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A deep understanding of two-phase displacement in porous media with permeability
contrast is essential for the design and optimisation of enhanced oil recovery processes.
In this paper, we investigate the forced imbibition behaviour in two dual-permeability
geometries that are of equal permeability contrast. First, a mathematical model is
developed for the imbibition in a pore doublet, which shows that the imbibition dynamics
can be fully described by the viscosity ratio λ and capillary number Cam which creatively
incorporates the influence of channel width and length. Through the finite difference
solution of the mathematical model, a λ–Cam phase diagram is established to characterise
the imbibition preference in the pore doublet. We then investigate the imbibition process
in a dual-permeability pore network using a well-established lattice Boltzmann method,
focusing on the competition between the viscous and capillary forces. Like in the pore
doublet, the preferential imbibition occurs in high-permeability zone at high Cam but
in low-permeability zone at low Cam. When Cam is not sufficiently high, an oblique
advancing pattern is observed which is attributed to non-trivial interfacial tension. Using
the newly defined capillary number, the critical Cam curve on which the breakthrough
simultaneously occurs in both permeability zones is found to match well with that from
the pore doublet and it is the optimal condition for maximising the imbibition efficiency
in the entire pore network.

Key words: porous media, multiphase flow

1. Introduction

Immiscible two-phase displacement in permeable media has drawn extensive research
attention due to its importance in secondary and tertiary oil recovery processes
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(Lake 1989). However, many petroleum-bearing underground geological formations exist
in the form of layers, which poses great technical challenges for the economical recovery
of original oil due to early breakthrough (Sheng 2013; Bahadori 2018). Injecting gas (e.g.
carbon dioxide) or liquid (e.g. water) into a subsurface system with permeability variations
often leads to the preference of the injected flow into one of the layers, and whether
high or low permeability depends on the fluid properties such as viscosity, interfacial
tension, density, buoyancy and solubility; the properties of porous media such as surface
wettability, porosity and permeability; and the operational conditions such as the injection
rate. In order to optimise the gas or liquid flooding operations and thus improve oil
recovery, it is crucial to understand the fundamentals of two-phase displacement in porous
media with permeability contrast.

Extensive works have been devoted to understanding two-phase displacement
mechanisms from experimental (Lenormand, Touboul & Zarcone 1988; Zhang et al.
2011b; Zhao, MacMinn & Juanes 2016; Hu et al. 2020), theoretical (Chatzis & Dullien
1983; Laidlaw & Wardlaw 1983; Sorbie, Wu & McDougall 1995; Al-Housseiny, Tsai
& Stone 2012; Al-Housseiny, Hernandez & Stone 2014; Zheng, Kim & Stone 2015;
Zheng, Rongy & Stone 2015) and numerical (Liu et al. 2013; Sun, Kharaghani & Tsotsas
2016; Chen et al. 2019) perspectives. Lenormand et al. (1988) experimentally studied a
non-wetting fluid displacing a wetting fluid (i.e. drainage) in a micromodel and found
that the competition between capillary and viscous forces creates an instability of the
advancing front, leading to three different displacement regimes, namely viscous fingering,
capillary fingering and stable displacement, which were mapped on a phase diagram of
viscosity ratio versus capillary number. Later, the phase diagram was improved by Zhang
et al. (2011b) using a two-dimensional micromodel and a broader transition zone between
different regimes was found in three-dimensional porous media by Hu et al. (2020) with
the aid of fast development in precise microfabrication, fluid saturation visualisation and
image analysis. Unlike the single-permeability system, there are only a few experimental
studies concerning multiphase flows in porous media with permeability contrast. For
instance, Zhang et al. (2011a) studied the drainage process in a dual-permeability pore
network, demonstrating the influence of injection rate on displacement mechanisms.
Ma et al. (2012) demonstrated the use of foam to realise the flow diversion from
high-permeable to low-permeable regions in a dual-permeability micromodel with aligned
solid posts. Nijjer, Hewitt & Neufeld (2019) investigated the effect of permeability contrast
and viscosity variations on miscible displacement in layered porous media.

Theoretical study of two-phase displacement with variable permeabilities is limited
to a pore doublet model (Moore & Slobod 1956), which is a simple network with
two connected capillaries. Chatzis & Dullien (1983) derived the explicit formulation
of velocity in each capillary when the wetting and non-wetting fluids are of the same
viscosity, and they provided a semiquantitative understanding of a relatively long string of
pore doublets. Laidlaw & Wardlaw (1983) studied the simultaneous arrival of interfaces
at the downstream end of a pore doublet under a controlled pressure drop, and concluded
that the effectiveness of pressure drop in controlling trapping is dependent on the scale
of the pore doublet system. Nevertheless, their analysis cannot be extended to porous
media as the pressure drop between two adjacent nodal pores within porous media is
hardly controllable. Sorbie et al. (1995) developed an extended pore doublet model by
incorporating an inertial term into the energy balance equation. Recently, Al-Housseiny
et al. (2014) conducted a drainage study in a pore doublet, and discovered the possible
existence of preferential flow in two identical daughter channels that vary in size along the
flow direction. Inspired by their quantitative description of the meniscus movement under
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a given flow rate, we carry out a theoretical analysis of a two-dimensional pore doublet
consisting of two unequal-sized branch channels and focus on the forced imbibition with
an injection velocity.

