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This work is a step toward the development of a logic for types and computation that

includes not only the usual spaces of mathematics and constructions, but also spaces from

logic and domain theory. Using realizability, we investigate a configuration of three toposes

that we regard as describing a notion of relative computability. Attention is focussed on a

certain local map of toposes, which we first study axiomatically, and then by deriving a

modal calculus as its internal logic. The resulting framework is intended as a setting for the

logical and categorical study of relative computability.

1. Introduction

We report here on the current status of research on the Logic of Types and Computation at

Carnegie Mellon University (Scott et al. 1998). The general goal of this research program

is to develop a logical framework for the theories of types and computability that includes

the standard mathematical spaces alongside the many constructions and spaces known

from type theory and domain theory. One purpose of this goal is to facilitate the study

of computable operations and maps on data that are not necessarily computable, such as

the space of all real numbers.

Concretely, in the research described here we use the realizability topos over the graph

model PN of the (untyped) lambda calculus, together with the sub-graph model given

by the recursively enumerable subsets, to represent the classical and computable worlds,

respectively. There results a certain configuration of toposes that can be regarded as

describing a notion of relative computability‖. We study this configuration axiomatically,

and derive a higher-order, modal logic in which to reason about it. The logic can then be

applied to the original model to formalise reasoning about computability in that setting.

Moreover, the resulting logical framework provides a general, categorical semantics and

§ The present work was carried out while this author was affiliated to the School of Computer Science, Carnegie

Mellon University.
‖ Not to be confused with the standard notion of computability relative to an oracle.
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logical syntax for reasoning in a formal way about abstract computability, which, it is

hoped, could also be useful for formally similar concepts, such as logical definability.

In somewhat more detail: Section 2 begins by recalling the standard realizability toposes

RT (A) and RT (A]) resulting from a partial combinatory algebra A and a subalgebra A].

We then identify a third category RT (A,A]) that plays a key role; very roughly speaking,

it represents the world of all (continuous) objects, but with only computable maps between

them. This category RT (A,A]) is a topos, the relative realizability topos on A with respect

to the subalgebra A].

The toposes RT (A) and RT (A]) are not particularly well-related by themselves; the

purpose of the relative realizability topos RT (A,A]) is to remedy this defect. The three

toposes are related to each other as indicated in the following diagram, in which the three

functors on the left leg constitute a local geometric morphism, while the right leg is a

logical morphism.

RT (A,A])

{{wwwwww

""FFFFFF

RT (A])

;;wwwwww
;;wwwwww

RT (A)

The local geometric morphism on the left is our chief concern, and the focus of Section 3,

which also mentions some examples and properties of these fairly well-understood maps

of toposes. When we first encountered it, we were pleased to recognise our situation as an

instance of one that F. W. Lawvere has already called attention to and dubbed an adjoint

cylinder or, more colourfully, a unity and identity of opposites (Lawvere 1992; Lawvere

1989).

In Section 4 we present four sound and complete axioms for local maps of toposes.

Actually, since the local map is localic in the situation we are mainly interested in – viz,

realizability – we give the axioms in a form that implies this condition. We simply mention

here that a modification of axiom 2 about generators will accomodate all (bounded) local

maps. More information concerning the abstract axiomatisation of local maps (covering

not only localic but also more general bounded local maps) can be found in Awodey and

Birkedal (1999) and Birkedal (2000) – here we just recall the definitions and results needed

in this paper. The axiomatisation has been found useful in working with the particular

situation we have in mind, but its general utility for local maps of toposes remains to be

seen.

One application, of sorts, of the axioms for local maps is the investigation of their

logical properties. These are given in Section 5 in the form of a logical calculus involving

two propositional operations, written ]ϕ and [ϕ, with ] left adjoint to [. It turns out

that ] satisfies the S4 modal logic postulates for the box-operation. We here term the

]-calculus a modal logic for computability, since that is the interpretation we have in mind;

but, of course, this modal logic can be interpreted in any local topos. We intend to use

it to investigate the logical relations that hold in the relative realizability topos; however,

this aspect of our work is only just beginning.

In Section 6 we define and study local triposes, which are triposes that model the modal
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logic for computability. Any localic local map arises from a local tripos and any local

tripos gives rise to a local map of toposes.

Note that any local map also induces a closely related pair of adjoint operations on

logical types (objects), in addition to the ones on formulas (subobjects) studied here,

relating our work to Benaissa et al. (1999) and Benton (1995). The idea of a modal

‘computability’ operator ] is due to the senior author (January 1998) and was the original

impetus for this work, parts of which are from the second author’s doctoral thesis

(Birkedal, 2000). The final brief section of the paper spells out the intended interpretation

of the ]-calculus in the relative realizability topos RT (A,A]).

