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The Taylor–Melcher (TM) model is the standard model for describing the dynamics
of poorly conducting leaky dielectric fluids under an electric field. The TM model
treats the fluids as ohmic conductors, without modelling the underlying ion dynamics.
On the other hand, electrodiffusion models, which have been successful in describing
electrokinetic phenomena, incorporate ionic concentration dynamics. Mathematical
reconciliation of the electrodiffusion picture and the TM model has been a major
issue for electrohydrodynamic theory. Here, we derive the TM model from an
electrodiffusion model in which we explicitly model the electrochemistry of ion
dissociation. We introduce salt dissociation reaction terms in the bulk electrodiffusion
equations and take the limit in which the salt dissociation is weak; the assumption
of weak dissociation corresponds to the fact that the TM model describes poor
conductors. Together with the assumption that the Debye length is small, we derive
the TM model with or without the surface charge convection term depending upon
the scaling of relevant dimensionless parameters. An important quantity that emerges
is the Galvani potential (GP), the jump in voltage across the liquid–liquid interface
between the two leaky dielectric media; the GP arises as a natural consequence of
the interfacial boundary conditions for the ionic concentrations, and is absent under
certain parametric conditions. When the GP is absent, we recover the TM model. Our
analysis also reveals the structure of the Debye layer at the liquid–liquid interface,
which suggests how interfacial singularities may arise under strong imposed electric
fields. In the presence of a non-zero GP, our model predicts that the liquid droplet
will drift under an imposed electric field, the velocity of which is computed explicitly
to leading order.

Key words: drops and bubbles, electrohydrodynamic effects

1. Introduction
1.1. Background

The Taylor–Melcher (TM) model was first proposed by Taylor to describe the
deformation of an oil droplet immersed in another poorly conducting medium

† Email address for correspondence: ymori@umn.edu
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under the influence of a DC electric field (Taylor 1966). The TM model and its
variants have since been widely used to model electrohydrodynamic phenomena of
poorly conducting (or leaky dielectric) fluids, ranging from electrodeformation, ink-jet
printing, droplet fabrication in microfluidics and oil separation (Melcher & Taylor
1969; Saville 1997).

The TM model treats the two leaky dielectric fluids as electrically neutral media
of constant conductivity and dielectric constant. Under an imposed electric field,
bulk currents carry electric charge to the interface of the two leaky dielectric fluids,
leading to an interfacial accumulation of monopolar charge (which we shall call the
electric monopolar layer, or EML). The stress generated by this interfacial charge
(EML) generates fluid flow, and this fluid flow, in turn, results in interfacial charge
convection. In his original analysis, Taylor neglected charge convection (Taylor 1966),
which leads to the decoupling of the electrostatic and fluid equations. This made it
possible to obtain explicit solutions under the assumption of small droplet deformation.
Although this approximation has since been commonly used (Melcher & Taylor 1969;
Saville 1997), some authors have argued that surface charge convection is important
in explaining electrohydrodynamic phenomena in certain situations, especially under
strong electric fields (Feng & Scott 1996; Xu & Homsy 2006; Roberts & Kumar
2009, 2010; Salipante & Vlahovska 2010, 2013; He, Salipante & Vlahovska 2013;
Hu, Lai & Young 2015; Lanauze, Walker & Khair 2015; Vlahovska 2016; Das &
Saintillan 2017a,b; Sengupta, Walker & Khair 2017).

Electrical currents in leaky dielectrics are carried by ions. The TM model, however,
treats electrical current as ohmic, without modelling the underlying ionic concentration
dynamics. Equations of ionic electrodiffusion and advection, sometimes referred to as
Poisson–Nernst–Planck (PNP) models, have been widely used to model the dynamics
of electrolyte solutions (Rubinstein 1990). PNP models have been particularly
successful in describing electrokinetic phenomena, in which electrical double layers
(EDL) at material interfaces play a key role (Delgado 2001; Squires & Bazant 2004;
Bruus 2007; Bazant et al. 2009; Chang & Yeo 2010). A more complete description
of electrohydrodynamic phenomena of poorly conducting media should thus be based
on the PNP equations of ionic transport, and the TM model should be derived as a
suitable limit of such a model. The absence of such a PNP model for leaky dielectrics
has resulted in separate developments of EML and EDL theories; a derivation of the
TM model from a suitable PNP model promises to unify our understanding of EML
and EDL phenomena (Bazant 2015). A need for such a model is also highlighted by
the presence of electrohydrodynamic phenomena that cannot be explained by the TM
model, including the drift of droplets under DC electric fields (Taylor 1966; Vizika
& Saville 1992; Saville 1997) and the formation of singularities under strong fields
(de la Mora 2007; Brosseau & Vlahovska 2017; Sengupta et al. 2017).

There have been several prior attempts to derive the TM model from a PNP model
(Baygents & Saville 1990; Zholkovskij, Masliyah & Czarnecki 2002; Schnitzer
& Yariv 2015). In Zholkovskij et al. (2002), the authors consider the limit of
weak electric field and small Debye length. In a recent study, Schnitzer & Yariv
(2015) perform an asymptotic analysis based on an earlier attempt by Baygents &
Saville (1990), arriving at the TM model in the limit of small Debye length and
large electrical field strength. There are several limitations in the above studies. All
analyses are limited to near spherical interfacial geometry, and do not produce the
surface charge convection term in the TM model. The study of Zholkovskij et al.
(2002) is limited to binary electrolytes of equal diffusivity. In Schnitzer & Yariv
(2015), the product of diffusivity and viscosity for each ion is assumed constant
across the two solvents.
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Leaky dielectric theory via the weak electrolyte limit 69

One of the main results of our paper is a derivation of the TM model with surface
charge convection as a limit of a suitable PNP model for arbitrary interfacial geometry
without parametric assumptions on the diffusivity of ions or the viscosity of the fluids.
Furthermore, when the Galvani potential is present at the interface at rest (see below),
we show that the droplet will undergo electromigration to leading order. We now give
an overview of our results emphasizing the physical picture.

1.2. Overview of results and comparison with previous studies
1.2.1. The electrodiffusion model, the weak electrolyte assumption and the charge

diffusion model
The most important feature of our study is that we consider a weak electrolyte

solution. Consider the salt dissociation reaction:

S
C+ +A−, (1.1)

where S is the salt and C+ and A− are the cation and anion respectively. In a weak
electrolyte, most of the salt does not dissociate into its constitutive ions. That is to
say, if c∗ = a∗ and s∗ are the typical concentrations of the cation/anions and the salt
respectively, we have:

c∗
s∗
≡ α� 1. (1.2)

This weak electrolyte assumption corresponds to the fact that we are interested in
poorly conducting media.

In § 2, we present our electrodiffusion model. Let Ωin,ex be the regions occupied
by the interior and exterior leaky dielectrics respectively and let Γ be the interface
between the two media (see figure 6). We write down the electrodiffusion–advection
equations for the solute species S, C+ and A− with dissociation reaction terms to be
satisfied inside Ωin and Ωex (2.1)–(2.5). The unknown functions are the concentrations
of the cation c, anion a and solute s (2.1)–(2.3), as well as the electrostatic potential
φ (2.4), velocity field u and the pressure p (2.5). These equations, satisfied in the bulk,
are essentially the same as those presented in Saville (1997); we shall thus refer to this
as the modified Saville model. The main difference is that we prescribe the requisite
interfacial conditions for the ionic concentrations at Γ whereas Saville (1997) does
not. As we shall see, this difference is crucial; in particular, these interfacial conditions
lead naturally to the Galvani potential, which plays a central role in our analysis (see
§ 1.2.2). Another important difference is our identification of the small parameter α
(see (1.2)) that captures the weak electrolyte limit.

In the modified Saville model, we assume that the interface Γ is a sharp
(mathematical) interface that carries no chemical density, and hence no charge
density. Since the interface Γ carries no charge, both the electrostatic potential and
the electric flux density must be continuous across the interface Γ (2.9):

φ|Γin = φ|Γex, εin
∂φ

∂n

∣∣∣∣
Γin

= εex
∂φ

∂n

∣∣∣∣
Γex

, (1.3a,b)

where εin,ex is the interior/exterior dielectric constant and ·|Γin,ex denotes the value of
the quantity in question evaluated at the interior or exterior face of the interface Γ
respectively, and n is the outward normal on Γ .
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Our assumption above that Γ carries no charge is motivated by simplicity, and is in
contrast to Saville (1997), Schnitzer & Yariv (2015). Note that, in the modified Saville
model, the Debye layer is fully resolved; assuming that Γ carries surface charge, then,
amounts to claiming that there is a concentrated charge density at the liquid–liquid
interface (thinner than the Debye layer) much like the Stern layer for solid–liquid
interfaces (Bazant et al. 2009). It is not clear if such a charge density is of significant
magnitude even if present. From a modelling perspective, it is easy to include such a
charge density, at the expense of making the model more complex. In fact, one of the
interesting features of our derivation in § 4 is that the surface charge density in the
Taylor–Melcher model appears naturally in a suitable limit (to be discussed shortly)
even though we do not explicitly have a surface charge density to start with.

For the ionic concentrations c and a, we first impose the usual flux continuity
conditions across Γ . We further assume that the electrochemical potentials of c and
a are equal across Γ :

EC,in + RT ln(c|Γin)+ Fφ|Γin = EC,ex + RT ln(c|Γex)+ Fφ|Γex,

EA,in + RT ln(a|Γin)− Fφ|Γin = EA,ex + RT ln(a|Γex)− Fφ|Γex,

}
(1.4)

where RT is the ideal gas constant times the absolute temperature and F is the Faraday
constant. Here and henceforth, the subscripts C, A, S pertain to quantities associated
with the cation, anion and salt respectively. The constants E·,· reflect the differences in
solvation energy of the cation/anions across in the interior and exterior leaky dielectric
media. Using (1.3), we may write the above as follows:

c|Γin = lCc|Γex, a|Γin = lAa|Γex, lX = exp(−(EX,in − EX,ex)/RT), X =C, A. (1.5a−d)

The constants lC and lA are the concentration ratios across the interface Γ , and are
known as partition coefficients (Hung 1980). The above boundary conditions are the
same as those used in Zholkovskij et al. (2002).

We identify two small parameters in the modified Saville model, the ratio α in (1.2)
and the ratio δ between the Debye length rD and droplet size L:

δ =
rD

L
, rD =

√
ε∗RT/F

Fc∗
, (1.6a,b)

where ε∗ is the representative dielectric constant and F is the Faraday constant. The
assumption that δ is small is well accepted, and is used in all previous derivations
of the Taylor–Melcher model (Baygents & Saville 1990; Zholkovskij et al. 2002;
Schnitzer & Yariv 2015). As discussed above, the smallness of α stems from our
weak electrolyte assumption. We first take the limit α→ 0 and subsequently take the
limit δ→ 0. This is most natural if

α� δ� 1. (1.7)

In § 3, we take the limit α → 0. Under suitable scaling, α � 1 implies that the
dissociation reaction (1.1) is so fast that it is effectively at equilibrium:

ca
s
=Keq, (1.8)

where Keq is the equilibrium constant for this reaction. Since we may assume that the
salt concentration s is constant in space and time (with potentially different values in
Ωin and Ωex), the above relation allows us to eliminate both c and a in favour of the
charge density q = c − a. The resulting model is the charge diffusion model, whose
unknown functions are q, φ, u and p. The charge q satisfies a nonlinear drift-diffusion
advection equation.
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Leaky dielectric theory via the weak electrolyte limit 71

rD(O(∂))
Øin

Øex

FIGURE 1. (Colour online) When lC 6= lA, an electric double layer develops across the
interface Γ even when the system is at rest, with a resulting voltage jump (the Galvani
potential) of φ∆ = (RT/2F) ln(lC/lA).

1.2.2. The electric double layer and the Galvani potential
We subsequently take the limit δ= rD/L→ 0 in the charge diffusion model. In the

bulk, away from the interface Γ , we obtain electroneutrality (q=0) and Ohm’s law for
electric current conduction. A spatially constant ohmic conductivity results naturally
from the weak electrolyte limit and electroneutrality. This is in contrast to Schnitzer
& Yariv (2015), in which spatially constant ohmic conductivity results from strong
advection due to a large imposed electric field.

At the interface Γ , the limit δ → 0 results in a boundary layer of thickness
rD. The properties of this Debye layer depends critically on the ratio of the
partition coefficients lC/lA. When lC/lA 6= 1, an EDL with a voltage jump φ∆ =
(RT/2F) ln(lC/lA) develops across the Debye layer, even in the absence of an imposed
electric field (see figure 1). We may identify φ∆ as the Galvani potential, whose
presence is a well-documented feature of liquid–liquid interfaces (Girault & Schiffrin
1989; Reymond et al. 2000) (much like the ζ potential of liquid–solid interfaces).
The cases φ∆ = 0 and φ∆ 6= 0 lead to fundamentally different behaviours. The case
φ∆ = 0, treated in § 4, leads to the Taylor–Melcher model, whereas the case φ∆ 6= 0,
treated in § 5, leads to droplet electromigration (see figure 2 for schematic).

We now include a heuristic calculation as to how the Galvani potential φ∆ arises.
Consider a patch of the interface Γ . This interface is sandwiched by Debye layers on
both sides of the interface, as shown in figure 3. Let c0

in be the cation concentration
on the interior face of Γ and c∞in be the cation concentration just outside the Debye
layer (in the outer layer). Adopt a similar notation for the exterior concentrations c0,∞

ex

as well as the anion concentrations a0,∞
in,ex. We also introduce the notation φ0

in,ex for the
voltage at the interior/exterior face of Γ . The Galvani potential is the difference:

φ∆ = φ∞in − φ
∞

ex . (1.9)

Suppose the system is in equilibrium. Then, there is no chemical flux across the
Debye layer, and thus, the chemical potentials across the Debye layer must be equal.
For the cation concentration, we must thus have:

EC,in + RT ln c∞in + Fφ∞in = EC,in + RT ln c0
in + Fφ0

in

= EC,ex + RT ln c0
ex + Fφ0

ex = EC,ex + RT ln c∞ex + Fφ∞ex .

}
(1.10)

The second equality follows from (1.4). Therefore,

φ∆ =
RT
F

ln
(

c∞ex

c∞in

)
−

1
F
(EC,in − EC,ex). (1.11)
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Modified Saville model

Charge diffusion model

(small Debye length limit)

Taylor–Melcher model

(weak electrolyte limit)

Droplet
electromigration

FIGURE 2. (Colour online) A schematic showing the inter-relation between the different
models and asymptotic limits. When α→ 0 leads to the charge diffusion model (§ 3). We
subsequently take the limit δ→ 0. Here, the limiting behaviour is fundamentally different
depending on whether lC = lA or lC 6= lA. When lC = lA, we obtain the Taylor–Melcher
model (§ 4) whereas when lC 6= lA we obtain droplet electromigration under an imposed
electric field (§ 5).

Debye
layer

Øin

Øex

ex ex ex

exexex

in

in in in

in in

FIGURE 3. (Colour online) Schematic diagram illustrating the heuristic derivation of the
Galvani potential. The Galvani potential φ∆ = φ∞in − φ

∞

ex is the difference in the voltage
across the Debye layer.

A similar calculation for the anion concentration yields:

φ∆ =−
RT
F

ln
(

a∞ex

a∞in

)
+

1
F
(EA,in − EA,ex). (1.12)

In the limit as δ→ 0, the bulk (outer layer) is electroneutral, and therefore, a∞in = c∞in
and a∞ex = c∞ex . Thus, combining (1.11) and (1.12), we have:

φ∆ =
1

2F
(−(EC,in − EC,ex)+ (EA,in − EA,ex))=

RT
2F

ln
(

lC

lA

)
, (1.13)

where we used (1.5) in the last equality. As can be seen from (1.13), the EDL and its
attendant Galvani potential arise as a consequence of the mismatch in the solvation
energies (or partition coefficient) between the cation and anion. The presence of such
a potential jump when lC 6= lA is also noted in Zholkovskij et al. (2002).
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1.2.3. Derivation of the leaky dielectric model when lC = lA, and implications for
singularity formation

In § 4, we consider the limit δ→ 0 in the charge diffusion model when lC = lA,
in which case the Galvani potential φ∆ = 0. In this case, there is no interfacial
layer at rest when there is no flow. It is only with flow that an interfacial charge
layer of Debye layer thickness emerges at Γ . Assume that the surface tension γ
scales like δ2 and a suitably defined Péclet number Pe scales like δ−2 as δ → 0.
This particular scaling is chosen so that the electrohydrodynamic time scale, the
Maxwell–Wagner charge relaxation time scale and the capillary time scale are all of
the same order (Salipante & Vlahovska 2010). A boundary layer analysis then yields
the TM model with charge convection in the limit as δ→ 0 for arbitrary interfacial
geometry. An interesting feature of our derivation is that, unlike the PNP models of
Saville (1997), Schnitzer & Yariv (2015), the modified Saville model, and hence the
charge diffusion model, does not have any built-in surface charges; the surface charge
density qΓ in the TM model emerges naturally from the bulk charge q of the charge
diffusion model as δ→ 0. Variants of the TM model are obtained when Pe is scaled
differently with respect to δ. When Pe is smaller than O(δ−2), we recover the TM
model without surface charge convection to leading order. It should be pointed out,
however, that Pe=O(δ−2), γ =O(δ2) is the thermodynamically canonical scaling, the
precise meaning of which is discussed in appendix A.

In addition to the recovery of the TM model, our analysis yields a set of equations
governing the charge distribution inside the interfacial Debye layer, which we study in
§ 4.2. These equations show that the interfacial charge density profile depends strongly
on the properties of the local flow field. Let u‖ be the tangential component of the
flow field and ∇Γ · u‖ be its surface divergence. Consider a point x0 ∈ Γ at which
point the flow is stagnant (u = 0), and suppose ∇Γ · u‖(x0) > 0. Then, the Debye
layer charge density decays supra-exponentially at x0 with distance from the interface
Γ . On the other hand, if ∇Γ · u‖(x0) < 0, the Debye layer charge density decays only
algebraically with distance from the interface, resulting in a thicker charge layer. In
fact, when ∇Γ · u‖(x0) 6 −1/τ , where τ is the charge relaxation time scale of the
bulk medium, the boundary layer assumption breaks down at x0.

We now give a heuristic explanation as to why such a breakdown may take place
using only the TM model. Suppose the surface Γ is stationary (but the fluid velocity,
of course, is non-zero) and, at a point x0 ∈ Γ , the flow is stagnant. Then, at x0, we
have the equation:

∂qΓ
∂t
=−(∇Γ · u‖)qΓ −

[
σ̂
∂φ

∂n

]
,

[
ε
∂φ

∂n

]
= qΓ , (1.14a,b)

where we have followed the notation of § 4 (see (4.61) and (4.62)). Here, σ̂ is the
bulk conductivity. The above suggests that:

∂qΓ
∂t
=−(∇Γ · u‖)qΓ −

[
σ̂
∂φ

∂n

]
∼−

(
∇ · u‖ +

1
τ

)
qΓ , τ =

ε

σ̂
. (1.15)

The relation ∼ is meant to indicate that this is only approximate; indeed, ∼ can
be replaced by an equality only if the value of τ = ε/σ̂ is equal in Ωin and
Ωex. Nonetheless, if ∇ · u‖ + 1/τ < 0, the surface charge qΓ is expected to grow
exponentially, leading to unbounded accumulation of surface charge. As we shall see
in § 4.2, the precise condition for boundary layer breakdown is:

∇Γ · u‖ +
1
τmax
6 0, (1.16)
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Øin

Øex

FIGURE 4. (Colour online) Suppose Γ is stationary and x0 ∈ Γ is a stagnation point of
the flow field and ∇Γ · u‖ < 0 (see discussion for details). Then, the surface charge q
will be carried to the point x0 via the flow field (green arrows) and accumulate at x0,
potentially overwhelming charge relaxation.

where τmax is the larger of the values of τ in Ωin or Ωex (see (4.72)). The physical
picture that emerges is that, when surface charge convection is strong enough, it may
overwhelm bulk charge relaxation leading to boundary layer breakdown (see figure 4).

