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We apply the weak formalism on the Boussinesq equations to characterize scaling
properties of the mean and the standard deviation of the potential, kinetic and
viscous energy fluxes in very well-resolved numerical simulations. The local
Bolgiano–Oboukhov (BO) length is investigated and it is found that its value may
change by an order of magnitude through the domain, in agreement with previous
results. We then investigate the scale-by-scale averaged terms of the weak equations,
which are a generalization of the Kármán–Howarth–Monin and Yaglom equations.
We have not found the classical BO picture, but evidence of a mixture of BO
and Kolmogorov scalings. In particular, all the energy fluxes are compatible with
a BO local Hölder exponent for the temperature and a Kolmogorov 41 for the
velocity. This behaviour may be related to anisotropy and to the strong heterogeneity
of the convective flow, reflected in the wide distribution of BO local scales. The
scale-by-scale analysis allows us also to compare the theoretical BO length computed
from its definition with that empirically extracted through scalings obtained from
weak analysis. Scalings are observed, but over a limited range. The key result of
the work is to show that the analysis of local weak formulation of the problem is
powerful to characterize the fluctuation properties.
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1. Introduction
The dynamics of flows in natural systems is basically governed by exchanges

between energies of different origin: kinetic, thermal, potential, magnetic, chemical. . .
In the case of oceanic and atmospheric flows, the main energies involved are the
kinetic energy and the potential energy (Vallis 2017). Understanding the interplay
between the energy fluxes of these quantities, and their scaling properties is one
of the main issue for climate modelling. The paradigm to study these issues is
the Rayleigh–Bénard (RB) system in which solutions of the Boussinesq equations
describe the movements of velocity u and temperature T of a fluid heated from

† Email address for correspondence: chibbaro@ida.upmc.fr
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below. Even restricting ourselves to this configuration, many open issues remain
to be addressed (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012). We shall focus here on some properties of small scales, describing
a new approach to analysing scaling behaviour and more generally fluctuation
properties.

In realistic conditions, the energy is injected in such systems at large scales
under the shape of potential energy, converted into kinetic energy and cascaded
towards smaller scales by nonlinear interactions. At scales smaller than the global
inhomogeneity scale, such dynamics can be regarded to occur via globally self-similar
processes, with scaling laws that depend upon the parameters and the scale (Monin &
Yaglom 1975). In this problem, several characteristic scales have been identified other
than the large scale typical of stratification: (i) The kinetic viscous or Kolmogorov
scale η; this scale corresponds to the scale at which the local Reynolds number
is of order one. Below such a scale, the statistics of the velocity field are smooth,
that is, the velocity increments δu` = |u(x + r) − u(x)| scale statistically like `.
(ii) The thermal viscous, or Batchelor scale ηT , corresponding in the same way
to the scale at which thermal diffusion becomes dominant. Below such a scale,
the statistics of the temperature field are smooth, that is, temperature increments
δT` = T(x + `) − T(x) scale statistically like `. (iii) The Bolgiano–Oboukhov (BO)
scale LBO, which is the scale at which buoyancy effects become important and they
may balance with dissipative terms. Below such a scale, the temperature is usually
considered as ‘passive’, with negligible influence on the velocity field. Empirically,
the sign, magnitude and scaling of the energy fluxes depend on how these scales are
interlinked.

According to the prediction based on a generalization of the Kolmogorov theory for
turbulent fluids, first suggested for stably stratified flows (Bolgiano 1959; Oboukhov
1959), the velocity and temperature increments scale like δu` ∼ `1/5, δT` ∼ `3/5 above
LBO, resulting in a constant flux of potential energy ∂`〈δu`(δT`)2〉 towards the small
scale. In contrast, for scale ` < LBO, the kinetic energy flux ∂`〈δu`(δu`)2〉 is constant,
so that δu`∼ `1/3. Unfortunately, several issues make difficult the measurement of the
BO scaling in a closed domain (Lohse & Xia 2010). In particular, LBO has been found
to be globally of the order of the entire volume of the box, and the anisotropy could
also make it ambiguous to discern between the BO scaling and other shear scalings
(Biferale & Procaccia 2005). Moreover, the similarity argument does not take into
account intermittency effect, produced by large fluctuations of velocity gradients or
temperature gradients. Indeed, it is well known that both velocity and temperature
are highly intermittent random fields (Benzi et al. 1994; Cioni, Ciliberto & Sommeria
1995; Lohse & Xia 2010), and therefore local dynamics or local energy exchange may
be subject to intense fluctuations and strong inhomogeneity.

Still it is important to observe that the system is non-homogeneous, because of
the presence of the horizontal plates and lateral vertical sidewalls. That makes LBO
also a non-homogeneous quantity, which has been shown to vary its value over
approximately one order of magnitude depending on the distance from the walls,
both the top–bottom and the lateral ones (Calzavarini, Toschi & Tripiccione 2002;
Kunnen et al. 2008; Kaczorowski & Xia 2013). For this reason, the presence of a
BO scaling seems plausible, possibly over a tiny range. An important issue, common
to other non-homogeneous flows, is the difficulty of computing an accurate scaling.
The goal of the present work is to deal with this issue, presenting a new approach
that allows us to access the local scaling.

Generally speaking, valuable information about the cascade ranges and the scaling
laws of turbulent flows are found by measuring the spectrum of a flow. The
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same content is brought by the second-order structure function, notably employed
in numerical simulations. Higher-order structure functions convey more refined
information, notably about intermittency (Frisch 1995). Those are the tools also used
to analyse small-scale behaviour in RB convection (Lohse & Xia 2010). On the one
hand, structure functions are very noisy, even at the lowest level of second order, and
it is difficult to obtain a clear scaling (Benzi, Toschi & Tripiccione 1998; Calzavarini
et al. 2002; Kaczorowski & Xia 2013). It is possible to improve the predictions using
a particular fitting procedure known as ESS (extended self-similarity) (Benzi et al.
1993). In this case, the ratio between the scaling exponent of different-order structure
functions can be accessed more neatly. While this procedure has been effective in
homogeneous isotropic turbulence, where the third-order structure function is known
analytically (Frisch 1995), it gives only relative exponents in non-homogeneous flows
like RB. On the other hand, the most common method to measure the spectrum is
using Fourier transforms, notably in experiments, and Fourier techniques are inherently
global in space and cannot characterize the flow properties locally. Yet the local
properties seem to play a crucial role in non-homogeneous flows. The purpose of the
present work is to put forward an approach capable of capturing the full complexity
of local energy fluxes and exchanges. This is valuable for non-homogeneous flows
like the RB convection for the inherent multiscale character of such a flow, as the
production, transport and dissipation of energy depend on the position in space and
on the scale considered.

