid adherence to a canonical form)
based on the measures described in this section, it is very likely an idiomatic MWE. Therefore,
fixedness is an informative score for MWE discovery.

Fixedness has also been incorporated in methods for detecting token idiomaticity, such as those
discussed in Section 5.2. The assumption is that when the idiomatic sense is used it tends to occur
in the canonical form of the MWE, while the literal sense is less rigid and may occur in more pat-
terns (Fazly et al. 2009). Fazly et al. (2009) propose a method based on canonical forms learned
automatically from corpora, where distributional vectors for canonical and non-canonical forms
are learned and then an MWE token is classified as idiomatic if it is closer to the canonical form
vectors. Methods that incorporate both information about the canonical form of an MWE and
distributional information about its sentential contexts (Section 5.2) have found them to be com-
plementary and outperform models that use only one of them (Fazly et al. 2009; King and Cook
2018).

7. Multilingual preferences

Idiomatic MWEs resist word-for-word translation, often generating unnatural, nonsensical or
incorrect translations (e.g., o fim da picada in Portuguese, lit. the end of the bridle path meaning
something unacceptable). When parallel resources are available, this lack of direct translatability
can be measured using information such as asymmetries in word alignments between source and
target languages (Melamed 1997; Caseli et al. 2010; Attia et al. 2010; Tsvetkov and Wintner 2012).
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The degree of idiomaticity of an MWE has also been calculated from the overlap between the
translation of an MWE and the translations of its component words. Moreover, the translations
for the MWE and for each of its component words can also be compared using string distance
metrics that can help to account for any inflectional differences between them and determine
whether the translations share a substring (Salehi et al. 2014). For instance, the translation for
public into Persian is contained in the translation for public service. These string similarity mea-
sures have been found to lead to better results for MWE idiomaticity detection when combined
with information from distributional similarity models of the source and target language (Salehi
et al. 2018).

8. MWE resources

Evaluation of MWE discovery methods can be performed intrinsically or extrinsically. In intrinsic
evaluation, the results produced by a model are compared to a gold standard, usually a dictionary,
electronic resource or dataset where MWEs have been manually curated using expert annotations
from linguists or lexicographers, or collected via crowdsourcing. While the former provides
high quality and robust annotations, it is usually costly and time-consuming to obtain. The
latter provides a faster way of gathering judgements from usually large groups of non-experts
to reduce the impact of subjectivity on the scores. In extrinsic evaluation, the results produced
are incorporated in an NLP application such as machine translation or text simplification, with
the expectation that the quality of the MWE resource will be reflected in the performance of the
task. However, the results may be influenced by the particular integration of the information into
the application. In this section, we list some of the resources that have been used for intrinsic
evaluation of MWE tasks and further discussion about extrinsic evaluations can be found in
(Constant et al. 2017). In particular, we focus on some of the main corpora that have been
annotated with MWEs, as well as datasets containing human judgements about MWE properties.

Annotated corpora

o The largest initiative in terms of language diversity is the PARSEME project (Savary et al.
2015), which resulted in the creation of corpora for around 20 languages (Ramisch et al.
2018) containing annotations of verbal MWEs.!

o The Supersense-Tagged Repository of English with a Unified Semantics for Lexical
Expressions (STREUSLE) (Schneider and Smith 2015) provides comprehensive manual
annotations of MWEs and of noun and verb semantic supersenses in a corpus of online
reviews in English.™

o Detecting Minimal Semantic Units and their Meanings shared task data (DIMSUM)
extended the STREUSLE corpus with additional domains and resulted in a comprehensive
annotation of MWEs in running text for English (Schneider et al. 2016). The corpus contains
over 90,000 words and 5,000 MWEs."

o The VNC-Tokens dataset (Cook et al. 2008) contains 2,984 sentences from the British
National Corpus that contain VNCs, marked according to whether their sense is idiomatic,
literal or unclear, with up to 100 sentences for each of 53 different combinations.®

o For detecting compositionality in context, Korkontzelos et al. (2013) produced annotations
for the occurrences in context of target phrases, like old school, with a figurative or literal
meaning in 4,350 sentences from WaCky corpus.?

'https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2842
Mhttps://github.com/nert-nlp/streusle
"https://github.com/dimsum16/dimsum-data
°http://cs.unb.ca/~ccookl/English_VNC_Cook.zip
Phttps://www.cs.york.ac.uk/semeval-2013/task5/index.php%3Fid=full.html
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Datasets

 The English Compound Noun Compositionality Dataset (ECNC) (Reddy et al. 2011) con-
tains crowdsourced judgements about the degree of compositionality for a set of 90 English
noun-noun (e.g., zebra crossing) and adjective-noun (e.g., sacred cow) compounds. For each
compound an average of 30 judgements were collected for 3 numerical scores: the degree
to which the first word contributes to the meaning of the compound (e.g., zebra to zebra
crossing), the same for the second word (e.g., crossing to zebra crossing) and the degree to
which the compound can be compositionally constructed from its parts . A Likert scale from
0 (most idiomatic) to 5 (most compositional) was used.q