As a complement to theoretical and experimental studies, numerical simulations have
developed into a useful tool for providing insights into the two-phase flow phenomena that
occur during immiscible displacement. Among them, pore-scale simulations are becoming
increasingly popular with the advent of advanced algorithms and parallel computing.
Simulations at the pore scale are of great importance since (1) pore-scale phenomena,
such as trapping, have a significant impact on the larger scale (Juanes et al. 2006; Cinar,
Riaz & Tchelepi 2009; Soulaine et al. 2018) and (2) they are able to capture heterogeneity,
interconnectivity and non-uniform flow behaviour (e.g. various fingerings) and provide
local information on fluid distribution and velocity for the construction of constitutive
equations at macroscopic scales (Liu et al. 2015). Several approaches have been applied
to simulate multiphase flows at the pore scale, which mainly include pore network
models, the lattice Boltzmann method (LBM) and the conventional computational fluid
dynamics methods such as the volume-of-fluid method (Raeini, Blunt & Bijeljic 2014;
Yin et al. 2018), the level-set method (Prodanović & Bryant 2006) and the phase-field
method (Badalassi, Ceniceros & Banerjee 2003; Akhlaghi Amiri & Hamouda 2013).
Pore network models (Joekar-Niasar, Hassanizadeh & Dahle 2010; Kibbey & Chen
2012; Fagbemi & Tahmasebi 2020) simulate fluid flow through an idealised network
of pores connected by throats. Although this approach is well tailored for studying
capillary-controlled displacement that provides infinite resolution in network elements,
a number of approximations are made concerning the pore space geometry, which may
result in loss of geometric and topological information. The volume-of-fluid, level-set
and phase-field methods can be applied for pore-scale simulations in principle, provided
that irregular solid boundaries and contact line dynamics are handled carefully. However,
since the interface between different fluids and the contact line dynamics are the natural
consequence of interparticle interactions, a bottom-up approach may be more suited for
multiphase flows within complex porous media. In this study, we simulate multiphase
flows using the LBM, which is a bottom-up approach based on the kinetic Boltzmann
equation. Compared with the pore network models, the LBM allows for better representing
the pore morphology of the actual porous medium (Rothman 1990; Pan, Hilpert & Miller
2001; Porter, Schaap & Wildenschild 2009; Boek & Venturoli 2010; Jiang & Tsuji 2015,
2016, 2017). In addition, due to its kinetic nature and local dynamics, the LBM has several
advantages over the conventional computational fluid dynamics methods, especially in
dealing with complex boundaries, incorporation of microscopic interactions, flexible
reproduction of the interface between different fluids and parallelisation of the algorithm.
Among various multiphase LBM models (Liu et al. 2015), the colour-gradient model is
particularly selected as the interfacial tension, contact angle and viscosity ratio can all be
tuned independently, and the viscosity ratio is allowed to vary over a wide range (Xu, Liu
& Valocchi 2017).

Despite much literature on the pore-scale flow behaviour in a single-permeability
porous system (Ramstad et al. 2012; Aziz, Joekar-Niasar & Martinez-Ferrer 2018; Chen
et al. 2018; Hu et al. 2019; Akai, Blunt & Bijeljic 2020), the imbibition dynamics in
a dual-permeability porous system is not well understood. In this work, we present a
systematic study of the imbibition dynamics in two dual-permeability geometries, which
are of equal permeability contrast. We start from the simple pore doublet model, and
for the first time use the theoretical predictions along with LBM validations to quantify
the meniscus filling behaviour. In particular, a new capillary number is introduced
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Figure 1. Schematic diagram of the imbibition process in a two-dimensional pore doublet (r2 = 2r1).

to characterise the preferential penetration in two unequal-sized branch channels. The
validated LBM is then used to simulate the imbibition process in a dual-permeability pore
network for varying capillary numbers and viscosity ratios, and the obtained results are
compared with those obtained previously from the pore doublet model.

2. Mathematical model for forced imbibition in a two-dimensional pore doublet

In order to understand the mechanism underlying forced imbibition, we first consider a
simple geometry known as the pore doublet model, which is sketched in figure 1. The pore
doublet consists of three parts: a feeding channel CA that supplies the wetting fluid; two
capillary tubes that bifurcate from point A and reunite downstream at point B; and an exit
channel BD. The branch channel at the bottom (capillary 1) has a smaller width 2r1 and
the one at the top (capillary 2) has a greater width 2r2. The two branches are symmetric
with the same length of L along the flow direction, and the angle between the horizontal
line and the centreline of each branch channel is 45◦. Initially, the entire pore doublet is
saturated with a non-wetting fluid. The wetting fluid is injected from the left inlet at a given
flow rate q, while a constant pressure is assumed at the right outlet. The feeding and exit
channels are of equal widths h = 2(r1 + r2), and a constant contact angle of θ = 30◦ is
considered. In the following, we present a theoretical modelling of the imbibition process
based on the aforementioned pore doublet.

2.1. Governing equations
Assuming that the flow through the pore doublet is a steady laminar flow and the two-phase
interface advances with a constant mean curvature, the pressure difference �p between
point A and B includes the viscous pressure drop �pvis and the capillary pressure drop
�pcap, which can be written as

�p = pA − pB = �pvis,1 −�pcap,1 = 3q1

2r3
1

[ηwL1 + ηn(L − L1)] − σ cos θ
r1

, (2.1)

�p = pA − pB = �pvis,2 −�pcap,2 = 3q2

2r3
2

[ηwL2 + ηn(L − L2)] − σ cos θ
r2

, (2.2)

where pA and pB are the pressures at points A and B, respectively; q1 and q2 are the
volumetric flow rates (m2 s−1) in capillaries 1 and 2 with qi = 2ri · ui (i = 1, 2), and u1
and u2 are the corresponding average velocities; ηw and ηn are the dynamic viscosities of
the wetting and non-wetting fluids, respectively; σ is the interfacial tension coefficient;
and L1 and L2 are the lengths that are occupied by the wetting fluid in the small and
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large capillaries. From mass conservation, one can write the total volumetric flow rate q as

q = q1 + q2. (2.3)

2.2. Non-dimensionalisation of governing equations
In order to non-dimensionalise the governing equations, the scaling parameters for length,
time and pressure are introduced:

ls = r1, ts = 2r1L
q
, ps = 3ηnqL

2r3
1
, (2.4a–c)

where the subscript s refers to scaling parameters. Denoting the width ratio of both branch
channels as k = r2/r1, which also represents the square root of the permeability ratio
in capillary 2 to capillary 1, one easily obtains r̂1 = 1 and r̂2 = k, where the hat over a
variable means that the variable is non-dimensional. Substituting (2.4a–c) into (2.1) and
(2.2) leads to

�p̂vis,i = q̂i

⎡
⎢⎢⎢⎢⎣
λ ·
(

L̂i

L̂

)

r̂3
i

+

(
1 − L̂i

L̂

)

r̂3
i

⎤
⎥⎥⎥⎥⎦ , i = 1, 2, (2.5)

where q̂i = r̂iûi/L̂, ûi = dL̂i/dt̂ and λ = ηw/ηn is the viscosity ratio of wetting to
non-wetting fluid. Similarly, the capillary pressure drop can be written as

�p̂cap,i = 1
Cam

· 1
r̂i
, i = 1, 2, (2.6)

where Cam = 3ηnqL/(2r2
1σ cos θ ) is the preferential capillary number. It is clear that

this capillary number takes into account the influence of pore length and size, and is
different from the standard one, which is defined by the inlet mean velocity uin as
Ca = uinηn/(σ cos θ). Specifically, its value could be 2–4 orders of magnitude higher than
that of the standard capillary number. Combining (2.5) and (2.6), one can obtain the total
pressure drop as