2. Realizability toposes for computability

Let (A, ·,K, S) be a partial combinatory algebra (PCA); we will often just denote it by its

underlying set A. The binary operator · is the (partial) application and combinators K

and S are taken to be part of the structure and not just required to exist.

Let A] be a sub-PCA of A, that is, A] is a subset of A containing K and S and closed

under partial application. Intuitively, we are thinking of the realizers in A as ‘continuous’

realizers and of those in A] as ‘computable’ realizers. This intuition comes from the main

example, where A is PN, the graph model on the powerset of the natural numbers, and

A] is RE , the recursively enumerable sub-graph-model. Note that the model PN has

a continuum of (countable) sub-PCA’s. As another example, one may consider Kleene’s

function realizability with A = NN and with A] the set of total recursive functions. One

may also consider van Oosten’s combinatory algebra B for sequential computation and

its effective subalgebra Beff , see van Oosten (1999) and Longley (1998).

The PCA’s A] and A give rise to two realizability toposes RT (A]) and RT (A) in

the standard way (Hyland et al. 1980). One may think of RT (A) as a universe where

all objects and all maps are realized by continuous realizers. Likewise, RT (A]) may be

thought of as a universe where all objects and all maps are realized by computable

realizers. Unfortunately, these two toposes are not very well related; in particular, it is

not clear how to talk about computable maps operating on continuous objects, which is

what one would like to do for the purposes of, for example, computable analysis (Pour-El

and Richards 1989). Thus, one is led to introduce another realizability topos, RT (A,A]),

where, intuitively, equality on all objects is realized by continuous realizers and all maps

are realized by computable realizers†.
The topos RT (A,A]) is constructed by modifying the underlying tripos for RT (A) in

the following way. The non-standard predicates ϕ, ψ on a set I are still functions I → P A

into the powerset of A, and the Heyting pre-algebra operations are the same as in the

tripos underlying RT (A). The modification is in the definition of the entailment relation:

we say ϕ ` ψ over I iff there is a realizer a in A] (not just in A) such that for all i in I ,

all b ∈ ϕ(i), a · b is defined and a · b ∈ ψ(i). In the terminology of Pitts (1981), we have

changed the ‘designated truth values’ to be those subsets of A that have a non-empty

† We first learned about the topos RT (A,A]) from Thomas Streicher in February 1998, but the construction

has actually been known for a long time; see Pitts (1981, page 15, item (ii)).
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intersection with A]. We use P : Setop → Cat to denote this new tripos. Then RT (A,A])

is the topos Set[P ] represented by P .

Explicitly, objects of RT (A,A]) are pairs (X,≈X) with X a set and ≈X : X×X → P A a

non-standard equality predicate with computable realizers for symmetry and transitivity.

Morphisms from (X,≈X) to (Y ,≈Y ) are equivalence classes of functional relations F : X×
Y → P A with computable realizers proving that F is a functional relation. Two such

functional relations F and G are equivalent iff there are computable realizers showing

them equivalent. We now see that, intuitively, it makes sense to think of objects of

RT (A,A]) as objects with continuous realizers for existence and equality elements, and of

morphisms f = [F] as computable maps, since the realizers for the functionality of F are

required to be computable.

3. Geometry of the realizability toposes for computability

Let Q : Setop → Cat be the standard realizability tripos on A], that is, the tripos underlying

RT (A]). We now define three Set-indexed functors between Q and P :

∆: Q→ P and Γ: P → Q and ∇ : Q→ P .

These are defined as follows. Over a set I , we have

∆I (ψ : I → P A])(i) = ψ(i)

ΓI (ϕ : I → P A)(i) = A] ∩ ϕ(i)

∇I (ψ : I → P A])(i) =
⋃
ϕ∈P A

(
ϕ ∧ (A] ∩ ϕ ⊃ ψ(i)

))
,

where ∧ and ⊃ are calculated as in P (1).

It is easy to see that ∆I and ΓI are well-defined functors; to show this for ∇I , suppose

that ψ ` ψ′ in Q(I). Then there is a realizer c ∈ A] such that

c ∈⋂
i∈I

(
ψ(i) ⊃ ψ′(i)).

Let

d = λx. 〈πx, λy. c(π′(x)(y))〉.
Then d ∈ A] (since c ∈ A]), and it is easy to verify that

d ∈⋂
i∈I

(∇I (ψ)(i) ⊃ ∇I (ψ′)(i),

as required.

Recall from Hyland et al. (1980) and Pitts (1981) that a geometric morphism f from a

tripos P to a tripos Q is a pair of indexed functors (f∗, f∗) with f∗ indexed left adjoint to

f∗ such that f∗I is left exact, for all I in the base category.