« The Noun Compositionality Dataset (Ramisch et al. 2016; Cordeiro et al. 2019) uses the same
protocol as Reddy et al. (2011) and extends the ECNC with judgements collected from native
speakers for 190 new compounds for English, and 180 compounds for two additional lan-
guages, French and Portuguese. Additionally, for Portuguese, the annotations were extended
to include lexical substitution candidates for each of the compounds, resulting in the Lexical
Substitution of Nominal Compounds Dataset (LexSubNC) (Wilkens et al. 2017).

o The Dataset of English Noun Compounds Annotated with Judgments on Non-
Compositionality and Conventionalization (Farahmand, Smith and Nivre 2015; Yazdani,
Farahmand and Henderson 2015) provides judgements for 1,042 English noun-noun com-
pounds. Each compound contains two binary judgements by four expert annotators, both
native and non-native speakers: one for its compositionality and one for its conventionalisa-
tion.®

« The Norwegian Blue Parrot Dataset (Kruszewski and Baroni 2014) has judgements for
modifier-head phrases in English. These include annotations about the phrase being an
instance of the concept denoted by the head (e.g., dead parrot and parrot) or a member of the
more general concept that includes the head (e.g., dead parrot and pet), along with typicality
ratings.'

o The German Noun-Noun Compound Dataset (Roller, Schulte im Walde and Scheible 2013)
contains judgements for a set of 244 German compounds using a compositionality scale from
1 to 7. Each compound has an average of around 30 judgements obtained through crowd-
sourcing. This resource has also been enriched with feature norms (Roller and Schulte im
Walde 2014)."

« A Representative Gold Standard of German Noun-Noun Compounds (Ghost-NN) (Schulte
im Walde et al. 2016) includes human judgements for 868 German noun-noun compounds
about their compositionality, corpus frequency, productivity and ambiguity. The annotations
were performed by the authors, linguists and through crowdsourcing. A subset of 180 com-
pounds has been selected for balancing these variables and for these the annotations were
done only by experts.”

Other collections containing MWEs include the SemEval datasets for keyphrase extraction
(Kim et al. 2010) and for noun compound interpretation (Nakov 2008; Hendrickx et al. 2013;
Butnariu ef al. 2009), MWE-aware treebanks (Rosén et al. 2015), MWE lists" as well as lexical
resources (Losnegaard et al. 2016).

dhttp://sivareddy.in/papers/files/ijcnlp_compositionality_data.tgz
"http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
*https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
'http://marcobaroni.org/PublicData/NBP.zip
Yhttps://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/feature-norms.en.html
Yhttps://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/ghost-nn.html
“http://multiwvord.sourceforge.net/
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9. Conclusions

MWEs are complicated, unruly, unpredictable and difficult. They are the telltale sign of non-
native speakers and are one big stumbling block for many applications to achieve a more natural
and precise handling of human language. Whole decades of research have been devoted to them,
and their behaviour still defies attempts to fully capture them. However, they are also a frequent
informal and very efficient communicative device to transmit whole complex concepts in a con-
ventional manner, and in the words of Fillmore, Kay and O’Connor (1988) the realm of idiomatic-
ity in a language includes a great deal that is productive, highly structured and worthy of serious
grammatical investigation. In this paper, we provided an overview of research on computational
modelling of MWEs, revisiting some representative methods for MWE discovery. We concen-
trated, in particular, on methods for the detection of word combinations that qualify as MWEs,
and that identify some of their characteristics, like their degree of fixedness and idiomaticity.

However, this paper only scratches the surface of MWE research, and additional discussions
can be found in (Constant et al. 2017; Ramisch and Villavicencio 2018; Pastor and Colson 2019).
Moreover, progress in related areas is paving the way for a better understanding of how people
learn, store and process MWEs, and for the development of computational approaches for deal-
ing with them. For instance, advances in word representations have brought new possibilities for
MWE research. In particular, crosslingual word embeddings (Segaard et al. 2019) provide fertile
grounds for the exploration of multilingual asymmetries linked to idiomaticity, while richer con-
textually aware word representation models like ELMo (Peters et al. 2018) can be incorporated in
methods for token idiomaticity detection.

One possible source of clues of how to improve MWE processing comes from studies of how
the brain performs the task. Experimental studies dedicated to investigating how humans process
language is growing in number and involve a series of increasingly sophisticated techniques for
measuring brain activity. The focus is to understand with increasing accuracy what are the brain
regions used in language processing and how their interactions vary temporally and spatially with
linguistic complexity. These studies can provide clues about how MWZEs are stored and processed
by the human brain. The use of eye-tracking information has already brought benefits for tasks like
part-of-speech tagging (Barrett et al. 2016 2018). MWEs have been found to have faster processing
times compared to non-MWEs (compositional novel sequences) and these effects have been found
in both research using eye-tracking and EEG (Siyanova-Chanturia 2013). Investigations of the use
of gaze features from the GECO corpus (Cop et al. 2017) produced promising results in tasks like
discovery (Rohanian et al. 2017), and further advances are expected with increasing availability of
larger collections of eye-tracking data. There is still a large gap that has to be overcome to connect
the algorithms we develop for NLP and the algorithm actually used by the brain. The hope is that
the gap will close soon. MWEs are here to stay and for the foreseeable future will still be in the
limelight of research.
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