�p̂ = �p̂vis,i +�p̂cap,i = r̂i ·
d

(
L̂i

L̂

)

dt̂

⎡
⎢⎢⎢⎢⎣
λ

(
L̂i

L̂

)

r̂3
i

+

(
1 − L̂i

L̂

)

r̂3
i

⎤
⎥⎥⎥⎥⎦

− 1
Cam

· 1
r̂i
, i = 1, 2. (2.7)

Mass conservation can also be written in dimensionless form as

d

(
L̂1

L̂

)

dt̂
· r̂1 +

d

(
L̂2

L̂

)

dt̂
· r̂2 = 1. (2.8)
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To solve the interface movement, we write (2.7) for each daughter channel. Equating the
resulting two equations gives

r̂1 ·
d

(
L̂1

L̂

)

dt̂

⎡
⎢⎢⎢⎢⎣
λ

L̂1

L̂
r̂3

1
+

(
1 − L̂1

L̂

)

r̂3
1

⎤
⎥⎥⎥⎥⎦− 1

Cam
· 1

r̂1

= r̂2 ·
d

(
L̂2

L̂

)

dt̂

⎡
⎢⎢⎢⎢⎣
λ

L̂2

L̂
r̂3

2
+

(
1 − L̂2

L̂

)

r̂3
2

⎤
⎥⎥⎥⎥⎦− 1

Cam
· 1

r̂2
. (2.9)

Substituting (2.8) into (2.9), we obtain an ordinary differential equation for L̂i(t), i.e.

d

(
L̂1

L̂

)

dt̂
=

1
Cam

·
(

1
r̂1

− 1
r̂2

)
+ φ

(
L̂2

L̂

)

r̂1

[
φ

(
L̂1

L̂

)
+ φ

(
L̂2

L̂

)] , (2.10)

where φ(L̂i/L̂) = [λL̂i/L̂ + (1 − L̂i/L̂)]/r̂3
i . The ordinary differential equation for L̂2(t)

can be obtained by exchanging subscripts 1 and 2:

d

(
L̂2

L̂

)

dt̂
=

1
Cam

·
(

1
r̂2

− 1
r̂1

)
+ φ

(
L̂1

L̂

)

r̂2

[
φ

(
L̂1

L̂

)
+ φ

(
L̂2

L̂

)] . (2.11)

To prevent the flow in the branch channels from moving backwards, the following
constraints must be satisfied (Al-Housseiny et al. 2014):

0 ≤
d

(
L̂i

L̂

)

dt̂
≤ 1

r̂i
, i = 1, 2. (2.12)

2.3. Semi-analytical solutions

We first consider a pore doublet geometry with k = 2, L̂ = 63.11 and θ = 30◦. To obtain
the location of the meniscus in each capillary, we numerically solve (2.10) and (2.11)
subject to the constraint (2.12) using the first-order forward difference scheme for different
values of Cam and λ. Solutions are found with the initial condition that [L̂1, L̂2] = [0, 0]
at t̂ = 0.

Numerical results for several typical capillary numbers at λ = 0.025, 1 and 20 are
shown in figure 2, where the penetration lengths L̂1 and L̂2 are plotted as a function
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Figure 2. The lengths of the wetting fluid in the branch channels as a function of time obtained by solving
(2.10) and (2.11) at λ = 0.025 for (a) Cam = 3.64, (b) Cam = 4.02 and (c) Cam = 5.83; at λ = 1 for (d) Cam =
0.7, (e) Cam = 2 and ( f ) Cam = 5.25; at λ = 20 for (g) Cam = 0.146, (h) Cam = 0.2 and (i) Cam = 0.488.

of time t̂, normalised by the breakthrough time t̂B. For each viscosity ratio, at low Cam

(figure 2a,d,g), we can see that L̂1 = L̂ > L̂2 when the breakthrough occurs, although L̂1
lags behind L̂2 until t̂/t̂B = 0.96 in figure 2(a); at high Cam (figure 2c, f,i), the meniscus in
channel 2 breaks through first, i.e. L̂1 < L̂2 = L̂. This suggests that there exists a critical
value of Cam between low and high Cam, known as the critical preferential capillary
number (Cam,c), at which the breakthrough of wetting fluid occurs simultaneously in both
branch channels. In the case of simultaneous breakthrough, it can be easily obtained that
two menisci break through at tB = 2L(r1 + r2)/q, or t̂B = (1 + k)L̂ in the dimensionless
form. As shown in figure 2(b,e,h), the values of Cam,c are 4.02, 2 and 0.2 for the viscosity
ratios of 0.025, 1 and 20. Clearly, the critical preferential capillary number is strongly
dependent on the viscosity ratio. In addition, we also interestingly find that for λ = 1 in
figure 2(e), the imbibition rates are constant and exactly the same in both branch channels,
and Cam,c = k = 2, consistent with the theoretical prediction as shown in Appendix A.

Different imbibition behaviours at low and high values of Cam are attributed to the
competition between the capillary pressure and the viscous resistance. At low flow rates
(small Cam), the viscous resistance is negligibly small while the capillary pressure is

915 A138-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.174


Q. Gu, H. Liu and L. Wu

dominant, which acts a driving force for the wetting fluid to progress; since the capillary
pressure is inversely proportional to the channel width, the penetration length in channel 1
is larger than that in channel 2, i.e. L̂1 > L̂2, at breakthrough. However, at high flow rates,
the viscous force is dominant; because of the lower viscous resistance in channel 2, the
penetration length in channel 2 would be greater than in channel 1, i.e. L̂1 < L̂2.