As discussed in Dubrulle (2019), a suitable framework is the weak formulation
of the basic equations, via appropriate wavelet transforms. Technically, a main
advantage wavelets have over Fourier analysis is the identification of flow properties
simultaneously as a function of scale and space. For this reason wavelets have
already proved their utility to access local scaling in turbulent flows (Meneveau
1991; Farge 1992; Jaffard, Meyer & Ryan 2001) and most notably the multifractal
spectrum (Kestener & Arneodo 2004). More generally, the weak approach is
related the coarse-grained or filtered equations already developed for homogeneous
turbulence (Duchon & Robert 2000; Eyink & Sreenivasan 2006), and it constitutes
the most general framework to apply a scale-by-scale analysis to general non-
homogeneous flows.

In a recent paper (Faranda et al. 2018), we have implemented such a framework on
the stably stratified Boussinesq equations, and derived the scale-by-scale equations for
potential, kinetic and viscous energy fluxes. A preliminary yet encouraging analysis
has then been made of some atmospheric data. By construction, the atmospheric data
only provide a fragmented view of the energy fluxes, because they do not extend all
the way to the viscous scales, where the extremes of kinetic energy flux are found
to happen (Saw et al. 2016). In the present paper, we therefore apply the analysis
to a more controlled and cleaner system, provided by numerical solutions of the
Boussinesq equations at high resolution.

The paper is organized as follows: in § 2, we first recall the theoretical model and
the numerical method. In § 3, we describe the theoretical framework and tools. In § 4,
we provide the results and we discuss them. Finally we draw conclusions.

2. Governing equations and numerical method

We consider a turbulent Rayleigh–Bénard convection, in which a horizontal fluid
layer is heated from below. Horizontal and wall-normal coordinates are indicated by
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x, y and z, respectively. Using the Boussinesq approximation, the system is described
by the following dimensionless balance equations

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂P
∂xi
+

√
Pr
Ra
∂2ui

∂x2
j
+ δi,3θ, (2.2)

∂θ

∂t
+ uj

∂θ

∂xj
=

1
√

PrRa

∂2θ

∂x2
j
, (2.3)

where ui is the ith component of the velocity vector, P is pressure, θ = (T − T0)/1T
is the dimensionless temperature, 1T =TH −TC is the imposed temperature difference
between the hot bottom wall (TH) and top cold wall (TC), T0= (TC + TH)/2, whereas
δ1,3θ is the driving buoyancy force (acting in the vertical direction z only). The
reference velocity is uref = (gβH1T)1/2, with H the domain height, g the acceleration
due to gravity and β the thermal expansion coefficient. The Prandtl and the Rayleigh
numbers in equations (2.2)–(2.3) are defined as Pr = ν/κ and Ra= (gβ1TH3)/(νk),
with ν the fluid kinematic viscosity and κ the thermal diffusivity.

Two direct numerical simulations (DNS) are performed for a fixed Pr = 1 at
Ra = 107 and 108 in a cubic box of size H3 with the x–y plane parallel to
the horizontal plates and the z axis pointing in the direction opposite to that of
gravitational acceleration. For the velocity, no-slip boundary conditions are used
everywhere, as in experiments. For the temperature, adiabatic conditions are imposed
at all lateral sidewalls whereas isothermal conditions are used on the top and bottom
plates. Table 1 reports the main parameters of the simulations. Previous studies
indicate that the BO scaling might be more clearly observable at the moderate Ra
numbers chosen here (Lohse & Xia 2010). In order to make the scaling neater, it
would be in principle helpful to use higher Prandtl numbers (Kaczorowski & Xia
2013). However, the dependence is very slow and the computational effort needed to
keep the present accuracy at much higher Pr numbers very important. For this first
study concerning the weak approach to turbulent convection we have thus preferred
use the somewhat standard Pr= 1.

Equations (2.2)–(2.3) are solved through the open-source code Basilisk (see
http://www.basilisk.fr/). In particular, space is discretized using a Cartesian (multi-level
or tree-based) grid where the variables are located at the centre of each control volume
(a square in two dimensions, a cube in three dimensions) and at the centre of each
control surface.

Second-order finite-volume numerical schemes for the spatial gradients are used
(Popinet 2003, 2009; Lagrée, Staron & Popinet 2011). Navier–Stokes equations are
integrated by a projection method (Chorin 1969), and time advancing is performed
through a fractional-step method using a staggered discretization in time of the
velocity and the scalar fields (Popinet 2009).

Some remarks are in order concerning the numerical method. From a numerical
point of view, it is worth noting that our upwind method is actually third order
in space when considering the advection term. The Basilisk code has been tested
in isotropic turbulence and in particular compared with a finite-volume scheme
which preserves energy (Fuster 2013). The results are in good agreement with those
obtained with a spectral code and no difference is encountered between the two
finite-volume methods, whenever the resolution is sufficient to resolve all scales
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Case Ra Pr Nx ×Ny ×Nz
∆

ηbulk

∆

ηBL
1t NT Nu Nuεu NuεT

A 107 1.0 1024× 1024× 1024 1/10 1/8 0.0015 3.3/30 15.8 16 15.9
B 108 1.0 1024× 1024× 1024 1/8 1/4 0.001 4.2/15 31.1 31.3 31.8

TABLE 1. List of the dimensionless parameters, Ra and Pr, for the different test runs,
and the parameters of the simulations: the number of grid points Nx × Ny × Nz in
the respective spatial directions; the number of grid points required for resolution of
the thermal boundary layer NT (requirement/actual resolution); the requirement is based
on the analysis in Stevens et al. (2010) and Shishkina et al. (2010). The mean heat
transfer computed with the three different formulas: Nu ≡ 1 +

√
RaPr〈uzT〉, Nuεu ≡ 1 +

√
RaPr〈εu〉 and NuεT ≡

√
RaPr〈εT〉, where 〈 〉 indicates averaging, and the statistics have

been computed averaging in space over the entire volume and over 300 reference times.

(http://www.basilisk.fr/). The code has been recently used and extensively validated
in RB turbulent convection (Castillo-Castellanos, Sergent & Rossi 2016; Castillo-
Castellanos 2017; Castillo-Castellanos et al. 2019). In this thorough validation, it has
been shown that, provided the requirements on the resolution are respected (Stevens,
Verzicco & Lohse 2010; Shishkina et al. 2010), no appreciable difference can be
found with respect to the literature with respect to any observable. Furthermore, in a
recent work, the numerical approach has been assessed in a one-to-one comparison
against a standard code also in the case of an atmospheric boundary layer. The results
are satisfying in all respects and numerical dissipation appears to be ineffective,
provided the resolution is sufficient to well resolve the boundary layer (van Hooft
et al. 2017).