Theorem 3.1. Under the foregoing definitions it follows that:

— (∆,Γ) is a geometric morphism of triposes from P to Q.

— (Γ,∇) is a geometric morphism of triposes from Q to P .

— For all I ∈ Set, ∆I and ∇I are both full and faithful.
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Proof. It is easy to see that ∆ is (indexed) left adjoint to Γ using that A] is closed

under the partial application of A. Further, it is clear that ∆ preserves finite limits and is

full and faithful since the orderings in P and Q are defined in the same way (requiring

computable realizers).

It remains to show that

ϕ `PI ∇ψ ⇐⇒ Γϕ `QI ψ,
for all ϕ ∈ P (I) and all ψ ∈ Q(I) (where, of course, `PI is the ordering in P (I) and `QI is

the ordering in Q(I)). To this end, suppose ϕ `PI ∇ψ, via a realizer c ∈ A]. Let

d = λx. π(c(x))(π′(c(x))) ∈ A].

It is easy to verify that d is a realizer for Γϕ `QI ψ.

For the other direction, suppose d ∈ A] is a realizer for Γϕ `QI ψ. Then

c = λx. 〈x, λy. d(y)〉 ∈ A]

is a realizer for ϕ `PI ∇ψ.

Since ∆ is full and faithful, and since ∆ a Γ a ∇, we also have ∇ is full and faithful,

completing the proof of the theorem.

By Proposition 4.7 in Pitts (1981), these geometric morphisms lift to two geometric

morphisms between the toposes, as in

RT (A])

∆
))

∇
55

RT (A,A]),Γoo ∆ a Γ a ∇.

(Here we do not distinguish notationally between the functors at the tripos level and at the

topos level). In particular, ∆ preserves finite limits. Moreover, ∆,∇ : RT (A])→ RT (A,A])

are easily shown to be both full and faithful also. The resulting geometric morphism

(∆,Γ): RT (A,A])→ RT (A) is therefore a (connected) surjection, while the one given by

(Γ,∇) : RT (A]) → RT (A,A]) is an embedding. Note that Γ ◦ ∇ ∼= 1 ∼= Γ ◦ ∆. It then

follows by standard results that there is a Lawvere–Tierney topology j in RT (A,A]) such

that RT (A]) is equivalent to the category Shj(RT (A,A])) of j-sheaves. We remark that

one can show that, in general, the geometric morphism (∆,Γ): RT (A,A]) → RT (A]) is

not open (Birkedal, 2000).

The following theorem was known to Martin Hyland, but apparently has never been

published. We include a proof here.

Theorem 3.2. Let C be a finitely complete category, and let P and Q be C-triposes.

Suppose f = (f∗, f∗) : P → Q is a geometric morphism of triposes. Then C[P ] is localic

over C[Q] via the induced geometric morphism f = (f∗, f∗) : C[P ]→ C[Q].

Proof. We want to prove that C[P ] is equivalent to the category of C[Q]-valued sheaves

on the internal locale f∗(ΩC[P ]) in C[Q], where ΩC[P ] is the subobject classifier in C[P ]. As

usual (Johnstone 1977) it suffices to show that, for all X ∈ C[P ], there exists a Y ∈ C[Q]
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and a diagram

S // //

����

f∗Y

X

in C[P ] presenting X as a subquotient of f∗Y for Y an object of C[Q]. Write ∇P : C→
C[P ] for the functor I 7→ (I, ∃δI (T )), where δI : I 7→ I × I is the diagonal map (the

‘constant objects functor’ (Pitts 1981)).

By a familiar property of realizability toposes, we have that for all X ∈ C[P ], there

exists an object I ∈ C and a diagram

S // //

����

∇P (I) = (I, ∃δI (T ))

X

(1)

in C[P ] presenting X as a subquotient of a constant object ∇P (I). Now, since f∗ is the

inverse image of a geometric morphism of triposes, f∗ preserves existential quantification

(as an indexed left adjoint), so f∗(∇Q(I)) ∼= ∇P (I), and the diagram in (1) is the required

diagram.

We summarise the consequences of Theorems 3.1 and 3.2 in the following corollary.

Corollary 3.3. RT (A,A]) is localic over RT (A]) via the geometric morphism (∆,Γ) :

RT (A,A]) → RT (A]), which is a localic local map of toposes, since Γ has a right adjoint

∇, for which Γ ◦ ∇ ∼= 1.

Local maps have been studied by Johnstone and Moerdijk (Johnstone and Moerdijk 1989),

and provide an instance of what Lawvere (Lawvere 1992; Lawvere 1989) has called unity

and identity of opposites. The idea is that the full subcategories ∆(RT (A])) and ∇(RT (A]))

are each equivalent to RT (A]), and yet are ‘opposite’ in the sense of being coreflective

and reflective, respectively, in RT (A,A]). We think of the objects in ∇(RT (A])) as sheaves,

and here we think of those in ∆(RT (A])) as ‘computable’.

