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Secondary vortex, laminar separation bubble and
vortex shedding in flow past a low aspect ratio
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Large eddy simulation of flow past a circular cylinder of low aspect ratio (AR = 1 and
3), spanning subcritical, critical and supercritical regimes, is carried out for 2 × 103 ≤
Re ≤ 4 × 105. The end walls restrict three-dimensionality of the flow. The critical Re
for the onset of the critical regime is significantly lower for small aspect ratio cylinders.
The evolution of secondary vortex (SV), laminar separation bubble (LSB) and the related
transition of boundary layer with Re is investigated. The plateau in the surface pressure due
to LSB is modified by the presence of SV. Proper orthogonal decomposition of surface
pressure reveals that although the vortex shedding mode is most dominant throughout
the Re regime studied, significant energy of the flow lies in a symmetric mode that
corresponds to expansion–contraction of the vortex formation region and is responsible
for bursts of weak vortex shedding. A triple decomposition of the time signals comprising
of contributions from shear layer vortices, von Kármán vortex shedding and low frequency
modulation due to the symmetric mode of flow is proposed. A moving average, with
appropriate size of window, is utilized to estimate the component due to vortex shedding.
It is used to assess the variation, with Re, of strength of vortex shedding as well as its
coherence along the span. Weakening of vortex shedding in the high subcritical and critical
regime is followed by its rejuvenation in the supercritical regime. Its spanwise correlation
is high in the subcritical regime, decreases in the critical regime and improves again in the
supercritical regime.

Key words: boundary layer separation, turbulent boundary layers, vortex streets

1. Introduction

Flow past a circular cylinder has been of great interest to the fluid mechanics community. It
is useful in many engineering and scientific applications. Several researchers have carried
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out experimental and computational studies to understand the flow (Williamson 1996b).
The flow is governed by the Reynolds number (Re) which is defined as Re = ρU∞D/μ,
where ρ is the fluid density, U∞ is the free stream velocity, D is the diameter of the
cylinder and μ is the coefficient of dynamic viscosity of the fluid. The flow is steady up
to Re ≈ 47. In this regime two counter-rotating standing vortices are observed in the wake
of the cylinder. The flow loses its stability via Hopf bifurcation and becomes unsteady
beyond Re ≈ 47 (Mathis, Provansal & Boyer 1984; Sreenivasan, Strykowski & Olinger
1987; Kumar & Mittal 2006). In this regime, alternate vortices form in the near wake and
shed downstream (Kumar & Mittal 2006; Chopra & Mittal 2019).

Three-dimensionality sets in the flow at Re ≈ 180 via mode-A instability (Williamson
1992, 1996a; Behara & Mittal 2010). The shear layer separating from either shoulder of the
cylinder undergoes transition from a laminar to a turbulent state via the Kelvin–Helmholtz
mode of instability. There is a large scatter in the data reported in the literature regarding
the critical Re for onset of shear layer instability. Bloor (1964) reported that the critical
Re for onset of shear layer instability is approximately 1300. Unal & Rockwell (1988)
observed critical Re to be approximately 1900 and Gerrard (1978) found it to be much
lower at 350. Prasad & Williamson (1997) reported that the critical Re is different for
parallel and oblique shedding; it is ≈1200 for parallel shedding and ≈2600 for oblique
shedding. Consistent with the observation by Bloor (1964), they found the shear layer
instability to be intermittent in nature. Kumar et al. (2009) carried out global linear
stability analysis of flow past a cylinder with centreline symmetry. It was found that
the shear layer becomes unstable due to convective instabilities for Re beyond 54 for
unbounded flow. The convective instabilities are sensitive to background disturbances.
This explains the relatively large scatter in the experimental studies regarding the critical
Re for onset of the instability of the separated shear layers. The location in the wake where
the shear layer undergoes transition moves upstream with increase in Re.

