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Abstract
The present research aims to model, simulate and implement a new hybrid control approach based on a combination
of proportional integral derivative (PID) Controller and Model Reference Adaptive Controller (MRAC), in which
Lyapunov’s theory is used to ensure asymptotic stability to control a two degrees of freedom (DoF) manipulator
driven by McKibben’s artificial pneumatic muscles. The MRAC controller works as a nonlinearity compensator and
PID controller works during the transient period, as the MRAC performs poorly in this regime. This new approach
is entitled Hybrid Model Reference Adaptive Controller (H-MRAC) and it has an unprecedented topological struc-
ture based on three terms. The feedforward term acts in disturbances rejection, the derivative term in oscillations
damping and the feedback term acts in error convergence to zero. In this article, a control system dedicated to pneu-
matic manipulators was developed. As a result, proof of asymptotic convergence was performed for the proposed
topological approach, which was validated on a two DoF manipulator. The proposed mechanism satisfactorily met
the ISO/TS 15066 standard, and the position tracking obtained a global error of 37.69% and 51.01% smaller than
found in the literature examples, entitled MRAC and A-PID, respectively, for simulations and 37.46% and 30.25%
for experiments.

1. Introduction
Conventional robotic manipulators have high rigidity due their its link’s composition (usually metallic
alloys), the use of transmission systems (as harmonic drives) and electric motor’s constructive aspect.
This high rigidity provides precision, repeatability, reliability, high payload and has guided mechatronic
designs of robotic devices for decades.

With increased human–robot physical interaction in recent years, whether in collaborative or assistive
robotics, the high rigidity of conventional manipulators can cause lethal accidents. The risk of operator
death or equipment breakdown in a collision event has led to the need to replace electric motors and
transmission systems with compliant actuators. Thus, the use of mechanisms driven by variable stiff-
ness actuators (VSA) seeks a compromise between accuracy, repeatability, reliability and safety [1,2].
Therefore, various types of compliant actuators and flexible links have been proposed [3].

One of the strongest candidates is the McKibben muscle. Nuclear physicist Joseph Laws McKibben
developed this actuator in the 1950s [4], which was primarily used as a low-cost orthosis in patients
who had suffered polio. In its constructive aspect, the McKibben muscle consists of two polymers and
connectors. Internally there is a tube of elastomer surrounded by a mesh of thermoplastic material. Both
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ends are covered with connectors for fixing and tightness. When compressed air is fed to the system, the
latex expands to a limit defined by the outer mesh and the actuator performs work [4–7].

As advantages, when compared to electric motors, the McKibben muscle presents high specific
power, variable stiffness, absence of metallic parts and sparks during operation, absorption of mechani-
cal shocks and suppression of power peaks during collisions. In contrast, the actuator has nonlinearities
due to the effects of hysteresis, intrinsic to elastomers, presence of dead zone and nonlinear Coulomb
friction. Muscles’s nonlinearities added to the manipulator’s kinematic and dynamics equations make
the kinematic modelling complex. It is worth mentioning that there are other nonlinearities related to
the pneumatic circuit, which are valve saturation and dead zone. Thus, one of the controller’s main tasks
is to compensate these nonlinearities, ensuring precision and stability [8–16].

Thus, it becomes prohibitive to use classical control techniques, such as proportional integral deriva-
tive (PID) controller, as different operational conditions or changes in set-point require a new tuning.
Due to the aforementioned fact, robotic mechanisms driven by VSA that use advanced control tech-
niques, such as model-based control (MBC) [17–22], intelligent control [23–26] and adaptive controllers
[27–30] can be found in the literature.

As practical applications, the control system can be used in assistive and collaborative robotics. In the
field of assistive robotics, the mechanism can be used in rehabilitation equipment, surgery, orthoses and
prostheses. In collaborative robotics, the purpose may be to assist the operator, especially in assembly
and inspection tasks.

In robotic rehabilitation equipment, the machine has healthy people patterns to be followed by the
patient. Consequently, it is important that these patterns and commands can be inserted into a reference
model so that the patient can practice the recovery exercises. In surgery, orthoses, prostheses, and collab-
orative robotics it is important that the control system is model-free, which makes the control system’s
design less complex and facilitates the implementation. Another important feature of the control system
is that it has to be asymptotically stable. This guarantees zero error in steady state and high precision in
tracking the trajectory.

In summary, the design premises for the proposed control system are:

1. operate in real time;
2. adjustable transient regime according to a reference model;
3. compensation of nonlinearities;
4. present asymptotic convergence for position tracking;
5. reject disturbances and
6. less complex design (model free).

Thus, the Model Reference Adaptive Controller (MRAC) was selected, as there is no need for a plant’s
nominal model, which eliminates the need to identify parameters, facilitating real-time operations and
making the control system design less complex and with fewer steps. Another MRAC’s advantage is
that the expected performance can be defined through the reference model, in which the performance in
terms of maximum overshooting and settling time can be defined. Another important feature of MRAC
is that the stability analysis is embedded in the controller design, which removes the need for a posteriori
stability analysis [31,32].

A disadvantage is that during the period of parameters convergence, the control action has a weak
effect on the plant, which implies a high trajectory error during set-point changes and disturbance rejec-
tion. To mitigate this effect, PID controller is used in conjunction with MRAC, and the PID operates
during the transient regime.

This approach will be called Hybrid MRAC (H-MRAC) in this work. The hybrid controller (PID +
MRAC) was originally proposed in 1986 by Horowitz and Tomizuka [33]. Since then, other researchers
such as Zhang and Wei [27] have proposed new topological approaches to the control law. In this
research, a new control law was proposed and obtained better results than those proposed in the literature.
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In this article, a two degrees of freedom (DoF) manipulator is modelled using pneumatic artificial
muscles in agonist/antagonist configuration. The muscles are modelled considering the effects of force,
pressure and flow dynamics. The control system is then modelled and Lyapunov’s theory is used in its
design, ensuring asymptotic stability.

H-MRAC performance was compared with MRAC and the controller developed by Zhang and Wei
[27], entitled Adaptive PID or A-PID. The three controllers were also implemented in the manipulator
for simulations and real-world tests.