To understand the effect of the viscosity ratio on the imbibition process, a theoretical
analysis is then conducted for a wide range of viscosity ratios, varying from 10−4 to 103.
Figure 3 depicts the imbibition preference of the meniscus at breakthrough in the λ–Cam
diagram. Three typical regions are identified due to the competition between capillary and
viscous forces: (I) the region below the solid blue line, where the meniscus in channel 1
outpaces that in channel 2 at breakthrough, i.e. L̂1 = L̂ > L̂2; (II) the region above the solid
blue line, where the meniscus in channel 2 outpaces that in channel 1 at breakthrough,
i.e. L̂1 < L̂2 = L̂; and (III) the border of regions (I) and (II), on which the menisci in
channels 1 and 2 arrive at the downstream junction at the same time, i.e. L̂1 = L̂2 = L̂ at
breakthrough. It is noted that the border corresponds to the critical curve of Cam, i.e. the
Cam,c curve. We can observe that for λ ≥ 10, the critical capillary number Cam,c obeys a
scaling relation Cam,c = 3.314λ−1; whereas for λ ≤ 0.1, it tends to converge to a value of
around 3.9. Through figure 3, we are able to predict the filling order of the wetting fluid
for varying viscosity ratio and Cam in a pore doublet. In a previous work (Sorbie et al.
1995), the existence of critical parameters for characterising the simultaneous filling of
both branch channels was discussed in terms of the aspect ratio (ri/L) and the channel
width ratio, and the influence of aspect ratio was explained as a result of the fluid inertia;
however, the aspect ratio is incorporated into the definition of the preferential capillary
number in the present study. In addition to the viscosity ratio, we also vary the value of k
from 0.1 to 10, and the resulting Cam,c surfaces viewed from two different angles are shown
in figure 4. It is interestingly observed that for any given viscosity ratio, log Cam,c increases
linearly with log k, and in particular Cam,c = k for λ = 1, consistent with the theoretical
derivation in Appendix A. Moreover, as in the case of k = 2, Cam,c first remains nearly
constant and then decreases with increasing λ for any fixed k.

2.4. Comparison between LBM simulations and semi-analytical solutions
In this section, the colour-gradient LBM (see Appendix B for details) is used to simulate
the imbibition behaviour in a pore doublet and its capability is assessed by comparing
with the semi-analytical solutions in § 2.3. The simulations are run in a 1575 × 409 lattice
domain with r1 = 15 lattices and r2 = 30 lattices, which are found fine enough to produce
grid-independent results. Figure 5 shows the simulation results corresponding to the same
values of Cam and λ as in figure 2. It is clear that the simulation results at breakthrough
agree well with the semi-analytical solutions qualitatively, and for each λ, two menisci in
branch channels are found to arrive at the downstream junction simultaneously at Cam,c,
consistent with the semi-analytical predictions in figure 2 as well. Although figure 5(b,e,h)
appears to be the same at breakthrough, it exhibits different evolution scenarios over time,
which can be seen in figure 6. For example, at t̂ = 0.5t̂B, the meniscus in capillary 1 lags
behind that in capillary 2 in figure 6(a) while the result is the converse in figure 6(c), which
agree with the semi-analytical predictions in figure 2(b,h).

To assess the transient behaviour, as an example, we present snapshots of the
imbibition process for Cam = 3.64 and λ = 0.025 in figure 7, where the upper and lower
rows represent the simulation results and the semi-analytical predictions, respectively.
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Figure 3. The λ–Cam diagram showing the imbibition preference in a two-dimensional pore doublet. The
various symbols represent the cases where simultaneous breakthrough occurs. Connecting these symbols gives
the blue solid line which divides the plane into two regions, i.e. (I) and (II). In (III), the meniscus first breaks
through channel 1, whereas in (II) the breakthrough first occurs in channel 2. The border on which L̂1 = L̂2 = L̂
at breakthrough is denoted as (III), and it follows a scaling relation Cam,c = 3.314λ−1 for λ ≥ 10. The dashed
line is added to show the proportional relationship between Cam,c and λ−1.
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Figure 4. The λ–k–Cam diagram showing the Cam,c surfaces viewed from two different angles.

Again, good agreement between the simulation results and semi-analytical predictions is
obtained, although the LBM simulation slightly overestimates L̂1 in figure 7(e). Having
verified the colour-gradient LBM, we use it to investigate the imbibition displacement in
a dual-permeability pore network in the next section, where the theoretical predictions are
not applicable due to the inherent complex geometry.

3. Forced imbibition in a dual-permeability pore network

In this section, we first describe the geometry set-up of the problem along with the
boundary conditions. Then the simulation results of imbibition displacement in the pore
network are presented and compared with those previously obtained from the pore doublet.

As shown in figure 8(a), the porous media geometry used in this study consists of
an inlet and an outlet section, connected by a pore network. The pore network includes
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 5. Fluid distributions at breakthrough obtained from the LBM simulations for the same parameters as
those in figure 2. Specifically, the first row: λ = 0.025 with (a) Cam = 3.64, (b) Cam = 4.02 and (c) Cam =
5.83; the second row: λ = 1 with (d) Cam = 0.7, (e) Cam = 2 and ( f ) Cam = 5.25; the third row: λ = 20 with
(g) Cam = 0.146, (h) Cam = 0.2 and (i) Cam = 0.488. The non-wetting and wetting fluids are shown in red
and blue, respectively.

(a) (b) (c)

Figure 6. Fluid distributions at t̂ = 0.5t̂B obtained from the LBM simulations corresponding to the parameters
used in figure 5(b,e,h). Specifically, these parameters are: (a) λ = 0.025, Cam = 4.02, (b) λ = 1, Cam = 2 and
(c) λ = 20, Cam = 0.2. The non-wetting and wetting fluids are shown in red and blue, respectively.

(a) (b) (c)

(d) (e) ( f )

Figure 7. Snapshots of the imbibition process obtained by the LBM simulations (top) and the semi-analytical
solutions (bottom) for Cam = 3.64 and λ = 0.025 at (a) t̂/t̂B = 0, (b) t̂/t̂B = 0.19, (c) t̂/t̂B = 0.5, (d) t̂/t̂B =
0.69, (e) t̂/t̂B = 0.88 and ( f ) t̂/t̂B = 1.0. In the top images, the non-wetting and wetting fluids are shown in red
and blue, respectively. In the bottom images, the non-wetting and wetting fluids are shown in white and black,
respectively.
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(a) (b)Solid wall Flat interface

Pore throat Pore body

A

C

B

45°

45°

Solid wall

Inlet Outlet

Figure 8. (a) The initial fluid distribution and set-up of the boundary conditions for the imbibition simulations
in the dual-permeability porous geometry. The white circles represent the solid grains, while the blue and
red regions represent the wetting and non-wetting fluids, respectively. The whole computational domain has
a size of 1428 × 1441 lattices, which consists of an inlet and an outlet section, connected by a pore network.
(b) Representation for staggered array of circular grains in the pore network. A pore body is defined by the
largest circle fitting locally the pore space. The size of a pore throat is defined by the narrowest width between
two nearest solid grains.