Examples of local maps in addition to the basic ones mentioned in Johnstone and

Moerdijk (1989) include the following:

(1) Let RT (A) be a realizability topos, and let i : CA → RT (A) be a full subcategory of

partitioned assemblies of suitably large, bounded cardinality so that CA is a small

generating subcategory of projectives. The covering families in CA are to be those that

are jointly epimorphic in RT (A). Then the Grothendieck topos Sh(CA) is local; let us

write its structure maps as ∆′ a Γ′ a ∇′ : Set → Sh(CA). There is a restricted Yoneda

embedding,

Y = RT (A)(i(·),−) : RT (A)→ Sh(CA),
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for which the diagram below commutes, in the sense that Γ ∼= Γ′ ◦ Y , ∇′ ∼= Y ◦ ∇.

Set
∇

//

∇′

77RT (A)
Γoo Y // Sh(CA)

Γ′

xx

Thus we can regard Γ: RT (A) → Set as what would be the direct image of a local

map, if only RT (A) had enough colimits.

(2) Let C be a small category with finite limits and i : D � � //C a full subcategory, closed

under the same. The geometric morphism Ĉ→ D̂ with direct image the restriction i∗
along i is then a local map. The image of D̂ under the full embedding i! (where i! a i∗)
then consists of those presheaves P on C for which

PC ∼= colim
D,h:C→D PD.

These are the objects that we are interested in as candidates for being ‘computable’,

when D represents the computable subcategory. They are the ones termed ‘discrete’ in

the rest of this paper.

Regarding this choice of terminology, we use the term ‘discrete’ by analogy to topological

examples. We would have liked to call these objects ‘cosheaves’ since they are the objects

that are coorthogonal to the morphisms inverted by a, and sheaves are those that are

orthogonal. However, ‘cosheaf’ has already been used to describe something else, namely

a ‘covariant sheaf’.

4. Axioms for localic local maps

In this section we present a set of axioms for localic local maps. The axioms are sound

and complete, in the sense that whenever a given topos satisfies the axioms, it gives rise

to a localic local map of toposes and, moreover, any localic local map of toposes satisfies

the axioms. See Awodey and Birkedal (1999) and Birkedal (2000) for more information

about the abstract axiomatisation of (not only localic but also more general bounded)

local maps. Here we just recall the definitions and results needed in the following to

describe a modal logic for computability. First we need a couple of definitions.

For the remainder of this section let E be an elementary topos and j a Lawvere–Tierney

topology in E. The axioms we will present are on E and j. We write V 7→ V for the

associated closure operation on subobjects V � X. We say that j is principal if, for all

X ∈ E, the closure operation on Sub(X) has a left adjoint U 7→ ◦
U, called interior, that is,

◦
U 6 V ⇐⇒ U 6 V in Sub(X).

The interior operation is not assumed to be natural; that is, it is not assumed to commute

with pullbacks. In other words, the interior operation is not assumed to be induced by

an internal map on the subobject classifier Ω in E, and in that sense it is not a logical

operation (in the internal logic of E).
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The interior operation extends to a functor E → E, since, whenever f : X → Y , we

have
◦
X6 f∗(

◦
Y ) (because:

◦
X6 f∗(

◦
Y ) ⇐⇒ X 6 f∗(

◦
Y ) = f∗(

◦
Y ) = f∗(Y )). We say that an

object X ∈ E is open if
◦
X∼= X. An object is open iff the interior of its diagonal equals its

diagonal. An object C ∈ E is called discrete if it is coorthogonal to all morphisms inverted

by the j-associated sheaf functor a; that is, C is discrete if for all e : X → Y such that

a(e) is an isomorphism, for all f : C → Y , there exists a unique f′ : C → X such that

X

e

��
C

f′
>>~

~
~

~

f
// Y

commutes.

Recall, for example, from Johnstone (1977), that a sheaf can be characterised as an object

that is orthogonal to all morphisms inverted by a, and that it suffices to test orthogonality

just with respect to the dense monomorphisms. For discrete objects there is a similar

simplification: an object is discrete iff it is coorthogonal to all codense epimorphisms,

where an epimorphism e : X � Y is codense iff the interior of its kernel is included in

the diagonal of X. We write DjE for the full subcategory of E of the discrete objects.

Now we propose the following axioms for a localic local map on a topos E with

topology j.

Axiom 1. The topology j is principal.

Axiom 2. For all X ∈ E, there exists a discrete object C and a diagram

S // //

����

C

X

in E, presenting X as a subquotient of C .