In its organizational aspect, this article is divided into seven sections. Section 2 aims to present
the background and problem formalisation. Section 3 presents the proposed methodology for for-
mulating the adaptive control theory. Section 4 is responsible for presenting the simulations in a
Matlab/Simulink� environment. Section 5 presents the experimental apparatus and results. In the
Section 6, the human–robot safety interaction is analysed. Section 7 is responsible for presenting the
final remarks and suggestions for future researches.

2. Problem Formalisation
Kinematic and dynamic equations of articulated mechanisms with two or more DoF are nonlinear and
coupled models. When McKibben muscles are used as actuators, hysteresis, dead band and Coulomb
friction effects are added to nonlinearities. In general, kinematic and dynamic models of robotic manip-
ulators are well consolidated in the literature [34–37], and it is up to the present research to present the
integration between these equations and the phenomenological models proposed for the actuators and
valves. The analysis of this work is restricted to the Configuration Space. The following hypotheses were
taken into consideration:

1. manipulator’s links are rigid;
2. real-time operation considers that the system responds in less than 200 ms;
3. parameters do not vary with time, but with the manipulator’s configuration and
4. temperature remains constant during the experiments (polytropic index = 1 - isothermal pro-

cess).

2.1. Nonlinear model of an agonist/antagonist joint driven by McKibben muscle
According to Shen [17], there are four processes for the dynamic modelling of a robotic joint driven
by McKibben muscles in the agonist/antagonist configuration. The processes consist of dynamic load
modelling, with the incorporation of force, pressure and flow dynamics. Figure 1 shows the ago-
nist/antagonist configuration used for mechanism’s design. From the figure, it can be seen that the project
consists of biological mimicry, in which the configuration allows the joints to move in clockwise and
counterclockwise directions.

Considering that the muscular activation is usually carried out by proportional pressure or flow reg-
ulating valves, it is extremely important to relate the variables mentioned above. As a starting point, Eq.
(1) relates muscle’s force to the joint angular acceleration.

q̈n = 1

Jn

[(Fb,n − Fa,n)rn − Bnq̇n], (1)

where n is joint number; q̈n is joint angular acceleration (rad/s2); Jn is the moment of inertia (kgm2); Bn

is the joint damping (Nms2/rad); Fa,n is agonist muscle contraction force (N); Fb,n is antagonist (N); rn

is the pulley radius.
Incorporating the force’s dynamics [17], Eq. (1) can be rewritten as follows:

q̈n =
([

3(ε0b,n − εb,n)2 − ρ2

4πN2
r Jn

]
(Prb,n − Pratm) −

[
3(ε0a,n + εa,n)2 − ρ2

4πN2
r Jn

]
(Pra,n − Pratm)

)
rn − Bn

Jn

q̇n, (2)
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Figure 1. Agonist and antagonist muscle. On the left a human elbow and on the right the elbow
manipulator were used in this research.

where q̇n is joint angular velocity (rad/s); Pra,n is pressure in the agonist muscle (bar); Prb,n is pressure
in the antagonist muscle (bar); Pratm is atmospheric pressure (bar); ε0a,n and ε0b,n are muscles’s initial
lengths (m); εa,n and εb,n are the muscles’s current lengths (m); Nr is thread’s number of turns and ρ is
the thread length. Nr and ρ have the same value for all muscles.

Incorporating pressure’s dynamics [17], Eq. (2) can be rewritten as follows:

...
q n =

(
cb,n

Jn

ṁb,n − ca,n

Jn

ṁa,n − κn

Jn

q̇

)
rn − Bn

Jn

q̈n, (3)

ca,n = ηR Ta,n[3(ε0a,n + εa,n)2 − ρ2]

(ε0a,n + εa,n)[ρ2 − (ε0a,n + εa,n)2]
, (4)

cb,n = ηR Tb,n[3(ε0b,n − εb,n)2 − ρ2]

(ε0b,n − εb,n)[ρ2 − (ε0b,n − εb,n)2]
, (5)

κn = 3[(ε0b,n − εb,n)(Prb,n − Pratm) + (ε0a,n + εa,n)(Pra,n − Pratm)]

2πN2
r

+ η[3(ε0a,n + εa,n)2 − b2]2Pra,n

4πN2
r (ε0a,n + εa,n)[ρ2 − (ε0a,n + εa,n)2]

+ η[3(ε0b,n + εb,n)2 − ρ2]2Prb,n

4πN2
r (ε0b,n − εb,n)[ρ2 − (ε0b,n − εb,n)2]

, (6)

where
...
q n is joint angular jerk (rad/s3); ṁa,n and ṁb,n are volumetric flows into or out of each PAM (m3/s);

η is ratio of specific heats; R is universal gas constant (0.287 kJ/kgK); Ta,n and Tb,n are muscles’s absolute
temperatures (K).

Equations (7) and (8) algebraically relates the mass flow to the valve area command. In this case, the
mass flow through the valve can be modelled as a ideal gas flow through a converging nozzle.

ṁa,n(Pru, Prd) = Aa,n�a,n(Pru, Prd), (7)

ṁb,n(Pru, Prd) = Ab,n�b,n(Pru, Prd), (8)
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Figure 2. Four processes for the dynamic modelling of a robotic joint driven by McKibben muscles in
the agonist/antagonist configuration according to Shen [17].

where Aa,n and Ab,n are effective valve opening area (m2); Pru is upstream pressure (bar) and Prd is
downstream pressure (bar); �a,n and �b,n are given by Eq. (9).

�μ,n(Pru, Prd) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
η

RTμ,n

(
2

η+1

)( η+1
η−1 )

Cf μ,nPru if Prd
Pru

≤ Crμ,n (chocked)

√
2η

RTμ,n(η − 1)

√
1 −

(
Prd

Pru

)( η−1
η ) (

Prd
Pru

) 1
η

Cf μ,nPru otherwise (unchocked)

, (9)

where μ refers to agonist (a) or antagonist (b) muscle; Cf is valve’s discharge coefficient and Cr is the
pressure ratio.

Incorporating flow’s dynamics, Eq. (3) can be rewritten as follows:
...
q n =

[(
ca,n�a,n − cb,n�b,n

Jn

)
(Aa,n − Ab,n) − κn

Jn

q̇n

]
rn − Bn

Jn

q̈n, (10)

Figure 2 shows how the sequence of equations should be used. If the control system has a flow
regulating valve, the initial step is Eq. (10). For a pressure regulating valve, modelling starts at Eq. (3).
Equation (11) represents the relation between the computer signal (Uμ,n) and the effective valve opening
area (Aμ,n).