The instability of the separated shear layer, at large enough Re, leads to transition of the
boundary layer. This was demonstrated by Singh & Mittal (2005) via two-dimensional, and
later Behara & Mittal (2011) with three-dimensional, simulations for flow past a cylinder.
They showed that the shear layer instability causes the separated shear layer to roll into
vortices. At the critical Re, these vortices are generated very close to the surface of the
cylinder causing the separated shear layer to transition to a turbulent state. The turbulent
shear layer reattaches to the surface of the cylinder at a downstream location. A laminar
separation bubble (LSB) forms between the point of separation and reattachment of the
boundary layer (Tani 1964). The velocity profile of the reattached turbulent boundary
layer shows a region of log layer similar to the one in the zero pressure gradient turbulent
boundary layer over a flat plate (Singh & Mittal 2005; Cheng et al. 2017). The reattached
turbulent boundary layer separates farther downstream. Compared with the separation of
the laminar boundary layer, the delayed separation of the turbulent boundary layer leads
to a very significant decrease in drag with increase in Re. This phenomenon is referred
to as drag crisis (Landau & Lifshitz 1982). An interesting flow structure, other than LSB,
has been reported in the flow past a cylinder. Son & Hanratty (1969) measured velocity
gradient at the surface of a cylinder in the subcritical regime. They observed a secondary
recirculation bubble downstream of the separation point and referred to it as a secondary
vortex (SV). The same was observed by Cheng et al. (2017) from their wall resolved large
eddy simulation (LES) in the subcritical regime. According to Cheng et al. (2017), both
SV and LSB are the outcome of secondary separation in the flow. The phenomenon of
secondary separation occurs downstream of the laminar separation (LS) point and inside
the wake separation bubble, in the case of SV. On the other hand, an LSB forms when the
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secondary separation moves upstream and outside of the primary wake separation bubble.
They indicated that SV and LSB do not coexist. Ono & Tamura (2008) carried out LES at
Re = 6 × 105 and observed that SV and LSB coexist in the flow. The SV forms between
the separation and reattachment points of the LSB.

Bearman (1969), Schewe (1983) and Cadot et al. (2015) observed a two-step drag crisis
in their respective experimental studies. In the first step, the boundary layer on one side of
the cylinder undergoes transition. The flow attains a critical state on that side while it stays
in a subcritical state on the other side. In the second step, the boundary layer transitions
to a critical state on the other side as well. Behara & Mittal (2011) carried out LES on a
smooth cylinder and a cylinder with a trip. It was observed that the cylinder with a trip
undergoes a two-step drag crisis, whereas, a smooth cylinder undergoes a single-step drag
crisis. It was concluded that the two-step drag crisis observed in experiments is due to
roughness or minor imperfections on the surface of the model.

Chopra & Mittal (2017) investigated the mechanism of drag crisis by carrying out
three-dimensional numerical simulations. It was found that the flow is associated primarily
with two states in the critical regime: the LSB and non-LSB states with relatively
lower and higher CD, respectively. The time-averaged coefficient of drag depends on the
intermittency factor of the LSB. The intermittency factor is defined as the fraction of
time for which an LSB appears in the flow. Close to the onset of the critical regime the
intermittency factor of LSB is low, indicating that LSB appears infrequently resulting
in higher CD. The intermittency factor of LSB increases with increase in Re, causing a
corresponding decrease in CD.

Roshko (1961) and Achenbach (1968) classified the flow regimes based on the state
of the boundary layer. In the subcritical regime, the boundary layer is laminar when it
separates and the coefficient of drag (CD) is 1.2, approximately. This is followed by the
critical regime, wherein an LSB forms and the CD reduces to a significantly low value of
0.3. Two sets of classification of the flow beyond the critical regime have been proposed.
According to Roshko (1961), the critical regime is followed by a supercritical regime. In
this regime the LSB continues to exist and CD remains 0.3, approximately with increase
in Re. This is followed by a transcritical regime, in which the LSB disappears and CD
increases from 0.3 to 0.7 with an increase in Re. Achenbach (1968), on the other hand,
proposed a slightly different nomenclature. The critical regime defined by Achenbach
(1968) encompasses the critical and supercritical regimes defined by Roshko (1961). This
is followed by a supercritical regime where the LSB disappears, similar to the transcritical
regime defined by Roshko (1961). In the present study, we follow the terminology proposed
by Roshko (1961) for defining the various regimes. However, we adopt the methodology
proposed by Schewe (1983) for the classification of flow regimes based on variation of
drag force (Fx) with Re. The Re for the onset and end of the critical regime is identified
via maxima and minima, respectively, in the variation of Fx with Re. Schewe (1983)
showed that, unlike the classification based on CD, the classification on the basis of Fx
is unambiguous.

The Strouhal number, the non-dimensional vortex shedding frequency, is defined as
St = fD/U∞, where f is the frequency of vortex shedding. It is approximately 0.2 in the
subcritical regime (Roshko 1961; Bearman 1969; Achenbach & Heinecke 1981; Schewe
1983). Roshko (1961), Bearman (1969) and Szepessy & Bearman (1992) estimated St from
the time variation of fluctuating velocity in the wake. Schewe (1983) proposed that the time
variation of the lift force experienced by the cylinder can be used to estimate St when its
power spectrum shows a single peak. The St obtained from both techniques is in good
agreement. Roshko (1961) observed regular vortex shedding in the transcritical regime.
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According to Schewe (1983), prior to Roshko’s work it was believed that the wake is
chaotic and periodic vortex shedding ceases beyond the critical regime. The St was found
to be approximately 0.27 in the transcritical regime (Roshko 1961), larger than that in the
subcritical regime. Bearman (1969) and Schewe (1983) reported that the St corresponding
to vortex shedding increases significantly in the critical and supercritical regimes. It
experiences this increase via two jumps in correspondence with a two-step drag crisis.
The first jump is from 0.2 to 0.3, approximately. The second jump is to a value 0.46 as per
Bearman (1969) and to 0.48 according to Schewe (1983).