We have chosen a horizontal (Nx,Ny) and vertical (Nz) number of points sufficiently
large to solve the smallest length scale of the problem, which is the Kolmogorov
length scale η= (ν3/〈ε〉)1/4, since Pr = 1 in all regions. Moreover, we have checked
that we fulfil the criteria proposed for RB convection to ensure proper resolution
of the thermal dynamics (Shishkina et al. 2010). Although this particular resolution
is only required near to the wall, we have chosen to use a uniform grid since we
are interested in monitoring the fluctuations in the centre of the cube, where vertical
non-homogeneity is less important. For this reason, and given the geometry chosen,
the grid spacing is the same in all directions ∆x = ∆y = ∆z = ∆ = 1/1024. The
Kolmogorov length scale η is computed a posteriori from the datasets via spatial and
time average. As shown in table 1, for both of the DNS, the value of the Kolmogorov
length scale is much larger than the grid spacing, so that we are over-resolving the
flow (Verzicco & Camussi 2003). Moreover, as shown in the same table 1, the
resolution greatly exceeds also the requirements for the thermal layers, notably at
lower Rayleigh number. That was a deliberate choice for two reasons: (i) Basilisk
is a volume-finite code which may add some numerical diffusion at the smallest
scales. Since we are precisely interested in the behaviour at small scales, we use a
resolution higher than necessary to avoid spurious effects. (ii) We are also interested
in the possible presence of extreme events at very small scales, `∼ η, and therefore
we have carried out simulations with a resolution much higher than usual to be sure
to well resolve all the scales `. η.

After the initial transient, velocity and temperature fields are collected with a time
interval significantly longer than the large eddy turnover time 2h/uref in order to
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ensure that the fields are uncorrelated. The statistical convergence has been checked
by looking at different statistics and observing that the average mean field is zero.
In order to assess the resolution of the numerical method, we show in table 1 also
the consistency relation for the mean heat transfer (Siggia 1994; Verzicco & Camussi
2003): Nu ≡ 1 +

√
RaPr〈u3θ〉 = Nuε ≡ 1 +

√
RaPr〈ε〉 = NuεT ≡

√
RaPr〈εT〉, where

〈 〉 indicates ensemble averaging, ε is the dissipation rate and εT is the temperature
variance dissipation rate. The results are indeed consistent and in agreement with the
values from the literature for both Ra numbers (Ahlers et al. 2009).

3. Weak formulation
3.1. Summary of local energy budget

In this section, we present the local energy budget of Boussinesq equations (2.2)–(2.3),
which relies on the weak formulation of the equations (Duchon & Robert 2000) and
has been derived in a recent work (Faranda et al. 2018) for the case of stably stratified
flows. Although we deal with unstable stratification in this work, the derivation is the
same and we refer to that reference for the details. The local budget involves the
filtered or coarse-grained observable õ` defined as

õ`(x, t)≡
∫

ddrG`(r)o(x+ r, t), (3.1)

where the subscript ` refers to the scale dependence introduced by the filtering.
The filter G is a smooth function, non-negative, spatially localized and such
that

∫
dr G(r) = 1, and

∫
dr |r|2G(r) ≈ 1. The function G` is rescaled with ` as

G`(r)= `−3G(r/`). At a given finite scale `, the local energy budget depends on this
filtering, but all the results obtained in the limit `→ 0 are independent of G. In the
sequel, we take G as a Gaussian whenever analysing the numerical data. The local
scale-by-scale equations for the energy and temperature variance read as (Faranda
et al. 2018):

∂t

(
1
2

u · ũ`
)
+∇ ·

[
1
2
(u · ũ`)u+

1
2
(pũ` + p̃`u)+

1
4
(̃|u|2u)`

−
1
4
(̃|u|2)`u−

1
2

√
Pr
Ra
∇(ũ` · u)

]
=−

1
4

∫
ddr∇G` · δu`|δu`|2

−

√
Pr
Ra

∫
ddr∇2G`|δu`|2 +

1
2
(u3θ̃` + ũ3`θ)

≡−D` −Dν
` +Dc

`, (3.2)

and

∂t

(
1
2
θ θ̃`

)
+∇ ·

[
1
2
(u · θ̃`)θ +

1
4
(̃θ 2u)` −

1
4
(̃θ 2)`u−

1
2
√

RaPr
∇(θ θ̃`)

]
=−

1
4

∫
ddr∇G` · δu`(δθ)2 −

1
√

PrRa

∫
ddr∇2G`|δθ`|

2

≡−DT
` −Dκ

` , (3.3)

where δθ` and δu` are, respectively, the temperature and velocity increments defined
in § 1.
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All the budget terms denoted by D are implicitly defined by the equations, as
indicated by the symbol ≡. In particular, in (3.2), D` is related to the inertial
dissipation, Dν

` represents the viscous dissipation and Dc
` the coupling term. In

equation (3.3), DT
` is the inertial dissipation term for the temperature variance and

Dκ
` represents the viscous diffusion.
As discussed in Faranda et al. (2018) and Dubrulle (2019), and shown below,

these equations are a local fluctuating form of the Kármán–Howarth–Monin (KHM)
equations (Monin & Yaglom 1975), including the exchange term between temperature
and velocity due to buoyancy. As typical for non-equilibrium macroscopic phenomena,
the kinetic or thermal energy ∂t(

1
2 u · u`) or ∂t(

1
2θ θ̃`) evolves through (i) a current

describing mean transport via a spatial flux; (ii) a local term related to the exchange
of energy at the scale `, (iii) a local sink term due to (viscous or thermal) dissipation
and (iv) a local term linked to the buoyancy work that redistributes the energy
between the thermal and the kinetic part.

As conjectured by Onsager (Onsager 1949; Eyink & Sreenivasan 2006) and
rigorously stated by Duchon & Robert (2000), the nonlinear inter-scale term D`

converges to the inertial dissipation term at infinite Reynolds number in the asymptotic
small-scale limit

D= lim
`→0
(lim
ν→0

D`). (3.4)

In this limit, the nonlinear terms may dissipate energy, when the field is sufficiently
irregular (Duchon & Robert 2000). In the same way, we define

DT
= lim

`→0
DT
` ; Dν

= lim
`→0

Dν
`; Dκ

= lim
`→0

Dκ
` ; Dc

= lim
`→0

Dc
`. (3.5a−d)

Furthermore, in the average sense we have the relation

〈Dν
〉 ≡Dν

= ε, with ε = 〈ν|∇u|2〉, (3.6)

and
〈Dκ
〉 ≡Dκ

= εT, with εT = 〈κ|∇θ |
2
〉; (3.7)

where 〈 〉 denotes spatial and time average. In the same way we have

〈Dc
〉 ≡Dc

= (Nu− 1)/
√

RaPr, with (Nu− 1)/
√

RaPr= 〈u3θ〉. (3.8)

On the other hand, whenever u and θ are regular, we have in the limit `→ 0, δu`∼ `
and δθ`∼ `, so that both D and DT scale like `2 and tend to zero. The location where
these quantities do not converge to zero is the location of potential quasi-singularities
(Dubrulle 2019) that will be studied elsewhere. Empirically, we observe that these
points are very rare, so that, on average, we have 〈D〉 = 〈D〉T = 0. The way in which
these limits are achieved is, however, informative in terms of the scaling properties of
the flow, as is shown in § 3.4. When averaged, equations (3.2)–(3.3) give the general
forms of the mean energy and temperature budgets, and they are interesting since
they provide a scale-by-scale way to analyse turbulent flows, as highlighted in several
recent works focused on anisotropic turbulent flows (Hill 1997; Danaila et al. 1999;
Rincon 2006; Cimarelli, De Angelis & Casciola 2013; Gauding et al. 2014; Togni,
Cimarelli & De Angelis 2015; Mollicone et al. 2018).
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3.2. Global energy budget and Yaglom equations
By taking ensemble averages of the equations (3.2) and (3.3), we can thus obtain a
global scale-dependent energy budget. Considering a stationary state, and taking into
account the contribution of the spatial flux terms due to the temperature boundary
condition, we then obtain