Axiom 3. For all discrete C ∈ E, if X � C is open, then X is also discrete.

Axiom 4. For all discrete C,C ′ ∈ E, the product C × C ′ is again discrete.

Let E be a topos with a topology j satisfying the Axioms 1–4 for localic local maps. We

can then prove (Awodey and Birkedal 1999; Birkedal, 2000) the following theorem.

Theorem 4.1. The category of discrete objects DjE is coreflective in E, that is, the

inclusion ∆: DjE � � //E has a right adjoint. Moreover, DjE is a topos, ∆ is left exact,

and (∆,Γ): E → DjE is a localic local map.

Corollary 4.2. For any discrete C,C ′ ∈ E and any f : C ′ → C , and all open subobjects

U � C , the pullback C ′ ×C U indicated in

C ′ ×C U //

��

U
��

��
C ′

f
// C

is open.

https://doi.org/10.1017/S0960129502003675 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003675


Local realizability toposes and a modal logic for computability 327

Theorem 4.3. Every localic local map of toposes satisfies Axioms 1-4 for localic local

maps.

Proof. See Awodey and Birkedal (1999) and Birkedal (2000).

5. A modal logic for computability

Let E be a topos with a topology j satisfying the axioms set out in the previous section.

In this section our goal is to describe a logic with which one can reason about both of

the two toposes E and DjE. This will then apply to RT (A,A]) and RT (A]), see Section 7.

As a first attempt, one may consider the ordinary internal logic of E extended with a

closure operator induced by the topology j and try to extend it further with a logical

operator corresponding to the interior operation. But since interior does not commute

with pullback in general, it is not a logical operation on all subobjects of objects of E.

However, since the interior of an object X is the least dense subobject of X, one may

instead add a new atomic predicate UX for each type X and write down axioms expressing

that it is the least dense subobject. This is straightforward. But, as yet, we do not have a

convenient internal logical characterisation in these terms for the discrete objects.

Instead, we shall describe another approach in which types and terms are objects and

morphisms of DjE, and predicates are all the predicates in E on objects from DjE. More

precisely, we consider the internal logic of the fibration

Pred

��
DjE

obtained by change-of-base as indicated in

Pred //

��

Sub(E)

��
DjE

∆
// E.

Thus a predicate on an object X ∈ DjE is a subobject of ∆X in E. Since

SubE(∆X) ∼= E(∆X,ΩE) ∼= DjE(X,ΓΩE), (2)

the internal locale ΓΩE is a generic object for the fibration
Pred

��
DjE

.

Hence this internal logic is many-sorted higher-order intuitionistic logic.

Note that, since E is localic over DjE, we can completely describe E in this internal

logic in the standard way (Fourman and Scott 1979) as partial equivalence relations

and functional relations between such. In other words, applying the tripos-to-topos

construction to the tripos
Pred

��
DjE

results in a topos equivalent to E.
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By Corollary 4.2, the interior operation is a logical operation on predicates; we denote

it by ]. Note that the ordinary logic of DjE is obtained by restricting our attention to

predicates of the form ]ϕ – in fact it suffices to restrict attention to predicates with a ]

in front of every ⊃ and ∀ subformula. The topology j in E induces a closure operator,

which we are pleased to denote [, on predicates in this internal logic.

We now describe how the ] and [ operations can be axiomatised. Logical entailment

is written Γ | ϕ ` ψ, where Γ is a context of the form x1 : σ1, . . . , xn : σn giving types σi to

variables xi, and where ϕ and ψ are formulas with free variables in Γ. There are the usual

rules of many-sorted higher-order intuitionistic logic plus the following axioms and rules:

(ml-1)
Γ | ]ϕ ` ϕ (ml-2)

Γ | ]ϕ ` ]]ϕ

(ml-3)
Γ | > ` ](>)

(ml-4)
Γ | ]ϕ ∧ ]ψ ` ](ϕ ∧ ψ)

Γ | ]ϕ ` ψ
======== (ml-5)
Γ | ϕ ` [ψ

(ml-6)
x : σ, y : σ | x = y ` ](x = y)

One can then show that ] has the formal properties of the box operator in the modal

logic S4, that is, for formulas ϕ and ψ in context Γ,

` ]ϕ ⊃ ϕ
` ](ϕ ⊃ ψ) ⊃ (]ϕ ⊃ ]ψ)

` ]ϕ ⊃ ]]ϕ
and

` ϕ
(ml-7)` ]ϕ

We therefore refer to this logic as a modal logic for computability.