Uμ,n = zkAμ,n, (11)

where zk is a constant.
Due to high number of parameters and sensors’ cost, in Eq.(10) several authors [7,38–41] propose

the development of linearised phenomenological models based on the transfer function. Such models
have high correlation coefficients, above 0.9, and are presented in the next topic.

2.2. Transfer function with variable parameters
From a dynamic point of view, the muscle can be modelled in analogy to a mass-spring-damper system.
Thus, Eq. (12) presents the actuator’s behaviour [42]. It should be noted that the phenomenological
model is for a muscle with a coupled load.

Mẍ + Bẋ + Kx = ‖Fc‖ − Mg, (12)

where M is the load (kg); B is the damping (Ns/m); K is the muscle stiffness (N/m); ‖Fc‖ is contraction
force’s euclidean norm (N) and x is the muscle linear displacement (m).

In Jiang et al. [7], a transfer function was proposed to relate the joint angle to the input pressure.
Considering that the muscular response and the mechanism are nonlinear, Bomfim and Lima II [41]
proposed a second-order model, based on transfer function, in which the parameters are adjusted (BLII
methodology). The adjustment is made according to the muscle pressure and load on the manipulator’s
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end-effector. Eq. (13) represents the joint’s equivalent natural frequency (ωneq), Eq. (14) represents the
equivalent damping coefficient (ξeq) and G(s) is the joint’s transfer function that relates the angle to the
input pressure. With Eq. (15), correlation coefficients of 0.93 were obtained by Bomfim and Lima II
[41]. It should be noted that the phenomenological model is for an 1-DoF manipulator.

ωneq(‖Fe‖) = 0.1342‖Fe‖2 − 2.0645‖Fe‖ + 5.1487, (13)

ξeq(‖Fe‖) = 0.0013‖Fe‖2 − 0.0205‖Fe‖ + 0.1256, (14)

G(s) = (8.3333Prb − 2.8000‖Fe‖ − 4.0000)

(
ω2

neq

s2 + 2ξeqωneqs + ω2
neq

)
, (15)

where Prb is the antagonist muscular pressure (bar) and ‖Fe‖ is the force’s euclidean norm on the
manipulator’s end-effector (N).

BLII methodology [41] has the purpose of developing a quick and simple way of obtaining a lin-
earised model for the mechanism, in view of the complex task of measuring the variables’ values in
Eqs. (3) and (10), mainly due to sensors costs. BLII methodology will be used in the present work
simulations (Section 4).

3. Controller Synthesis
3.1. Controller’s structure
In this work, the control law proposed for a robotic joint can be given by Eq. (16) in the generalised
form:

u = θ1uc − θ2ẏ − θ3y, (16)

where θ are adjustment parameters; u is the adaptive control law; uc is PID controller output and y is the
system output.

The reference model to be tracked by the controller can be given by the transfer function represented
in Eq. (17). In this equation, it is considered the expected plant’s performance in terms of overshoot,
rise and settling times, which can be controlled indirectly by ξ and ωn values.

Gm(s) = Ym(s)

Uc(s)
= λω2

n

s2 + 2ξωns + ω2
n

= βm

s2 + α1ms + α2m

, (17)

where Ym is the reference model’s output; Uc is the reference or command signal and λ is the static gain.
According to the Eq. (17), the reference model can also be given depending on the parameters α1m =

2ξωn, α2m = ω2
n and βm = λω2

n, that are strictly positive.
In works developed by Jiang et al. [7], robotic joint’s behaviour is modelled using a second order

transfer function. Thus, in the present research, the Eq. (18) describes the joint’s phenomenological
model.

G(s) = Y(s)

U(s)
= β

s2 + α1s + α2

. (18)

In general, the error e is given by:

e = y − ym, (19)

where y and ym are the joint’s output and desired output, respectively.

3.2. Lyapunov’s stability theory
The controller proposed in this article is based on the MRAC. With this family of controllers is not neces-
sary to obtain the plant’s phenomenological models or to perform the identification process, considering
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Figure 3. Flowchart with main stages for control design based on Khalil and Grizzle [10] and Aström
and Wittenmark [31].

that the structure is model-free (Section 2 is intended to provide data for simulations). Lyapunov’s the-
ory was used to develop the control law’s topological structure, as the analysis and asymptotic stability
guarantee for the control system already comprises the steps for the project from Lyapunov’s direct
method perspective [10,31].

Meeting Lyapunov’s prerogatives is a sufficient condition, but not necessary to guarantee the asymp-
totic stability of a system. If the LCF time derivative is semi-defined negative and meets the Barbalat’s
lemma, asymptotic stability is guaranteed. Thus, Fig. 3 presents a flowchart with the main stages used
in this work for control system design.

3.3. Lyapunov candidate function and hybrid adaptive control law
As a rule, LCFs are quadratic functions that have the purpose of ensuring stability for the system. That
said, the following theorem is enunciated.

Theorem 3.1.(Stability analysis in the Lyapunov’s sense) Consider the hybrid adaptive control prob-
lem of a robotic joint in the agonist/antagonist configuration. Assuming a linearised model through a
strictly positive real transfer function, Eq. (20) was proposed as the LCF for the manipulator; adjustment
parameters are represented by Eqs. (21), (22) and (23) and V̇ is negative semi-definite.

V(e, ė, θ , �) = 1

2

(
�1e

2 + 2�2eė + �3ė
2

)
︸ ︷︷ ︸

V1

+ (βθ1 − βm)2

2βγ1

+ (βθ2 + α1 − α1m)2

2βγ2

+ (βθ3 + α2 − α2m)2

2βγ3︸ ︷︷ ︸
V2

,

(20)
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where �1, �2 and �3 are strictly positive constants and γ1, γ2 and γ3 the adaptation gains, also, strictly
positives.