1
2
〈uθ̃` + ũ`θ〉 =

1
4

∫
ddr∇G` · 〈δu(r)|δu(r)|2〉 +

√
Pr
Ra

∫
ddr∇2G`〈δ(u(r))2〉,∮

∂V
JT
` dΣ =

1
4

∫
ddr∇G` · 〈δu(r)(δθ)2〉 +

1
√

PrRa

∫
ddr∇2G`〈(δθ(r))2〉,

 (3.9)

where JT
` = [

1
2(u · θ̃`)θ +

1
4 (̃θ

2u)` − 1
4 (̃θ

2)`u )−1/(2
√

RaPr)∇(θ θ̃`)]. It is worth noting
that in the present work statistical averages will be computed through spatial and time
averaging, thanks to the stationarity of the flow and by using the Ergodic hypothesis.

In the limit `→ 0, we have
∮

JT
` dΣ → −Nu/

√
RaPr so that the global energy

budget yields

(Nu− 1)/
√

RaPr= 〈D〉 + ε,

Nu/
√

RaPr= 〈D〉T + εT .

}
(3.10)

Taking into account 〈D〉 = 〈D〉T = 0, we then get ε = (Nu − 1)/
√

RaPr and
εT = Nu/

√
RaPr which are the non-dimensional global energy budget equations

for Rayleigh–Bénard, first derived by Siggia (1994). For a finite scale, the global
energy budget equation (3.9) reads schematically

Dc
` =D` +Dν

` ,∮
∂V

JT
` dΣ =DT

` +Dκ
` ,

 (3.11)

and describes energy cascades through scale for both temperature and velocity.

3.3. Special length scales
The global budget (3.11) provides systematic definitions of characteristics scales that
traces the boundary between diffusive and inertial behaviour. There are indeed two
interesting scales corresponding to situations where

(i) D` =Dν
` ; the corresponding scale is η, the dissipative scale (Dubrulle 2019).

(ii) DT
` =Dκ

` ; the corresponding scale is ηT , the thermal dissipative scale.

Further, one could also define the scale at which

(i) D` = DC
` ; the corresponding scale would then correspond to a global Bolgiano

scale. In a practical sense, however, these definitions are not easy to handle, since
they are true only after averaging over the whole domain. In the present study,
we shall then rely on definitions involving ε and εT .

3.4. General scalings
Let us now make a general theoretical analysis. Consistently with the Kolmogorov-
Onsager framework (Paladin & Vulpiani 1987; Frisch 1995; Eyink & Sreenivasan
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2006), we assume that velocity and temperature increments are globally Hölder
continuous fields with exponent h:

|δu(x, l)| ∼ lhu
, |δθ(x, l)| ∼ lhT

, ∀x, (3.12a,b)

where the velocity exponent is denoted by hu and the temperature one by hT . We
do not consider here the local properties, which are related to anomalous scaling and
large deviations (Benzi et al. 1984; Paladin & Vulpiani 1987; Boffetta, Mazzino &
Vulpiani 2008).

If our system is locally isotropic, everything depends only on the modulus of the
difference in position r= |r| and the scaling exponent for the velocity is the same for
the horizontal and vertical components. We shall see in the present study that such a
hypothesis is probably not satisfied. Indeed, in such a case, from the scaling of δuhu

`

and δθ hT

` one can deduce that

D` ∼ `
3hu
−1, DT

` ∼ `
hu
+2hT

−1, Dc
` ∼ `

hu
+hT
, Dν

` ∼ `
2hu
−2, and Dκ

` ∼ `
2hT
−2.

(3.13a−e)
In this framework, Kolmogorov scaling gives hu

= 1/3, and hT
= 1/3. This should

mean

D` ∼ `
0, DT

` ∼ `
0, Dν

` ∼ `
−4/3, Dκ

` ∼ `
−4/3, and Dc

` ∼ `
2/3. (3.14a−e)

This regime is obtained when, in (3.9), the energy transfer is provided both by the
thermal and the kinetic components: D` ∼ ε,DT

` ∼ ε
T .

Instead, in the Bolgiano–Oboukhov range, the energy transfer is provided by the
thermal component, while the inertial term in the kinetic energy is affected by the
exchange term. This corresponds to D` ∼Dc

` and DT
` ∼ εT , resulting in hu

= 3/5 and
hT
= 1/5, and therefore

D` ∼ `
−4/5, DT

` ∼ `
0, Dν

` ∼ `
−4/5, Dκ

` ∼ `
−8/5, and Dc

` ∼ `
4/5. (3.15a−e)

Hence, by looking at the scaling properties of these quantities and at their balance, we
can infer consistency with the Kolmogorov 41 or Bolgiano scaling. The scalings are
summarized in table 2. It is worth emphasizing that these scalings are obtained
through similarity arguments based on the locally isotropic hypothesis, so that
deviations may be observed whenever this hypothesis is not fulfilled, notably for
the coupling term.

An important empirical observations is that the standard deviation of the observables
provides cleaner scaling laws (§ 4.4) than the average. We have not yet fully
understood this issue, but the same trend has been found in independent experiments
(Saw et al. 2016, 2018). We think this is because fluctuations are more robust
to changes in the orientation of the large-scale circulation of the flow than the
time average. It is also possible that squared observables scale better because
they are always positive, similarly to what is encountered in calculating structure
functions (Benzi et al. 1994). We cannot however be assertive on this point, since we
cannot use the absolute value in the filtering terms, and time averaging the absolute
value of different quantities turns out to be rather inconclusive.
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Quantity General Kolmogorov 41 Bolgiano-Oboukhov Present study Present study
Theoretical conjecture Numerical fit

hu 1/3 3/5 1/3 0.34± 0.025
hT 1/3 1/5 1/5 0.18± 0.04

D` `3hu
−1 `0 `4/5 `0 `0.04±0.06

DT
` `hu

+2hT
−1 `0 `0 `−4/15 `−0.3±0.12

Dν
` `2hu

−2 `−4/3 `−4/5 `−4/3 `−1.4±0.07

Dκ
` `2hT

−2 `−4/3 `−8/5 `−8/5 `−1.66±0.06

Dc
` `hu

+hT
`2/3 `4/5 / /

TABLE 2. Summary of scaling laws for the different quantities appearing in equations
(3.2) and (3.3), depending upon the scaling of velocity and temperature increments. The
last two columns refer to the present study. The last one indicates the values extracted
via a fit procedure of the data presented in § 4.4. We have used only Ra= 108 since the
scaling range is larger. The exponents obtained by data at Ra= 107 are however consistent
with these values.