We remark that the following principles of inference for quantifiers can be derived from

ml-1–ml-6:

Γ | > ` ]∀x:X.ϕ
============= (ml-8)
Γ | > ` ∀x:X. ]ϕ

(ml-9)
Γ | ]∃x:X.ϕ a` ∃x:X. ]ϕ

One can also show that, for any formula ϕ in context Γ,

](]ϕ ⊃ ψ) a` ]ϕ ⊃ ]ψ. (3)

Quite generally, the modal logic of any local map of toposes

Γ: E → F, ∆ a Γ a ∇
can be used to compare the internal logic of E with that of F, since the types are then

the discrete objects E in E, that is, those for which E ∼= ∆ΓE, and

SubF(ΓE) ∼= OpenSubE(E),
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where OpenSubE(E) ⊆ SubE(E) is the subposet of open subobjects of E in E. Observe, for

example, that the natural numbers object N is among the discrete objects, and that the

identity relation on any discrete object is open.

We now describe two example applications of the modal logic.

Example 1. As in Awodey and Birkedal (1999), call a formula ϑ stable if it is built

up from atomic predicates (including equations) and first-order logic, and if for every

subformula of the form ϕ ⊃ ψ, the formula ϕ has no ∀ or ⊃. For any sentence ϑ, we

write F � ϑ to mean that ϑ holds in the standard internal logic of F with basic types σ

interpreted by objects Xσ ofF, and atomic formulas R on type σ interpreted as subobjects

SR � Xσ . We then write E � ϑ to mean that ϑ holds in the standard logic of E with basic

types σ interpreted by objects ∆Xσ and atomic formulas R interpreted by ∆SR � ∆Xσ .

Proposition 5.1. For any stable sentence ϑ, F � ϑ iff E � ϑ.
Proof (sketch). There are the interpretations [[−]]F and [[−]]E for which one shows by

induction that for any stable formula ϑ

∆[[ϑ]]F = [[]ϑ]]E,

using the fact that Γ preserves ∀ along maps between discrete objects. Thus, for any stable

sentence ϑ

F � ϑ iff 1 = [[ϑ]]F
iff 1 = ∆1 = ∆[[ϑ]]F = [[]ϑ]]E
iff E � ]ϑ
iff E � ϑ.

The proposition can be used to show that, for example, if F has choice for functions

from N to N in the external sense, then so does E. Indeed, let R be any relation (not

necessarily open) on N in E, and suppose that

E � ∀n:N. ∃m:N.R(n, m).

Then we reason informally as follows:

E � ∀n:N. ∃m:N.R(n, m),

E � ]∀n:N. ∃m:N.R(n, m) by ml-7,

E � ∀n:N. ]∃m:N.R(n, m) by ml-8,

E � ∀n:N. ∃m:N. ]R(n, m) by ml-9,

F � ∀n:N. ∃m:N. ]R(n, m) by stability,

F � ∀n:N. ]R(n, f(n)) for some f : N → N by AC in F,
E � ∀n:N. ]R(n, f(n)) by stability,

E � ∀n:N.R(n, f(n)) by ml-1.

Example 2. As in Birkedal (2000), we show that if the topos of discrete objects satisfies

the arithmetic form of Church’s Thesis (in the sense of, for instance, Troelstra and van

Dalen (1988) and Troelstra (1973), then a ]’ed version is satisfied by E.

Observe that E has a natural numbers object if and only if DjE does, because both
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∆: DjE → E and Γ: E → DjE are inverse images of geometric morphisms, which

preserve the natural numbers object (Johnstone 1977, Proposition 6.12). Let N be a

natural numbers object in DjE.

Recall from Kleene’s Normal Form Theorem that the basic predicates of recursion

theory can be defined from Kleene’s T -predicate and output function U : N → N, see,

for example, Troelstra and van Dalen (1988). The predicates T � N × N × N and

U(−) = (−) are both primitive recursive. Hence their interpretation is preserved by the

inclusion DjE � � //E (see Birkedal (2000) for a detailed argument).

Recall from Troelstra and van Dalen (1988, Section 4.3) that the arithmetical form of

Church’s Thesis is the schema

CT0 ∀n. ∃m.ϕ(n, m) ⊃ ∃k. ∀n. ∃m. (ϕ(n,Um) ∧ T (k, n, m)
)
,

where all the variables range over the type of natural numbers N and where ϕ is a formula.

For a first-order formula ϕ, we use |ϕ| to denote the formula that is like ϕ except that

there is a ] in front of every ∀ and ⊃ subformula.

Proposition 5.2. Let ϕ be a formula and suppose that the ϕ instance of CT0 holds in
SubDjE

��
DjE

. Then the following formula holds in
Pred

��
DjE

:

](∀n. ∃m. |ϕ|(n, m)) ⊃ ∃k. ∀n. ∃m. (|ϕ|(n,Um) ∧ T (k, n, m)
)
.