θ̇1 = −γ1(�2e + �3ė)uc, (21)

θ̇2 = γ2(�2e + �3ė)ẏ, (22)

θ̇3 = γ3(�2e + �3ė)y. (23)

Proof. For the candidate function V , in Eq. (20), to be is a positive definite function it is necessary
that �1�3 > �2

2 . This fact can be seen in the Appendix A. Then, following the Fig. 3 scheme, the next
step shows that V̇ is negative semi-definite. The LCF’s time derivative is given by:

V̇ = �1eė + �2ė
2 + (�2e + �3ė)ë + (βθ1 − βm)

γ1

θ̇1 + (βθ2 + α1 − α1m)

γ2

θ̇2 + (βθ3 + α2 − α2m)

γ3

θ̇3. (24)

Substituting Eqs. (21), (22) and (23) in Eq. (24), is obtained:

V̇ = �1eė + �2ė
2 + (�2e + �3ė)ë + (βθ1 − βm)

γ1

( − γ1(�2e + �3ė)uc)

+ (βθ2 + α1 − α1m)

γ2

(γ2(�2e + �3ė)ẏ) + (βθ3 + α2 − α2m)

γ3

(γ3(�2e + �3ė)y). (25)

Simplifying and rearranging the terms in Eq. (25):

V̇ = �1eė + �2ė
2 + (�2e + �3ė)

(
ë − (βθ1 − βm)uc + (βθ2 + α1 − α1m)ẏ + (βθ3 + α2 − α2m)y

)
. (26)

The general equation for ë is given by Eq. (27), as can be seen in detail in the Appendix B.

ë = −α1mė − α2me + (βθ1 − βm)uc − (βθ3 + α2 − α2m)y − (βθ2 + α1 − α1m)ẏ. (27)

Substituting equation of the ë, presented by Eq. (27), in Eq. (26):

V̇ = �1eė + �2ė
2 + (�2e + �3ė)

(
−α1mė − α2me + (βθ1 − βm)uc − (βθ3 + α2 − α2m)y

− (βθ2 + α1 − α1m)ẏ − (βθ1 − βm)uc + (βθ2 + α1 − α1m)ẏ + (βθ3 + α2 − α2m)y

)
. (28)

Simplifying and rearranging the terms:

V̇ = �1eė + �2ė
2 + (�2e + �3ė)( − α1mė − α2me), (29)

V̇ = eė(�1 − α1m�2 − α2m�3) + ė2(�2 − α1m�3) − α2m�2e
2. (30)

In the Appendix C, relationships between the parameters �1, �2 and �3 are performed. Thus,
obtaining the following equations:

�1 =
(

α2
1m + α2m

α1mα2m

)
δ2 + δ1α2m, (31)

�3 = δ2

α1mα2m

+ δ1. (32)

where δ1 and δ2 = �2α2m are strictly positive.
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Replacing the terms �1 and �3 by Eqs. (31) and (32), respectively; and taking �2 = δ2/α2m:

V̇ = eė

[(
α2

1m + α2m

α1mα2m

)
δ2 + δ1α2m − α1m

δ2

α2m

− α2m

(
δ2

α1mα2m

+ δ1

) ]

+ ė2

[
δ2

α2m

− α1m

(
δ2

α1mα2m

+ δ1

)]
−δ2e2. (33)

Simplifying and rearranging the terms:

V̇ = −α1mδ1ė
2 − δ2e2. (34)

The function represented by Eq. (34) is negative semi-defined. Thus, it can be concluded that the
system is stable in the Lyapunov’s sense and Eq. (20) is a Lyapunov’s function. To guarantee asymptotic
stability, it is necessary to comply with the Barbalat’s lemma.

Then, to use the Barbalat’s lemma [10], it is taken � = V̇ = −α1mδ1ė2 − δ2e2, and its time derivative
is given by:

�̇ = −2α1mδ1ėë − 2δ2eė. (35)

In Eq. (35), the terms e and ė are limited since the system is stable in the Lyapunov’s sense. If the
system reference signal is limited, the term ë will also be limited, since the system is stable in the
Lyapunov sense. Therefore, |�̇| is limited and � is a uniformly continuous function. Thus, the

lim
t→∞

∫ t

0

�(ζ )dζ = V(∞) − V(0) = σ < ∞, (36)

where σ is a positive parameter.
As V is a Lyapunov’s function, V is positive definite and V(0) = 0. And once that V̇ ≤ 0, V(∞) exists

and is limited. Then, by the Barbalat’s lemma [10], it is concluded that limt→∞ �(t) = 0, which implies
that limt→∞ e2 = 0, that is, that the error will be null in steady state. Therefore, the system’s asymptotic
stability is guaranteed. Being proven the asymptotic stability, the parameters �1 = 2, �2 = 1 and �3 = 1
were chosen for the design in simulations and experiments.

3.4. Proposed control system block diagram and benchmarking
Figure 4 shows the proposed H-MRAC. The controller MRAC can be divided into three parts analytically
described by Eqs. (21), (22) and (23). The first part consists of a feedforward controller. The second part
is a derivative and the third is an ordinary feedback. The feedforward part has the purpose of adding an
anticipatory control action to the system, mitigating the effects of disturbances. The derivative or type D
controller reduces system oscillations, considering that the robotic joint operated by pneumatic muscles
has a low damping coefficient (0.01 < ξ < 0.3). The last part is an ordinary feedback, which aims to
reduce system error.

For benchmarking, H-MRAC was compared to MRAC and A-PID. Figure 5 shows the MRAC. The
difference between MRAC and H-MRAC is that in the first one the PID controller was removed. Figure 6
shows the A-PID, adaptive PID controller, which is the topological formulation proposed by Zhang and
Wei [27]. This structure consists of only one adjustment parameter.
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Figure 4. Proposed control system block diagram (H-MRAC).

Figure 5. Block diagram without PID controller (MRAC).

3.5. H-MRAC controller design
The joint’s control was done in a decentralised way, in which each joint has its H-MRAC. The adaptation
gains were tuned following Aström and Wittenmark’s [31] guidance, using simulations to evaluate the
performance metrics for several discrete values in a given interval. Therefore, the values found can be
considered suboptimal and with values close to optimum. Table I shows the obtained gains.
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Figure 6. Block diagram of controller developed by Zhang and Wei [27] (A-PID).

Table I. Tuning parameters for H-MRAC and PID controllers.