This suggests the following scenario for the formation of interfacial geometric
singularities, such as the Taylor cone (de la Mora 2007) or the recently reported
equatorial streaming (Brosseau & Vlahovska 2017). Stronger electric fields may
generate strong charge convection at the interface, which will result in the thickening
of the Debye layer at locations where ∇Γ · u‖ < 0. At a certain field strength,
the Debye layer charge distribution broadens to the extent that the boundary
layer assumption fails, at which point the TM model will no longer be valid. At
this point, the interfacial stress balance also fails, indicating the emergence of
geometric singularities. Boundary layer matching cannot be achieved if surface charge
accumulation due to the flow field overwhelms conductive charge dissipation; at this
point, stress balance is also violated. When the prolate deformation is favoured, strong
electric fields should lead to charge accumulation at the ‘poles’ where the surface
divergence is maximally negative, leading to a breakdown of the interfacial charge
layer and eventually to a Taylor cone. The recent paper of Sengupta et al. (2017)
indicates that run-away surface charge accumulation may indeed be the mechanism
for singularity formation in prolate drops. On the other hand, if oblate deformation
is favoured, strong electric fields may lead to charge accumulation at the ‘equator’,
leading to equatorial streaming (Brosseau & Vlahovska 2017).

The foregoing derivation assumed that the imposed voltage is of the order of the
thermal voltage. In § 4.3, we extend our derivation to the case when the imposed
electric field is large. Following Saville (1997), Schnitzer & Yariv (2015), let β be
the ratio between the imposed voltage (characteristic electric field times droplet size)
and the thermal voltage. Then, under the assumption:

1� β�
1
δ

(1.17)

we can obtain the TM model, in much the same way as before. An important
difference, however, is that there are now two boundary layers (figure 11). The charge
layer widens to rE =

√
βrD inside of which is an inner–inner layer of width rD.

1.2.4. Comparison with previous derivations of the Taylor–Melcher model
Before proceeding further with an overview of our results, we compare our

derivation of the TM model outlined above with those of Baygents & Saville (1990),
Zholkovskij et al. (2002), Schnitzer & Yariv (2015).
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In all of these studies, the authors consider a standard PNP model for strong binary
electrolytes in which ions are completely dissociated, in contrast to our derivation in
which we consider weak electrolytes. Indeed, the derivation in these studies do not
seem to rely on whether the ionic medium is a poor or good conductor. In this sense,
these derivations may be addressing the validity of the TM model outside of the leaky
dielectric regime.

These studies derive the stationary TM model without surface charge convection
for near spherical geometries. Here, we derive the dynamic TM model with surface
charge convection for arbitrary geometry. As such, previous studies provide little
insight into geometric singularity formation, which, many argue, relies on surface
charge convection (Salipante & Vlahovska 2010; Hu et al. 2015; Lanauze et al.
2015; Sengupta et al. 2017; Das & Saintillan 2017b).

The derivation of bulk ohmic conduction from an electrodiffusion model, a key
ingredient in any derivation of the TM model, is of interest beyond leaky dielectrics
and has been discussed by many authors (Saville 1997; Squires & Bazant 2004; Chen
et al. 2005; Chen 2011). To the best of our knowledge, all previous derivations of
ohmic conduction starts with a strong electrolyte model. In Zholkovskij et al. (2002),
Squires & Bazant (2004), it is assumed that the diffusion coefficients of the positive
and negative ions are the same. In this case, a partial decoupling of the equations for
q = c − a and c + a leads to ohmic conduction. When the diffusion coefficients are
not equal, one typically assumes that the electric field is strong so that drift due to
the electric field overwhelms diffusion (Saville 1997; Chen et al. 2005; Chen 2011;
Schnitzer & Yariv 2015). In Chen et al. (2005), Chen (2011), the conductivity is
a function of position that satisfies an advection–diffusion equation. In Schnitzer &
Yariv (2015), the conductivity is spatially constant; the constant ionic concentrations
in the far field get swept into the region of interest by strong fields.

Our derivation of ohmic conduction, in contrast, relies on the weak electrolyte
assumption. The concentration of ions is governed to leading order by local ion
dissociation reactions, which leads to ohmic conduction with spatially constant
conductivity for any diffusion coefficient.

Schnitzer & Yariv (2015) make the interesting suggestion that conductivity may not
be a bulk material property but a surface property. In our case, as we shall discuss
in § 3, conductivity is a bulk material property if the dissociating neutral species in
reaction (1.1) is the solvent itself.

A key parametric assumption made in Schnitzer & Yariv (2015), as emphasized
in Bazant (2015), is that, for each ion, the product of the diffusion coefficient and
viscosity is constant across solvents. This allows the authors to perform a matched
asymptotic calculation that leads to the TM model. This assumption, sometimes known
as Walden’s rule, may be justified by the Stokes–Einstein relation for viscosity and
diffusivity; as such it depends on the approximation that the effective radii of ions do
not change from solvent to solvent. Significant deviations from Walden’s rule are well
documented (Steel, Stokes & Stokes 1958). In our derivation, no such assumptions on
the diffusion coefficients or the viscosities are needed.

In § 4.3, we show that our derivation of the TM model is valid for large voltage
satisfying (1.17). This scaling is precisely the parametric ordering assumed in
Baygents & Saville (1990), Schnitzer & Yariv (2015). In fact, our derivation of
the TM model is valid from thermal voltage up to imposed voltages satisfying
β� δ−1. This is in contrast to Baygents & Saville (1990), Schnitzer & Yariv (2015)
where β� 1 is needed (which stems in part from their need to obtain Ohm’s law, as
discussed above). Our derivation of the TM model is thus valid over a wider range
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of imposed voltages, which seems to be supported by the absence of experimental
reports indicating a break down of the TM model at low voltages. We also point out
that, as discussed at the end of § 1.2.3, our analysis indicates the presence of two
interfacial layers for large imposed electric fields. This is in contrast to Schnitzer
& Yariv (2015) who argue that the Debye layer is the only interfacial layer even at
large voltages.

1.2.5. Electromigration under imposed electric field when lC 6= lA

In § 5, we consider the case when lC 6= lA. In this case, we have an EDL across
the interface Γ (see figure 1). We compute the asymptotic limit as δ→ 0 assuming
the scaling γ = O(δ) and Pe = O(δ0). The important conclusion here is that we
obtain droplet electromigration under an imposed electric field, which may explain
the experimental reports of droplet electromigration in leaky dielectrics (Taylor 1966;
Vizika & Saville 1992).

In § 5.1, we find that there is an initial time layer during which the shape of the
interface quickly approaches a sphere; this is due in part to assumption that surface
tension is strong (γ = O(δ) in § 5 whereas γ = O(δ2) in § 4). Dynamics after this
initial layer is governed by the jump conditions for the velocity, stress and voltage
across the interface Γ , which are obtained in §§ 5.1 and 5.2 via matched asymptotic
calculations across the electric double layer. Of particular interest is the interfacial
condition for the tangential velocity across the leaky dielectric interface (5.65).
There is a tangential velocity slip, which may be interpreted as the liquid–liquid
generalization of the Smoluchowski slip velocity relation for solid–liquid interfaces
(see figure 5).

In § 5.3, these interface conditions are used to derive an explicit formula for the
drift velocity and compute the flow field around the leaky dielectric droplet under an
imposed electric field. An interesting result of our analysis is that the deformation
of the leaky dielectric sphere does not depend, to leading order, on the partition
coefficient ratio lC/lA. Thus, the Taylor criterion for prolate/oblate deformation of a
sphere applies even to the case when lC 6= lA. One of the most important predictions
of the TM model can thus be obtained even in a regime in which the TM model is
not valid. This suggest that it may be misleading to use the verification of the Taylor
deformation criterion as evidence of the validity of the TM model, especially in the
presence of electromigration.

We also find that the sign of φ∆ does not necessarily dictate the direction of
electromigration. If φ∆ > 0, for example, the droplet is positively charged with
respect to the outside liquid (see figure 1). It might be natural to expect that the
droplet will move in the direction of the electric field, but we find that it can migrate
in either direction depending on material parameters.

Our calculation here is reminiscent of those in Booth (1951), Baygents & Saville
(1991), Pascall & Squires (2011), where the authors compute electromigration
velocities of droplets under different assumptions on the nature of the droplet and
of surrounding fluid. In particular, the results in Baygents & Saville (1991) show,
similarly to our calculation, that the migration velocity of conducting droplets need
not be in the direction expected by the sign of φ∆.

1.2.6. Concluding discussion and appendices
The picture that emerges from our analysis in §§ 4 and 5 is that EML phenomena

dominate in the absence of the Galvani potential whereas EDL phenomena appear
in its presence. In our model, electrophoretic motion of leaky dielectrics is an
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Leaky dielectric theory via the weak electrolyte limit 77

FIGURE 5. (Colour online) In the presence of a non-zero Galvani potential, an imposed
electric field will exert opposite forces on the two sides of the interface, producing a
velocity slip across the Debye layer. The explicit expression for this is given in (5.65).

Øin

Øex

FIGURE 6. Set-up for the modified Saville model. The interior/exterior medium is denoted
by Ωin/Ωex. The interface is denoted by Γ . The unknown functions in Ωin,ex are the
cation/anion/salt concentrations c,a, s, velocity and pressure fields u,p and the electrostatic
potential φ.

EDL phenomenon; the identification of leaky dielectric electrohydrodynamics with
EML phenomena may thus be misleading. In § 6 we discuss the implications and
questions that arise from our study. In particular, we estimate the magnitude of
the dimensionless parameters and discuss whether the TM model with or without
surface charge convection corresponds to typical leaky dielectric systems. Appendix A
discusses the thermodynamic thread that runs through the modified Saville, charge
diffusion and Taylor–Melcher models. The other appendices contain technical material
used in the main text.

2. Governing equations: modified Saville model
2.1. Set-up

Figure 6 shows the configuration considered here: a Newtonian viscous fluid in the
interior domain Ωin is separated from another Newtonian viscous fluid in the exterior
domain Ωex by an interface denoted by Γ . We let the whole region be Ω = Ωin ∪

Ωex ∪Γ . The region Ω may either be a bounded domain (so that there is a boundary
∂Ω) or the whole of R3. Unlike the analysis in Schnitzer & Yariv (2015), here the
fluid interface Γ is not restricted to a spherical surface, and is allowed to be time
dependent (and hence a time-dependent Ωin). We shall sometimes use the notation Γt

to make this time dependence explicit. In the following, for convenience of the reader,
we may reiterate the definition of some variables that were introduced in the § 1.2.1.

We consider a salt (S) which may dissociate into cations (C+) and anions (A−) in
a solvent, as in reaction (1.1). As discussed in § 1, we consider the weak electrolyte
case, in which most of the salt does not dissociate into its constituent ions. This
may happen, for example, if NaCl is dissolved in a non-polar solvent. When the
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above dissociation reaction is at equilibrium in the non-polar solvent, there should be
considerably more S than C+ or A−.

In the bulk (Ωin ∪Ωex) the concentrations of C+, A− and S are denoted by c, a and
s respectively. The equations satisfied by these variables in Ωin ∪Ωex are:

∂c
∂t
+∇ · (uc)=∇ ·

(
DC

(
∇c+ c

F
RT
∇φ

))
+ k+s− k−ca, (2.1)

∂a
∂t
+∇ · (ua)=∇ ·

(
DA

(
∇a− a

F
RT
∇φ

))
+ k+s− k−ca, (2.2)

∂s
∂t
+∇ · (us)=∇ · (DS∇s)− k+s+ k−ca. (2.3)

Here, u is the solvent velocity, DC,A,S are the diffusion coefficients, F is the Faraday
constant, RT is the ideal gas constant times absolute temperature, φ is the electrostatic
potential and k± are the rates of forward and backward reaction in (1.1). The diffusion
coefficients DC,A,S and the reaction rate constants k± may differ in Ωin and Ωex, but
we assume they are constant within each region. We will sometimes use the notation
DC,in or DC,ex to refer to the diffusion constant in regions Ωin and Ωex respectively.
Analogous expressions will be used for DA,S and for k±. We need an equation for the
fluid velocity u as well as the electrostatic potential φ. For the electrostatic potential,
we have:

−∇ · (ε∇φ)= F(c− a), (2.4)

where ε is the dielectric constant. For the fluid velocity, we assume Stokes flow:

µ1u−∇p= F(c− a)∇φ, ∇ · u= 0, (2.5)

where µ is the viscosity and p is the pressure. The dielectric constant ε and the
viscosity µ may take different but spatially constant values in Ωin and Ωex, and
we use the notation εk, µk, k = in, ex to denote the constants in the two regions.
We have chosen to ignore the inertial term as is customary in most treatments of
the electrohydrodynamics of leaky dielectrics; Saville (1997) estimates the Reynolds
number to be of the order of 10−4 even under high imposed electric fields. Note that
the force balance equation in (2.5) can also be written as:

∇ · (ΣS(u, p)+ΣM(φ))= 0, (2.6)

ΣS(u, p)= 2µ∇Su− pI, 2∇Su= (∇u+ (∇u)T), (2.7a,b)

ΣM(φ)= ε(∇φ ⊗∇φ −
1
2 |∇φ|

2I). (2.8)

The tensor ΣS is the Stokes stress tensor and the tensor ΣM is known as the Maxwell
stress tensor.

The above equations, posed in the bulk Ωin,ex, are the same as those proposed in
Saville (1997). However, in Saville (1997), the specification for interfacial conditions
for the ionic concentrations is incomplete. The author proceeds using heuristic
arguments to simplify and ignore certain terms to arrive at the Taylor–Melcher model.
In contrast, here, we shall completely specify the interface conditions at Γ , and
will use the resulting system of equations as the starting point for all subsequent
discussion. Given this, we shall refer to our model as the modified Saville model. At
Γ , the boundary conditions for the electrostatic potential are

[φ] = 0,
[
ε
∂φ

∂n

]
= 0, (2.9a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.567


Leaky dielectric theory via the weak electrolyte limit 79

where n is the normal on Γ (pointing from region Ωin to Ωex) and [w] is the jump
in the value of w across the interface Γ :

[w] ≡w|Γin −w|Γex, (2.10)

with wΓin,ex denoting the value of w evaluated at the Ωin,ex face of Γ . For the fluid
equations, we have the following interface conditions.

[u] = 0, [(ΣS(u, p)+ΣM(φ))n] =−γ∗κn, (2.11)

where γ∗ is the surface tension coefficient and κ is the sum of the principal curvatures
of the surface Γ . The above boundary condition on the stress, with the help of (2.9),
can also be recast as:

[ΣS(u, p)n] =−

[
ε

2

((
∂φ

∂n

)2

− |∇Γ φ|
2

)]
n− γ∗κn, (2.12)

where ∇Γ denotes the surface gradient operator on the interface Γ . Finally, we impose
the kinematic (no-slip) condition; the interface moves with the local fluid velocity.

On both sides of the interface Γ , we set[
−DC

(
∇c+ c

F
RT
∇φ

)
· n
]
= 0, lCc|Γex = c|Γin,[

−DA

(
∇a− a

F
RT
∇φ

)
· n
]
= 0, lAa|Γex = a|Γin,

[−DS∇s · n] = 0, lSs|Γex = s|Γin,


(2.13)

where lC,A,S are positive constants known as partition coefficients. These boundary
conditions are the same as those imposed in Zholkovskij et al. (2002), and were
missing in the electrodiffusion model proposed in Saville (1997). We refer the reader
back to the discussion surrounding equation (1.5) for a thermodynamic interpretation
of the partition coefficients lC,A,S. The partition coefficients lC,A,S must satisfy the
following relations:

lClA

lS
=

Keq,in

Keq,ex
, with Keq,i =

k+,i
k−,i

, i= in, ex, (2.14)

where k±,i, i= in, ex are the rate constants in Ωi, i= in, ex respectively. The above is
needed for thermodynamic consistency; the requirement that the cation, the anion and
the salt each have a defined energy level leads to the above restriction, and guarantees
that the system of equations, as a whole, satisfies a free energy identity. The details
of this are discussed in appendix A.

If Ω is bounded, we must impose boundary conditions on the outer boundary ∂Ω .
Here, the boundary conditions are

c= c∗, a= a∗, s= s∗, u= 0, φ = φb. (2.15a−e)

Assuming electroneutral boundary conditions, the concentrations c∗, a∗ and s∗ satisfy
the following equations:

k+,exs∗ − k−,exc∗a∗ = 0, c∗ = a∗, (2.16)
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where k±,ex denotes the reaction rate constants in Ωex. We may interpret φb as the
externally imposed voltage, and may allow φb to depend on time.

If Ω =R3, we may set:

lim
|x|→∞

c= c∗, lim
|x|→∞

a= a∗, lim
|x|→∞

s= s∗, (2.17a−c)

where c∗, a∗ and s∗ are to satisfy (2.16). For the voltage and velocity field, we may
set

lim
|x|→∞

(φ − φb)= 0, lim
|x|→∞

u= 0, (2.18a,b)

where φb(x, t) is a given function that prescribes the behaviour of the voltage at
infinity.

2.2. Non-dimensionalization
We now non-dimensionalize the above equations. Let the quantities ·̂ denote the
dimensionless quantities. We set:

c= c∗ĉ, a= c∗â, s= s∗ŝ, φ =
RT
F
φ̂, φb =

RT
F
φ̂b,

DC,A,S =D∗D̂C,A,S, ε = ε∗ε̂, µ=µ∗µ̂, x= Lx̂, t= t0̂t=
L
u∗

t̂, κ =
κ̂

L
,

u= u∗û=
ε∗(RT/F)2

µ∗L
û, p=

ε∗(RT/F)2

L2
p̂,


(2.19)

where D∗, ε∗, µ∗ and L are the characteristic diffusion coefficient, dielectric constant,
viscosity and length respectively. We have taken the characteristic voltage to be
the thermal voltage RT/F rather than the characteristic magnitude of the externally
imposed voltage. The latter scaling will be discussed in § 4.3. Using the above
non-dimensionalization, we have, in Ωin ∪Ωex:

Pe
(
∂c
∂t
+∇ · (uc)

)
=∇ · (DC(∇c+ c∇φ))+

kexk
α

(
s−

ca
K

)
, (2.20)

Pe
(
∂a
∂t
+∇ · (ua)

)
=∇ · (DA(∇a− a∇φ))+

kexk
α

(
s−

ca
K

)
, (2.21)

Pe
(
∂s
∂t
+∇ · (us)

)
=∇ · (DS∇s)− kexk

(
s−

ca
K

)
, (2.22)

−δ2
∇ · (ε∇φ)= (c− a), (2.23)

δ2(µ1u−∇p)= (c− a)∇φ, ∇ · u= 0, (2.24)

where we have dropped ·̂ for notational simplicity. Pe is the Péclet number

Pe=
u∗L
D∗
, kex =

k+,exL2

D∗
, α =

c∗
s∗
=

k+,ex

k−,exc∗
, δ =

rD

L
, rD =

√
ε∗RT/F

Fc∗
, (2.25a−e)
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and

k=

{
k+,in/k+,ex in Ωin,

1 in Ωex,
, K =

Kin ≡Keq,in/Keq,ex =
lClA

lS
in Ωin,

1 in Ωex.

(2.26)

Note that the last equality comes from (2.16), and the expression for Ki is derived
from the thermodynamic restrictions (2.14). The dimensionless boundary conditions
at the interface are

[−DC(∇c+ c∇φ) · n] = 0, lCc|Γex = c|Γin, (2.27a,b)

[−DA(∇a− a∇φ) · n] = 0, lAa|Γex = a|Γin, (2.28a,b)

[−DS∇s · n] = 0, lSs|Γex = s|Γin, (2.29a,b)

[ε∇φ · n] = 0, [φ] = 0, (2.30)

δ2
[Σ(u, p)n] =−δ2

[
ε

2

((
∂φ

∂n

)2

− |∇Γ φ|
2

)]
n− γ κn, (2.31)

[u] = 0, (2.32)

with the dimensionless surface tension coefficient γ = γ∗/c∗RTL. The dimensionless
boundary conditions at ∂Ω are:

c= a= s= 1, φ = φb, u= 0. (2.33a−c)

When Ω = R3, the above must be replaced by appropriate limits as |x| →∞ as in
(2.17) and (2.18).