two distinct permeability zones with each occupying approximately a half-width of the
domain. Each homogeneous zone contains a staggered periodic array of uniform circular
grains (see figure 8b). We run the simulations in a 1428 × 1441 lattice domain, which
corresponds to a physical size of 0.714 × 0.721 cm2. The length of the pore network is 1078
lattices. The diameter of solid grains is 64 lattices in the high-permeability zone and 32
lattices in the low-permeability zone. The diameter of pore bodies in the high-permeability
(low-permeability) zone is 56 (28) lattices, and the corresponding pore throat width is
20.8 (10.4) lattices. Both permeability zones have equal porosity of ε = 0.55. Initially,
the pore network is saturated with the non-wetting (red) fluid, and the wetting (blue)
fluid is injected from the left-hand inlet continuously with a parabolic velocity profile of
u = (6uin(( y(H − y))/H2), 0), which is imposed by the velocity boundary scheme of Zou
& He (1997). Here, H is the inlet width of the porous media geometry and uin is the inlet
mean velocity. A constant pressure is set at the right-hand outlet via the pressure boundary
condition of Zou & He (1997), and the top and bottom boundaries are no-slip walls. The
densities of the two fluids are assumed to be equal since the displacement mainly occurs
in the horizontal direction, where the effect of gravity can be negligible. Each simulation
is run until the wetting fluid breaks through the right-hand boundary of the pore network.

We first consider a viscosity ratio of 0.1 for various values of Cam, where Cam is defined
by Cam = 3ηnqL/(2r2

1σ cos θ ), with r1 and L taken as the average of pore body radius and
half-throat width (see figure 8b) in the low-permeability zone and the length of the pore
network. Figure 9 shows the corresponding fluid distributions in the dual-permeability
pore network at breakthrough. It is found that at low (high) values of Cam, the wetting
fluid prefers to invade the low-permeability (high-permeability) zone and the breakthrough
first occurs in the low-permeability (high-permeability) zone, consistent with the previous
observations for the pore doublet. In all cases, very few drops of the non-wetting fluid
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(a) (b) (c)

(d) (e) ( f )

Figure 9. Fluid distributions in the dual-permeability pore network at breakthrough for (a) Cam = 1.4574,
(b) Cam = 2.9149, (c) Cam = 4.3723, (d) Cam = 14.5745, (e) Cam = 72.8723 and ( f ) Cam = 145.7446. The
viscosity ratio of wetting to non-wetting fluids is fixed at 0.1. The non-wetting and wetting fluids are shown in
red and blue, respectively.

are trapped as the residual phase in the imbibition process as the wetting fluid progresses.
For figure 9(a–e) (Cam = 1.4574–72.8723), we notice an oblique advancing pattern of the
wetting fluid in both high- and low-permeability zones, but this phenomenon disappears
when Cam is increased up to Cam = 145.7446 (figure 9f ). This suggests that the oblique
advancing of the wetting fluid arises from the non-trivial interfacial tension.

To better understand the oblique advancing pattern, as an example, we plot the evolution
of fluid distributions during the early imbibition at Cam = 1.4574, which is shown in
figure 10. It is known that the dominant capillary pressure is larger in the smaller pores
and throats according to the Young–Laplace equation, so the smallest pores and throats
are filled first. For the present grain arrangement, let us take a close look at the interface
between two vertically aligned solid grains A and B, as shown in figure 8(b). It is seen
that a flat interface (represented by the blue solid line) with zero capillary pressure
is able to touch the solid grain C, and thus the advancing meniscus of the wetting
fluid always progresses towards the next column of grains through a triangle shape, as
marked by the black triangles in figure 10. In addition, as shown in figure 10( f ), as the
wetting fluid invades the region marked by the black triangle, it cannot infiltrate in the
direction highlighted by the dashed arrow due to the requirement of a positive pressure
difference between the wetting and non-wetting fluids to overcome the capillary valve
resistance (Xu et al. 2017), but progress towards the direction highlighted by the solid
arrow due to the merging with the neighbouring interface. As a result, the wetting fluid
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(a) (b) (c)

(d) (e) ( f )

Figure 10. Fluid distributions in the porous media geometry for Cam = 1.4574 and λ = 0.1 at (a) t̂/t̂B =
0.0145, (b) t̂/t̂B = 0.0217, (c) t̂/t̂B = 0.029, (d) t̂/t̂B = 0.0362, (e) t̂/t̂B = 0.0434 and ( f ) t̂/t̂B = 0.0507. Each
inset shows a close-up view of the region indicated by the black rectangular box in the lower left corner.

penetrates layer by layer along the direction indicated by the solid arrow, forming an
oblique advancing pattern. A similar process occurs in the high-permeability zone, but
in a direction perpendicular to the invading direction in the low-permeability zone. On
the other hand, at the highest Cam in figure 9( f ), the aforementioned pore filling order
is disrupted and no longer applicable, as here the viscous force dominates the imbibition
behaviour.

We then study the effect of viscosity ratio on the imbibition preference. A wide range
of viscosity ratios, varying from λ = 0.02 to 50.0, is considered. For each viscosity
ratio, at least three different values of Cam are simulated, covering three typical patterns
observed at breakthrough. The saturation data at breakthrough for various viscosity
ratios and capillary numbers are listed in table 1, where S1, S2 and Sw are the wetting
fluid saturations in the low-permeability zone, the high-permeability zone and the entire
pore network. Among all the cases considered, the maximum imbibition efficiency is
obtained under the conditions of λ = 50 and Cam = 0.08745, where the wetting fluid
saturations in both permeability zones are roughly the same (the corresponding values
S1 = 0.8456 and S2 = 0.8645). In addition, for each viscosity ratio, the highest imbibition
efficiency is always achieved when S1 is closest to S2. This implies that the critical
capillary numbers Cam,c represent the optimal condition to improve the imbibition
efficiency.