4. Results
4.1. Flow fields

In figure 1 we show a horizontal slice of instantaneous temperature and velocity fields
at the centre of the domain, the region we focus on in this work. It seems established
that coherent thermal and velocity structures, the so-called thermal plumes, defined as
a localized portion of fluid having a temperature contrast with the background, play a
major role in the transport of heat in turbulent convection (Chillà & Schumacher 2012;
Shang et al. 2003). These structures emerge from the dynamics of the boundary layer,
and in the centre of the cell they are heavily impacted by the large-scale circulation
(LSC), and the geometrical aspects of the flow may be quite different. Indeed, in
figure 1 it is seen that cold plumes are directed mostly along one side of the cell
while the hot plumes go up at the other side, because of the impingement of the
fluid caused by LSC. These results are in line with experiments made in different
geometries (Zhou, Sun & Xia 2007; Liot et al. 2016).

4.2. Local Bolgiano–Oboukhov length scale
The correct reproduction of the large-scale dynamics together with the numerical
assessment summarized in table 1 convincingly show that present simulations are
fully resolved. Before going into the main subject of the present work, which is to
use the weak formulation of the equations, it is useful to study the properties of LBO,
which is an estimate of the distance at which the buoyancy and dissipative terms
balance in the Boussinesq equations. It also represents the scale at which temperature
cannot be considered passive anymore and therefore different scalings are expected.
It is defined on a dimensional ground as

L̂BO ≡ (βg)−3/2
〈ε̂〉5/4〈ε̂T〉

−3/4, (4.1)

where we have used the hat ˆ symbol to highlight that the quantities in this formula
are dimensional. A local version of this length can be defined in dimensionless form
as

Llocal
BO (x, y, z)≡ 〈ε〉5/4t 〈εT〉

−3/4
t , (4.2)
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0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.60.40.20-0.2

(a) (b)

(c) (d)

FIGURE 1. (a,b) Instantaneous temperature and velocity fields in the horizontal x–y
plane midway between the vertical walls. The velocity is superposed as vectors on the
temperature map. The temperature colour bar is at the top of the figure. (c,d) Instantaneous
heat fluxes, at the same instant of time and horizontal cross-section as the plots in (a,b).
The heat flux colour bar is at the bottom of the figure. Results for different Ra are
displayed, Ra= 107 in (a,c), and Ra= 108 in (b,d).

where we use the non-dimensional dissipations. In this definition the length is
obtained by averaging in time but not over the volume. It is known (Benzi et al.
1998; Calzavarini et al. 2002) that Llocal

BO depends on the position in the convection
cell and on the boundary conditions.

In particular, since we focus on the bulk region, we have computed the average

Lbulk
BO = 〈ε

5/4
〉x,y,t〈εT〉

−3/4
x,y,t , (4.3)

calculated at z= 0, that is at the horizontal mid-plane at the centre of the cell. The
average is made in time and over the bulk region defined as a square of side 0.8H.
This choice will be explained later in § 4.3. The value of LBO may also be roughly
estimated using the 0th law of turbulence and similar scaling for the temperature
ε ∼ u3

rms/L, εT ∼ urms(〈T ′〉)2/L, where we have considered a typical fluctuation of
temperature T ′ and a typical length scale L for velocity and temperature. Considering
in the present case that these length scales are of the same order as the typical
distance from the plates z∗, we get for a global length depending on the vertical
coordinate: L̂BO = (βg)−3/2u3

rms〈T
′
〉
−3/2z−1/2

∗
.

It is seen from this expression that in the centre of the cell the estimate is L̂BO∼H,
that is of the order of the cell dimension. The global averaged LBO turns out to be of
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FIGURE 2. (a) Time-averaged profiles of the adimensional local Bolgiano–Oboukhov
length scale (Llocal

BO ) in the horizontal direction (|x|), for Ra = 107 (red squares) and
Ra = 108 (blue dots), with respective error bars. The error bars are twice the standard
deviation of Llocal

BO , which is globally estimated for all x as the time and space average of
the uncertainty of Llocal

BO at the centre of the cell (|x| < 0.2), which is the region where
Llocal

BO fluctuates the most. (b) Contour plot of the time-averaged adimensional Llocal
BO length

scale on a horizontal section (xy) at half-height of the cell (z= 0), at Ra= 108.

the order of the entire height of the cube. In particular, we have found Lbulk
BO . 0.5

for both Ra. However, given that our problem is non-homogeneous with walls at
the boundaries, the fluctuation statistics are also dependent on the distance from the
sidewalls and thus this estimate does not permit us access to the local behaviour.
We can only expect that, very near to the walls, Llocal

BO attains its maximum value.
In particular, the local length formally diverges at the lateral walls because of the
adiabatic conditions.

To analyse this issue, in figure 2 the profiles of Llocal
BO for the two Ra numbers

computed locally at the centre of the cube are shown. Both the entire horizontal plan
and the length versus x coordinate are reported.

Due to the symmetry of the flow, we only plot half of the profile along the x
axis. It turns out that large variations of Llocal

BO are experienced through the entire
region, more evidently for Ra = 108. In particular, the length may be one order of
magnitude shorter than the cell size locally, over a large span of the domain, at
least for the higher Ra case. This is highlighted in the map shown in figure 2(b).
From the pictures, it should be noted that quantities averaged only in time are not
perfectly at convergence and some fluctuations are always present. Our results are
hence to be considered qualitative but not necessarily quantitative. The results are in
any case very similar to those already presented in previous works (Benzi et al. 1998;
Kaczorowski & Xia 2013). Differences with respect to the more recent study appear
within the statistical error bars, considering also that Pr is slightly different, but it
is known to have a huge impact. Moreover, since we use a much higher resolution,
some small differences in the evaluation of dissipation can be expected. Globally,
we can consider that these two works validate each other, since they use different
numerical approaches. Residual differences with respect to the older work by Benzi
et al. (1998), are to be explained by the changes in boundary conditions. Our results
therefore confirm also that the dynamics of the core region is significantly influenced

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1000


Energy fluxes in 3-D turbulent Rayleigh–Bénard convection 885 A14-13

0.50.40.30.2
x

0.10

10-1(a)

10-2

10-3

10-4

10-5

´,
 ´

T

´, Ra = 107

´T, Ra = 107

´, Ra = 108

´T, Ra = 108

x

(c)

0.50

0.5

0

-0.5

y

(b)
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FIGURE 3. (a) Time-averaged profiles of the turbulent-kinetic-energy dissipation rate (ε)
and temperature variance dissipation rate (εT) in the horizontal direction (x). Continuous
line: εT , at Ra= 108; dashed line: εT , at Ra= 107; dot-dashed line: ε, at Ra= 108; dotted
line: ε, at Ra = 107. (b) Contour plot of the turbulent-kinetic-energy dissipation rate (ε)
values on a horizontal section (xy) at half-height of the cell (z=0). (c) Contour plot of the
temperature variance dissipation rate (εT) values on a horizontal section (xy) at half-height
of the cell (z= 0).

by the boundary conditions. Moreover, present results confirm the possibility of
finding a local BO scaling, separated from the Kolmogorov one, if local variations
are properly computed.