Component Parameters Joint 1 Joint 2
Feedforward γ1 0.1 0.07

MRAC Derivative γ2 0.1 0.07
Ordinary feedback γ3 0.1 0.07
Proportional KP 13.84 15.44

PID Integral KI 22.46 24.13
Derivative KD 1.86 1.23

The PID controller was designed in parallel configuration and its parameters were tuned by Ziegler
& Nichols’s second method [43]. Eq. (37) shows the model used.

uc = KP(ref − y) + KI

∫
(ref − y)dt + KD

d

dt
(ref − y), (37)

where ref is the control system’s input reference.
The A-PID controller adaptation gain has a value of 1, both for joints 1 and 2, and the gains KP, KI

and KD have the same values as H-MRAC.

4. Simulation Results
For system simulations and experiments, it is proposed a position reference P1 = [0.5091 0.1488]Tm in
the manipulator’s end-effector at 10 s. In 20 s, this reference is changed to P2 = [0.5270 0.0754]Tm and
in 30 s the position reference is again P1 = [0.5091 0.1488]Tm. In all simulations and experiments, a
3.92 N disturbance was applied on the manipulator’s end-effector in 40 s.

The parameters ξ and ωn for each joint were obtained from the BLII methodology ([41]). In this
methodology, a pressure step is applied to each joint and each parameter is obtained from the tran-
sient response’s characteristics. With the data obtained in the BLII method and using multiple linear
regression, Eqs. (38) and (39) were obtained.

Prb,2 = 0.5763 + 6.0279q2 + 0.0793‖Fe‖, (38)

Prb,1 = 0.0616 + 13.5700q1 + 1.2500q2 + 0.2120‖Fe‖, (39)

where Prb,1 e Prb,2 are pressures in the antagonist muscles for joints 1 and 2, respectively (bar); q1 and q2

are the angles in joints 1 and 2, respectively (rad) and ‖Fe‖ is the euclidean norm of the end-effector’s
load (N).
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Table II. Robotic joint equivalent parameters cal-
culated by BLII methodology [41].

Parameter Joint 1 Joint 2
Pressure 3.03 bar 1.78 bar
ωneq 6.09 rad/s 15.58 rad/s
ξeq 0.09 0.26

Using the inverse kinematic model, the Configuration Space to position reference P1 can be
obtained:

q = [q1 q2]T = [0.2 0.2]Trad. (40)

Using Eqs. (38), (39), and (40), the pressure in each actuator can be estimated (Actuator Space):

Prb = [Prb,1 Prb,2]T = [3.03 1.78]Tbar. (41)

Correlations of 0.98 for joint 2 and 0.96 for joint 1 were obtained with models Eqs. (44) and (47),
respectively. Equations (42) and (43) represent the natural frequency and damping coefficient for joint
2 and Eqs. (45) and (46) for joint 1, respectively.

ωneq2 = 15.6919 − 0.0617Prb,2 − 0.6908‖Fe‖, (42)

ξeq2 = 0.2669 − 0.0052Prb,2 − 0.0038‖Fe‖, (43)

G2(s) = (0.1600Prb,2 − 0.010‖Fe‖ − 0.0700)

(
ω2

neq2

s2 + 2ξeq2ωneq2 s + ω2
neq2

)
, (44)

ωneq1 = 6.7302 − 0.2114Prb,1 − 0.0816‖Fe‖, (45)

ξeq1 = 0.0963 − 0.0017Prb,1 − 0.0058‖Fe‖, (46)

G1(s) = (0.070Prb,1 − 0.02q2 − 0.020‖Fe‖ + 0.0200)

(
ω2

neq1

s2 + 2ξeq1ωneq1 s + ω2
neq1

)
. (47)

With the parameters from Table II, it is possible to obtain the linearised models for joints 1 and 2.
Equations (48) and (49) represent the transfer functions for joints 2 and 1, respectively. Joint 1 has
smaller ξ and ωn, when compared to joint 2. Such phenomenological response is easily elucidated when
compared to the pendulum system. When weight and length are increased, its parameters ξ and ωn are
reduced.

G2(s) = (0.21)

(
242.74

s2 + 8.10s + 242.74

)
, (48)

G1(s) = (0.23)

(
37.09

s2 + 1.10s + 37.09

)
. (49)

Figure 7 shows the frequency response for joints 1 and 2, obtained from Eqs. (49) to (48), respec-
tively. The frequency response analysis is important because it is necessary to know the mechanism’s
maximum operating frequency without lag and attenuation. From Fig. 7(a), it can be seen that at fre-
quencies between 3 and 7 rad/s there is amplification due to resonance phenomenon, and above 7 rad/s
there is attenuation of the signal. It was also observed that there is a lag above 1 rad/s. The analysis for
Fig. 7(b) can be done in a similar way. Thus, it is recommended that the manipulator does not operate
at frequencies above 1 rad/s.
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Figure 7. Frequency response for joints 1 and 2.

Figure 8. H-MRAC response for joints 1 and 2.

By the equations, it can be analysed that the addition of load on the manipulator’s end-effector reduces
the equivalent natural frequencies of joints 1 and 2. The increase in pressure has the effect of reducing
ωneq for joints 1 and 2. For an equivalent damping coefficient (ξeq), the same effect was observed, in
which the increase in pressure and load causes its reduction. Similar effects were observed in ref. [41],
in which the increase in load reduced the values of ξeq and ωneq for an 1-DoF manipulator.

The increase in muscle pressure causes a small increase in the actuator stiffness, which added to the
increase in mass, causes the damping coefficient to reduce its value. The phenomenon can be explained
by Eq. (50), in which the increase in mass and stiffness results in the ξeq reduction.

ξeq = Bsystem

Bcritical

= B√
4mK

. (50)

Figure 8 shows the H-MRAC response for joints 1 and 2.
In sequence, H-MRAC is compared to MRAC in order to present the performance improvement

in transient regime. Then, H-MRAC is compared to A-PID. The later is a hybrid controller proposed
by Zhang and Wei [27], in which the topological structure has only one adjustment parameter. Thus,
H-MRAC represents an evolution of Zhang and Wei [27] proposal.
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Table III. Operating conditions for controller performance analysis.