To locate the values of Cam,c for different viscosity ratios, we extract the data regarding
the imbibition preference from table 1 and plot them in the λ–Cam diagram, as shown in
figure 11. In this figure, the open symbols represent the cases where S1 > S2, while the
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λ Cam S1 S2 Sw

0.02 1.4574 0.7051 0.2428 0.4651
0.02 2.9149 0.7061 0.5267 0.5990
0.02 4.8582 0.3357 0.7126 0.5141
0.02 7.2872 0.2243 0.6367 0.4192
0.025 1.1660 0.7050 0.2427 0.4650
0.025 2.9149 0.7401 0.5405 0.6276
0.025 5.8298 0.2784 0.6378 0.4458
0.1 1.4574 0.7049 0.2415 0.4643
0.1 2.9149 0.7053 0.4273 0.5521
0.1 4.3723 0.6230 0.7191 0.6572
0.1 14.5745 0.1643 0.6261 0.3862
0.1 72.8723 0.1288 0.7124 0.4086
0.1 145.7446 0.1229 0.7791 0.4290
0.25 1.1660 0.7043 0.2421 0.4644
0.25 1.7489 0.7048 0.2847 0.4844
0.25 2.9149 0.7060 0.5784 0.6229
0.25 5.8298 0.5192 0.7163 0.6075
1.0 0.4372 0.7046 0.2641 0.4746
1.0 1.4574 0.7048 0.3980 0.5383
1.0 2.9149 0.6846 0.7307 0.6984
1.0 7.2872 0.4038 0.7551 0.5734
5.0 0.0874 0.7043 0.2417 0.4641
5.0 0.2915 0.8228 0.5764 0.6904
5.0 0.5830 0.8448 0.8259 0.8253
5.0 0.8745 0.7068 0.7589 0.7281
5.0 1.4574 0.6977 0.8293 0.7578
20 0.07287 0.7023 0.3172 0.4983
20 0.1457 0.8886 0.7761 0.8216
20 0.2186 0.8455 0.8645 0.8504
20 0.3644 0.7410 0.8785 0.8083
50 0.02915 0.7037 0.3447 0.5117
50 0.05830 0.8694 0.7959 0.8218
50 0.08745 0.8456 0.8645 0.8505
50 0.1457 0.7329 0.8602 0.7951

Table 1. Saturations S1, S2 and Sw at breakthrough for various values of viscosity ratio (λ) and capillary
number (Cam), where S1 and S2 are the wetting fluid saturations in the low- and high-permeability zone and Sw
is the wetting fluid saturation in the whole pore network.

filled symbols represent the cases where S1 < S2. This means that for each value of λ,
the critical capillary number Cam,c lies between two nearest open and filled symbols. As
such, the Cam,c curve can be approximately obtained, which is represented by the green
solid line. For the sake of comparison, figure 11 also plots the Cam,c curve from the pore
doublet model (represented by the blue dashed line and directly taken from figure 3). It
is clear that the present Cam,c curve overlaps well with the one from the pore doublet
model. As shown in Appendix C and Appendix D, we also vary the permeability ratio (k2)
and the contact angle (θ ), and find that the results overall agree with the predictions from
the pore doublet model. All of the results suggest that the simplified pore doublet model
can provide insights into the physics of immiscible displacement in the more complex
dual-permeability pore network.

Although the pore doublet model can predict the variation of Cam,c with λ in a
dual-permeability pore network, it is not clear whether the transient imbibition behaviour
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10–2
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(I)

(II)

λ
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Figure 11. The λ–Cam diagram showing preferential imbibition in a dual-permeability pore network. The open
symbols represent the cases where S1 > S2 at breakthrough (I), while the filled symbols represent the cases
where S1 < S2 at breakthrough (II). Two images of fluid distributions are shown as inserts depicting regions (I)
and (II). The green solid line represents the Cam,c curve, on which S1 = S2 at breakthrough. The Cam,c curve
(represented by the blue dashed line) from the pore doublet model is also plotted for comparison.

in the dual-permeability pore network can be correctly captured by the pore doublet model.
In order to clarify this, we plot the time evolution of S1 and S2 (normalised by their
maximum value at breakthrough) at three typical viscosity ratios in figure 12, where the
semi-analytical solutions L̂1 and L̂2 (normalised by L̂), obtained from (2.10) and (2.11)
with the dimensionless numbers Cam and λ identical to those in the pore network, are
also shown for comparison. For each viscosity ratio, the agreement between the LBM
results and the semi-analytical solutions is generally better at higher Cam where S1 < S2,
but worse when S1 > S2 where the interfacial tension is dominant. The larger discrepancy
when S1 > S2 (see figure 12a,c,e) is attributed to the fact that in the dual-permeability pore
network, the interface varies and thus the capillary pressure varies when the meniscus
moves from the throat to the pore body or from the pore body to the throat, while the
capillary pressure remains constant in the pore doublet. We also increase the porosity
to 0.62 in a similar pore network, and again observe a good agreement between the
saturation evolution and the semi-analytical predictions, which is shown in Appendix E.
In addition, we interestingly notice in figure 12(c) that after t̂/t̂B = 0.5, the wetting fluid
infiltrates into the high- and low-permeability zones alternately. Figure 13 shows the
corresponding snapshots, from which it is seen that the wetting fluid invades only into
the high-permeability zone in figure 13(a–c) and only into the low-permeability zone in
figure 13(d–f ).

4. Conclusions

We have studied the imbibition behaviour of two immiscible fluids in a dual-permeability
pore network by a combination of pore-scale LBM simulation and mathematical
modelling. First, we establish a mathematical model of the forced imbibition in a pore
doublet, consisting of two branch channels with different widths, and find that the
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Figure 12. The saturations in the low- and high-permeability regions (normalised by their maximum value at
breakthrough) as a function of time in the dual-permeability pore network at λ = 0.025 for (a) Cam = 2.9149
and (b) Cam = 5.8298; at λ = 1 for (c) Cam = 0.4372 and (d) Cam = 7.2872; at λ = 20.0 for (e) Cam = 0.1457
and ( f ) Cam = 0.2186. The semi-analytical solutions from the pore doublet model at the same values of λ and
Cam are also shown for the comparison.

imbibition dynamics can be fully described by the viscosity ratio and the capillary
number Cam, which additionally incorporates the influence of channel width and length.
By solving the mathematical model, a phase diagram of λ versus Cam is proposed to
characterise the imbibition preference in the pore doublet. Then, the colour-gradient LBM
is used to simulate the imbibition process in the pore doublet and its capability and
accuracy are validated against the semi-analytical solutions of the mathematical model.
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(a) (b) (c)

(d) (e) ( f )

Figure 13. Snapshots of the imbibition for Cam = 0.4372 and λ = 1 at (a) t̂/t̂B = 0.5106, (b) t̂/t̂B = 0.5532,
(c) t̂/t̂B = 0.5957, (d) t̂/t̂B = 0.7234, (e) t̂/t̂B = 0.766 and ( f ) t̂/t̂B = 0.8085. The snapshots from (a) to ( f )
correspond to the solid dots marked by A to F in figure 12(c).