Since in the definition of LBO the energy and thermal variance dissipation are
used, we show in figure 3 the profiles of those functions, figure 3(a), together
with the surface contour for the Ra = 108 case. Once again, profiles obtained
are similar to those shown in recent computations carried out in an analogous
configuration (Kaczorowski & Xia 2013). The profiles obtained at two different Ra
numbers elucidate how LBO depends on the forcing parameter. It should be clear
also from these results that the direct measurement of this length based on its
definition (4.1), is particularly delicate, because it is based on the ratio of powers
of the statistics of very small-scale observables, which wildly fluctuate. Furthermore,
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it should be emphasized that the definition (4.1) is physically sound but does not
consider the characteristics of the flow, so that a pre-factor (possibly non-universal)
should be present, and there is no reason to be sure that this pre-factor is of order
one (Monin & Yaglom 1975). In the following section we shall estimate LBO looking
at the scaling laws and we will compare the results. Specifically, we will seek the
scale at which a cross-over in the scaling is encountered because of buoyancy.

4.3. Wavelet analysis
Energy balances are computed on the horizontal section at half-height of the Rayleigh–
Bénard cell. In this section, all the three components of the velocity field, and its
derivatives in two dimensions, are taken into account. Balances for a wide range of
scales ` are calculated by using a Gaussian filtering function G`(r) ∼ e−|r|

2/2, where
r= x/` is a scale-dependent spatial coordinate.

In equations (4.4)–(4.8), the terms of the filtered kinetic and thermal energy
balances defined in (3.2) and (3.3) are written explicitly as a function of the
instantaneous velocity (u) and temperature (θ ) fields.

D` =
1
4

∫
ddr(∇G`(r)) · [u(x+ r, t)− u(x, t)][u(x+ r, t)− u(x, t)]2, (4.4)

DT
` =

1
4

∫
ddr(∇G`(r)) · [u(x+ r, t)− u(x, t)][θ(x+ r, t)− θ(x, t)]2, (4.5)

Dν
` =

1
√

RaPr

∫
ddr(∇2G`(r))

[
u(x+ r, t) · u(x, t)−

u(x+ r, t) · u(x+ r, t)
2

]
, (4.6)

Dκ
` =

1
√

RaPr

∫
ddr(∇2G`(r))

[
θ(x+ r, t) · θ(x, t)−

θ 2(x+ r, t)
2

]
, (4.7)

Dc
` =

1
2

[
u(r, t) ·

g
|g|

∫
ddr(G`(r))θ(x+ r, t)+ θ(r, t)

∫
ddr(G`(r))u(x+ r, t) ·

g
|g|

]
.

(4.8)

The convolution integrals in equations (4.4), (4.5), (4.6), (4.7) and (4.8) can be
computed efficiently using continuous wavelets transforms, based on fast Fourier
transforms. In this study, we use the two-dimensional continuous wavelet MATLAB
package provided by the toolbox YAWTB (http://sites.uclouvain.be/ispgroup/yawtb).

The terms D`, DT
` , Dν

` , Dκ
` and Dc

` are averaged over the time duration of each
simulation (after reaching statistically steady conditions), and space over the region of
the cell investigated, to get D`, DT

` , Dν
` , Dκ

` and Dc
`. In particular, approximately 900

independent snapshots of the flow have been used. The snapshots have been collected
over a simulation of approximately 300 reference time durations (in the steady state).
Statistical convergence of the budgets has been checked verifying that the results are
basically unchanged using half of the data.

Concerning the spatial regions analysed in this work, we have studied the energy
budgets in two regions of the plane at z= 0. The bulk region is chosen by excluding
100 data points from each sidewall, that is approximately 4 times the boundary-layer
thickness δθ for the case at Ra= 107, and approximately 7δθ for Ra= 108. In wavelet
analysis on non-periodic flows, it is necessary to eliminate a border region to avoid
spurious effects, and this choice of the bulk turns out to minimize the effects of
the boundaries on the computation of the convolution integrals (4.4)–(4.8). We have
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FIGURE 4. Time- and space-averaged energy balance terms (a), and their time-averaged
spatial standard deviations (b), as a function of scale ` over the Kolmogorov length scale
η, in the bulk region for Ra=107. Spatial averages and standard deviations were computed
in the bulk region, on a horizontal slice at half-height of the cell. The terms of the energy
balance at scale ` are: DT

` : thermal energy term; D`: kinetic energy transfer term; Dκ
` :

thermal dissipation term; Dν
` : viscous dissipation term; Dc

`: exchange term between kinetic
and thermal energy; the two vertical black lines correspond to the Kolmogorov scale, η,
and to the scale where the Bolgiano–Oboukhov regime becomes visible in the scalings.

checked that equivalent results are obtained with a different choice of the bulk region
(from 0.6H to 0.9H. The second region analysed is the region adjacent to the sidewall.
We have chosen the region which extends from the sidewall 8δθ for the case at Ra=
107, and approximately 15δθ for Ra = 108. We have checked that results are barely
modified by taking a little larger or smaller region.

4.4. Scaling laws
In figures 4–5, we show the main results of the present work, that is the scaling
behaviour of the mean and standard deviations of all terms of equations (3.2)–(3.3)
once averaged over space and time for both Ra numbers.

Comparing figure 4(a) with 5(a), we see that the balance of terms depends strongly
upon the Rayleigh number: at Ra = 107, the viscous terms Dν

` is the largest at all
scales, indicating that we are mainly in a dissipative regime. There is a small inertial
interval around `/η= 10, where the kinetic energy transfer term D` and the thermal
energy term DT

` peak, indicating non-trivial turbulent behaviour. Indeed, the standard
deviation (right panel) displays small inertial scaling range at this location. Moreover,
the buoyancy term start being appreciable at `≈ 5η and becomes dominant at `≈ 20η.
In contrast, for Ra = 108, the viscous term is dominant only up to ` ≈ 5η, and the
coupling term Dc

` becomes dominant for ` ≈ 25η, indicating a strongly convective
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FIGURE 5. Time- and space-averaged energy balance terms (a), and their time-averaged
spatial standard deviations (b), as a function of scale ` over the Kolmogorov length scale
η, for Ra= 108. See figure 4 for spatial averaging details, and description of legend terms.

regime. The kinetic energy transfer term D` and the thermal energy term DT
` still

peak around `/η= 10, with a wider inertial scaling range for the standard deviation.
Still concerning the exchange term, it is worth noting that, at scales between the
dissipative scale and the integral one, this term may be negative. This is found to be
particularly true in the regions not far from the walls. However, it should be noted that
the scaling analysis of the exchange term Dc

` is rather inconclusive with the present
data, indicating that boundary effects are important.