Proof. By the fact that DjE � ϕ iff |ϕ| holds in
Pred

��
DjE

, we get that

](∀n. ∃m. |ϕ|(n, m)) ⊃ ∃k. ]∀n. ∃m. (|ϕ|(n,Um) ∧ T (k, n, m)
)

holds in
Pred

��
DjE

. The statement then follows by the modal logic using ml-9 and (3).

Thus, in particular, if all geometric instances (that is, those with ϕ built up using only

atomic relations, and >, ∧, ⊥, ∨, ∃) of CT0 hold in DjE, then all geometric instances of

CT]
0 ](∀n. ∃m.ϕ(n, m)) ⊃ ∃k. ∀n. ∃m. (ϕ(n,Um) ∧ T (k, n, m)

)
hold in

Pred

��
DjE

.

6. Local triposes

In this section we introduce the notion of a local tripos – we will assume familiarity with

the basic theory of triposes as set out in Pitts (1981).

The model of the modal logic for computability given by the fibration

Pred

��
DjE

defined above is in fact a tripos, namely the standard tripos on the internal locale ΓΩE,

see (2) above. Indeed, we can give the following general definition.
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Definition 6.1. Let P = F(−,Σ) be a canonically-presented tripos on an object Σ in a

topos F. The tripos P is said to be local if it comes together with maps I, J : Σ → Σ in

F satisfying:

1 p : Σ | Ip ` p
2 p : Σ | Ip ` IIp
3 6 | > ` I(>)

4 p, q : Σ | Ip ∧ Iq ` I(p ∧ q)

5
p, q : Σ | Ip ` q
===========
p, q : Σ | p ` Jq

all in the logic of P .

The axioms and rules that have to hold for I and J are of course just as for ] and [ in

the modal logic for local maps in Section 5†. In other words, a local tripos models the

modal logic for local maps. The following proposition is clear.

Proposition 6.2. Let P = F(−,Σ) be a local tripos qua I, J : Σ → Σ. Then J is a

Lawvere–Tierney topology on P (as defined in Pitts (1981)).

Let P = F(−,Σ) be a local F-tripos qua I, J : Σ → Σ. We define a new canonically

presented F-tripos PI as follows (in the following we prove that PI so defined is indeed

a tripos). Let IΣ be the image of I in F. Tripos PI is canonically presented on IΣ. The

ordering is defined as in P , that is, for ϕ, ψ ∈ F(X, IΣ) (PI ’s fibre over X ∈ F), we have

ϕ `PI ψ iff ϕ `P ψ.

Since J is a topology by Proposition 6.2, we have a well-defined F-tripos PJ as

in Pitts (1981, Chapter 5). We recall that PJ is canonically presented on Σ and that

entailment is defined as ϕ `PJ ψ iff ϕ `P Jψ.

It is easy to verify that composing with I : Σ→ Σ gives an indexed functor, also denoted

I , from PJ to PI over F. Likewise, composing with J : Σ→ Σ gives a fibred functor, also

denoted J , from PI to PJ over F. The following lemma is straightforward.

Lemma 6.3. Functor I is a fibred left adjoint to J and the triposes PI and PJ are

equivalent, as indexed categories over I , via the functors I and J .

By the lemma, it follows that PI has all the first-order structure required in the definition

of a tripos (since it is defined categorically and thus preserved by equivalence functors).

It is clear that id : IΣ → IΣ is a generic object for PI , and thus PI is indeed a tripos as

claimed.

Theorem 6.4. Let P =F(−,Σ) be a local F-tripos qua I, J : Σ→ Σ. Then P gives rise to

a localic local map of toposes from F[P ] to F[PI ].

† The only exception is that in the definition of local tripos we have left out the rule for equality – the rule

for equality follows since equality in a tripos is given using existential quantification and truth >, and I

commutes with existential quantification as a left adjoint and with > by item (3).
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Proof. We define three indexed functors over F, as in

PI

∆

((

J

66 PIoo ∆ a I a J.

Functor ∆ is simply the inclusion functor. Functor I is induced by composing with

I : Σ → Σ, and functor J is induced by composing with J : Σ → Σ. It is easy to see that

all three functors are indexed, since P and PI are canonically presented, and that ∆ is left

adjoint to I and that I is left adjoint to J . The functor ∆ is left exact since IΣ is closed

under finite limits in Σ by items (3) and (4) in the definition of a local tripos. Hence (∆, I)

is a geometric morphism of triposes, as (I, J) is also. Functor ∆ is clearly full and faithful

and thus J is full and faithful also (it is also straightforward to verify directly that J is

full and faithful).

It follows now, in the same way as in Section 3, that the geometric morphism from

F[P ] to F[Q] induced by (∆, I) is a localic local map.