Finally, the lattice Boltzmann simulations are used for the imbibition dynamics in a
dual-permeability pore network. For each viscosity ratio, it is observed at breakthrough
that the imbibition preferably occurs in the low-permeability zone at low values of Cam
but in the high-permeability zone at high values of Cam, which is attributed to the
competition between capillary and viscous forces. When the capillary effects cannot
be ignored, the wetting fluid is found to progress layer by layer in an oblique manner.
In addition, for each viscosity ratio, there exists a critical capillary number Cam,c at
which the wetting fluid saturations are equal in both permeability zones, and Cam,c
represents the optimal condition to improve the imbibition efficiency. By comparing
the phase diagram obtained for the dual-permeability pore network with that from the
pore doublet model, we demonstrate for the first time that the pore doublet model can
fairly well predict the variation of Cam,c with the viscosity ratio in a dual-permeability
pore network. Nevertheless, the pore doublet model cannot describe all features of the
imbibition process in the dual-permeability pore network, especially when the imbibition
preferably occurs in the low-permeability zone. The present study not only facilitates a
fundamental understanding of the imbibition mechanism within dual-permeability porous
media, but also provides operational guidelines to improve oil recovery in practice.
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Appendix A. Theoretical solution of critical capillary number in a pore doublet
for λ = 1

When λ = 1, the explicit expressions for both q1 and q2 from (2.1), (2.2) and (2.3) can be
obtained:

q1 =

[
3ηnqL

2r3
2

+ σ cos θ
(

1
r1

− 1
r2

)]

1.5ηnL

(
1
r3

1
+ 1

r3
2

) , (A1)

q2 =

[
3ηnqL

2r3
1

− σ cos θ
(

1
r1

− 1
r2

)]

1.5ηnL

(
1
r3

1
+ 1

r3
2

) . (A2)

From q2/q1 = r2 · u2/(r1 · u1), it is straightforward to write

u2

u1
= k2Cam + (1 − k)k

Cam − (1 − k)k2 . (A3)

In order to compare u1 and u2, one can rewrite (A3) as u2/u1 − 1 = ((k2 − 1) · (Cam − k))/
(Cam + (k − 1)k2). For k > 1, it is easily obtained that when Cam > k, u2 > u1 and thus
the wetting fluid prefers to enter the large capillary (capillary 2 in figure 1); when Cam < k,
u2 < u1 and thus the wetting fluid prefers to enter the small capillary (capillary 1); when
Cam,c = k, u2 = u1 and the breakthrough simultaneously occurs in both capillaries. This
means that the critical capillary number Cam,c = k for λ = 1.

Appendix B. Lattice Boltzmann method for immiscible two-phase flow

Direct numerical simulation of the two-phase flow in two-dimensional pore spaces is
performed using a state-of-the-art colour-gradient LBM (Xu et al. 2017). In this model,
the distribution functions f R

i and f B
i are used to represent the red and blue fluids,

where the subscript i is the lattice velocity direction and ranges from 0 to 8 for the
two-dimensional nine-velocity (D2Q9) lattice model used in this work. Function fi(x, t)
is the total distribution function at position x and time t, and is defined as fi = f R

i + f B
i .
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Conservation of mass for each fluid and total momentum conservation require

ρk =
∑

i

f k
i , ρu =

∑
i

fici, k = R or B, (B1a,b)

where ρ = ρR + ρB is the total density with the superscripts ‘R’ and ‘B’ referring to the
red and blue fluids, respectively, and u is the local fluid velocity. The lattice velocity
ci is defined as c0 = (0, 0), c1,3 = (±c, 0), c2,4 = (0,±c), c5,7 = (±c,±c) and c6,8 =
(∓c,±c), where c = δx/δt is the lattice speed with δx being the lattice length and δt
being the time step. The sound of speed is related to the lattice speed by cs = c/

√
3.

The evolution of f R
i and f B

i in time and space is described by

f k
i (x + ciδt, t + δt) = f k

i (x, t)+ (Ωk
i )
(3)

[(Ωk
i )
(1) + (Ωk

i )
(2)

], (B2)

where (Ωk
i )
(1) is the single-phase collision operator, (Ωk

i )
(2) is the perturbation operator

and (Ωk
i )
(3) is the recolouring operator to guarantee the immiscibility of both fluids. Note

that the single-phase collision and perturbation operators are to recover the Navier–Stokes
equations for the fluid mixture, and thus can be implemented via the total distribution
function fi. Using the multiple relaxation time scheme (Ginzburg & d’Humieres 2003),
the single-phase collision operator reads as

(Ωi)
(1) = −(M−1SM)ij( fj − f eq

j ), (B3)

where f eq
i is the equilibrium distribution function and is given by

f eq
i (ρ,u) = ρWi

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
. (B4)

Herein, Wi is the weight factor with W0 = 4/9, W1−4 = 1/9 and W5−8 = 1/36. The
transformation matrix M is given by (Lallemand & Luo 2000)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B5)

With the transformation matrix M , the distribution function fi can be projected onto the
moment space through mi = Mijfj, and the resulting nine moments are

m = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T, (B6)

where e and ε are related to the total energy and the energy square, jx and jy are the x
and y components of the momentum, qx and qy are the components of the energy flux
and pxx and pxy correspond to the diagonal and off-diagonal components of the viscous
stress tensor. The values of the equilibrium moment are meq = ρ(1,−2 + 3u2, 1 −
3u2, ux,−ux, uy,−uy, u2

x − u2
y, uxuy)

T, which are obtained by meq
i = Mijf

eq
j . The diagonal
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relaxation matrix S in (B3) is given as S = diag(sρ, se, sε, sj, sq, sj, sq, sp, sp). Here sρ
and sj can take any values since they correspond to the conserved moments (density ρ and
momentum j). Terms se and sp are related to the bulk and shear viscosities, while sε and sq
are free parameters. To improve the numerical stability, we choose se = sε = sp = 1/τ
and sq = 8(2 − sp)/(8 − sp) (Pan, Luo & Miller 2006) in our simulations, where the
dimensionless relaxation time τ is related to the dynamic viscosity of the fluid mixture
by η = c2

sρ(τ − 0.5)δt. When both fluids have unequal viscosities, a harmonic mean is
employed to determine the viscosity of the fluid mixture, i.e. 1/η = (1 + ρN)/(2ηR)+
(1 − ρN)/(2ηB), where the phase field ρN is defined as

ρN(x, t) = ρR(x, t)− ρB(x, t)
ρR(x, t)+ ρB(x, t)

, −1 ≤ ρN ≤ 1. (B7)