As anticipated, the standard deviations of the observables display a much cleaner
scaling than the mean quantities. We thus focus on them for the discussion of the
scaling shape. Looking at the scaling of fluctuations figures 4(b)–5(b), the dynamics
appears qualitatively quasi-independent of Ra number, at least in the present range,
at variance with the scalings provided by the global averages. In practice, scalings
at Ra= 108 are clearer because of the smaller finite-Re effect in this more turbulent
regime. A qualitative picture could however also be inferred from the lower Ra
number. In any case, to be sure to limit the viscous effect, we concentrate on the
behaviour at Ra= 108 in the following.

In the range 5η . ` . 30η, the buoyancy term is found to be greater than the
nonlinear thermal transfer but smaller than the kinetic energy one. This means that
LBO can be physically estimated as LBO ∼ 5÷ 10η, and that, starting from this point,
Bolgiano scalings may be expected. This empirical estimate differs therefore from that
obtained using the global definition (4.2).

In this range, the thermal dissipation term is consistent with Dκ
∼ `−8/5, while the

viscous one scales like Dν ∼ `
−4/3. In both cases, the scaling appears to be robust

and extends over approximately one decade. Therefore, it turns out that in this range
a Kolmogorov inertial scaling for the velocity but a BO scaling for the temperature
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FIGURE 6. (a) Compensated plots of the budgets terms and the best fitting curves.
(b) Compensated plots of the budgets terms and the conjectured scaling exponents related
to similarity analysis.

are found. Finally, the nonlinear transfer term of the temperature equation is well
reproduced by DT

∼ `−4/15. Below LBO, for ` . 5η scalings change clearly for all
observables, but it is hard to extract the slope. As a conjecture we have used the
typical exponents related to similarity analysis and the related curves are displayed in
figures 4(b)–5(b). To corroborate the picture, we have extracted the scaling exponents
via the fitting of our data, and they are presented in table 1 with the corresponding
error for Ra= 108. We present also in figure 6 the compensated plots both for the best
fitting exponents and the conjectured ones. It is seen that the numerical exponents are
all consistent with the similarity ones, which will be therefore used for the following
discussion.

We can now analyse the scalings found from figure 5 in terms of scaling exponents
within the general Kolmogorov–Onsager framework presented in § 3.4. From `' 4η a
Bolgiano scaling is found for Dκ

` , so that hT
= 1/5. This is in line with the previous

empirical estimate of LBO ∼ 5η, where we observed that the exchange term becomes
more important than the thermal transfer term. However, in the range η < ` . 30η,
the velocity observables follow a Kolmogorov-like scaling with D` ∼ `

0, Dν
` ∼ `

−4/3,
such that hu

= 1/3. Consistently, DT
` ∼ `

hu
+2hT

−1
= `−4/15, as displayed in figure 5

for ` ' 5 ÷ 10η. Hence, in this range, the buoyancy term remains smaller than the
nonlinear inertial term of kinetic energy and a Kolmogorov scaling is observed for
the velocity. In the range ` > 30η, the buoyancy effects are dominant with respect to
all other terms, and a pure Bolgiano–Oboukhov scaling should be present. Boundary
effects and the lack of a sufficient number of scales make this conjecture speculative
for the moment. In the discussion section we suggest that anisotropy is responsible
for the mixed scaling we obtain. On the other hand, in the range ` < LBO ≈ 5η, all
the scalings might be consistent with the Kolmogorov picture, even though we can
only analyse a very small range of scales. In particular, DT

` ∼ `
0, and Dκ

` ∼ `
−4/3.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1000


885 A14-18 V. Valori, A. Innocenti, B. Dubrulle and S. Chibbaro

102101100

¶/˙
10-1 102101100

¶/˙
10-1

0.01(a) (b)

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

d
¶T , d

¶, 
d

¶˚ , d
¶˜ , d

¶c

d
¶T , d

¶, 
d

¶˚ , d
¶˜ , d

¶c

100

10-1

10-2

10-3

10-4

10-5

10-6

d¶
T

d¶

d¶
˚

d¶
˜

d¶
c

¢ (l/˙)-8/5

FIGURE 7. Time- and space-averaged energy balance terms (a) and their time-averaged
spatial standard deviations (b), as a function of scale ` over the Kolmogorov length scale
η, for Ra= 108. Spatial averages and standard deviations were computed in the boundary-
layer region, on a horizontal slice at half-height of the cube. The terms of the energy
balance at scale ` are: DT

` : thermal energy term; D`: kinetic energy transfer term; Dκ
` :

thermal dissipation term; Dν
` : viscous dissipation term; Dc

`: exchange term between kinetic
and thermal energy; the vertical black line corresponds to the Kolmogorov scale, η.

It is interesting to look also at statistics in the region near to the walls, that is
in the boundary layer. Indeed, as displayed in figure 2, we expect that Llocal

BO has a
minimum in the boundary-layer region very close to the walls, and therefore buoyancy
effects should start to be dominant even at a smaller scale. Yet, it is important to note
here that, with respect to the results obtained in the bulk region, the boundary-layer
statistics should be handled with much care and in no case considered as conclusive,
for several reasons. To get these statistics we consider approximately 15δθ , which
means only the first 200 points near to each boundary, so that the number of scales
available is small and no clear scale separation can be expected. Furthermore, these
regions are strongly non-homogeneous and impacted by viscous effects, inducing
without any doubt spurious effects on the statistics, so that the significance of the
results must not be considered certain. In figure 7, we show the results obtained for
the different observables at Ra= 108. Even with the caveat about the applicability of
the theory near the boundaries, the results are interesting. In this region a BO scaling
seems to be found for both temperature and velocity in the range η . ` . 10η, in
particular scalings are consistent with D` ∼ `

4/5,DT
` ∼ `

0,Dκ
` ∼ `

−8/5. Yet the viscous
term appears to have a scaling Dν ∼ `

−1. It is therefore a little steeper than what is
expected in the BO range. These findings confirm the importance of local properties
of the fields and the necessity of accurately disentangling them from more global
effects. Since near the boundaries LBO becomes small, the BO scalings are more
effective for both velocity and temperature. The slightly inconsistent behaviour of
the velocity dissipation term is thought to be related to finite Re effects, since near
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the boundaries the local Re number is not large and the similarity arguments à la
Kolmogorov are not expected to hold.

5. Discussion and conclusions

We have carried out a very highly resolved DNS analysis of the small-scale
properties of turbulent Rayleigh–Bénard convection in a cubic cell at Pr = 1. The
unusually accurate resolution allows us to go well below the Kolmogorov length. We
have used two simulations at Ra = 107 and Ra = 108. It has long been known that
there is a transition between a chaotic to a fully developed state around these values
of Ra (Siggia 1994). Although it is now widely accepted that the transition is not
sharp as initially guessed (Castaing et al. 1989) it is interesting to capture possible
signatures of a transition in scaling laws. Our main goal was to apply a new approach
based on the weak formulation of the mathematical problem, and to extract in this
way scaling exponents.