Condition Signal ωn (rad/s) ξ φ (rad/s)
C1 square wave 7 1 –
C2 square wave 7 0.5 –
C3 square wave 7 2 –
C4 square wave 9 1 –
C5 sinusoidal 7 1 0.1
C6 sinusoidal 7 1 1
C7 sinusoidal 7 1 10

Figure 9. Comparative study between H-MRAC, MRAC and A-PID for condition C1: position response.

For comparison between H-MRAC, MRAC and A-PID, seven operating conditions were defined in
Table III.

Figure 9 represents a comparative study between H-MRAC, MRAC and A-PID for condition C1. The
reference model has a natural frequency of 7 rad/s and the damping coefficient is equal to 1. From Fig. 9,
it can be observed that the proposed controller is able to reject disturbances, has faster convergence
and is able to track the reference trajectory. It can be analysed that the MRAC alone needs a higher
convergence time to adjust the parameters, when compared to the A-PID and H-MRAC, increasing the
trajectory tracking error. With PID controller use, the convergence time is reduced from 9.0 to 0.5 s.
The A-PID showed greater overshoot and convergence time when compared to H-MRAC.

Figure 10 shows the adjustment parameters evolution for each controller.
Figure 11(a) shows the control signal from the MRAC, A-PID and H-MRAC controllers for joint

1. From the figure, it can be seen that H-MRAC has a more aggressive control action, especially in
reference changes. Thus, H-MRAC has less error in tracking the trajectory, which can be observed in
Fig. 11(b).

The square wave signal was replaced by a sinusoidal input of amplitude 0.05 rad, angular frequency
φ of 0.1, 1 and 10 rad/s and offset of 0.20 rad: ref(t) = 0.05 sin(φt) + 0.20 rad (conditions C5, C6 and
C7). The idea is to vary the signal’s frequency and analyse its effect on the response. Results are shown
in Fig. 12(a), (b) and (c), respectively. By the figures, it can be analysed that the results were similar to
those found previously, in which H-MRAC showed better tracking.

According to the Bode diagram shown in Fig. 7, at frequencies above 1 rad/s the input signal will be
delayed and attenuated. Figure 12(c) shows these lags and attenuation, validating the analyses performed
in Section 4.
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Figure 10. Adjustment parameters for H-MRAC, MRAC and A-PID for condition C1 for joint 1.

Figure 11. Comparative study between H-MRAC and MRAC for condition C1, joint 1. (a) Control
signal. (b) Error.
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Figure 12. Sinusoidal response for joint 1. (a) Angular frequency φ = 0.1 rad/s. (b) Angular frequency
φ = 1 rad/s. (c) Angular frequency φ = 10 rad/s.

4.1. Error analysis in simulations
The metric used to measure the divergence between the reference signal and the controller’s responses
will be the effective error – EE (rad), mean square error – MSE (rad2;) and mean absolute error – MAE
(rad) [44]. Tables IV and V show the errors for joints 1 and 2, respectively. By the tables, it can be
observed that for joints 1 and 2, H-MRAC controller presented better results for six of the seven opera-
tional conditions: the error was on average 37.69% and 51.01% lower for H-MRAC, when compared to
MRAC and A-PID, respectively.

5. Experimental Results and Discussion
5.1. Experimental apparatus
Figure 13 shows the elbow manipulator with its main pneumatic and electronic components. The
McKibben muscles in agonist/antagonist configuration drive the articulated joints. The project’s purpose
is to emulate the human biceps/triceps behaviour, causing the joint to operate at positive and negative
angles [45–47].
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Table IV. Position error for joint 1 in the simulations.

H-MRAC MRAC A-PID

MSE EE MAE MSE EE MAE MSE EE MAE
C1 0.00008 0.00895 0.00172 0.00037 0.01922 0.00727 0.00060 0.02452 0.00759
C2 0.00009 0.00954 0.00209 0.00035 0.01880 0.00715 0.00074 0.02732 0.00835
C3 0.00015 0.01251 0.00294 0.00038 0.01961 0.00717 0.00045 0.02137 0.00667
C4 0.00008 0.00919 0.00164 0.00028 0.01672 0.00633 0.00062 0.02506 0.00755
C5 0.00011 0.01077 0.00191 0.00035 0.01883 0.00701 0.00072 0.02693 0.00775
C6 0.00009 0.00951 0.00593 0.00055 0.02357 0.01691 0.00067 0.02600 0.01824
C7 0.00164 0.04057 0.05741 0.00097 0.03117 0.02615 0.00179 0.04236 0.03501

Table V. Position error for joint 2 in the simulations.

H-MRAC MRAC A-PID

MSE EE MAE MSE EE MAE MSE EE MAE
C1 0.00014 0.01215 0.00236 0.00055 0.02348 0.01011 0.00068 0.02614 0.00885
C2 0.00016 0.01287 0.00287 0.00055 0.02361 0.01032 0.00082 0.02876 0.00958
C3 0.00019 0.01402 0.00292 0.00055 0.02347 0.00970 0.00049 0.02229 0.00760
C4 0.00027 0.01654 0.00315 0.00055 0.02350 0.01019 0.00072 0.02682 0.00899
C5 0.00028 0.01677 0.00288 0.00028 0.01680 0.00286 0.00077 0.02783 0.00855
C6 0.00010 0.01032 0.00579 0.00011 0.01047 0.00615 0.00075 0.02753 0.01940
C7 0.00146 0.03825 0.03363 0.00147 0.03841 0.03390 0.00222 0.04716 0.03940

Figure 13. Elbow manipulator with its main pneumatic and electronic components.

The measurement instruments, equipment and software are shown in Table VI. Table VII shows the
manipulator parameters.

The sensor/actuator interface was developed using an ArduinoDue� development board [47–49].
The sampling time used was 1 ms, which was sufficiently small, considering that the peak time of the
joint response is around 220 ms. In this situation, the joint moves 45 degrees for a pressure input of 5
bar. Considering that the encoder resolution is 600 PPR (pulses per revolution), the required operating
frequency is 340.91 Hz, and 1 kHz is large enough for the application.

The control system was developed in Matlab/Simulink�. A pulse width modulation (PWM) com-
mand signal is sent to a PWM/analogue converter module and a command 0–10 V is sent to the
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Table VI. Measuring instruments, equipment and software used in the research.