The perturbation operator that generates an interfacial force F s is given by

(Ωi)
(2) = M−1

(
I − 1

2
S

)
F , (B8)

with

F (x, t) = [0, 6(uxFsx + uyFsy),−6(uxFsx + uyFsy),

Fsx,−Fsx,Fsy,−Fsy, 2(uxFsx − uyFsy), uxFsy + uyFsx]T, (B9)

where I is the second-order identity tensor and Fsx and Fsy are the components of the
interfacial force F s. The interfacial tension between two fluids is modelled as a spatially
varying body force F s based on the continuum surface force concept (Brackbill, Kothe &
Zemach 1992), which is given by

F s = 1
2σK∇ρN, (B10)

where K is the local interface curvature related to the unit normal vector n by

K = nxny

(
∂

∂y
nx + ∂

∂x
ny

)
− n2

y
∂

∂x
nx − n2

x
∂

∂y
ny, (B11)

where nx and ny are the x and y components of n defined by n = ∇ρN/|∇ρN |. In the
calculations of interface curvature and normal vector, the partial derivatives of a variable
ψ are evaluated by

∇ψ(x, t) = 1
c2

s

∑
i

Wiψ(x + ciδt, t)ci. (B12)

In the presence of interfacial force, the fluid velocity should be redefined as (Guo, Zheng
& Shi 2002)

ρu =
∑

i

fici + 1
2 F sδt (B13)

to correctly recover the Navier–Stokes equations. To minimise the mixing and segregate
the red and blue fluids, the recolouring operator proposed by Latva-Kokko & Rothman
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(2005) is used:

(ΩR
i )
(3)( f R

i ) = ρR

ρ
f ∗
i + β

ρRρB

ρ
Wi cos(ϕi)|ci|, (B14)

(ΩB
i )
(3)( f B

i ) = ρB

ρ
f ∗
i − β

ρRρB

ρ
Wi cos(ϕi)|ci|, (B15)

where f ∗
i represents the total distribution function after the perturbation step. Here β is a

segregation parameter ranging from 0 to 1 and set to be 0.7 in order to maintain a narrow
interface thickness and keep spurious velocities low (Halliday, Hollis & Care 2007). Angle
ϕi is the angle between ∇ρN and the lattice velocity ci.

On the solid surface, no-slip boundary condition is imposed using the halfway
bounce-back scheme (Ladd 1994), and a wetting boundary condition is needed to obtain
the desired contact angle θ . Here, the wetting boundary condition recently developed by
Xu et al. (2017) is adopted, and its basic idea is to modify the orientation of the phase-field
gradient at three-phase contact lines so as to match the desired contact angle. Because
of its high accuracy and ability to deal with arbitrarily complex geometries, this wetting
boundary condition has been used many times in pore-scale two-phase simulations (Gu,
Liu & Zhang 2018; Xu & Liu 2018; Gu et al. 2019), and has been recently extended to
the three-dimensional case (Akai, Bijeljic & Blunt 2018). For the details of the wetting
boundary condition, interested readers are referred to Xu et al. (2017).

Appendix C. The effect of permeability ratio

We now change the permeability ratio between the high- and low-permeability regions
as k2 = 9 in order to further assess whether the pore doublet model is able to predict
the imbibition preference in the dual-permeability pore network. The comparison between
the imbibition preference in the dual-permeability pore network and the semi-analytical
predictions from the pore doublet model is shown in figure 14, where only limited
numerical tests are carried out for the sake of reducing computational burden. It is seen
that for k2 = 9, the Cam,c curve obtained from the pore doublet model agrees with the
imbibition preference in the dual-permeability pore network within acceptable accuracy.

Appendix D. The effect of contact angle

We change the contact angle as θ = 15◦ and θ = 45◦ in order to verify the prediction
ability of the pore doublet model for imbibition preference in the dual-permeability pore
network. The comparison between the imbibition preference in the dual-permeability pore
network and the semi-analytical predictions from the pore doublet model is shown in
figure 15, depicting results for θ = 15◦ and θ = 45◦. It is seen that the pore doublet model
can reasonably predict the imbibition preference in the dual-permeability pore network for
θ = 45◦ but its prediction accuracy is worse for θ = 15◦. This is because when the contact
angle is very small, the capillary driving force which is relatively strong is a constant in
the pore doublet model, while it is dynamically varying with the size of local pores and
throats in the dual-permeability pore network.

Appendix E. The effect of porosity

Consider a dual-permeability pore network with geometry similar to that in
figure 8(a) but a different porosity of ε = 0.62. We note that the permeability
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10–2 10–1 100 101 102

10–1

100

101

λ

Cam

Figure 14. Comparisons between the Cam,c curve (represented by the dashed line) from the pore doublet
model and the imbibition preference (represented by the discrete symbols) in a dual-permeability pore network
with permeability ratio k2 = 9. The open symbols represent the cases where S1 > S2 at breakthrough, while
the filled symbols represent the cases where S1 < S2 at breakthrough.

10–2 10–1 100 101 102

10–1

100

101

10–2 10–1 100 101 102

10–1

100

101

Cam

λ λ

(a) (b)

Figure 15. Comparisons between the Cam,c curve (represented by the dashed lines) from the pore doublet
model and the imbibition preference (represented by the discrete symbols) in a dual-permeability pore network
for (a) θ = 15◦ and (b) θ = 45◦. The open symbols represent the cases where S1 > S2 at breakthrough, while
the filled symbols represent the cases where S1 < S2 at breakthrough.

in the low-/high-permeability region increases compared with the geometry in
figure 8(a) as the permeability in a staggered circular array can be calculated by K =
(ε3(ε − 0.2146)/31(1 − ε)1.3)d2 (0.4345 ≤ ε ≤ 0.9372) (Lee & Yang 1997), where d is
the diameter of the solid cylinders. However, the permeability ratio between the high- and
low-permeability regions is kept at k2 = 4. We compare the saturation evolutions with
the corresponding semi-analytical solutions from the pore doublet model in figure 16 and
fairly good agreement is observed.
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Figure 16. The saturations in the low- and high-permeability regions (normalised by their maximum value at
breakthrough) as a function of time in the dual-permeability pore network at λ = 0.1 for (a) Cam = 2.3687
and (b) Cam = 4.7374; at λ = 1 for (c) Cam = 1.1843 and (d) Cam = 3.553; at λ = 20 for (e) Cam = 0.1777
and ( f ) Cam = 0.2961. The semi-analytical solutions from the pore doublet model at the same values of λ and
Cam are also shown for comparison.
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