3. Charge diffusion model
We first make the assumption that α � 1 and perform asymptotic calculations to

reduce the above full electrokinetic model to a charge diffusion model, where a single
equation for the charge density q= c− a replaces the equations for c, a and s. This
charge diffusion model will then be reduced further in the §§ 4 and 5 by assuming that
δ is small, to derive the leaky dielectric model and possible corrections. The validity
of the parametric assumption α � δ � 1 as in (1.7) will be discussed in § 6.2. We
point out that this limiting procedure is different from the one in Saville (1997), in
which the limit ke� 1 is considered.

Subtracting (2.21) from (2.20) we obtain the following equation for the charge
density q= c− a:

Pe
(
∂q
∂t
+∇ · (uq)

)
=∇ · (DC∇c−DA∇a+ (DCc+DAa)∇φ). (3.1)

Expanding variables in powers of α� 1

s= s(0) + αs(1) +O(α2), c= c(0) + αc(1) +O(α2), a= a(0) + αa(1) +O(α2),

(3.2a−c)
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the leading-order equation obtained from (3.1) is simply:

Pe
(
∂q(0)
∂t
+∇ · (u(0)q(0))

)
=∇ · (DC∇c(0) −DA∇a(0) + (DCc(0) +DAa(0))∇φ(0)). (3.3)

From equation (2.20) we see that

s(0) −
c(0)a(0)

K
= 0. (3.4)

We thus conclude from (2.22) that, to leading order in α,

Pe
(
∂s(0)
∂t
+∇ · (u(0)s(0))

)
=∇ · (DS∇s(0)), (3.5)

with boundary conditions:

s(0) = 1 on ∂Ω and [DS∇s(0)] = 0, s(0)|Γin = lSs(0)|Γex on Γ . (3.6a,b)

We see that, regardless of u(0), s(0) approaches the steady state:

s(0) = sst =

{
lS in Ωin,

1 in Ωex.
(3.7)

We shall thus assume that s= sst at all times. Using this with (3.4), we may eliminate
c(0), a(0) in favour of an equation for q(0) = c(0) − a(0) only. We have:

c(0) = 1
2(q(0) +

√
4S+ q2

(0)), a(0) = 1
2(−q(0) +

√
4S+ q2

(0)), (3.8a,b)

where

S=Ksst =

{
Sin =KinlS in Ωin,

1 in Ωex.
(3.9)

We may now substitute (3.8) into (3.3) to obtain the following equation for q(0):

Pe
(
∂q
∂t
+∇ · (uq)

)
=−∇ · Jq, (3.10)

Jq =−Σ(q)

(
1√

4S+ q2
∇q+∇φ

)
, (3.11)

Σ(q)= 1
2((DC +DA)

√
4S+ q2 + (DC −DA)q), (3.12)

where we dropped the subscript ‘(0)’ for notational simplicity. It is not difficult to see
that the effective conductivity coefficient Σ(q) is positive.

From (2.33) we see that q satisfies:

q= 0 on ∂Ω or q→ 0 as |x|→∞. (3.13a,b)
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Øin

Øex

FIGURE 7. Set-up for the charge diffusion model. In contrast to the modified Saville
model (figure 6), the unknown functions in Ωin,ex are now the charge q, the velocity and
pressure fields u, p and the electrostatic potential φ. As δ→ 0, a boundary layer of width
rD (δ in dimensionless units) develops on both sides of the interface Γ , as shown on
the right.

On the interface Γ , the (dimensionless version of the) flux boundary condition in
(2.13) results in the boundary condition:

[Jq · n] = 0. (3.14)

The second boundary condition in (2.13) produces:

lC

2
(q+

√
4+ q2)

∣∣∣∣
Γex

=
1
2
(q+

√
4Sin + q2)

∣∣∣∣
Γin

. (3.15)

We point out that, thanks to the thermodynamic restriction (2.14), this condition is
mathematically equivalent to

lA

2
(−q+

√
4+ q2)

∣∣∣∣
Γex

=
1
2
(−q+

√
4Sin + q2)

∣∣∣∣
Γin

. (3.16)

Relation (2.14), therefore, ensures that the assumption of small α leads to a
mathematically consistent limiting problem.

In the resulting reduced model the unknown variables are thus q, φ, u and p, where
the equations for q were given above (see figure 7). The equation for φ and u remain
the same as the original model except that we should replace c−a in (2.23) and (2.24)
with q:

−δ2
∇ · (ε∇φ)= q, (3.17)

δ2(µ1u−∇p)= q∇φ, ∇ · u= 0. (3.18)

The interface conditions (2.30)–(2.32) as well as the outer boundary conditions for φ
and u remain the same as the modified Saville model. We shall call this the charge
diffusion model. Henceforth, we consider the charge diffusion model instead of the
modified Saville model.

We may arrive at the charge diffusion model via a model that is slightly different
from the modified Saville model, a derivation that may in some cases be more
physically relevant. Suppose that the dielectric itself undergoes ionic dissociation.
Then, S in (1.1) should be considered the dielectric rather than the solute. However,
the dielectric in the interior and exterior are different. Let us suppose that the
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84 Y. Mori and Y.-N. Young

dissociation is such that the cation is the same in both the interior and exterior
dielectrics (for example, it could be a proton). The dissociation reaction is

Sin,ex
C+ +A−in,ex (3.19)

in Ωin and Ωex respectively where the Sin,ex are the interior/exterior dielectrics and
Ain,ex are the interior/exterior anions. A leaky dielectric is a poor conductor, and we
thus assume that most of the dielectric is not dissociated. Thus, the ratio between the
dissociated and non-dissociated dielectric, α, is assumed small. The concentrations for
A−in,ex as well as C+ satisfy the dimensionless equations (2.21) and (2.20), but it would
not be appropriate to model the concentration dynamics of Sin,ex with (2.22). This is
because the diffusion equation describes the dynamics of a dilute solute; after all, the
dielectric is the solvent itself and as such it fills the space. One possibility will be
to assume that the concentration of S can be calculated from the volume unoccupied
by the solutes. This will lead to small modifications for the electrodiffusion equations
for the ions as well (see, for example, Zhou, Wang & Li (2011)). An even simpler
possibility, valid in the case of dilute solutes, will be to assume that S is spatially
constant. The cation concentration c satisfies the interface condition (2.27) whereas
the anion concentrations ain,ex satisfy

DAin,ex(∇ain,ex − ain,ex∇φ) · n= 0, (3.20)

since Ain,ex do not cross the solvent interface Γ . We can then recover the charge
diffusion model as α→ 0.

An important difference between the first derivation via the modified Saville model
and second derivation outlined above is that, in the second derivation, the constant
S of (3.9) is a material property that does not depend on any external boundary
condition at ∂Ω or the far field; in the first derivation, S depended on the value
of the solute concentration at the boundary ∂Ω , but in the second, S depends on
the concentration of the dielectric, a material property. As we can see from (3.10),
S determines the conductivity; the second derivation supports the view that the
conductivity should be a material property. The only constant in the charge diffusion
model that depends not on the material property but on the property between materials
is the partition coefficient.

The partition coefficients determine whether there is a voltage jump (Galvani
potential) and thus an electric double layer (EDL) across the interface Γ , as already
discussed in § 1.2.2 using a thermodynamic argument. Below, we illustrate this with
a slightly different argument. We emphasize that this heuristic picture will later be
justified through systematic asymptotic calculations in §§ 4.1 and 5.1.

Consider the special problem in which fluid velocity is 0 and the boundary voltage
at ∂Ω to be φb = 0. In this case, we see that q = 0 (with φ = 0) satisfies (3.10),
(3.13)–(3.15) so long as

lC =
√

Sin. (3.21)

According to (2.14), this condition is satisfied when

lC = lA. (3.22)

In other words, condition (3.22) ensures that the state in which the system is
everywhere electroneutral (q = 0) is a steady state solution of the system. Under
(3.22), (3.15) can be reduced to the condition:

lCq|Γex = q|Γin . (3.23)
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Leaky dielectric theory via the weak electrolyte limit 85

If lC 6= lA, a globally electroneutral steady state with no interfacial layer is impossible,
and we expect an accumulation of charge on the interface Γ resulting in a voltage
jump across the interface, even in the absence of an externally imposed electric field.
In fact, it is possible to obtain an expression for this voltage jump by the following
heuristic argument, which uses some results from appendix A. At equilibrium, we
expect the chemical potential, or energy per unit charge, to be equal on both sides
of the interface. Equations (A 11) and (A 12) suggest that:

(µq + Eq)|Ωex = (µq + Eq)|Ωin . (3.24)

In the bulk, q should approximately be equal to 0, and therefore, we have:

φ|Ωex = ln
√

Sin − ln lC + φ|Ωin . (3.25)

Thus,

φ|Ωin − φ|Ωex = ln
(

lC
√

Sin

)
=

1
2

ln
(

lC

lA

)
. (3.26)

We see that lC 6= lA leads to a voltage jump across the interface and hence an electric
double layer (see figure 1). This suggests that the cases lC = lA and lC 6= lA are
qualitatively different and we will thus treat these two cases separately.

4. Taylor–Melcher limit
4.1. Derivation of the Taylor–Melcher model

As discussed above, the cases lC = lA and lC 6= lA are fundamentally different. In this
section, we consider the case lC = lA. Under this assumption, we consider the limit
δ→ 0 in the charge diffusion model to derive the TM model. In the calculations to
follow, we scale Pe and γ with respect to δ as follows:

Pe=
χ

δ2
, γ = γ̂ δ2, (4.1a,b)

where χ and γ̂ are constant. As we shall see, this scaling yields the full TM model
with surface charge convection for arbitrary interfacial geometry. In fact, there are
three time scales in the TM model, the Maxwell–Wagner charge relaxation time
scale, the electrohydrodynamic time scale and the capillary time scale (Salipante &
Vlahovska 2010). All terms in the TM model will be important only when these
three time scales are of the same order, and the above scaling ensures this. Different
distinguished limits can be obtained depending on how we scale the two dimensionless
numbers Pe and γ . The scaling of Pe with respect to δ determines whether surface
charge convection will be important. This is summarized in table 1. Pe=O(δ−1) leads
to the TM model with surface charge convection as an O(δ) correction. For smaller
Pe, surface charge convection is negligible. We shall not present these calculations
here since they are quite similar to (and simpler than) the calculations presented here.
In appendix A, we shall also see that (4.1) is the natural one as dictated by the free
energy identity.

We expand q in powers of δ as:

q= q0 + δq1 + δ
2q2 + · · · , (4.2)

and likewise for other variables φ and u.
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Pe or PeE Surface charge convection

O(δ−2) or O(δ−2
E ) O(1)

O(δ−1) or O(δ−1
E ) O(δ) or O(δE)

O(δk) or O(δk
E), k> 0 smaller than O(δ) or O(δE)

TABLE 1. The presence of surface charge convection in the limiting TM model depending
on the scaling of Pe or PeE with respect to δ or δE. The dimensionless constants PeE and
δE pertain to asymptotics under strong electric fields discussed in § 4.3, and are defined in
(4.79) and (4.82).

Let us first consider equations in the bulk or outer layer. We see from (3.17) that:

q0 = q1 = 0. (4.3)

This is also compatible with (3.10). The leading non-trivial equations we obtain from
(3.17), (3.10) and (3.18) are:

χ

(
∂q2

∂t
+∇ · (u0q2)

)
=∇ · (σ∇φ0), (4.4)

−∇ · (ε∇φ0)= q2, (4.5)
µ1u0 −∇p0 = q2∇φ0, ∇ · u0 = 0, (4.6)

where the conductivity σ is given by:

σ =Σ(q0 = 0)= (DC +DA)
√

S=

{
(DC,in +DA,in)

√
lClA in Ωin,

DC,ex +DA,ex in Ωex,
(4.7)

where we used the relation (3.9), (3.21) and (2.14) in the last equality. We shall
sometimes use the notation σk, k= in, ex to denote the value of σ in the two regions.
In this section, lC = lA by assumption, and therefore,

√
S= lC in Ωin.

In order to obtain interface conditions for the above equations in the outer layer,
we perform a boundary layer analysis near Γ . Small δ in (3.17) implies a boundary
layer of thickness δ near Γ (see figure 7). To study this boundary layer, we introduce
an curvilinear coordinate system (ξ , η)= (ξ , η1, η2) fitted to the interface Γ (figure 8).
Let η be a local coordinate system on the surface Γ so that x=X(η, t) is the Cartesian
coordinate position of the evolving interface. We let points of fixed η move with the
normal velocity of the interface:

∂X
∂t
= u⊥(η, t)n(η, t), u⊥(η, t)= u(X(η, t), t) · n(η, t), (4.8a,b)

where, n is the outward pointing unit normal (pointing from Ωin to Ωex). The map
T :

T (ξ , η, t) 7→X(η, t)+ ξn(η, t) (4.9)

defines the desired local curvilinear coordinate system. The coordinate ξ is thus the
signed distance function from the interface, where ξ > 0 is on the Ωex side and ξ < 0
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Øin

Øin

Øex

Øex

FIGURE 8. The curvilinear coordinate system. ξ is perpendicular to the surface Γ , where
ξ < 0 is on the Ωin side. The ξ = 0 surface corresponds to Γ and η = (η1, η2) is the
coordinate system fitted to Γ .

on the Ωin side. We use an arbitrary point x= x∗ ∈ Γ at time t= t∗ as the origin in
the (ξ , η) coordinate system in the following boundary layer analysis.

In an abuse of notation, q, φ and other scalar functions will be seen interchangeably
as functions of (ξ , η, t) as well as of (x, t). For the velocity field u, we introduce the
velocity functions (u, v1, v2) adapted to the curvilinear coordinate system:

u(X, t)= u(ξ , η, t)
∂T
∂ξ
+ vi(ξ , η, t)

∂T
∂ηi

, (4.10)

where T is the local coordinate map (4.9). In the above and henceforth, we shall use
the summation convention for repeated indices. The function u is the fluid velocity
normal to level sets of the signed distance function of Γ and v1, v2 are the fluid
velocities tangent to the same level sets.

First we introduce the stretched boundary layer coordinate system ξ ′≡ ξ/δ close to
the interface, with the inner layer variables denoted by ·̃:

q̃(ξ ′, η, t)= q(ξ/δ, η, t), (4.11)

and likewise for φ, u, v1 and v2. We then expand each of these variables in powers
of δ as follows:

q̃= q̃0 + δq̃1 + δ
2q̃2 · · · . (4.12)

Expressions resulting from the Stokes equation (3.18) in inner layer coordinates are
discussed in appendix B.

In the calculations to follow, the symbol [·], applied to an inner layer variable, is the
jump in the value across ξ ′= 0 ([·] = ·|ξ ′=0−− ·|ξ ′=0+). When applied to an outer layer
variable, the symbol [·] denotes the jump in the value across ξ =0: [·]= ·|ξ=0−−·|ξ=0+.

From equations (3.17) and (3.18) (see (B 20)) we have:

−
∂2φ̃0

∂ξ ′2
= q̃0, q̃0

∂φ̃0

∂ξ ′
= 0→ q̃0 = 0,

∂φ̃0

∂ξ ′
= 0. (4.13a−c)

The interface conditions (2.30) yield

[φ̃0] = 0. (4.14)

Given the matching conditions

lim
ξ ′→±∞

φ̃0 = lim
ξ→0±

φ0 ≡ φ±, (4.15)
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we see that

φ̃0 ≡ lim
ξ→0±

φ0 for −∞< ξ ′ <∞. (4.16)

In particular, this implies that

[φ0] = 0. (4.17)

This shows that the voltage, to leading order, must be continuous across the boundary
layer. Expressions (4.13) and (4.16) are compatible with the following additional
equations and boundary conditions that we obtain as leading-order equations from
(2.30) and (3.23): [

ε
∂φ̃0

∂ξ ′

]
= 0, lCq̃0|ξ ′=0+ = q̃0|ξ ′=0−. (4.18a,b)

Note in particular that q̃0≡ 0 is compatible with (3.15) only because lC= lA (in which
case (3.15) reduces to (3.23)).

We now turn to equations at the next order. From (3.18) we obtain

∂ ũ0

∂ξ ′
= 0, µ

∂2ṽi
0

∂ξ ′2
= q̃0gij ∂φ̃0

∂ηj
= 0, i= 1, 2, (4.19a,b)

where we used (4.13) in the second expression. This shows that

ũ0 =

{
U− for ξ ′ < 0,
U+ for ξ ′ > 0,

ṽi
0 =

{
V i
−
ξ ′ +W i

−
for ξ ′ < 0,

V i
+
ξ ′ +W i

+
for ξ ′ > 0,

(4.20)

where U±,V i
±
,W i
±

do not depend on ξ ′. Condition (2.32) at the interface ξ ′= 0 gives
rise to:

[ũ0] = [ṽ
i
0] = 0. (4.21)

The matching conditions at ξ ′ =±∞ are given by:

lim
ξ ′→±∞

ũ0 = lim
ξ→0±

u0, lim
ξ ′→±∞

ṽi
0 = lim

ξ→0±
vi

0. (4.22a,b)

Implicit in the above matching conditions is that all of the above limits exist. In
particular, the limits of ṽi

0 at ξ ′→±∞ must exist, and therefore, V i
±
= 0 in (4.20).

Using (4.21), we thus conclude that:

ũ0 ≡ lim
ξ→0±

u0 and ṽi
0 ≡ lim

ξ→0±
vi

0, i= 1, 2, for −∞< ξ ′ <∞. (4.23a,b)

In particular, this implies that:

[u0] = [v
i
0] = 0, i= 1, 2. (4.24)

This shows that the velocity field in the outer layer is continuous across the boundary
layer to leading order.
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Leaky dielectric theory via the weak electrolyte limit 89

We need further interface conditions to solve the outer layer equations (4.4)–(4.6).
We first consider the incompressibility condition in (3.18) and (2.32), from which we
obtain (see (B 8)):

∂ ũ1

∂ξ ′
+ κ ũ0 +

1
√
|g|

∂

∂ηi
(
√
|g|ṽi

0)= 0, [ũ1] = 0, (4.25a,b)

where κ is the sum of the two principal curvatures of the surface Γ and |g| is the
determinant of the metric tensor gij associated with the interface:

gij =
∂X
∂ηi
·
∂X
∂ηj

, |g| = det(gij). (4.26a,b)

By (4.22), ũ0 and ṽi
0 do not depend on ξ ′ and are equal to the outer layer values u0

and vi
0 respectively. Thus:

ũ1 =−

(
κu0 +

1
√
|g|

∂

∂ηi
(
√
|g|vi

0)

)
ξ ′ + ũ⊥,1, (4.27)

where ũ⊥,1 is the value of ũ1 at ξ ′ = 0.
We first focus on the equations for q and φ. From (3.10) and (3.17), we obtain the

following equations:

χ

(
∂ q̃1

∂t
+ (ũ1 − ũ⊥,1)

∂ q̃1

∂ξ ′
+ ṽi

0
∂ q̃1

∂ηi

)
=−

∂ J̃q,1

∂ξ ′
, (4.28)

J̃q,1 =−
1
2
(DC +DA)

∂ q̃1

∂ξ ′
− σ

∂φ̃1

∂ξ ′
, (4.29)

−ε
∂2φ̃1

∂ξ ′2
= q̃1, (4.30)

with interface conditions:

[φ̃1] =

[
ε
∂φ̃1

∂ξ ′

]
= [J̃q,1] = 0, lCq̃1|ξ ′=0+ = q̃1|ξ ′=0−. (4.31a,b)

The matching conditions for q̃1 are, by (4.3):

lim
ξ ′→±∞

q̃1 = 0. (4.32)

The above, together with matching conditions for φ̃1, to be discussed shortly, should
be sufficient to match the outer and inner layer solutions. However, the impossibility
of obtaining closed-form solutions for the inner layer equations makes the matching
procedure difficult without additional assumptions. We assume that q̃1 is integrable:∫

∞

−∞

|q̃1| dξ ′ <∞. (4.33)

Furthermore, we assume that:

lim
ξ ′→±∞

∂ q̃1

∂ξ ′
= 0, lim

ξ ′→±∞
ξ ′q̃1 = 0. (4.34a,b)
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The above two conditions in (4.34) are likely to be consequences of (4.33), (4.32)
together with the fact that q̃1 satisfies (4.28)–(4.30), and hence, is redundant.