Szepessy & Bearman (1992) carried out an experimental study to investigate the effect
of aspect ratio (AR) of the cylinder on its aerodynamic properties across the various flow
regimes. The aspect ratio (AR = Lz/D) is defined as the ratio of the span (Lz) of cylinder
to its diameter. Moveable rectangular end plates, mounted on a cylinder with large span,
were employed to vary the AR. It was found that the flow is fairly sensitive to the AR.
In the subcritical regime, the root mean square (r.m.s.) of CL was found to be higher for
small AR as compared with that for large AR. In addition, its variation with Re, for all flow
regimes, is relatively larger for cylinders with lower AR. It was also found that the r.m.s.
of CL is sensitive to the intensity of vortex shedding and the vortex formation length. In
a later study, via further experiments in the subcritical regime, Norberg (2001) found that
the r.m.s. of coefficient of lift (CLrms) is very low at the onset of shear layer instability
and increases with increase in Re beyond the onset. It was speculated that the decrease in
vortex formation length might be responsible for the increase in CLrms with Re. Similar
to time-averaged CD, r.m.s. of CL decreases with an increase in Re in the critical regime
(Schewe 1983; Szepessy & Bearman 1992; Cadot et al. 2015; Rodríguez et al. 2015).

Szepessy (1993) investigated the effect of streamwise dimensions of rectangular end
plates for 4 × 103 ≤ Re ≤ 4.8 × 104. The height of the end plates was kept constant
(= 7D) in the experiments. A distance of 1.5D from the centre of the cylinder to the
leading edge of plate and 3.5D from the trailing edge is sufficient to prevent flow
disturbances from outside the plates affecting the vortex shedding on the cylinder. Plates
with leading edge distance less that 0.6D lead to suppression of vortex shedding for
Re < 1.0 × 104. Horseshoe vortices form within the boundary layer on the end plates,
upstream of the cylinder. However, they are weaker compared with the strength of vortices
that are shed in the wake. The circulation of the largest horseshoe vortex was estimated
to be approximately 10 %–20 % of that of the vortex associated with Kármán shedding.
It is possible to design end plates that lead to minimal non-uniformity in spanwise
pressure distribution. The leading and trailing edges for the optimal plate are located at
3.5D and 4.5D, respectively, from the centre of the cylinder. The horseshoe vortices for
well-designed end plates were found to have very weak influence on the vortex shedding,
at least for cylinders of AR larger than 2. Szepessy & Bearman (1992) utilized the optimal
sized end plates rectangular end plates in their experiments.

Another feature observed in the flow past a cylinder is the loss of temporal and
spanwise regularity in vortex shedding in the higher Re end of subcritical regime. In
their experiments to investigate the effect of AR in the subcritical regime, Norberg (1994)
observed a bistable state for AR < 7 wherein the flow switches between regular vortex
shedding, referred to as ‘Strouhal mode’, and ‘irregular flow’. The AR is manipulated by
changing the distance between circular end plates. The vortex formation, during ‘irregular
flow’ is interrupted by the axial flow moving in from the outer side of the plate due to
the low pressure in the vortex formation region. The coefficient of base suction is lower
in the irregular flow mode, compared with that in the regular vortex shedding mode.
Szepessy & Bearman (1992) observed bursts of weak vortex shedding in the time variation
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of pressure and velocity at Re = 1.3 × 105. Similar bursts were observed in time variation
of CL and CD by Schewe (1983), Perrin et al. (2008) and Desai, Mittal & Mittal (2020) in
the subcritical regime. Szepessy & Bearman (1992) found that the bursts appear when the
vortex shedding is out of phase along the span of the cylinder. Szepessy (1994) reported
that out of phase vortex shedding may be due to cellular structures along the span. Perrin
et al. (2008) referred to instances of weak shedding as ‘irregular shedding’ and those
of strong shedding as ‘regular shedding’. They found that the vortex formation region
enlarges during the irregular/weak vortex shedding.