Conversely, one can easily see the following theorem.

Theorem 6.5. Every localic local map of toposes arises from a local tripos (in the way

given by the proof of Theorem 6.4).

Example 6.6. The relative realizability tripos P from Section 2 is a local tripos. The maps

I and J are given by ∆Γ and ∇Γ, respectively, see Section 3.

In this realizability example, the topos E is the topos RT (A]) and the topos DjE is

the topos RT (A,A]). Note that if we were just given the topos RT (A]) with the internal

locale ΓΩRT (A,A]) = (P A,≈) with (p ≈ q) = (p ⊃⊂ q) ∩ A], it would be quite hard to

recognise the canonical tripos on this locale as being local, because it is complicated

to calculate with internal adjoints, etc., in RT (A]). That is one reason why it can be

advantageous to describe a localic local map of toposes via a local tripos (rather than

just in terms of internal locale theory).

Example 6.7 (Extensional realizability). Let A be a PCA and let P be the standard Set-

realizability tripos over A. Let PER(A) denote the category of partial equivalence relations

over A. Define a tripos R over Set by taking predicates over sets I to be elements of

PER(A)I , that is, I-indexed families of PER’s. For two such families ϕ and ψ, we define

the ordering over I to be ϕ ` ψ iff there is an a ∈ A such that, for all i ∈ I , a is in the

domain of the PER ψ(i)ϕ(i) (the exponential in the category of PER’s). See Pitts (1981,

Section 1.6) and van Oosten (1997) for more details. Then the tripos R is local over P ,

since the forgetful functor mapping a PER to its domain has both left and right (fibred)

full and faithful adjoints. Over 1, the left adjoint maps a subset of A to the discrete

PER on the subset and the right adjoint maps a subset of A to the PER with only

one equivalence class. See Pitts (1981, Example 4.9(iii)) and van Oosten (1997) for more

details.
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7. Interpretation of the modal logic in RT (A]) and RT (A,A])

Finally, we briefly describe in concrete terms how the modal logic for computability is

interpreted in RT (A]) and RT (A,A]).

Types and terms are interpreted by objects and morphisms of RT (A]) in the standard

way. A predicate ϕ on a type (X,≈X) ∈ RT (A]) is an equivalence class of a strict,

extensional relation in P (X×X) (recall P is the tripos underlying RT (A,A])), that is, ϕ is

an equivalence class of set-theoretic functions X×X → P A that are strict and extensional

via computable realizers, two such functions being equivalent iff they are isomorphic as

objects of P (X ×X).

On such a predicate ϕ on an object (X,≈), ]ϕ is just x 7→ ϕ(x) ∩ A] and [ϕ is

x 7→ ⋃
ψ∈P A

(ψ ∧ (ψ ∩ A] ⊃ ϕ(x) ∩ A])).

Thus we can think of ]ϕ as ϕ being computably true, that is, realized via computable

realizers.

Objects of RT (A,A]) are then described as pairs ((X,≈), ϕ), with (X,≈) ∈ RT (A]) and

ϕ a partial equivalence in Pred on (X,≈)× (X,≈). Likewise, morphisms are described as

functional relations in the standard way.

In this realizability model, we have the following further principle for ]:

Γ | ¬ϕ a` ]¬ϕ,
because the types are the objects of RT (A]). From this it follows that

Γ | ¬¬ϕ a` ]¬¬ϕ,
which accords with the intuition that double-negation closed formulas have no computa-

tional content.

Note also that since Γ: RT (A]) → Set has a right adjoint, the same is true for the

global sections functor Γ: RT (A,A])→ Set. Thus in RT (A,A]) too, 1 is indecomposable

and projective; so RT (A,A]) has the logical disjunction and existence properties.

Example 7.1. Let A = PN be the graph model and let A] = RE be the recursively enu-

merable sub-graph-model. The arithmetical form of Church’s Thesis holds in RT (RE ),

but not in RT (PN) (since arithmetic in RT (PN) is classical). Since there is a logi-

cal functor from RT (A,A]) = RT (PN,RE ) to RT (A) = RT (PN) (Birkedal, 2000),

Church’s Thesis does not hold in RT (A,A]) = RT (PN,RE ) either. However, using the

modal logic for computability, we can express that a form of Church’s Thesis does hold

in RT (PN,RE ): by Proposition 5.2, for every arithmetical formula ϕ,

](∀n. ∃m. |ϕ|(n, m)) ⊃ ∃k. ∀n. ∃m. (|ϕ|(n,Um) ∧ T (k, n, m)
)

holds in the modal logic.

More information about the relative realizability topos RT (A,A]) can be found in the

second author’s Ph. D. thesis (Birkedal, 2000).
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