To obtain matching conditions for φ̃1, we invoke Kaplun’s matching procedure by
introducing an intermediate coordinate system ξm which scales as ξ = δνξm, 0<ν < 1.
The result of this analysis is that:

lim
ξ ′→±∞

∂φ̃1

∂ξ ′
= lim

ξ→0±

∂φ0

∂ξ
. (4.35)

The derivation of these conditions relies on (4.30) and (4.33), which ensures that the
limits limξ ′→±∞ ∂φ̃1/∂ξ

′ exist. An immediate consequence of the above is that we may
integrate (4.30) from ξ ′ =−∞ to ∞ to find that[

ε
∂φ0

∂ξ

]
= qΓ , qΓ ≡

∫
∞

−∞

q̃1 dξ ′. (4.36a,b)

Next, integrate equation (4.28) from ξ = 0 to ∞. Let us first consider the left-hand
side. We have:∫

∞

0

(
∂ q̃1

∂t
+ (ũ1 − ũ⊥,1)

∂ q̃1

∂ξ ′
+ ṽi

0
∂ q̃1

∂ηi

)
dξ ′

=
∂q+Γ
∂t
+

(
κu0 +

1
√
|g|

∂

∂ηi
(
√
|g|vi

0)

)
q+Γ + v

i
0
∂q+Γ
∂ηi

, q+Γ ≡
∫
∞

0
q̃1 dξ ′. (4.37)

Note that q+Γ is well defined thanks to (4.33). The second term in the integrand was
integrated by parts, where we used (4.27) and (4.34). In the last term in the integrand,
we replaced ṽi

0 with the outer layer value using (4.22). Let us now turn to the right-
hand side of (4.28). We integrate to obtain:∫

∞

0
−
∂ J̃q,1

∂ξ ′
dξ ′ = σ

∂φ0

∂ξ

∣∣∣∣
ξ=0+

+ J̃q,1|ξ ′=0+, (4.38)

where we used (4.34) and (4.35). Combining the above two equations, we have:

χ

(
∂q+Γ
∂t
+ κu0q+Γ +

1
√
|g|

∂

∂ηi
(
√
|g|vi

0q+Γ )
)
= σ

∂φ0

∂ξ

∣∣∣∣
ξ=0+

+ J̃q,1|ξ ′=0+. (4.39)

We may perform a similar calculation on the ξ ′ < 0 side and use (4.31) to conclude
that:

χ

(
∂qΓ
∂t
+ κu0qΓ +

1
√
|g|

∂

∂ηi
(
√
|g|vi

0qΓ )
)
=−

[
σ
∂φ0

∂ξ

]
, (4.40)

where qΓ was defined in (4.36).
To obtain the stress boundary conditions, let us first focus on the velocity field

component u. Equation (3.18) yields (B 22), which together with (4.13) and (4.23)
gives:

µ
∂2ũ1

∂ξ ′2
−
∂ p̃0

∂ξ ′
− q̃1

∂φ̃1

∂ξ ′
= 0. (4.41)
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The interface conditions (2.32) and (2.31) at ξ ′ = 0 yield (see (B 15)):

[
2µ
∂ ũ1

∂ξ ′
− p̃0

]
=−

ε
2

(∂φ̃1

∂ξ ′

)2

− gij ∂φ̃0

∂ηi

∂φ̃0

∂ηj

− γ̂ κ, (4.42)

where gij are the components of the inverse of the metric tensor gij. The matching
conditions at ξ ′ =±∞ for p0 are

lim
ξ ′→±∞

p̃0 = lim
ξ→0±

p0. (4.43)

Note that the incompressibility condition in the outer layer, at ξ = 0±, can be
expressed as: (

∂u0

∂ξ
+ κu0 +

1
√
|g|

∂

∂ηi
(
√
|g|vi

0)

)∣∣∣∣
ξ=0±

= 0. (4.44)

Comparing this expression with (4.27) yields:

∂ ũ1

∂ξ ′
=
∂u0

∂ξ

∣∣∣∣
ξ=0±

. (4.45)

We see from (4.27) that ũ1 is a linear function of ξ ′. This observation may be used
together with (4.41) to obtain:

2µ
∂2ũ1

∂ξ ′2
−
∂ p̃0

∂ξ ′
= q̃1

∂φ̃1

∂ξ ′
. (4.46)

Let us integrate the above from ξ ′ = 0 to ξ ′ =∞. We have:(
2µ
∂u0

∂ξ
− p0

)∣∣∣∣
ξ=0+

−

(
2µ
∂ ũ1

∂ξ ′
− p̃0

)∣∣∣∣
ξ ′=0+

=

∫
∞

0
q̃1
∂φ̃1

∂ξ ′
dξ ′, (4.47)

where we used (4.45) to obtain the first term in the above. Note that the right-hand
side of the above is indeed integrable thanks to our assumption (4.33). Indeed, using
(4.30), we have:∫

∞

0
q̃1
∂φ̃1

∂ξ ′
dξ ′ = −

∫
∞

0
ε
∂2φ̃1

∂ξ ′2
∂φ̃1

∂ξ ′
dξ ′

=
ε

2

(
∂φ̃1

∂ξ ′

)2
∣∣∣∣∣∣
ξ ′=0+

− lim
ξ ′→∞

ε

2

(
∂φ̃1

∂ξ ′

)2

=
ε

2

(
∂φ̃1

∂ξ ′

)2
∣∣∣∣∣∣
ξ ′=0+

−
ε

2

(
∂φ1

∂ξ

)2
∣∣∣∣∣
ξ=0+

. (4.48)

In the last equality, we used (4.35), which in turn relied on condition (4.33).
Integrating (4.46) with from ξ ′ = 0 to −∞ and following the same procedure,
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we obtain a similar relation on the ξ ′ < 0 side. If we combine the calculations at the
ξ ′ > 0 and ξ ′ < 0 sides, we find that:[

2µ
∂u0

∂ξ
− p0 +

ε

2

(
∂φ0

∂ξ

)2
]
=

2µ
∂ ũ1

∂ξ ′
− p̃0 +

ε

2

(
∂φ̃1

∂ξ

)2
. (4.49)

We may now combine this with (4.42) and (4.16) to find that:[
2µ
∂u0

∂ξ
− p0 +

ε

2

((
∂φ0

∂ξ

)2

− gij ∂φ0

∂ηi

∂φ0

∂ηj

)]
=−γ̂ κ. (4.50)

This is the normal stress balance condition for the outer variables (see (B 15)).
Next we turn to the equations for vi. Equation (3.18) yields (B 26), which together

with (4.23) and (4.13) gives:

µ
∂2ṽi

1

∂ξ ′2
= q1gij ∂φ0

∂ηj
, i= 1, 2. (4.51)

We have used (4.16) to replace the inner layer variable φ̃0 with the outer layer variable
φ0. The interface conditions (2.31) at ξ ′ = 0 gives (see (B 15)):

[ṽi
1] = 0,

[
µ

(
∂ṽi

1

∂ξ ′
+ gij ∂ ũ0

∂ηj

)]
= 0. (4.52)

Using Kaplun’s matching procedure as we did for φ̃1, we obtain, with the help of
(4.33),

lim
ξ ′→±∞

∂ṽi
1

∂ξ ′
= lim

ξ→0±

∂vi
0

∂ξ
. (4.53)

We may now integrate (4.51) over 0< ξ ′ <∞ to obtain

µ
∂vi

0

∂ξ

∣∣∣∣
ξ=0+

− µ
∂ṽi

1

∂ξ ′

∣∣∣∣
ξ ′=0+

=

(∫
∞

0
q̃1 dξ ′

)
gij ∂φ0

∂ηj
, (4.54)

where we used (4.53). We may likewise integrate (4.51) over −∞ < ξ ′ < 0 and
combine this with the above to find that[

µ
∂vi

0

∂ξ

]
−

[
µ
∂ṽi

1

∂ξ ′

]
=−qΓ gij ∂φ0

∂ηj
, (4.55)

where qΓ was defined in (4.36). The above, together with (4.53) and (4.23) yields[
µ

(
∂vi

0

∂ξ
+ gij ∂u0

∂ηj

)]
=−qΓ gij ∂φ0

∂ηj
. (4.56)

This is the tangential stress balance condition for the outer variables (see (B 15)). This
concludes our discussion of the interfacial boundary conditions. At the outer boundary
∂Ω (or at |x|=∞), there is no boundary layer, and we simply obtain the conditions:

u0 = 0, q2 = 0, φ0 = φb at x ∈ ∂Ω or |x| =∞. (4.57a−c)
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Summary: Let us now collect our results. Dropping the subscript 0 and renaming q2
as qΩ in (4.4)–(4.6), we have:

∂qΩ
∂t
+∇ · (uqΩ)=∇ · (σ̂∇φ), σ̂ =

σ

χ
, (4.58)

−∇ · (ε∇φ)= qΩ, (4.59)
µ1u−∇p=∇ ·ΣS(u, p)= qΩ∇φ, ∇ · u= 0. (4.60)

The boundary conditions for (4.59) are given by (4.17) and (4.36):

[φ] = 0,
[
ε
∂φ

∂n

]
= qΓ , (4.61)

where qΓ satisfies equation (4.40), which in the original coordinates, can be written
as:

∂⊥t qΓ + κu⊥qΓ +∇Γ · (u‖qΓ )=−
[
σ̂
∂φ

∂n

]
, u⊥ = u · n, u‖ = u− u⊥n, (4.62)

where ∇Γ · is the surface divergence operator and ∂⊥t qΓ is the time derivative of
qΓ taken along trajectories that travel with the normal velocity of the interface. The
boundary conditions for (4.60) are (4.24), (4.50) and (4.56), which we may rewrite
as:

[u] = 0,

[ΣS(u, p)n] =−

[
ε

2

((
∂φ

∂n

)2

− |∇Γ φ|
2

)]
n− qΓ∇Γ φ − γ̂ κn.

 (4.63)

With the help of (4.61), the last stress boundary condition can also be written as
follows:

[(ΣS(u, p)+ΣM(φ))n] =−γ̂ κn. (4.64)

The outer boundary conditions are given by (4.57) (with our modified notation). The
final observation to make is that (4.58) can be rewritten as follows using (4.59) and
the incompressibility condition in (4.60):

∂qΩ
∂t
+ u · ∇qΩ =−

1
τ

qΩ, τ =
ε

σ̂
. (4.65)

This makes clear that equation (4.58) requires no boundary condition and that
qΩ decays exponentially along fluid particle trajectories. After an initial transient,
therefore, bulk charge is absent. In other words, the subset of phase space characterized
by qΩ ≡ 0 is invariant and exponentially attracting. We may thus set qΩ ≡ 0 in
(4.58)–(4.60) to find:

1φ = 0, (4.66)
µ1u−∇p= 0, ∇ · u= 0. (4.67)

We have recovered the TM model with surface charge convection for arbitrary
interface geometry. The unknown variables are listed in the figure 9.
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˝q

Øin

Øex

FIGURE 9. Set-up for the TM model. The unknown functions are now the velocity and
pressure fields u, p and electrostatic potential φ in Ωin,ex and the surface charge density
qΓ on Γ . The bulk charge qΩ , shown in parentheses above, can be set identically to 0
so that we recover the classical TM model with surface charge advection (see argument
below (4.65)).

4.2. Structure of the boundary layer
The above derivation gives us additional information about the Taylor–Melcher regime
beyond what the TM model provides. Indeed, we now have the equations for the
charge distribution within the inner space charge layer. Suppose we have solved the
dynamic TM model with suitable initial condition for qΓ and initial interface geometry.
We may then find the charge distribution q̃1 inside the interfacial charge layer by
solving the following equation obtained from (4.27) to (4.30):

∂ q̃1

∂t
−

(
κu+

1
√
|g|

∂

∂ηi
(
√
|g|vi)

)
ξ ′
∂ q̃1

∂ξ ′
+ vi ∂ q̃1

∂ηi
=Dq

∂2q̃1

∂ξ ′2
−

1
τ

q̃1, Dq =
DC +DA

2χ
,

(4.68)

where τ is as in (4.65). This must be solved under the following conditions obtained
from (4.31), (4.32) and (4.36):

lCq̃1|ξ ′=0+ = q̃1|ξ ′=0−, lim
ξ ′→±∞

q̃1 = 0,
∫
∞

−∞

q̃1 dξ ′ = qΓ . (4.69a−c)

The functions u, vi and qΓ are solutions to the TM model and are thus known
functions. If we take as our initial condition qΓ = 0, it would be reasonable to take
q̃1 ≡ 0 as the initial condition for (4.68). Once q̃1 is known, we may also obtain φ̃1

and p̃0 using (4.30), (4.31), (4.35), (4.27), (4.43) and (4.46).
To gain insight into the structure of the interfacial charge distribution, let us

consider a steady state of the TM model. The interface is stationary (u= 0) and the
interfacial charge does not change in time (∂ q̃1/∂t= 0). Equation (4.68) reduces to:

−

(
1
√
|g|

∂

∂ηi
(
√
|g|vi)

)
ξ ′
∂ q̃1

∂ξ ′
+ vi ∂ q̃1

∂ηi
=Dq

∂2q̃1

∂ξ ′2
−

1
τ

q̃1. (4.70)

To simplify further, let us consider this equation at stagnation points, where
v1 = v2 = 0.

Dq
∂2q̃1

∂ξ ′2
− λξ ′

∂ q̃1

∂ξ ′
−

1
τ

q̃1 = 0, λ=−
1
√
|g|

∂

∂ηi
(
√
|g|vi)=−∇Γ · u‖. (4.71a,b)
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It can be shown that such stagnation points always exist when the interface Γ is
homeomorphic to a sphere for topological reasons. We have now only to solve the
above ordinary differential equation in ξ ′ under conditions (4.69). First, define

τmax =max(τin, τex), τk =
εk

σ̂k
=
χεk

σk
, k= in, ex. (4.72a,b)

We let Dq,k, k= in, ex denote the value of Dq in the interior (ξ ′< 0) and exterior (ξ ′>
0) fluid respectively. Note that λ is the same on both sides of the interface since the
fluid velocity is continuous across the interface. We have the following result, which
is proved in appendix C.

PROPOSITION 1. Consider equation (4.71) under condition (4.69) and assume qΓ 6= 0.
There is a unique solution if and only if λτmax < 1. If λτmax > 1, there is no solution.
When there is a solution, q̃1 is either positive or negative everywhere (depending of
the sign of qΓ ) and has the following behaviour. If λ> 0

q̃1(ξ
′)= qΓC+in|ξ

′
|
−(λτin)

−1
(1+O(ξ ′−2)) as ξ ′→−∞,

q̃1(ξ
′)= qΓC+exξ

′−(λτex)
−1
(1+O(ξ ′−2)) as ξ ′→∞.

}
(4.73)

If λ= 0,

q̃1(ξ
′)=

qΓ lC√
Dq,inτinlC +

√
Dq,exτex

exp

(
−
|ξ ′|√
Dq,inτin

)
for ξ ′ < 0,

q̃1(ξ
′)=

qΓ√
Dq,inτinlC +

√
Dq,exτex

exp

(
−

ξ ′√
Dq,exτex

)
for ξ ′ > 0.


(4.74)

If λ< 0,

q̃1(ξ
′)= qΓC−in|ξ

′
|
−(|λ|τin)

−1
−1 exp

(
−
|λ|

2Dq,in
ξ ′2
)
(1+O(ξ ′−2)) as ξ ′→−∞,

q̃1(ξ
′)= qΓC−exξ

′−(|λ|τex)
−1
−1 exp

(
−
|λ|

2Dq,ex
ξ ′2
)
(1+O(ξ ′−2)) as ξ ′→∞.

 (4.75)

In the above, C±k , k= in, ex are positive constants that depend only on λτk, λ/Dq,k and
lC. The above also satisfy the second condition in (4.34).

When

λ=−∇Γ · u‖ <
1
τmax

(4.76)

at a stagnation point, the above Proposition states that there is a unique inner layer
charge distribution consistent with the TM model. However, the charge distribution
does not exhibit the familiar exponential decay with distance from the interface. If
λ> 0 the decay is only algebraic. Convective charge accumulation leads to a broader
space charge layer. If λ< 0 at a stagnation point, charge distribution decay is faster
than exponential.
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96 Y. Mori and Y.-N. Young

FIGURE 10. (Colour online) A flow field plot indicating regions of positive and negative
surface divergence ∇Γ · u‖. Plotted is the flow field around a sphere of the quadrupole
vortex of Taylor (horizontal axis is the axis of rotation and is parallel to the imposed
electric field direction) (Taylor 1966). On the sphere, ∇Γ ·u‖< 0 in the region in thick red
and ∇Γ ·u‖>0 in the region in thin blue. The charge distribution in the region ∇Γ ·u‖<0
is expected to decay algebraically with distance from the interface.

At a stagnation point, if qΓ 6= 0 and

λ=−∇Γ · u‖ >
1
τmax

, (4.77)

an inner layer charge distribution consistent with the steady state of the TM model
does not exist. Indeed, when λτmax > 1, the asymptotic behaviour for q̃1 in (4.73)
makes it impossible for q̃1 to satisfy (4.33) since:∫

∞

1
|ξ ′|−(λτmax)

−1
dξ ′ =∞. (4.78)

The picture that emerges is that convective charge accumulation overwhelms bulk
charge dissipation when λτmax > 1, and the boundary layer is destroyed (the reader
is referred back to § 1.2.3 and figure 4 for a heuristic discussion). Our analysis here
is confined to stagnation points, but similar statements may hold for points at which
u‖ 6= 0.

Consider gradually increasing the imposed electric field on a leaky dielectric droplet.
Suppose the increase in field strength is slow enough that the system is at steady state
at each instant. As the imposed electric field is increased, surface convection will be
stronger and the space charge layer where ∇Γ ·u‖< 0 will broaden (see figure 10). At
a certain threshold field strength, condition (4.76) at a stagnation point (or a similar
condition at non-stagnation points) may be violated. At this threshold, the TM model
will cease to be valid. The boundary layer will be destroyed possibly resulting in a
non-zero charge distribution extending into the bulk. Recall that the derivation of the
stress balance boundary condition also required condition (4.33). Stress balance across
the interface may become impossible as the threshold field strength is reached.
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4.3. Large imposed voltage
Given that the imposed voltage is large in most experimental set-ups, it is of interest
to ask whether our analysis may be extended to this case. Here, we discuss the
necessary scaling, state the result and only sketch our derivation, since the details are
almost exactly the same as our foregoing analysis.

Let E∗ be the representative imposed electric field strength. Modify the scaling
of u, p, φ in (2.19) by replacing the thermal voltage RT/F with the imposed
representative voltage E∗L. Define the following constants:

δE =
δ

ω
=

rD/ω

L
=

rE

L
, ω=

√
RT/F
E∗L

, rE =

√
ε∗E∗L
Fc∗

. (4.79)

The length rE is defined by replacing the thermal voltage RT/F in the definition
of the Debye length with the externally imposed voltage E∗L. In the notation of
Saville (1977), Baygents & Saville (1990), Schnitzer & Yariv (2015), β ≡ω−2 is the
dimensionless imposed field strength. With ω= 1, we are back to the original scaling.
When ω� 1, we can perform a similar analysis to that presented above provided

δE�ω� 1. (4.80)

This is equivalent to the parametric ordering

1�ω−2
= β� δ−1 (4.81)

assumed in Schnitzer & Yariv (2015). This leads to an inner layer of thickness rE
and an inner–inner layer of thickness rD (figure 11). The presence of two layers is
similar to Baygents & Saville (1990) except that there the thickness of the wider layer
is L/β. Outside of these boundary layers, the TM model is valid. The magnitude of
surface charge convection is determined as in table 1, depending on the magnitude of
PeE = Peω−2 with respect to δE.

We now briefly discuss the modifications needed to the foregoing analysis. The
dimensionless equations of the modified Saville model in § 2.2 change as follows.
Equation (2.20) becomes:

PeE

(
∂c
∂t
+∇ · (uc)

)
=∇ · (DC(ω

2
∇c+ c∇φ))+

kE

α

(
s−

ca
K

)
,

PeE = Peω−2, kE = kω2

 (4.82)

and the interface conditions for the solutes change accordingly. In equations (2.23),
(2.24) and its attendant interface conditions, δE replaces every instance of δ.