Previous experiments and numerical simulations have shown that BO scaling should
be easier to observe at higher Pr number (Kaczorowski & Xia 2013). However, the
dependence on the Pr number turned out to be moderate, and given that we need
a very high resolution to properly compute local scaling at small scales, numerical
simulations respecting the level of accuracy we have required in the present work
would be unfeasible. Considering also that our main goal here was to show how
new insights may come from the weak approach to turbulent problems, this explains
why we have simulated a flow with Pr = 1. The question of investigating some
local properties at higher Pr remains nevertheless relevant in many respects. As
already indicated in previous numerical works, we have found that Llocal

BO is a strongly
varying function of the position, on a horizontal cross-section of the domain, with
the maximum at the vertical walls and a minimum approximately at the end of
the boundary layer. The complex behaviour of the length is due to its dependence
on the thermal and kinetic dissipation. The global LBO is found more or less the
same for the two Ra and of the order of the fluid layer height. Globally speaking,
the results concerning the observable statistics of the flow are in good agreement
with previous results. Since our simulations have been conducted with a different
method than in the other studies, this is an indication of robustness that corroborates
the findings. From the theoretical point of view, we have presented the derivation
of the weak formulation or coarse-grained version of the Boussinesq equations for
turbulent convection, which allows a smoothed treatment of instantaneous fluctuations.
The resulting set of equations have been averaged in the present work to get the
generalization of the Kármán–Howarth–Monin and Yaglom equation for the fully
non-homogeneous problem. In our geometry, these equations are analogous to those
obtained in recent work directly from the Boussinesq equations (Rincon 2006) and
permit a clear scale-by-scale analysis of the turbulence cascade in the physical space.
This original approach is useful to obtain scaling behaviour in a less noisy manner
with respect to more standard statistical procedures. Moreover, when applied to the
fluctuating equations, it allows us to get information on the probability distribution of
fluxes, which is crucial to characterize extreme events and intermittency. Therefore,
the approach presented in this work should be valuable to get new insights also in
convective turbulence.

Using this filtering approach, we have analysed the scalings characterizing the
kinetic energy and temperature variance cascade on a horizontal cross-section of
the domain. The different scalings we found are reported in table 2. We have not
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found evidence of a standard BO scaling, which would mean hu = 3/5, hT = 1/5.
Instead, our numerical experiment points out that only the temperature follows this
BO scaling, so that buoyancy effects are found to be dominant on the temperature
variance budget at small scales. Yet the velocity follows the Kolmogorov 41 scaling
hu = 1/3, at least in the available range of scales.

Such peculiar behaviour can be explained by removing the isotropic condition, and
consider that the horizontal velocity increments and the vertical velocity increment
scale with a different exponent, respectively hH

u and hV
u . In such a case, it is easy to see

that the scaling exponents D, DT , Dν , Dκ will be respectively min(3hH
u − 1, 3hV

u − 1),
min(hH

u +2hT,hV
u +2hT), min(2hH

u −2,2hV
u −2), 2hT −2. If we take hH

u =1/3, hV
u =3/5

and hT = 1/5, we thus get the theoretical results of table 2.
Moreover, the present results are compatible with the previous studies by Kunnen

et al. (2008), Kaczorowski & Xia (2013). Although the scalings were extracted on
very few points, temperature structure functions indicated a BO scaling whereas
the velocity structure functions were less well defined. More importantly, only the
axial functions showed some hint of BO scaling, while the horizontal ones had no
conclusive scaling. That points to a possible anisotropic effect which may affect
only velocity. Moreover, in the numerical study by Camussi & Verzicco (2004) a
BO scaling for the temperature and a Kolmorgorov 41 for the velocity were also
found. In experiments, while evidence of BO scaling on the temperature has been
available for some time (Wu et al. 1990; Cioni et al. 1995; Ashkenazi & Steinberg
1999), velocity scaling is more elusive and the effect of anisotropy has been also
reported (Ching et al. 2004; Sun, Zhou & Xia 2006; Ching 2007).

Then, the presence of lateral walls is found to be key in the possible change of
scaling in the core of the flow. Indeed, because of walls: (a) Llocal

BO experiences large
variability and notably may be ten times less than the global one that is of the order
of the cell length. This explains why, in horizontal homogeneous simulations, the BO
range should not be observed at least in the core of the flow (Lohse & Xia 2010;
Verma, Kumar & Pandey 2017). (b) Since the flow is non-homogeneous, the budget
equation for kinetic energy and temperature variance are complex, and transport terms
play locally a role, as recently emphasized in a scale-by-scale analysis using another
approach (Togni et al. 2015). In particular, it is found that, at variance with the
homogeneous case, the coupling term may be locally negative at small scales, and
in particular in the vicinity of the boundary layer, so that kinetic energy is converted
to potential energy. Our numerical evidence hence confirms a previous theoretical
analysis (Lvov 1991; L’vov & Falkovich 1992). Instead, in the homogeneous case
the contrary has been found, which may lead to the impossibility of observing a
BO scaling (Verma et al. 2017). (c) The contribution of the buoyancy coupling term
is found to be important at all scales, as reported previously (Togni et al. 2015),
however, its relative importance with respect to other terms differs. Notably, it is
found to be dominant in the temperature budget at almost all scales, whereas the
inertial term of the kinetic energy budget is the most important term at small scales.

From the above considerations, we can draw the following picture: the presence
of vertical walls makes Llocal

BO small, and buoyancy is effective in the budget of
temperature variance over a wide range of scales. That allows the emergence of
a BO scaling on the temperature and on the vertical velocity component in the
whole core region. On the other hand, in the bulk region, the nonlinear inertial term
remains much greater than the buoyancy one and starts decreasing only at scales
too large to allow the identification of a possible BO scaling for the horizontal
velocity components, hence the Kolmorgorov 41 scaling is observed. In the vertical
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boundary-layer region, Llocal
BO may be much smaller than the global one and the

non-homogeneous character of the region makes the redistribution among velocity
components important. The local approach used here indicates indeed a possible BO
scaling for the temperature and velocity, but some discrepancy in the viscous term
that is attributed to a finite Re correction. It is worth emphasizing, however, that the
small number of points available in the vertical boundary layer and the difficulties
inherent to such a non-homogeneous region make our reasoning not at all definitive,
and begs a deeper analysis of the issue. In particular, the scaling of the velocity in
this region is also compatible with hu= 2/3, which is typical of shear flows (Biferale
& Procaccia 2005).

As far as it concerns the effect of Rayleigh number, comparing two set of results
obtained at different Ra, we have also shown that some differences are related to
the transition from a chaotic (Ra = 107) to a more turbulent regime (Ra = 108). In
particular, the viscous terms in the energy and temperature budgets are important at
all scales at Ra = 107, and not only in the vertical boundary layer. This indicates
that much of the transport is always due to viscous diffusion, whereas it becomes
negligible at Ra= 108 at least in the core of the flow.

In the present paper, we have focused only on average quantities, performing
the average over selected portions of the domains. The interest of our formulation,
however, is that it also provides an expression for the local transfer quantities. It
would be interesting to connect those local energy transfer to possible intermittency
of the convective fluids. We leave that for future work.
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