Instrument/equipment/software Model Manufacturer Resolution
Digital pressure switch – FESTO 0.01 bar
Digital thermometer TD-955 ICEL 0.1C
Proportional pressure
regulating valve

P31PA12AD2V D1A Parker Electric voltage (1V/1bar)

Incremental encoder MTI-EI01 Meganotti 600 PPR
Load cell – – 98 N/24 bits
Converter Module PWM – – PWM/0-10V
MATLAB/SIMULINK� 2016 a) MATHWORKS –
Development board Arduino Due� Arduino –

Table VII. Manipulator parameters.

Parameter Value
L1 0.308 m
L2 0.225 m
m1 1.011 kg
m2 0.287 kg

proportional valves. The signals from encoders and load cell are read through digital and analogue
input ports, respectively.

5.2. Main experimental results
Figures 14 and 15 shows the responses for the MRAC, A-PID and H-MRAC controllers for joints 1
and 2, respectively. It can be seen that the experiments and simulations behaviour was analogous. The
H-MRAC showed less tracking error, with MRAC having a longer convergence time.

Comparing simulations and experiments, it can be observed that in the experiments, the errors, in
general, are one order of magnitude larger. This is mainly due to the effects of signal discretisation
and sensor resolution. For example, the encoder used has 600 PPR. If it were replaced by one with a
resolution of 6000 PPR, the errors would drop drastically.

Another point to note is that there were no large comparative variations in the global mean error when
H-MRAC is compared with MRAC and A-PID.

5.3. Error analysis in experimental tests
Tables VIII and IX show the error during the experimental tests. The error was on average 37.46% and
30.25% lower for H-MRAC, when compared to MRAC and A-PID, respectively.

It was observed an error reduction in simulations and experiments when the damping coefficient or
the natural frequency are increased in the reference model. The increase in the ξ implies a more stable
response and the increase in the ωn implies a shorter rise time and both characteristics facilitate the
position tracking.

6. Safe Human–Robot Interaction using ISO/TS 15066
With the increasing demand for humans and robots to collaborate in the same workspace, it is essential
that robots react and adapt instantaneously to unforeseen events to ensure safety [50]. In De Santis et al.
[51], an atlas was developed on the human–robot physical interaction. Safe physical interaction can be
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Figure 14. Joint 1 response.

achieved in mechanical design, actuator selection and control architecture design. In the present research,
the authors opted to replace electric motors with PAMs. According to Rosenstrauch and Krüger [52], the
ISO/TS 15066 standard defines maximum values for force (140 N), pressure (200 N/cm2) and energy
(0.49 J) during the collision, in order to have a safe interaction in collaborative robotics.

For force, the research developed a model in multiple linear regression given by Eq. (51) with coeffi-
cient of correlation equal to 0.98. The equation was obtained by varying the collision bulkhead position
and the pressure in each muscle.

Fcollision = −1.1466 + 1.4982Prb,1 + 0.8814Prb,2 − 45.3000q1 − 4.1800q2, (51)

where Fcollision is the end-effector collision force (N).
When Prb,1 = Prb,2 = 6 bar and q1 = q2 = 0 rad, the collision force is 7.13 N, reaching its maximum

value. The collision contact area is 1 cm2. Thus, the maximum pressure is 7.13 N/cm2.
The maximum velocity is obtained from Eq. (52),

vmef =
√

Ec

Mm

, (52)

where vmef is the maximum end-effector velocity; Ec is the collision energy and Mm is the manipulator’s
mass.
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Figure 15. Joint 2 response.

Table VIII. Position error for joint 1 in experimental tests.

H-MRAC MRAC A-PID

MSE EE MAE MSE EE MAE MSE EE MAE
C1 0.00175 0.04184 0.01792 0.00251 0.05012 0.02639 0.00230 0.04799 0.02027
C2 0.00460 0.06783 0.03479 0.00569 0.07549 0.04490 0.01566 0.12514 0.10232
C3 0.00113 0.03368 0.01494 0.00173 0.04169 0.02069 0.00219 0.04688 0.01958
C4 0.00132 0.03640 0.01441 0.00229 0.04790 0.02449 0.00222 0.04716 0.01971
C5 0.00149 0.03866 0.01399 0.00223 0.04728 0.02181 0.00232 0.04816 0.01634
C6 0.00239 0.04895 0.03564 0.00290 0.05106 0.36890 0.00316 0.05624 0.03957
C7 0.00220 0.04692 0.03265 0.00245 0.04983 0.03345 0.00291 0.05401 0.03555

Considering that the mechanism’s mass is 1.798 kg (arm + load) and the maximum collision energy
is 0.49 J, the maximum linear velocity of end-effector cannot exceed 0.55 m/s.

Then, the three premises of ISO/TS 15066 will be met and the manipulator will operate safely.
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Table IX. Position error for joint 2 in experimental tests.

H-MRAC MRAC A-PID

MSE EE MAE MSE EE MAE MSE EE MAE
C1 0.00119 0.03461 0.01420 0.00198 0.04451 0.01920 0.00170 0.04133 0.01599
C2 0.00323 0.05684 0.02638 0.00559 0.07478 0.04368 0.01210 0.11003 0.08688
C3 0.00127 0.03575 0.01573 0.00213 0.04625 0.02394 0.00176 0.04195 0.02038
C4 0.00121 0.03483 0.01244 0.00228 0.04784 0.02471 0.00176 0.04197 0.01964
C5 0.00125 0.03543 0.01303 0.00215 0.04643 0.02144 0.00212 0.04609 0.02155
C6 0.00137 0.03712 0.02462 0.00158 0.03914 0.02628 0.00178 0.04228 0.02687
C7 0.00231 0.04815 0.03404 0.00234 0.04898 0.03564 0.00244 0.04948 0.03349

7. Conclusion
The research achieved the objective of developing a new topological approach for the hybrid con-
troller. To the previous approach, A-PID, the derivative and feedforward controllers were added, which
improved the performance in the considered error metrics. The comparison with the MRAC showed the
importance of using the PID controller and the performance improvement in the transient regime.

The use of Lyapunov’s theory proved to be a powerful tool for the design of H-MRAC, since the
stability analysis is embedded in the controller synthesis. Another important feature is that MRAC is
model-free, which removes the need for analytical phenomenological models or plant identification. In
this way, it was possible to guarantee asymptotic stability for the control system during the design stage
and to reduce the design steps.