We first take the limit α→ 0 in the modified Saville model to obtain the charge
diffusion model as in § 3. Equation (3.10) for q in the new scaling takes the following
form:

PeE

(
∂q
∂t
+∇ · (uq)

)
=−∇ · Jq, Jq =−Σ(q)

(
ω2√

4S+ q2
∇q+∇φ

)
, (4.83)

where Σ(q) is the same as in (3.12). Equations (3.17), (3.18) and their boundary
conditions remain the same except that δ should be replaced by δE.
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98 Y. Mori and Y.-N. Young

FIGURE 11. The boundary layer structure when the externally imposed voltage is large.
There are two layers, the inner layer of thickness rE (δE in dimensionless units) and an
inner–inner layer of thickness rD (δ in dimensionless units).

We next take the limit δE→ 0 scaling

PeE ≡ Peω−2
= χEδ

−2
E , γ = γ̂Eδ

2
E (4.84a,b)

as in (4.1). The boundary layer coordinate is scaled so that ξ = δEξ
′. The resulting

TM model is exactly the same as in (4.58)–(4.63) except that the constant σ̂ should
be replaced by σ̂E = σ/χE and γ̂ by γ̂E. The equation in the interfacial layer (4.68)
takes the form:

∂ q̃1

∂t
−

(
κu+

1
√
|g|

∂

∂ηi
(
√
|g|vi)

)
ξ ′
∂ q̃1

∂ξ ′
+ vi ∂ q̃1

∂ηi
=ω2Dq,E

∂2q̃1

∂ξ ′2
−

1
τE

q̃1,

Dq,E =
DC +DA

2χE
, τE =

ε

σ̂E
.

 (4.85)

The boundary conditions at ξ ′ =±∞ and ξ ′ = 0± remain the same.
Let us finally let ω→ 0. The constant ω only appears inside the boundary layer

equations, so it only affects the behaviour in the charge layer of width δE (or rE in
physical dimensions). If we let ω → 0 in (4.85), we lose the second-order spatial
derivative, making it impossible to satisfy the boundary conditions. This indicates
the presence of a boundary layer of width ωδE = δ (or rD in physical dimensions).
Confining our analysis to stagnation points as in § 4.2, we obtain, in place of (4.71)

ω2Dq,E
∂2q̃1

∂ξ ′2
− λξ ′

∂ q̃1

∂ξ ′
−

1
τE

q̃1 = 0, λ=−
1
√
|g|

∂

∂ηi
(
√
|g|vi)=−∇Γ · u‖. (4.86)

This equation is in fact just a rescaled version of (4.86) and can be solved in exactly
the same way. Taking the limit as ω→ 0 in the resulting expression, one sees that
the charge q̃1 will be identically equal to 0 in the inner layer (and not the inner–inner
layer) when ∇Γ · u‖ > 0.

5. Interfacial double layer and electrophoresis
5.1. Leading-order equations for the initial layer with lC 6= lA

We now consider the case lC 6= lA. In this case, there is a double layer at the interface
Γ as was suggested at the end of § 3. We consider the limit δ→ 0 as in § 4. Here,
the dimensionless parameters are scaled so that

Pe=O(δ0), γ = γ̂ δ. (5.1a,b)

These scalings are different from the scalings (4.1) used in § 4. As will shall see, the
scaling of the surface tension strength γ is chosen so we can obtain a well-posed
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limiting problem. The scaling of Pe is chosen for analytical feasibility; the choice in
(4.1) leads to a difficult analytical problem. We shall return to this point in § 6.1. We
expand the variables q, φ, u and p in powers of δ as follows:

q= q0 + δq1 + δ
2q2 + · · · ,

φ = φ0 + δφ1 + δ
2φ2 + · · · ,

u=
1
δ

u−1 + u0 + δu1 + · · · ,

p=
1
δ2

p−2 +
1
δ

p−1 + p0 + · · · .


(5.2)

As we shall see, the stronger surface tension (see scaling of γ in (5.1) compared
with (4.1)) and the presence of the Galvani potential necessitates velocity and pressure
fields of order 1/δ (and 1/δ2). We shall see, in fact, that u−1 represents the initial fluid
velocity transient.

We first consider the equations in the outer layer. Substituting the expansions in
(5.2) into (3.17), we find that (4.3) holds exactly as before. Plugging this into (3.10),
we find that

∇ · (σ∇φ0)= 0 and hence 1φ0 = 0. (5.3)

The above expression corresponds to (4.4) of the § 4.1, except for the absence of the
advection term thanks to our assumption that Pe = O(1). In the implication above,
we used the fact that DC,A and hence σ is spatially constant (within Ωin and Ωex
respectively). Equation (4.3) and (5.3), applied to (3.17) gives us:

q2 = 0. (5.4)

We remark that the derivation of (5.3) and (5.4) is different from the way we derived
(4.66) and qΩ = q2 = 0 in § 4.1, where these were derived as a consequence of (4.4)
and (4.5) (see (4.65)).

Since q0 = q1 = 0 by (4.3), we conclude that

∇p−2 = 0, (5.5)
µ1u−1 −∇p−1 = 0, ∇ · u−1 = 0. (5.6)

From the first equation, we see that p−2 is constant within Ωin and Ωex respectively.
We set

p−2 =

{
p− in Ωin,

p+ in Ωex.
(5.7)

We now turn to equations in the inner layer. We introduce a curvilinear boundary
layer coordinate system as in the previous section. From (3.10), we have:

∂ J̃q,0

∂ξ ′
= 0, (5.8)

J̃q,0 =−Σ(q̃0)

(
1√

4S+ q̃ 2
0

∂ q̃0

∂ξ ′
+
∂φ̃0

∂ξ ′

)
. (5.9)
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100 Y. Mori and Y.-N. Young

From (3.17), we have:

−ε
∂2φ̃0

∂ξ ′2
= q̃0. (5.10)

The above two equations are satisfied for ξ ′ > 0 and ξ ′ < 0. The interface conditions
at ξ ′ = 0 are given by (2.30), (3.14) and (3.15):

[φ̃0] =

[
ε
∂φ̃0

∂ξ ′

]
= [J̃q,0] = 0,

lC(q̃0 +

√
4+ q̃2

0)|ξ ′=0+ = (q̃0 +

√
4Sin + q̃2

0)|ξ ′=0−.

 (5.11)

Here, ·|ξ ′=0± denotes the limiting value of quantity of interest from the positive and
negative sides of ξ ′= 0 respectively and [·]= ·|ξ ′=0−−·|ξ ′=0+. The matching conditions
must be that, at ξ →±∞, the boundary layer values matches the limiting values in
the outer layer.

lim
ξ ′→±∞

φ̃0 = lim
ξ→0±

φ0 ≡ φ±, lim
ξ ′→±∞

q̃0 = lim
ξ→0±

q0 = 0. (5.12a,b)

The last equality follows from (4.3). We now solve the above system of equations.
From (5.8), we see that J̃q,0 is a constant. From (5.9), we see that

∂

∂ξ ′
(ln(q̃0 +

√
4S+ q̃2

0)+ φ̃0)=−
J̃q,0

Σ(q̃0)
. (5.13)

Given (5.12), we conclude that∣∣∣∣∣
∫
±∞

0

J̃q,0

Σ(q̃0)
dξ ′
∣∣∣∣∣<∞. (5.14)

Since q̃0 is assumed to go to 0 as ξ ′→∞, Σ(q̃0) remains bounded (and positive) for
all ξ ′, and thus the above integral is unbounded unless J̃q,0 = 0. Thus, J̃q,0 = 0 and

ln(q̃0 +

√
4S+ q̃2

0)+ φ̃0 = ln(2
√

S)+ φ±, (5.15)

where the + (−) sign is valid for ξ ′> 0 (ξ ′< 0). Solving the above for q̃0 we obtain

q̃0 =−2
√

S sinh(φ̃0 − φ±). (5.16)

Substituting the above into (5.10) we obtain the following equation for φ̃0

ε
∂2φ̃0

∂ξ ′2
= 2
√

S sinh(φ̃0 − φ±). (5.17)

This equation can be solved analytically to yield:

φ̃0 = φ± + 2 ln
(

1+ A± exp(∓λ±ξ ′)
1− A± exp(∓λ±ξ ′)

)
,

λ+ =
√

2ε−1/2
ex , λ− =

√
2ε−1/2

in S1/4
in ,

 (5.18)
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Leaky dielectric theory via the weak electrolyte limit 101

where again the + (−) sign corresponds to the expression for ξ ′ > 0 (ξ ′ < 0). The
ratio between the Debye layer thicknesses on the two sides of the interface is thus
given by:

λ+

λ−
=

√
εin

εex

√
S
. (5.19)

Using condition (5.12) to determine the constants φ± and A±, we find

[φ0] = φ− − φ+ = ln
(

lC
√

Sin

)
=

1
2

ln
(

lC

lA

)
≡ φ∆, (5.20)

and

A+ =
√
ρ(ρ + ζ )−

√
1+ ρζ

√
ρ(ρ + ζ )+

√
1+ ρζ

, A− =
√
ρ + ζ −

√
ρ(1+ ρζ )

√
ρ + ζ +

√
ρ(1+ ρζ )

,

ρ =

√
lC
√

Sin
, ζ =

√
εex

εin
√

Sin
=
.

 (5.21)

Note that in (5.20) we recovered (3.26). We further note that there is a jump in voltage
across the interface Γ if lC 6= lA. Define the interior and exterior voltage differences
φ∆in,ex:

φ∆in = φ̃0(−∞)− φ̃0(0)=−2 ln
(

1+ A−
1− A−

)
,

φ∆ex = φ̃0(0)− φ̃0(∞)= 2 ln
(

1+ A+
1− A+

)
.

 (5.22)

Clearly φ∆in + φ
∆
ex = φ

∆. It is not difficult to see from (5.21) that φ∆in,ex have the same
sign. Noting that ln ρ = φ∆/2, we may expand A± and hence φ∆in,ex in terms of φ∆ to
find:

φ∆in =
ζ

1+ ζ
φ∆ +O((φ∆)2), φ∆ex =

1
1+ ζ

φ∆ +O((φ∆)2). (5.23a,b)

The parameter ζ is thus the ratio between φ∆in and φ∆ex for small φ∆. We may also
calculate the amount of charge that accumulates on the interface:∫ 0

−∞

q̃0 dξ ′ =−
∫
∞

0
q̃0 dξ ′ = ((εinλ−)

−1
+ (εexλ+)

−1)−1φ∆ +O((φ∆)2). (5.24)

For small φ∆, therefore, the interface can be viewed as two capacitor in series, with
capacitance εinλ− and εexλ+. We also note that

∂φ̃0

∂ηi
=
∂φ0

∂ηi

∣∣∣∣
ξ=0+

=
∂φ0

∂ηi

∣∣∣∣
ξ=0−

. (5.25)

The latter inequality is true even if φ0 has a jump, thanks to (5.20) which says that
the magnitude of the jump φ∆ is independent of ηi.
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102 Y. Mori and Y.-N. Young

We now focus on the fluid equations. Since the expansions for the velocity and
pressure start at O(δ−1) and O(δ−2), the calculations in appendix B do not apply, but
the calculations there are easily modified for the case at hand. For ũ−1 we have:

−
∂ p̃−2

∂ξ ′
= q̃0

∂φ̃0

∂ξ ′
,

∂ ũ−1

∂ξ ′
= 0, (5.26a,b)

with interface conditions:

[ũ−1] = 0,
[

2µ
∂ ũ−1

∂ξ ′
− p̃−2

]
= 0. (5.27)

The matching conditions are:

lim
ξ ′→±∞

ũ−1 = lim
ξ→0±

u−1, lim
ξ ′→±∞

p̃−2 = lim
ξ→0±

p−2 ≡ p±. (5.28a,b)

We thus see that

ũ−1 = lim
ξ→0±

u−1, (5.29)

and therefore,

[u−1] = 0. (5.30)

For p̃−2, we see that

p̃−2 =

{
p+ + (εex/2)(∂φ̃0/∂ξ

′)2 for ξ ′ > 0,
p− + (εin/2)(∂φ̃0/∂ξ

′)2 for ξ ′ < 0.
(5.31)

Since p± does not depend ηi (see (5.7)), p̃−2 does not depend on η. Given (5.27) and
(5.29), p−2 is continuous at ξ ′ = 0 and therefore,p+ −

εex

2

(
∂φ̃0

∂ξ ′

)2
∣∣∣∣∣∣

ξ ′=0+

=

p− −
εin

2

(
∂φ̃0

∂ξ ′

)2
∣∣∣∣∣∣

ξ ′=0−

. (5.32)

After some algebra, we find that:

[p−2] = p− − p+ =
εin

2

(
4λ−A−
1− A2

−

)2

−
εex

2

(
4λ+A+
1− A2

+

)2

, (5.33)

where λ±,A± are defined in (5.18) and (5.21). When lC= lA, A±= 0 and thus there is
no pressure difference to leading order. Otherwise, there will in general be a pressure
difference.

We may also consider the equations for ṽi
−1. This analysis, the details of which we

omit, yields:

ṽi
−1 = lim

ξ→0±
vi
−1, i= 1, 2. (5.34)
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Leaky dielectric theory via the weak electrolyte limit 103

In particular, we have:

[vi
−1] = 0, i= 1, 2. (5.35)

We now turn to equations at the next order to obtain the boundary conditions for
(5.3). From (3.10) and (3.17) we have:

∂ J̃q,1

∂ξ ′
= 0, (5.36)

J̃q,1 =−Σ(q̃0)
∂

∂ξ ′

(
q̃1√

4S+ q̃2
0

+ φ̃1

)
, (5.37)

−q̃1 = ε

(
∂2φ̃1

∂ξ ′2
+ κ

∂φ̃0

∂ξ ′

)
, (5.38)

with interface conditions from (2.30), (3.14) and (3.15) given by:

[φ̃1] =

[
ε
∂φ̃1

∂ξ ′

]
= [J̃q,1] =

[
q̃1√

4S+ q̃2
0

]
= 0. (5.39)

We see from (5.36) and the above that J̃q,1 is constant throughout −∞<ξ ′<∞. Let
this constant be equal to J0. From (5.37) and (5.38), we obtain the equation:

−ε
∂2

∂ξ ′2

(
q̃1√

4S+ q̃2
0

)
+ q̃1 =−εκ

∂φ̃0

∂ξ ′
+ εJ0

∂

∂ξ ′

(
1

Σ(q̃0)

)
, (5.40)

with interface conditions:[
ε
∂

∂ξ ′

(
q̃1√

4S+ q̃2
0

)]
=

[
q̃1√

4S+ q̃2
0

]
= 0. (5.41)

It is not difficult to see that this equation for q̃1 has a unique bounded solution that
decays exponentially to 0 as ξ ′→±∞. It will be useful later to have a somewhat
more explicit form for q̃1 and φ̃1. Define the functions ψκ and ψJ as being solutions
to the following equations:

−ε
∂2ψκ

∂ξ ′2
+

√
4S+ q̃2

0ψκ =−ε
∂φ̃0

∂ξ ′
, (5.42)

−ε
∂2ψJ

∂ξ ′2
+

√
4S+ q̃2

0ψJ = ε
∂

∂ξ ′

(
1

Σ(q̃0)

)
, (5.43)

with interface conditions:

[ψ·] =

[
ε
∂ψ·

∂ξ ′

]
= 0, (5.44)

where ψ· is a place holder for either ψκ and ψJ . We also require that both ψκ and
ψJ decay to 0 at ξ ′→±∞. Note here that ψκ and ψJ depend solely on q̃0 and φ̃0
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104 Y. Mori and Y.-N. Young

and hence, like q̃0 and φ̃0, are universal functions that only depend on the parameters
of the system. Then, we have:

q̃1 =

√
4S+ q̃2

0(κψκ + J0ψJ), (5.45)

∂φ̃1

∂ξ ′
=−κ

∂ψκ

∂ξ ′
− J0

∂ψJ

∂ξ ′
−

J0

Σ(q̃0)
. (5.46)

We can now find φ̃1 the above together with the first of the interface conditions in
(5.39). To relate J0 to the outer layer variables, we use Kaplun’s matching procedure
to find that:

lim
ξ→±0

σ
∂φ0

∂ξ
= lim

ξ ′→±∞
σ
∂φ̃1

∂ξ ′
=−J0. (5.47)

In particular, we have: [
σ
∂φ0

∂ξ

]
= 0. (5.48)

Let us now turn to the equations for the velocities. For u, we have:

µ
∂2ũ0

∂ξ ′2
−
∂ p̃−1

∂ξ ′
= q̃1

∂φ̃0

∂ξ ′
+ q̃0

∂φ̃1

∂ξ ′
, (5.49)

∂ ũ0

∂ξ ′
+ κ ũ−1 +

1
√
|g|

∂

∂ηi
(
√
|g|ṽi

−1)= 0, (5.50)

with interface conditions:

[u0] = 0,

[
2µ
∂ ũ0

∂ξ ′
− p̃−1 + ε

∂φ̃1

∂ξ ′

∂φ̃0

∂ξ ′

]
=−γ̂ κ. (5.51)

Taking the derivative of (5.50) with respect to ξ ′ and using (5.29) and (5.34), we see
that

∂2ũ0

∂ξ ′2
= 0. (5.52)

Using the above and (5.38) as well as (5.10), we have:

∂

∂ξ ′

(
2µ
∂ ũ0

∂ξ ′
− p̃−1 + ε

∂φ̃1

∂ξ ′

∂φ̃0

∂ξ ′

)
=−κε

(
∂φ̃0

∂ξ ′

)2

. (5.53)

We obtain the following from the usual matching procedure. We first have

lim
ξ ′→±∞

∂ ũ0

∂ξ ′
= lim

ξ→0±

∂u−1

∂ξ
, (5.54)

together with

lim
ξ ′→±∞

∂ ũ0

∂ξ ′
= lim

ξ→0±

∂u−1

∂ξ
, [u0] = 0. (5.55)
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Leaky dielectric theory via the weak electrolyte limit 105

We also have:[
2µ
∂u−1

∂ξ ′
− p−1

]
=−γ̂effκ, γ̂eff = γ̂ −

〈
ε
∂φ̃0

∂ξ ′
,
∂φ̃0

∂ξ ′

〉
,〈

ε
∂φ̃0

∂ξ ′
,
∂φ̃0

∂ξ ′

〉
=

8λ+εexA2
+

1− A2
+

+
8λ−εinA2

−

1− A2
−

,


(5.56)

where 〈·, ·〉 is the standard inner product on L2(R), the space of square integrable
functions on the real line and λ±,A± are defined in (5.18) and (5.21). For vi we have:

µ
∂2ṽi

0

∂ξ ′2
− gij ∂ p̃−2

∂ηj
= q̃0gij ∂φ̃0

∂ηj
. (5.57)

From (5.31), p̃−2 does not depend on η. Thus, we have:

µ
∂2ṽi

0

∂ξ ′2
= q̃0gij ∂φ̃0

∂ηj
. (5.58)

This is supplemented with the interface condition:

[vi
0] = 0,

[
µ

(
∂ṽi

0

∂ξ ′
+ gij ∂ ũ−1

∂ηj

)]
= 0. (5.59)

Note that (5.57) together with (5.10) yields:

∂2

∂ξ ′2

(
µṽi

0 + εφ̃0gij ∂φ0

∂ηj

)
= 0, (5.60)

where we used (5.25). Thus,

ṽi
0 =−

ε

µ
φ̃0gij ∂φ0

∂ηj
+C±ξ ′ + B±, (5.61)

where the + (−) sign is chosen when ξ ′ > 0 (ξ ′ < 0), where B±,C± are constants to
be determined. The interface conditions (5.59) yield:

µexC+ =µinC−, B+ −
εex

µex
φ̃0(0)gij ∂φ0

∂ηj
= B− −

εin

µin
φ̃0(0)gij ∂φ0

∂ηj
. (5.62a,b)

The usual matching procedure yields:

lim
ξ→0±

∂vi
−1

∂ξ
= lim

ξ ′→±∞

∂ṽi
0

∂ξ ′
=C±, lim

ξ→0±
vi

0 = lim
ξ ′→±∞

(
−
ε

µ
φ̃0gij ∂φ0

∂ηj
+ B±

)
. (5.63a,b)

In particular, we have: [
µ

(
∂vi
−1

∂ξ
+ gij ∂u−1

∂ηj

)]
= 0, (5.64)
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106 Y. Mori and Y.-N. Young

and

[vi
0] =−

(
εin

µin
φ∆in +

εex

µex
φ∆ex

)
gij ∂φ0

∂ηj
, (5.65)

where φ∆in,ex were defined in (5.22). As remarked below (5.22), φ∆in,ex have the same
sign, and thus, there is a jump in the velocity vi

0 across the interface Γ so long as
lC 6= lA and ∂φ0/∂η

i
6= 0. This velocity slip is essentially a liquid–liquid version of

the Smoluchowski slip formula for liquid–solid interfaces. This slip arises due to the
fact that there are charges of opposite sign on the two sides of the interface Γ (see
figure 5).

We may now collect our results. The governing equations for the leading-order
electrostatic potential and fluid velocity are:

∇ · (σ∇φ0)= 0, (5.66)

[φ0] = ln
(

lC
√

Sin

)
=

1
2

ln
(

lC

lA

)
,

[
σ
∂φ0

∂ξ

]
= 0, (5.67a,b)

µ1u−1 −∇p−1 = 0, ∇ · u−1 = 0, (5.68)
[u−1] = 0, [Σ(u−1, p−1)n] =−γ̂effκn. (5.69)

The effective tension γ̂eff is defined as

γ̂eff = γ̂ −

〈
ε
∂φ̃0

∂ξ ′
,
∂φ̃0

∂ξ ′

〉
,

〈
ε
∂φ̃0

∂ξ ′
,
∂φ̃0

∂ξ ′

〉
=

8λ+εexA2
+

1− A2
+

+
8λ−εinA2

−

1− A2
−

, (5.70a,b)

where λ±, A± are defined in (5.18) and (5.21). The equations for voltage φ0 and the
fluid velocity u−1 are thus completely decoupled, except that the effective surface
tension constant is modified to γ̂eff . We point out that the equation for u−1 is well
posed only if γ̂eff > 0, suggesting that the above asymptotic procedure may not be
valid if γ̂eff < 0.

Assume that γ̂eff > 0. To leading order, the fluid will undergo Stokesian motion
without any influence from the electric field. An initially deformed droplet will
approach a sphere (if initially homeomorphic to a sphere). The dynamics described
by u−1 thus represents the initial layer, after which the droplet is approximately
spherical and u0 becomes the leading-order term of the velocity field.

5.2. Perturbation from sphere
We now consider the dynamics of the droplet after the initial layer and the droplet is
approximately spherical. This amounts to obtaining equations for u0. We expand the
curvature κ in terms of δ:

κ = κ0 + δκ1 + · · · . (5.71)

We note that, strictly speaking, this expansion had to be applied to all preceding
calculations. It can be checked that this will not have made any difference in our
calculations thus far (since this would only amount to changing all instances of κ to
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Leaky dielectric theory via the weak electrolyte limit 107

κ0 in the foregoing calculations). Assuming that an equilibrium steady state is reached
(γ̂eff > 0)

u−1 = 0, p−1 =

{
0 in Ωin

γ̂effκ0 in Ωex
, [p−1] = γ̂effκ0, (5.72)

where κ0 is the constant curvature of the spherical droplet and we have normalized
the pressure in Ωex to be 0.

Given (5.4) (and (4.3)), the equation for u0 in the outer layer is given by:

µ1u0 −∇p0 = 0, ∇ · u0 = 0. (5.73)

We already have the interfacial conditions (5.55) and (5.65). We have only to obtain
the stress jump conditions across the interface. As before, the variables with ·̃ are for
the inner layer.

From (5.72) and using (5.29), (5.34), we have:

ũ−1 = ṽ
i
−1 = 0. (5.74)

We caution that p̃−1 is not necessarily constant within the inner layer. We also have:

∂ ũ0

∂ξ ′
= 0, lim

ξ ′→±∞

∂ṽi
0

∂ξ ′
= 0, (5.75)

where we used (5.54) in the first equality and (5.63) in the second. Let us now
consider the equations for u. From (3.18) using (5.74) and (5.75) we have (see (B 8)
and (B 22)):

µ
∂2ũ1

∂ξ ′2
−
∂ p̃0

∂ξ ′
= q̃0

∂φ̃2

∂ξ ′
+ q̃1

∂φ̃1

∂ξ ′
+ q̃2

∂φ̃0

∂ξ ′
, (5.76)

0=
∂ ũ1

∂ξ ′
+ κ0ũ0 +

1
√
|g|

∂

∂ηi
(
√
|g|ṽi

0). (5.77)

From (2.31) and (5.25), we have (see (B 15))2µ
∂ ũ1

∂ξ ′
− p0 +

ε

2

(∂φ̃1

∂ξ ′

)2

+ 2
∂φ̃0

∂ξ ′

∂φ̃2

∂ξ ′
− gij ∂φ0

∂ηi

∂φ0

∂ηj

=−γ̂ κ1. (5.78)

Take the derivative of (5.77) with respect to ξ ′, multiply by µ and add to (5.76). Using
(5.74), we obtain:

2µ
∂2ũ1

∂ξ ′2
−
∂ p̃0

∂ξ ′
=−

µ
√
|g|

∂

∂ηi

(√
|g|
∂ṽi

0

∂ξ ′

)
+ q̃0

∂φ̃2

∂ξ ′
+ q̃1

∂φ̃1

∂ξ ′
+ q̃2

∂φ̃0

∂ξ ′
. (5.79)

Note that q̃2 satisfies:

−q̃2 = ε

(
∂2φ̃2

∂ξ ′2
+ κ0

∂φ̃1

∂ξ ′
+ κ1

∂φ̃0

∂ξ ′
+∆ηφ̃0

)
, (5.80)
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where ∆η is the Laplace–Beltrami operator on the interface:

∆ηφ0 =
1
√
|g|

∂

∂ηi

(√
|g|gij ∂φ0

∂ηj

)
. (5.81)

Using (5.60), (5.63) and (5.75), we have:

µ
∂ṽi

0

∂ξ ′
+ ε

∂φ̃0

∂ξ ′
gij ∂φ0

∂ηj
= 0. (5.82)

From this, we see that

µ
√
|g|

∂

∂ηi

(√
|g|
∂ṽi

0

∂ξ ′

)
+ ε

∂φ̃0

∂ξ ′
∆ηφ0 = 0. (5.83)

Using the above relations, (5.10) and (5.38), equation (5.79) can be rewritten as:

∂

∂ξ ′

2µ
∂ ũ1

∂ξ ′
− p0 +

ε

2

(∂φ̃1

∂ξ ′

)2

+ 2
∂φ̃0

∂ξ ′

∂φ̃2

∂ξ ′


=−2κ0ε

∂φ̃0

∂ξ ′

∂φ̃1

∂ξ ′
− κ1ε

(
∂φ̃0

∂ξ ′

)2

. (5.84)

We may now apply the usual matching procedure to obtain:[
2µ
∂u0

∂ξ
− p0 +

ε

2

((
∂φ0

∂ξ

)2

− gij ∂φ0

∂ηi

∂φ0

∂ηj

)]

=−γ̂effκ1 + 2κ0

(
εin

σin
φ∆in +

εex

σex
φ∆ex − IJ

)
J0 − 2κ2

0 Iκ, (5.85)

where γ̂eff was defined in (5.56), φ∆in,ex were defined in (5.22) and

Iκ =

〈
ε
∂φ̃0

∂ξ ′
,
∂ψκ

∂ξ ′

〉
, IJ =

〈
ε
∂φ̃0

∂ξ ′
,
∂ψJ

∂ξ ′
+ R∆

〉
,

R∆ =

{
Σ(q̃0)

−1
− σ−1

in for ξ ′ < 0,
Σ(q̃0)

−1
− σ−1

ex for ξ ′ > 0.


(5.86)

In the above derivation, we used (5.46), (5.42) and (5.43). Note that Iκ and IJ depend
only on the parameters of the system of equations.

We now turn to the equations for vi. We have (see (B 27)):

µ

(
∂2ṽi

1

∂ξ ′2
+ 2κ0

∂ṽi
0

∂ξ ′

)
− gij ∂p−1

∂ηj
= q̃0gij ∂φ̃1

∂ηj
+ q̃1gij ∂φ0

∂ηj
, (5.87)

where we used (5.25) in the last term. The interface condition is given by:[
µ

(
∂ṽi

1

∂ξ ′
+ gij ∂ ũ0

∂ηj

)]
= 0. (5.88)
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From (5.52) and (5.53), we have:

∂

∂ξ ′

(
∂ p̃−1

∂ηi
− ε

∂2φ̃1

∂ξ ′∂ηi

∂φ̃0

∂ξ ′

)
= 0. (5.89)

Recalling that p−1 is spatially constant in the outer layer by assumption, we see that

∂ p̃−1

∂ηi
− ε

∂2φ̃1

∂ξ ′∂ηi

∂φ̃0

∂ξ ′
= 0. (5.90)

Plugging this back into (5.87) and using (5.10), we obtain:

µ

(
∂2ṽi

1

∂ξ ′2
+ 2κ0

∂ṽi
0

∂ξ ′

)
=

∂

∂ξ ′

(
ε
∂φ̃0

∂ξ ′
gij ∂φ̃1

∂ηj

)
+ q̃1gij ∂φ0

∂ηj
. (5.91)

Further using (5.82) and (5.38),

µ
∂2ṽi

1

∂ξ ′2
=

∂

∂ξ ′

(
ε
∂φ̃0

∂ξ ′
gij ∂φ̃1

∂ηj

)
+

(
εκ0

∂φ̃0

∂ξ ′
− ε

∂2φ̃1

∂ξ ′2

)
gij ∂φ0

∂ηj
. (5.92)

Let us integrate both sides from ξ ′ =−∞ to ∞. The first term on the right yields:∫
∞

−∞

∂

∂ξ ′

(
ε
∂φ̃0

∂ξ ′
gij ∂φ̃1

∂ηj

)
dξ ′ =

[
ε
∂φ̃0

∂ξ ′
gij ∂φ̃1

∂ηj

]
= 0, (5.93)

where we used the continuity of ε∂φ̃0/∂ξ
′ and φ̃1 across ξ ′= 0 (see (5.11) and (5.39))

in the second equality. Let us turn to the second term on the right-hand side of
(5.92). Noting that gij∂φ0/∂η

j does not depend on ξ ′, it is sufficient to compute the
following.∫

∞

−∞

(
εκ0

∂φ̃0

∂ξ ′
− ε

∂2φ̃1

∂ξ ′2

)
dξ ′ =−κ0(εinφ

∆
in + εexφ

∆
ex)−

(
εin

σin
−
εex

σex

)
J0. (5.94)

In the above, we used the definitions of φ∆in,ex in (5.22), as well as (5.47) and (5.11)
for the second integrand. The matching procedure for (5.92) can now be completed
using the above together with (5.88), from which we find that[

µ

(
∂vi

0

∂ξ
+ gij ∂u0

∂ηj

)]
=

(
κ0(εinφ

∆
in + εexφ

∆
ex)+

(
εin

σin
−
εex

σex

)
J0

)
gij ∂φ0

∂ηj
. (5.95)

We have thus obtained the stress boundary conditions (5.85) and (5.95) for u0 and vi
0

respectively. Together with (5.55) and (5.65), these conditions constitute the interface
conditions for the Stokes equation (5.73). It is important to note that, when the voltage
jump [φ0] is equal to 0 (or lC = lA), the above interface conditions reduce to those of
the TM model without convection. In this sense, the above calculation generalizes the
TM model (without convection, applied to a sphere) in the presence of an interfacial
double layer charge density.
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5.3. Spherical drop under uniform electric field
We now apply the foregoing calculations to the case of a spherical drop under a
uniform electric field. The calculation here parallels that of Schnitzer & Yariv (2015).
Assuming the viscous drop maintains a spherical shape with a dimensionless radius
of 1, we use spherical polar coordinates for our calculation. The voltage is given by:

φ =


−Er cos θ

3σex

2σex + σin
+

1
2

ln(lC/lA) for r< 1,

−E cos θ
(

r+
σex − σin

2σex + σin
r−2

)
for r> 1,

(5.96)

where r is the radial coordinate and θ is the polar angle. The electric field is pointing
in the θ = 0 direction and is of magnitude E. In the above and in what follows, we
have omitted the subscript 0 indicating the order in the asymptotic expansion. We shall
only be interested in calculating the order 0 quantities. Let ur and uθ be the velocities
in the r and θ directions. The azimuthal component of the flow will be 0 by symmetry.
We suppose the velocity field is 0 in the far field. Using (5.55) and (5.65), at the
interface r= 1, we have the conditions:

[ur] = 0, (5.97)

[uθ ] =−
(
εin

µin
φ∆in +

εex

µex
φ∆ex

)
3σexE

2σex + σin
sin θ. (5.98)

We now turn to the stress jump conditions. Let Σrr and Σrθ be the rr and rθ
components of the fluid stress, which can be expressed using ur and uθ as:

Σrr = 2µ
∂ur

∂r
− p, Σrθ =µ

(
r
∂

∂r

(uθ
r

)
+

1
r
∂ur

∂θ

)
. (5.99a,b)

The stress jump conditions (5.85) and (5.95) yield:

[Σrr] =
1
2

(
3σexE

2σex + σin

)2
(
εin − εex +

(
εex

((
σin

σex

)2

+ 1

)
− 2εin

)
cos2 θ

)

+
12σexσinE
2σex + σin

(
εin

σin
φ∆in +

εex

σex
φ∆ex − IJ

)
cos θ − 8Iκ, (5.100)

[Σrθ ] =

(
3σexE

2σex + σin

)2 (
εin − εex

(
σin

σex

))
sin θ cos θ +

6σexE
2σex + σin

(εinφ
∆
in + εexφ

∆
ex) sin θ.

(5.101)

We have used the fact that κ0= 2 for a unit sphere. Since we assume the drop shape
is spherical, κ1= 0. This constraint should lead to restrictions on the parameter values.
We shall later restore the surface tension term γ κ1.

We now introduce the Stokes streamfunction ψ(r, θ) to solve the above interface
problem, which is related to ur and uθ via

ur =
1

r2 sin θ
∂ψ

∂θ
, uθ =−

1
r sin θ

∂ψ

∂r
. (5.102a,b)
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We use the well-known separation of variables solution (see, for example, Leal (2007)).
From the above interface conditions, the Stokes streamfunction ψ should be written
as:

ψ(r, θ)=



2∑
n=1

(Anrn+3
+ Bnrn+1)Qn(cos θ) if r< 1,

2∑
n=1

(Cnr2−n
+Dnr−n)Qn(cos θ) if r> 1,

(5.103)

where

Q1(z)= 1− z2, Q2(z)= z− z3. (5.104a,b)

The corresponding pressure is computed as

p(r, θ)=

{
µin(

7
2 A2r2

+ 20A1 cos θ + 21
2 A2r2 cos 2θ) if r< 1,

µex(C2r−3
+ 2C1r−2 cos θ + 3C2r−3 cos 2θ) if r> 1.

(5.105)

Let us determine the coefficients in the above expressions. Plugging in the above
expression into (5.97), we obtain:

2(A1 + B1) cos θ − (A2 + B2)(1− 3 cos2 θ)

= 2(C1 +D1) cos θ − (C2 +D2)(1− 3 cos2 θ)= ur|r=1. (5.106)

Since we assume that the drop maintains its spherical shape, ur at r = 1 must be
proportional to cos θ . Therefore, we have:

A1 + B1 =C1 +D1, A2 + B2 =C2 +D2 = 0. (5.107a,b)

From (5.98), we obtain:

(−4A1 − 2B1 +C1 −D1) sin θ + (−5A2 − 3B2 − 2D2) sin θ cos θ

=−

(
εin

µin
φ∆in +

εex

µex
φ∆ex

)
3Eσex

2σin + σex
sin θ. (5.108)

Thus,

−4A1 − 2B1 +C1 −D1 =−

(
εin

µin
φ∆in +

εex

µex
φ∆ex

)
3Eσex

2σex + σin
, (5.109)

−5A2 − 3B2 − 2D2 = 0. (5.110)

Likewise, from (5.100) and (5.101), we obtain the equations:

−12µinA1 +µex(6C1 + 12D1)=
12σexσinE
2σex + σin

(
εin

σin
φ∆in +

εex

σex
φ∆ex − IJ

)
, (5.111)

−3(µin(A2 − 2B2)−µex(6C2 + 8D2))=
1
2

(
3σexE

2σex + σin

)2
(
εex

((
σin

σex

)2

+ 1

)
− 2εin

)
,

(5.112)
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−6µinA1 + 6µexD1 =
6σexE

2σex + σin
(εinφ

∆
in + εexφ

∆
ex) (5.113)

−µin(16A2 + 6B2)+µex(6C2 + 16D2)=

(
3σexE

2σex + σin

)2(
εin − εex

(
σin

σex

))
. (5.114)

We may solve the above for the eight constants. The five equations for A2,B2,C2 and
D2, are exactly the same as those discussed in Taylor (1966), and this results in a
condition on the parameters for solvability. This leads to the discriminating function
for prolate/oblate deformation. We note that lA 6= lC only affects A1, B1, C1 and D1.
Thus the voltage jump due to lA 6= lC does not affect the discriminating function at
leading order. However, we expect the migration speed of the drop Vmgr to depend on
such voltage jump because, from (5.106), Vmgr= 2(A1+B1). Solving for the constants
A1, B1,C1 and D1, we obtain:

Vmgr =
2(5εinσexµexφ

∆
in + εex(4σin(µin +µex)− σex(µin + 2µex))φ

∆
ex)

µex(3µin + 2µex)(2σex + σin)
E

−
8(µin +µex)σinσexIJ

µex(3µin + 2µex)(2σex + σin)
E. (5.115)

Using (5.23) and noting that IJ =O((φ∆)2) we have:

Vmgr =
2(5εinσexµexζ + 4εexσin(µin +µex)− εexσex(µin + 2µex))

µex(3µin + 2µex)(2σex + σin)(1+ ζ )
φ∆E+O((φ∆)2).

(5.116)

If φ∆ is small, the droplet migrates in the direction of the sign of φ∆E when

Qmgr =
5εrtζ + 4σrt(1+µrt)

2+µrt
> 1, εrt =

εin

εex
, σrt =

σin

σex
, µrt =

µin

µex
. (5.117)

The direction of droplet migration, therefore, is not necessarily equal to φ∆E as
might have been expected. This is analogous to the conclusions of Baygents &
Saville (1991), in which the electrophoresis of conducting drops was studied using
an electrodiffusion model.

We now numerically evaluate the flow field. The only non-trivial detail is the
evaluation of the term IJ defined in (5.86), which in turn requires the numerical
solution of ψJ and ψκ which satisfies (5.43) and (5.42) respectively. The technical
difficulty here is that these differential equations are posed on the real line, and a
straight forward discretization does not work. We take a smooth map of the real line
onto a finite interval and discretize the transformed equations to obtain a numerical
solution. The details of this computation are omitted.

Flow fields around a migrating drop are shown in figure 12. The flow fields are
similar in its appearance to the quadrupole vortex flow field photograph reported in
Taylor (1966). In his paper, Taylor reports that the droplet drifts, and the flow field
shows an asymmetry not explained by the TM model.
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(a) (b)

FIGURE 12. (Colour online) Flow field around a migrating droplet, in a frame moving
with the droplet. Rotation axis is horizontal. DA/C,in,ex = 1, µin,ex = 1, lC = 1.01, lA = 1/lC.
In (a), εin= 1, εex= 2 and in (b), εin= 2, εex= 1 so that the flow field is consistent with a
prolate/oblate deformation in figure (a)/(b). Electric field is in the direction of the arrow.
φ∆ > 0, Qmgr > 1 in both figures so that the droplet is moving in the direction of the
arrow.

6. Discussion and outlook
6.1. Scaling and asymptotics

First, we note that any asymptotic calculation is only as good as the expansion
ansatz ((4.2) for § 4 and (5.2) for § 5). It is therefore important future work to
validate of our conclusions by computational or analytic means. Computational
verification will necessarily require numerical methods for the modified Saville or
charge diffusion models. Numerical methods in Tomar et al. (2007), López-Herrera,
Popinet & Herrada (2011), Berry, Davidson & Harvie (2013), Hu et al. (2015) may
be of particular interest in this regard.