It is worth mentioning that the robotic manipulator met the ISO/TS 15066 standard, which makes it
a potential candidate for collaborative and assistive robotics.

Suggestions for future work are:

1. to manufacture the muscle using other polymeric materials, such as the vehicle air chamber, for
example;

2. to control the mechanism with other advanced control techniques, such as sliding mode controller
(SMC), for example;

3. to analyse the control technique for manipulators with three or more DoF;
4. to use the control technique on exoskeletons, orthoses and prostheses, in which the reference

model may come from electromyogram (EMG) or electroencephalogram (EEG) signals;
5. to create rehabilitation and surgery equipment, in which the pose control can be used in gradual

recovery of patients and/or to assist the surgeon in the movement to be applied to vital organs,
for example; and

6. to develop collaborative robotic systems in which the operator will occupy the manipulator’s
working space.

For more information, see the following videos showing trajectory tracking and collision tests. In the
trajectory tracking test video, https://youtu.be/120xuP2Qq-A, the mechanism response for a step change
in set-point is presented. In the collision test video, https://youtu.be/pAk-STBwr9o, compliance with the
ISO/TS 15066 standard is demonstrated.
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A. Necessary and Sufficient Condition for LCF, in Eq. (20), to be Positive Definite Function
The proposed function V is differentiable, and will be equal to zero when e = ė = 0 and the adjustment
parameters converge to their correct values: βθ1 = βm, βθ2 = α1m − α1 and βθ3 = α2m − α2, that is, the
system equilibrium points (EP). Thus, the condition that remains for V to be positive defined is that Eq.
(20). is greater than zero out the EP.

The component V2 consists of quadratic terms, then, V2 > 0 while the EP (βθ1 = βm, βθ2 = α1m − α1

and βθ3 = α2m − α2) are not met. On the other hand, the verification of V1 > 0 depends on the parameters
�1, �2 and �3.

The terms �1e2 and �3ė2 are already greater than zero for e, ė ∈R
∗ (non-zero real numbers). When

e and ė are strictly positive, it is clear that V1 > 0, because the term 2�2eė will be greater than 0. The
same is true when e and ė are strictly negative. Then, it remains only to analyze the situation where e
and ė have opposite signals, as follows below.
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It is known that,

�1e
2 + 2

√
�1

√
�3eė + �3ė2 =

(√
�1e +√

�3ė
)2 ≥ 0, for e, ė ∈R

∗ (A1)

So, if a �2 is taken, such as
√

�1

√
�3 > �2, it is guaranteed that 2�2eė > 2

√
�1

√
�3eė for e and ė

with opposite signals. That is,

V1 = 1

2

(
�1e

2 + 2�2eė + �3ė
2

)
>

1

2

(
�1e

2 + 2
√

�1

√
�3eė + �3ė

2

)
≥ 0, (A2)

for e and ė with opposite signals; and e, ė ∈R
∗.

Therefore, it is concluded that if �1�3 > �2
2 , the component V1 > 0 and consequently V will be

positive definite.

B. ë General Equation
The differential equations that describe the plant phenomenological behavior and the control law, present
in Eqs. (18) and (16), can be rewritten through:

s2Y + α1sY + α2Y = β(θ1Uc − θ2sY − θ3Y). (B1)

It should be noted that the complex frequency or Laplace domain can be used, since the control law
is linear. Solving multiplication for Eq. (B1) and regroup terms, is obtained:

s2Y + (α1 + βθ2)sY + (α2 + βθ3)Y = βθ1Uc. (B2)

Rearranging Eq. (17), Eq. (B3) is obtained.

s2Ym + α1msYm + α2mYm = βmUc. (B3)

Substituting Ym by Y − E in Eq. (B3):

(s2 + α1ms + α2m)(Y − E) = βmUc, (B4)

(s2 + α1ms + α2m)E = s2Y + (α1ms + α2m)Y − βmUc. (B5)

Isolating s2Y in Eq. (B2) and replacing in Eq. (B5):

(s2 + α1ms + α2m)E = βθ1Uc − (α1 + βθ2)sY − (α2 + βθ3)Y + (α1ms + α2m)Y − βmUc. (B6)

(s2 + α1ms + α2m)E = (βθ1 − βm)Uc − (βθ3 + α2 − α2m)Y − (βθ2 + α1 − α1m)sY (B7)

By passing the Eq. (B7) to the time domain, and rearranging some terms, the general equation of ë
is obtained:

ë = −α1mė − α2me + (βθ1 − βm)uc − (βθ3 + α2 − α2m)y − (βθ2 + α1 − α1m)ẏ. (B8)

C. Relation Analysis between �1, �2 and �3

To deepen the relation between �1, �2 and �3, the derivative of V1 is used:

V̇1 = �1eė + �2ė
2 + �2eë + �3ėë = �1eė + �2ė

2 + (�2e + �3ė)ë. (C1)

When the EPs of V2 converge, the Eq. (27) is reduced to: ë = −α1mė − α2me. Then, substituting ë in
Eq. (C1):

V̇1 = �1eė + �2ė
2 + (�2e + �3ė)( − α1mė − α2me). (C2)
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Solving multiplication and regroup terms, is obtained:

V̇1 = (�1 − �2α1m − �3α2m)eė + (�2 − �3α1m)ė2 − �2α2me2. (C3)

For V̇1 ≤ 0, the Eqs. (C4) and (C5) must be obeyed. This ensures stability in Lyapunov’s sense.

�1 − �2α1m − �3α2m = 0, (C4)

�3α1m > �2. (C5)

As a result of Eq. (C5), is obtained:

�3 = �2

α1m

+ δ1 = δ2

α1mα2m

+ δ1, (C6)

where δ1 and δ2 = �2α2m are strictly positive.
Replacing Eq. (C6) in Eq. (C4), �1 can be defined by:

�1 =
(

α2
1m + α2m

α1mα2m

)
δ2 + δ1α2m. (C7)

Using Eqs. (C6), (C7) and �2 = δ2/α2m, can be easily verified, by inspection, that the condition
required in the Appendix A, �1�3 > �2

2 , is being obeyed.
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