We have chosen particular scalings for the dimensionless variables to obtain limiting
models. In § 3, we took the limit α→ 0 before taking the limit δ→ 0, as dictated by
(1.7). The scaling α ∼ δ, for example, may be appropriate in certain situations (see
§ 6.2). In § 4.1, equation (4.1) was chosen to obtain the TM model. As we saw in
table 1 other scalings for Pe (when φ∆ = 0) lead to the variants of the TM model.
Other distinguished scalings may be worth exploring. In § 5, scaling (5.1) was chosen
for analytical feasibility, and other scalings may likewise be worthy of further study.
Our analysis there requires that the surface tension coefficient γ be greater than
twice the electrostatic energy stored in the electric double layer (see (5.56) and the
discussion at the end of § 5.1). When this condition is violated, it does not seem to
be possible to take the limit δ→ 0. This may indicate the presence of an interfacial
electrochemical/electrohydrodynamic instability.

Scaling of dimensionless variables should be guided by their magnitudes in
experimental set-ups, an important subject to which we now turn.

6.2. Dimensionless parameters and surface charge convection
We discuss the size of dimensionless parameters that featured in our analysis. Let the
representative constants be:

T = 298 K, µ∗ = 1 Pa s, L= 1 mm, ε∗ = 4ε0,

σ∗ = 10−9 S m−1, γ∗ = 1 mN m−1,

}
(6.1)
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where ε0 is the permittivity of vacuum and σ∗ is the representative conductivity. All
values follow Saville (1997) except γ∗ which corresponds to the order of magnitude
in Salipante & Vlahovska (2010). Following Saville (1997) we set the representative
ionic radius rion to be:

rion = 0.25 nm. (6.2)

Assuming the Stokes–Einstein relation, we may set:

D∗ =
kBT

6πµ∗rion
, σ∗ =D∗

F2

RT
c∗, (6.3a,b)

where kB is the Boltzmann constant. The expression for σ∗ allows for the estimation
of c∗. The above yields the following values for the dimensionless parameters:

δ = 1.8× 10−4, Pe= 2.7× 10−2, γ = 1.3. (6.4a−c)

In addition, Saville (1997) uses the above to estimate the parameter α as:

α ≈ 10−4. (6.5)

We note that many of the above parameters may easily vary by a factor of 10–100
(σ∗ for example) in either direction, and thus, should be taken as a rough estimate.
Since the identity of the conducting ions and their reactions in leaky dielectrics are
unknown, the estimate for rion and α above are necessarily uncertain (Saville 1997).

We now discuss the implications of the above values for the applicability of our
analysis. Our most important assumption is the ordering α� δ� 1 as in (1.7). The
above indicates that α and δ are comparable. Note, however, that δ can be made larger
if we assume that σ∗ is smaller (σ∗ = 10−11–10−12 S m−1 in Salipante & Vlahovska
(2010)) or L is smaller. In addition, if the ions present in the leaky dielectrics are
generated by the dissociation of the solvent itself as discussed in § 3 (e.g. H+ and
OH− in pure water), the ratio α can be significantly smaller (approximately 10−9 for
pure water). The assumption α � δ � 1 is thus likely to be reasonable for many
systems. It would still be of interest to consider the limit α≈ δ� 1, possibly a more
appropriate scaling in certain systems.

In (6.4), Pe is at most O(1) with respect to δ and γ is much larger than O(δ).
According to table 1, this indicates that the TM model without surface charge
convection will be valid to leading order. The large value of γ with respect to δ2

indicates that there will be little deformation from the sphere; a formal analysis of
this situation will be analogous to the calculation in § 5.

Recall from § 4.3 that our analysis can be extended to the case of large imposed
voltage provided (4.80) is satisfied. Given the estimate of δ≈ 10−4 in (6.4), β=ω−2

=

103 may be the largest reasonable value for the dimensionless electric field magnitude
for our derivation to hold. In this case, the dimensionless parameters of (4.79) and
(4.82) are:

PeE = Peβ = 2.7× 10, δE = δ
√
β = 5.6× 10−3. (6.6a,b)

Given that these are rough estimates, it is possible that PeE = O(δ−1
E ) in certain

systems. In this case, table 1 indicates that we may obtain surface charge convection

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.567
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as an O(δE) correction. The surface tension coefficient γ is still much larger than δE,
so that deformation from the sphere may be small.

The above considerations lead to the question of whether there are any leaky
dielectric systems for which surface charge convection can be obtained as a
leading-order term. According to (4.84), we would need:

PeE = Peβ ≈ δ−2
E = δ

−2β−1, (6.7)

which implies:

β ≈
√

Pe−1δ−1. (6.8)

This same scaling can be obtained just from the TM model. Balancing of the
convective and conduction terms in the full TM model (see (4.61) and (4.62)) amounts
to equating the electrohydrodynamic time with the Maxwell–Wagner relaxation time
(Salipante & Vlahovska 2010):

tEHD =
µ∗

ε∗E2
∗

≈
ε∗

σ∗
= tMW . (6.9)

This leads to the scaling of β in (6.8). The ratio ReE= tMW/tEHD is sometimes referred
to as the electric Reynolds number. We may thus say that the scaling (6.8) corresponds
to the regime where ReE =O(1).

Since we need (4.81) for the validity of the asymptotic analysis, equation (6.8)
implies that

Pe� 1 (6.10)

must be satisfied. Using (6.3), we may compute Pe as:

Pe=
rion

rB
, rB =

q2
el

6πε∗kBT
, (6.11)

where qel is the elementary charge. The length rB is the Bjerrum length (up to a factor
of 2/3), which is of the order of 0.5–10 nm depending on the dielectric constant. On
the other hand, ion size is expected to be in the subnanometre range. Thus, barring
the use of exotic materials, Pe is typically never larger than 1.

Surface charge convection will thus be negligible at thermal voltages, but will
become appreciable as the imposed voltage becomes larger. At very large voltages
for which the electric Reynolds number is O(1), however, our derivation of the TM
model may break down. Our theory is thus consistent with reports that surface charge
convection is important for large imposed voltages (Xu & Homsy 2006; Salipante
& Vlahovska 2010; Lanauze et al. 2015; Vlahovska 2016; Das & Saintillan 2017b;
Sengupta et al. 2017), but experimentally imposed voltages are often higher than
the range over which our asymptotic calculations are guaranteed to be valid. It is,
however, quite possible that validity of our asymptotics does not deteriorate too much
even at such high voltages.

It is clear that the TM model itself (and thus, any asymptotic derivation of the
TM model) fails when and after geometric singularities arise. Recall that the charge
diffusion model of § 3 depended only on the smallness of α, and is thus potentially
valid at very large field strengths. Direct analysis and simulation of the charge
diffusion model may help resolve the physics of charge convection and singularity
formation under strong fields.
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6.3. Surface electrochemistry, Galvani potential and electromigration
It is well known that many liquid–liquid interfaces have a spontaneous voltage jump
known as the Galvani potential (GP) (Girault & Schiffrin 1989; Reymond et al.
2000). In its presence, as shown in § 5, a suspended leaky dielectric droplet will
migrate under an imposed electric field. Our analysis yields an explicit formula
for droplet migration velocity. We have, unfortunately, not been able to obtain
an estimate for the electromigration velocity primarily because of the absence
of independent measurements of the GP. We may, in turn, be able to use the
measured electromigration velocity to obtain an estimate of the GP based on our
formula. We also point out that the electromigration velocity formulae for droplets
described in Booth (1951), Baygents & Saville (1991), Pascall & Squires (2011) are
different from those obtained here. Although this is not surprising given the different
modelling assumptions, it would be interesting to clarify the interrelation among these
calculations.

The properties of the EDL and the resulting GP, which underpins our analysis of
droplet migration, should depend on the details of the surface electrochemistry at the
liquid–liquid interface. Our interfacial boundary conditions for ionic concentrations are
the simplest possible. Unlike Saville (1997), Schnitzer & Yariv (2015), the modified
Saville model does not incorporate surface ionic concentrations. We have assumed that
the anions and cations can move across the liquid–liquid interface. It is possible that
electric current flows across the interface via Faradaic reactions rather than by simple
drift of ions. A more sophisticated model for surface electrochemistry may thus be
needed for a better understanding of droplet electromigration and related phenomena
(Reymond et al. 2000).

7. Concluding remarks
In this paper, we have argued that the electrohydrodynamics of leaky dielectrics

is the electrohydrodynamics of weak electrolyte solutions. The weak electrolyte
limit of the modified Saville model leads to the charge diffusion model. The charge
diffusion model, in turn gives rise to the TM model or droplet electromigration
depending on the presence of the Galvani potential. We identify droplet migration
as an EDL phenomenon, which suggests that the electrohydrodynamics of leaky
dielectrics is not confined to EML phenomena. Our analysis may have broader
implications for a unified understanding of EML phenomena, usually associated
with the electrohydrodynamics of leaky dielectrics, and EDL phenomena, usually
associated with electrokinetic behaviour of conducting fluids (Bazant 2015).

In light of our results, the charge diffusion model may emerge as a suitable model
to address problems in electrohydrodynamics of leaky dielectrics that have so far
resisted explanation with the TM model. It would thus be of great interest to further
study the charge diffusion model, both from analytic and computational standpoints.

More broadly, our analysis highlights the importance of electrochemistry in
electrohydrodynamics. Despite its importance, there seem to be very few analytical or
computational studies on the interplay between electrochemistry and electrodiffusion/
electrohydrodynamics (Bazant et al. 2009). Our analysis suggests that there is much
to explore in this area.

Acknowledgements
Y.M. would like to thank Q. Wang for introducing him to the leaky dielectric

model. The authors would like to thank S. Kumar and H. Stone for discussion and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.567


Leaky dielectric theory via the weak electrolyte limit 117

encouragement. A workshop hosted by the IMA (Institute for Mathematics and its
Applications, University of Minnesota) led to this project, whose support we gratefully
acknowledge. Y.M. was supported by NSF DMS-1620316, DMS-1516978 and Y.-N.Y.
was supported by NSF DMS-1614863, DMS-1412789.

Appendix A. Energy identities and model hierarchy
An important feature of the models considered in this paper, the modified Saville

(MS), charge diffusion (CD) and Taylor–Melcher (TM) models, is that they all satisfy
free energy identities. In fact, the appropriate scaling of the dimensionless variables in
the derivation of the TM model can be seen by an examination of the energy identities.
We start with the MS model.

A.1. Modified Saville model
We first discuss the energy identity satisfied by the modified Saville model discussed
in § 2. We first introduce a few constants. Set:

EX,in − EX,ex = RT ln lX, X =C, A, S. (A 1)

These are the energy levels already discussed in (1.5). Suppose Ω is a bounded
domain. Then, we have:

dE
dt
=−D+ I, E = Echem + Eelec + Esurf , D=Dediff +Dvisc +Drct. (A 2)

The components of the free energy E are given by:

Echem =
∑

X=C,A,S

∫
Ω

nX(RT(ln nX − 1)+ EX) dx,

Eelec =

∫
Ω

ε

2
|∇φ|2 dx, Esurf =

∫
Γ

γ∗ dmΓ ,

 (A 3)

where

EX =

{
EX,in in Ωin

EX,ex in Ωex
for X =C, A, S. (A 4)

The components of the dissipation D are given by:

Dediff =
∑

X=C,A,S

∫
Ω

DXnX

RT
|∇µX|

2 dx, µX = RT ln nX + zXFφ,

Dvisc =

∫
Ω

2µ|∇Su|2 dx,

Drct =

∫
Ω

RTk+s(Q− 1) ln Q dx, Q=
k−ca
k+s

.


(A 5)

Boundary free energy input I is given by:

I =−
∫
∂Ω

(
φj∂Ω +

∑
X=C,A,S

µXfX,∂Ω

)
dm∂Ω,

j∂Ω =−
∂

∂t

(
ε
∂φ

∂n

∣∣∣∣
∂Ω

)
, fX,∂Ω =−

DXnX

RT
∂µX

∂n

∣∣∣∣
∂Ω

.

 (A 6)
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In the above, nC,A,S are c, a, s respectively, zX is the valence of each ion (zC=−zA= 1
and zS = 0), n is the outward normal on ∂Ω and dmΓ and dm∂Ω denote integration
on with the standard surface measures on ∂Ω and ∂Γ respectively. The calculations
that lead to the above energy identity will be discussed in § A.4.

The free energy has three components, the chemical and entropic free energy Echem,
the electrostatic energy Eelec and the interfacial surface tension energy Esurf . The total
free energy is dissipated (D> 0) except for possible free energy input at the boundary
of the domain (I). The dissipation consists of the viscous dissipation Dvisc, the
electrodiffusive dissipation Dediff and the dissipation due to the dissociation reaction
Drct. Boundary energy input consists of a term that comes from the displacement
current and the chemical flux. We emphasize that such an identity is not possible
unless (2.14) is satisfied; it can be checked that a violation of this restriction will
lead to spurious free energy creation at the interface Γ . When Ω = R3, the above
energy identity still holds if we restrict our integration to any bounded smooth domain
containing Ωin and modify the boundary term I to include a convective term to the
boundary chemical flux and work done by the stress on the boundary.

In the dimensionless variables introduced in § 2.2, the term in the energy relation
(A 2) assume the following forms. For the free energy components, we have:

Echem =
∑

X=C,A

EX +
1
α
ES,

EX =

∫
Ω

nX(ln nX − 1+ EX) dx, X =C, A, S,

Eelec =

∫
Ω

δ2ε

2
|∇φ|2 dx, Esurf =

∫
Γ

γ dmΓ ,


(A 7)

where the dimensionless energy levels are now:

EX =

{
−ln lX in Ωin

0 in Ωex
for X =C, A, S. (A 8)

For the dissipation components and the boundary free energy input, we have: The
components of the dissipation D are given by:

Dediff =
∑

X=C,A

DX +
1
α
DS,

DX =

∫
Ω

DX

Pe
nX|∇µX|

2 dx, µX = ln nX + zXφ, X =C, A, S,

Dvisc =

∫
Ω

2δ2µ|∇Su|2 dx, Drct =

∫
Ω

ks
αPe

(Q− 1) ln Q dx, Q=
ca
Ks
.


(A 9)

Boundary free energy input I is given by:

I =−
∫
∂Ω

(
δ2φj∂Ω +

1
Pe

∑
X=C,A,S

µXfX,∂Ω

)
dm∂Ω,

j∂Ω =−
∂

∂t

(
ε
∂φ

∂n

∣∣∣∣
∂Ω

)
, fX,∂Ω =− DXnX

∂µX

∂n

∣∣∣∣
∂Ω

.

 (A 10)
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A.2. Charge diffusion model
The charge diffusion model discussed in § 3, like the modified Saville model, satisfies
the following energy relation:

dE
dt
=−D+ I, E = Ech + Eelec + Esurf , D=Dediff +Dvisc, (A 11)

where Eelec, Esurf and Dvisc are the same as in (A 7), (A 9) and

Ech =

∫
Ω

(q(ωq + Eq)−
√

4S+ q2) dx, Dediff =

∫
Ω

1
Pe
Σ(q)|∇µq|

2 dx,

ωq = ln
(

1
2
(q+

√
4S+ q2)

)
, µq =ωq + φ, Eq =

{
−ln lC in Ωin,

0 in Ωex.

I =−
∫
∂Ω

(
δ2φj∂Ω +

1
Pe
µqfq

)
dm∂Ω,

j∂Ω =−
∂

∂t

(
ε
∂φ

∂n

∣∣∣∣
∂Ω

)
, fq,∂Ω =− Σ(q)

∂µq

∂n

∣∣∣∣
∂Ω

.


(A 12)

In contrast to the energy identity (A 2) of the modified Saville model, dissipation due
to the dissociation reaction Drct as well as the terms involving the neutral solute s
in Echem and Dediff are absent. Indeed, we may obtain the above energy identity in
the following fashion. Plug in the expansions in equation (3.2) into (A 2), (A 7), (A 9)
where s(0), c(0) and a(0) are given in (3.7) and (3.8). As we let α→ 0, we see that:

EMS
C + EMS

A → ECD
ch ,

1
α
EMS

S →−lS|Ωin|,
1
α
DMS

S → 0, DMS
rct → 0, (A 13a−d)

where |Ωin| is the volume of the region Ωin. In the above, the superscripts MS and
CD denote the energies and dissipations in the free energy identities of the modified
Saville model (A 2) and the charge diffusion model (A 11) respectively. Since the flow
is incompressible, |Ωin| remains constant in time, and we thus obtain (A 11).

A.3. Taylor–Melcher model and model hierarchy
The TM model (with or without the assumption that qΩ ≡ 0, see discussion between
equations (4.65) and (4.66)) satisfies the following energy identity:

dE
dt
=−D+ I, (A 14)

where

E = Eelec + Esurf =

∫
Ω

ε

2
|∇φ|2 dx+

∫
Γ

γ̂ dmΓ ,

D=Dcond +Dvisc =

∫
Ω

(σ̂ |∇φ|2 + 2µ|∇Su|2) dx,

I =−
∫
∂Ω

φi∂Ω dm∂Ω, i∂Ω =−
(
∂

∂t

(
ε
∂φ

∂n

∣∣∣∣
∂Ω

)
+ σ̂

∂φ

∂n

∣∣∣∣
∂Ω

)
.


(A 15)
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MS model CD model TM model

FIGURE 13. Model hierarchy and energy relations. The top row lists the modified Saville,
charge diffusion and TM models and the bottom row lists the energy relations satisfied
by the respective models, (A 2), (A 11) and (A 15) (we have omitted the boundary energy
input term I to avoid a cluttered diagram). The horizontal arrows correspond to taking
(asymptotic) limits α→ 0 or δ→ 0. The vertical arrows correspond to the ‘operation’ of
forming the free energy identity. These arrows commute in the following sense. Taking the
asymptotic limit in the complex model and then forming the energy identity, or forming
the energy identity of the complex model and then taking the asymptotic limit in the
energy identity, leads to the same energy identity for the simpler model.

This identity can also be obtained by letting δ→ 0 in the energy identity (A 11) for
the charge diffusion model. Plug in the expressions:

φ = φ0 +O(δ), q= δ2q2 +O(δ3), u= u0 +O(δ) (A 16a−c)

into (A 11). The leading-order scaling of q, is taken to be compatible with our
matched asymptotic calculation of § 4.1. If we are just interested in obtaining this
scaling, however, we have only to look to the Poisson equation (3.17); if φ0 is scaled
as O(δ0), q must be scaled starting at O(δ2). We see that

δ−2(ECD
elec + ECD

surf )= ETM
+O(δ), δ−2DCD

=DTM
+O(δ), (A 17a,b)

where the superscripts CD and TM denote the energies and dissipations that appear
in the free energy identity for the charge diffusion model (A 11) and the TM model
(A 15) respectively. Similarly, δ−2ICD reduces to ITM to leading order. We see that
(4.1) is precisely the scaling of dimensionless parameters that allows each of the
energy and dissipation terms in (A 11) to have the same order of magnitude as δ→ 0.
We have only to consider ECD

ch in (A 11). We have:

δ−2ECD
ch =−δ

−2
∫
Ω

2
√

S dx+
∫
Ωin

q2 ln(
√

Sin/lC) dx+O(δ). (A 18)

In order to recover the energy law of the TM model, the time derivative of the
above must be O(δ). The first term is a constant since

√
S is constant within Ωin,ex

respectively and the flow is incompressible. The second term is 0 thanks to (3.21),
which is a consequence of our assumption that lC = lA. We see that the appropriate
scaling for the dimensionless variables and the parametric constraint lC = lA can both
be gleaned by simply taking limits in energy identities.

The modified Saville model, the charge diffusion model and the TM model have
now been placed in a hierarchy of energy relations, the TM model being the simplest
and the modified Saville model being the most complex. This model hierarchy is
expressed in the form of a ‘commutative diagram’ in figure 13.
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A.4. Derivation of free energy relations
We prove (A 14) of the TM model. The energy identities of the modified Saville and
charge diffusion models can be proved in a similar fashion. The calculation to follow
parallels that of Mori, Liu & Eisenberg (2011).

Let us calculate the left-hand side of (A 14).

d
dt

∫
Ω

ε

2
|∇φ|2 dx+

∫
Γ

γ̂ dmΓ

=

∫
Ω

(
ε∇φ · ∇

(
∂φ

∂t

))
dx+

∫
Γ

(([ε
2
|∇φ|2

]
+ γ̂ κ

)
u⊥
)

dmΓ

=

∫
Γ

([
φ
∂

∂n

(
ε
∂φ

∂t

)]
+

([ε
2
|∇φ|2

]
+ γ̂ κ

)
u⊥

)
dmΓ

+

∫
Ω

φ
∂qΩ
∂t

dx+
∫
∂Ω

φ
∂

∂n

(
ε
∂φ

∂t

)
dm∂Ω . (A 19)

In the first equality, we used the fact that the interface Γ moves with the local flow
velocity, where u · n = u⊥. In the second equality, we integrated by parts and used
(4.59).

In order to proceed further, we must simplify the term (∂/∂n)(ε(∂φ/∂t)) that
appears in the integral over Γ in (A 19). We have:

∂

∂n

(
∂φ

∂t

)∣∣∣∣
Γk

=

(
∂⊥t

(
∂φ

∂n

)
+∇Γ u⊥ · ∇Γ φ − u⊥

∂2φ

∂n2

)∣∣∣∣
Γk

, k= in, ex. (A 20)

This technical result is proved in appendix B of Mori et al. (2011). Using this, we
obtain: ∫

Γ

[
φ
∂

∂n

(
ε
∂φ

∂t

)]
dmΓ

=

∫
Γ

[
φ

(
∂⊥t

(
ε
∂φ

∂n

)
+∇Γ u⊥ · (ε∇Γ φ)− u⊥ε

∂2φ

∂n2

)]
dmΓ

=

∫
Γ

(
φ

[
∂⊥t

(
ε
∂φ

∂n

)]
− u⊥

[
∇Γ · (εφ∇Γ φ)+ ε

∂2φ

∂n2

])
dmΓ , (A 21)

where we integrated by parts over Γ in the second identity and used the fact that φ
and u⊥ are continuous across Γ (see (4.61) and (4.63)). Note that the surface Γ is
closed and thus integration by parts does not result in boundary terms. Let us simplify
the above integrands. First we have:[

∂⊥t

(
ε
∂φ

∂n

)]
= ∂⊥t

[(
ε
∂φ

∂n

)]
= ∂⊥t qΓ . (A 22)

Next, we have:[
∇Γ · (εφ∇Γ φ)+ εφ

∂2φ

∂n2

]
=

[
ε|∇Γ φ|

2
+ εφ

(
∆Γ φ +

∂2φ

∂n2

)]
=

[
ε|∇Γ φ|

2
− εφκ

∂φ

∂n
− qΩφ

]
= [ε|∇Γ φ|

2
] − κqΓ φ − [qΩ]φ, (A 23)
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where ∆Γ is the Laplace–Beltrami operator on Γ . In the second equality above, we
used the expression below, which is a consequence of (4.59):

ε1φ|Γk = ε

(
∆Γ φ + κ

∂φ

∂n
+
∂2φ

∂n2

)∣∣∣∣
Γk

=−qΩ |Γk , k= in, ex. (A 24)

Collecting the above calculations and plugging this back into (A 19), we have:

d
dt

∫
Ω

ε

2
|∇φ|2 dx+

∫
Γ

γ̂ dmΓ = I1 + I2 + I3,

I1 =

∫
Γ

φ(∂⊥t qΓ + u⊥κqΓ ) dmΓ , I2 =

∫
Ω

φ
∂qΩ
∂t
+

∫
Γ

u⊥φ[qΩ] dmΓ ,

I3 =

∫
Γ

([
ε

2

(∣∣∣∣∂φ∂n

∣∣∣∣2 − |∇Γ φ|2
)]
+ γ̂ κ

)
u⊥ dmΓ .


(A 25)

Using (4.63), we see that the integrand of I1 + I3 is equal to:

φ(∂⊥t qΓ + κqΓ u⊥)− [(Σ(u, p))n] · u− qΓ u‖∇Γ φ

=−[(Σ(u, p))n] · u−∇Γ · (qΓ φu‖)−
[
σ̂
∂φ

∂n

]
φ, (A 26)

where we used (4.62). Therefore,

I1 + I3 = −

∫
Γ

(
[(Σ(u, p))n] · u+

[
σ
∂φ

∂n

]
φ

)
dmΓ

= −

∫
Ω

(σ̂ |∇φ|2 + 2µ|∇Su|2) dx+
∫
∂Ω

φσ̂
∂φ

∂n
dm∂Ω + I4

I4 = −

∫
Ω

(u · qΩ∇φ +∇ · (σ̂∇φ)) dx,


(A 27)

where we integrated by parts on the surface Γ in the first equality, and integrated by
parts over Ω in the second equality and used (4.60). Finally, using (4.58), we have:

I2 + I4 =−

∫
Ω

∇ · (uqΩφ) dx+
∫
Γ

u⊥φ[qΩ] dmΓ = 0. (A 28)

This concludes the proof of identity (A 14).

Appendix B. Stokes equation in the inner layer
In the boundary layer analysis, we introduced curvilinear coordinates fitted to the

liquid–liquid interface. Here, we collect vector calculus expressions associated with
this coordinate system. See Aris (1990) for an extensive treatment of the equations
of continuum mechanics in curvilinear coordinates. Recall that the coordinates
(ξ , η1, η2) = (η0, η1, η2) (we shall use η0 or ξ interchangeably) are given as in
(4.9). The metric tensor associated with this coordinate system is given by:

G=
(

1 0T

0 ĝ

)
, (B 1)
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where G is the 3× 3 metric tensor, 0 ∈ R2 is the zero (column) vector and ĝ is the
2× 2 metric tensor associated with the coordinates η1, η2. ĝ is given by:

ĝ= g+ 2ξh+ ξ 2h̃, (B 2)

where g, h and h̃ are the first, second and third fundamental forms of the surface
respectively, and are thus functions of (η1, η2) and do not depend on ξ :

gij =
∂X
∂ηi
·
∂X
∂ηj

, hij =
∂n
∂ηi
·
∂X
∂ηj

, h̃ij =
∂n
∂ηi
·
∂n
∂ηj

. (B 3a−c)

Here, the subscripts i, j denote the components of the tensors and i, j= 1, 2.
We now write the Stokes equation (3.18) in these coordinates. The components of

the vector field u in curvilinear coordinates will be denoted (u, v1, v2)= (v0, v1, v2)

(see (4.10)). Consider first the incompressibility condition. We have:

∇ · u=
1
√
|G|

∂

∂ηρ
(
√
|G|vρ)=

1√
|ĝ|

∂

∂ξ
(
√
|ĝ|u)+

1√
|ĝ|

∂

∂ηi
(
√
|ĝ|vi)= 0, (B 4)

where | · | is the determinant. In this appendix, Greek indices run through 0, 1, 2 and
whereas Roman indices run through 1, 2. Note that:

1√
|ĝ|

∂

∂ξ

√
|ĝ|

∣∣∣∣∣
ξ=0

=
1

2|ĝ|
∂|ĝ|
∂ξ

∣∣∣∣
ξ=0

= gijhij = κ, (B 5)

where gij denotes the components of the inverse of g (following usual convention,
and likewise for ĝ and G) and κ is the sum of the principal curvatures of the
interface (twice the mean curvature). Introduce the inner layer coordinate ξ ′ = ξ/δ2

and postulate a boundary layer expansion in terms of δ starting from:

ũ= ũ0 + δũ1 + · · · , (B 6)

and similarly for vi. Condition (B 4) gives:

∂ ũ0

∂ξ ′
= 0, (B 7)

∂ ũ1

∂ξ ′
+ κ ũ0 +

1
√
|g|

∂

∂ηi
(
√
|g|ṽi

0)= 0. (B 8)

Let us now turn to the momentum balance equation in (3.18), written in stress
divergence form:

δ2
∇ ·ΣS = q∇φ, ΣS =µ(∇u+ (∇u)T)− pI. (B 9)

In the curvilinear coordinate system, the above may be written as:

δ2Σρν
,ν = qGρν ∂φ

∂ην
, Σρν

=µDρν
− pGρν, (B 10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.567


124 Y. Mori and Y.-N. Young

where the subscripts ,ν denote the covariant derivative and Dρν is given by

Dρν
=Gρλvν,λ +Gνλv

ρ
,λ =Gρλ

(
∂vν

∂ηλ
+ Γ ν

λσv
σ

)
+Gνλ

(
∂vρ

∂ηλ
+ Γ

ρ
λσv

σ

)
, (B 11)

where Γ are the Christoffel symbols associated with the metric G. Let (n0, n1, n2)=
(1, 0, 0) be the covariant unit vector in the ξ = η0 direction. This is also the unit
normal vector on the interface. We have:

Dρνnν =Dρ0
=
∂vρ

∂ξ
+ Γ

ρ
0λv
λ
+Gρλ

(
∂v0

∂ηλ
+ Γ 0

λσv
σ

)
. (B 12)

Noting that:

Γ 0
00 = Γ

0
0l = Γ

0
0l = Γ

l
00 = 0, Γ i

0l = Γ
i

l0 =
1
2

ĝik ∂ ĝkl

∂ξ
=−ĝikΓ 0

kl , (B 13a,b)

we have:

D0νnν =D00
= 2

∂u
∂ξ
, Diνnν =Di0

=D0i
=
∂vi

∂ξ
+ ĝik ∂u

∂ηk
. (B 14a,b)

In particular, at ξ = 0 we have:

Σ0νnν
∣∣
ξ=0 = 2µ

∂u
∂ξ
− p, Σ iνnν

∣∣
ξ=0 =µ

(
∂vi

∂ξ
+ gik ∂u

∂ηk

)
. (B 15a,b)

Next, we consider the divergence of D. We have:

Dρν
,ν =

1
√
|G|

∂

∂ην
(
√
|G|Dρν)+ Γ

ρ
νλD

νλ. (B 16)

For the ρ = 0 component, we obtain:

D0ν
,ν =

2√
|ĝ|

∂

∂ξ

(√
|ĝ|
∂u
∂ξ

)
+

1√
|ĝ|

∂

∂ηi

(√
|ĝ|
(
∂vi

∂ξ
+ ĝik ∂u

∂ηk

))
−

1
2
∂ ĝjk

∂ξ
Djk. (B 17)

Expanding the above in the inner layer, we have:

δ2D0ν
,ν = 2

∂2ũ0

∂ξ ′2
+ δ

(
2
∂2ũ1

∂ξ ′2
+ 2κ

∂ ũ0

∂ξ ′
+

1
√
|g|

∂

∂ηi

(√
|g|
∂ṽi

0

∂ξ

))
+O(δ2)

= δ
∂2ũ1

∂ξ ′2
+O(δ2), (B 18)

where we used (B 7) and (B 8) in the second equality. Assume an expansion of q of
the form

q̃= q̃0 + δq̃1 + δ
2q̃2 + · · · (B 19)
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and similarly for φ. For ρ = 0, (B 9) thus gives:

0= q̃0
∂φ̃0

∂ξ ′
, (B 20)

0= q̃1
∂φ̃0

∂ξ ′
+ q̃0

∂φ̃1

∂ξ ′
, (B 21)

µ
∂2ũ1

∂ξ ′2
−
∂ p̃0

∂ξ ′
= q̃2

∂φ̃0

∂ξ ′
+ q̃1

∂φ̃1

∂ξ ′
+ q̃0

∂φ̃2

∂ξ ′
. (B 22)

For ρ = i= 1, 2 we have:

Diν
,ν =

1√
|ĝ|

∂

∂ξ

(√
|ĝ|
(
∂vi

∂ξ
+ ĝik ∂u

∂ηk

))
+ ĝik ∂ ĝkj

∂ξ

(
∂vj

∂ξ
+ ĝjl ∂u

∂ηl

)
+

1√
|ĝ|

∂

∂ηj
(
√
|ĝ|Dij)+ Γ i

jkD
jk, (B 23)

where we used (B 13) in the above. Expanding the above in the inner layer, we
obtain:

δ2Diν
,ν =

∂2ṽi
0

∂ξ ′2
+ δ

(
∂

∂ξ ′

(
∂ṽi

1

∂ξ ′
+ gik ∂ ũ0

∂ηk

)
+ κ

∂ṽi
0

∂ξ ′
+ 2gikhkj

∂ṽ
j
0

∂ξ ′

)
+O(δ2). (B 24)

For ρ = i= 1, 2, (B 9) thus gives:

µ
∂2ṽi

0

∂ξ ′2
= q̃0gij ∂φ̃0

∂ηj
, (B 25)

µ

(
∂2ṽi

1

∂ξ ′2
+ κ

∂ṽi
0

∂ξ ′
+ 2gikhkj

∂ṽ
j
0

∂ξ ′

)
= q̃0gij ∂φ̃1

∂ηj
+ q̃1gij ∂φ̃0

∂ηj
, (B 26)

where, in the second relation, we used (B 7) and the fact that g does not depend on
ξ ′. When the interface is a sphere, 2gikhkj = κδ

i
j where δi

j is the Kronecker delta, in
which case (B 26) reduces to:

µ

(
∂2ṽi

1

∂ξ ′2
+ 2κ

∂ṽi
0

∂ξ ′

)
= q̃0gij ∂φ̃1

∂ηj
+ q̃1gij ∂φ̃0

∂ηj
. (B 27)

Appendix C. Proof of Proposition 1

Proposition 1 concerns the solution of equation (4.71) under the condition (4.69).
When λ 6= 0, the solution can be written in terms of Kummer functions, whose
properties we now discuss. The proof of Proposition 1 will follow after this general
discussion. For properties of Kummer functions, we refer the reader to Olver (2010).

Consider the following differential equation for x> 0:

d2y
dx2
− x

dy
dx
− ay= 0, a> 0. (C 1)
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We are interested in solutions that satisfy:

lim
x→∞

y(x)= 0. (C 2)

Consider the function:

f (z)= y(x), z= 1
2 x2. (C 3)

Note that this coordinate transformation is well defined since x > 0. After some
calculation, we obtain:

z
d2f
dz2
+

(
1
2
− z
)

df
dz
−

a
2

f = 0, z> 0. (C 4)

This is known as the Kummer differential equation, and its general solution is given
by:

f (z)= AM
(

a
2
,

1
2
, z
)
+ BU

(
a
2
,

1
2
, z
)
, (C 5)

where M and U are the Kummer functions of the first and second kind, and A,B are
arbitrary constants. The general solution to (C 1) is thus given by:

y(x)= AM
(

a
2
,

1
2
,

1
2

x2

)
+ BU

(
a
2
,

1
2
,

1
2

x2

)
. (C 6)

From known properties of the functions M and U, we know that, as x→∞:

M
(

a
2
,

1
2
,

1
2

x2

)
=

2(1−a)/2

Γ
(a

2

)xa−1 exp(x2/2)(1+O(x−2)),

U
(

a
2
,

1
2
,

1
2

x2

)
= 2a/2x−a(1+O(x−2)),

 (C 7)

where Γ (·) is the gamma function. Since we are interested in solutions that satisfy
(C 2), we have:

y(x)=Cψa(x), ψa(x)=
Γ

(
a+ 1

2

)
√

π
U
(

a
2
,

1
2
,

1
2

x2

)
, (C 8)

where C is an arbitrary constant. The function ψa has been normalized so that:

lim
x→0

ψa(x)= 1. (C 9)

We record its behaviour as x→∞:

ψa(x)=
Γ

(
a+ 1

2

)
√

π
2a/2x−a(1+O(x−2)). (C 10)
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We point out that in fact ψa can be extended to an entire function in the complex
plane (although U in general cannot) so that, in particular, ψa (and all its derivatives)
are defined at x= 0.

Next, consider the following differential equation:

d2y
dx2
+ x

dy
dx
− ay= 0, a> 0. (C 11)

This is the same as (C 1) except that the sign of the second term has changed. We
are again interested in solutions that satisfy (C 2). In this case,

w= exp(x2/2)y (C 12)

satisfies the equation:

d2w
dx2
− x

dw
dx
− (a+ 1)w= 0. (C 13)

This is just (C 1) where a is replaced by a+ 1, and therefore, the general solution to
(C 11) is given by:

y(x)=
(

AM
(

a+ 1
2

,
1
2
,

1
2

x2

)
+ BU

(
a+ 1

2
,

1
2
,

1
2

x2

))
exp(−x2/2), (C 14)

where A, B are arbitrary constants. Using (C 7), we see that the solutions satisfying
(C 2) are given by:

y(x)=Cϕa(x), ϕa(x)=
Γ
(a

2
+ 1
)

√
π

U
(

a+ 1
2

,
1
2
,

1
2

x2

)
exp(−x2/2), (C 15)

where C is an arbitrary constant. We have normalized ϕa(x) so that

lim
x→0

ϕa(x)= 1, (C 16)

and its behaviour as x→∞ is given by:

ϕa(x)=
Γ
(a

2
+ 1
)

√
π

2(a+1)/2x−(a+1) exp(−x2/2)(1+O(x−2)). (C 17)

Like ψa, ϕa also has an analytic continuation as an entire function.
We finally note that

ψa(x) > 0 and ϕa(x) > 0 for all 06 x<∞. (C 18a,b)

This can be seen as follows. Note first that ψa(0)= 1> 0 and ψa(x)> 0 as x→∞. If
ψa(x) is non-positive, it must have a local minimum that is either negative or 0. By
the maximum principle applied to (C 1), ψa(x) cannot have a negative minimum. The
function ψa(x) cannot attain 0 as its minimum either, because of uniqueness of the
ODE initial value problem; if ψa=ψ

′

a= 0 at one point, then ψa would be identically
equal to 0. The same argument applies to ϕa. It is also not difficult to see that both ψa
and ϕa are monotone decreasing by a similar argument (or using phase plane methods).
We omit the proof.
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128 Y. Mori and Y.-N. Young

Proof of Proposition 1. For λ = 0, equation (4.71) is a linear ODE with constant
coefficients that is straightforward to solve. Suppose λ > 0 and focusing on ξ ′ > 0,
we may rewrite (4.71) as:

d2y
dx2
− x

dy
dx
− ay= 0, a=

1
λτex

, y(x)= q̃1

(√
Dq,ex

λ
x

)
. (C 19)

This is nothing other than (C 1). Using (C 8), we see that solutions that decay to 0 as
ξ ′→∞ can be written as:

q̃1(ξ
′)=Cψ(λτex)−1

(√
λ

Dq,ex
ξ ′

)
, ξ ′ > 0, (C 20)

where ψa is defined in (C 8) and C is a constant to be determined. Likewise,

q̃1(ξ
′)= lCCψ(λτin)−1

(√
λ

Dq,in
|ξ ′|

)
, ξ ′ < 0. (C 21)

Here, we have used the first condition in (4.69) and (C 9). Finally, we must determine
C using the integral constraint in (4.69).∫

∞

−∞

q̃1 dξ ′ =
∫ 0

−∞

lCCψ(λτin)−1

(√
λ

Dq,in
|ξ ′|

)
dξ ′ +

∫
∞

0
Cψ(λτex)−1

(√
λ

Dq,ex
ξ ′

)
dξ ′

= C

(
lC

√
Dq,in

λ

∫
∞

0
ψ(λτin)−1(x) dx+

√
Dq,ex

λ

∫
∞

0
ψ(λτex)−1(x) dx

)
. (C 22)

This must be equal to qΓ . We can thus solve for C if the sum of integrals in the
parentheses in the above is non-zero and finite. This is always non-zero since ψa is
positive by (C 18). Noting that ψa(x) is bounded, (C 10) shows that ψa(x) is integrable
if and only if a> 1. Thus, both (λτin)

−1 and (λτex)
−1 must be greater than 1. We can

thus solve for C and obtain q̃1 if λτmax < 1. If λτmax > 1, at least one of the integrals
in (C 22) is infinite and a solution does not exist unless qΓ = 0 (in which case q̃1 is
identically equal to 0). We may obtain (4.73) from (C 20), (C 21) and (C 10).

When λ< 0, for ξ ′ > 0, we may rewrite (4.71) as:

d2y
dx2
+ x

dy
dx
− ay= 0, a=

1
|λ|τex

, y(x)= q̃1

(√
Dq,ex

|λ|
x

)
. (C 23)

This is equation (C 11). We may thus proceed as in the case λ> 0. The function ϕa
defined in (C 15) is integrable for any a, and thus there always is a unique solution.
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