In their direct numerical simulation of Re = 3900 flow past a circular cylinder,
Lehmkuhl et al. (2013) observed low frequency oscillation of the region of vortex
formation. The contraction is associated with large fluctuations in the shear layer and is
referred to as the high energy mode. The low energy mode is during the expansion of the
vortex formation region and is associated with relatively lower fluctuations in the shear
layer. The LES of the Re = 1.3 × 105 flow past a cylinder of AR = 9 (Cao & Tamura 2015)
shows that weak vortex shedding is associated with three-dimensional flow patterns which
cause phase lag along the span, increase of vortex formation length, decrease in flapping of
shear layers, and reduction of wake width. Szepessy & Bearman (1992) observed that there
is a correlation between CLrms and spanwise coherence of vortex shedding. It was found
that, the flow with relatively high CLrms also has high spanwise coherence. The spanwise
coherence was estimated using the two point pressure–velocity correlation coefficient. In a
later study, Szepessy (1994) investigated the spanwise characteristics of vortex shedding in
a high subcritical Re = 4.3 × 104 using correlation coefficient based on two point pressure
measurements.

Desai et al. (2020) carried out proper orthogonal decomposition (POD) of surface
pressure measurements and two component particle image velocimetry (known as 2C
PIV) data at the midspan of the cylinder. Their analysis shows that most of the energy
is contained within antisymmetric and symmetric modes. The antisymmetric mode is
associated with Kármán vortex shedding, while the symmetric mode is associated with
expansion–contraction of vortex formation region. They found that the symmetric mode is
responsible for instances of weak vortex shedding. The asymmetric mode is the dominant
mode in the lower subcritical regime, but its energy content decreases with an increase
in Re. On the other hand, the energy content of the symmetric mode increases, with an
increase in Re. The symmetric mode becomes the dominant mode beyond Re = 3.0 × 105,
and the vortex formation length increases with an increase in Re causing CLrms to decrease
in the high subcritical regime.

We investigate the flow past a circular cylinder for 2 × 103 ≤ Re ≤ 4 × 105 spanning
the subcritical, critical and supercritical regimes via LES. Cylinders of short span lengths,
Lz = 1D and 3D, are considered. The confinement effect of the end walls on the flow
as well as the effect on it of the boundary layer on the end plates is studied. Results are
compared with the available data from earlier experimental and numerical studies. The
flow regimes are classified based on the nomenclature proposed by Roshko (1961). The
procedure adopted for the classification was originally proposed by Schewe (1983) using
force data from the laboratory measurements. We extend the method for application to
non-dimensional data. The very significant effect of span length on the critical Re for onset
of drag crisis is demonstrated by using the results from present and earlier studies. Critical
flow features like the SV and LSB are identified and their evolution with Re is explored.
The POD of the surface pressure data is utilized to identify the significant modes. The
evolution of vortex shedding with Re with respect to its strength and spanwise coherence
is investigated. A triple decomposition of the pressure signal is utilized to filter out the
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contribution due to vortex shedding. This is used to estimate the correlation along the span,
for various Re. The variation of vortex formation length (Lf ) and local kinetic energy in the
wake, with Re, is studied. In particular, the present study attempts to address the following
questions.

(i) What is the extent of various flow regimes for a cylinder of small AR, compared with
that of a large one?

(ii) How do LSB, SV and the related transition of the boundary layer evolve with
increase in Re?

(iii) How does the peak suction and its location on the surface of the cylinder vary with
Re?

(iv) How does vortex shedding change with an increase in Re in terms of its strength,
regularity and spanwise correlation?

(v) Do the antisymmetric and symmetric modes exist for low AR? If yes, how do their
contributions vary with Re?

2. Computational details

2.1. The governing equations
The equations governing the incompressible flow are(

∂u
∂t

+ u · ∇u
)

− ∇ · σ = 0 on Ω × (0, t), (2.1)

∇ · u = 0 on Ω × (0, t). (2.2)

Here, ρ is the density of the fluid, u is the velocity vector and σ is the stress tensor. For a
Newtonian fluid, the stress tensor is defined as

σ = −pI + 2με(u), (2.3)

where p is the pressure, μ is the coefficient of viscosity of the fluid and ε is the strain rate
defined as ε = 1

2((∇u)+ (∇u)T).
Large eddy simulation, in conjunction with grids that have fine spatial resolution

near the surface of the cylinder, is carried out to model the flows at moderate to large
Re. The sigma turbulence model (Nicoud et al. 2011) is utilized to account for the
subgrid scales in the flow. As per this model, the eddy viscosity is defined as μSGS =
(CmΔ)

2(Π3(Π1 −Π2)(Π2 −Π3)/Π
2
1 ). Here, Cm is the model constant and its value,

as proposed by Nicoud et al. (2011), is 1.35. Additionally, Δ is the subgrid characteristic
length scale andΠ1,Π2,Π3 are the singular values of the velocity gradient tensor. Similar
to that by Johari & Stein (2002), the model is implemented by modifying the coefficient
of viscosity in (2.3). The coefficient of molecular viscosity is augmented with the eddy
viscosity, i.e. μ is replaced with μ+ μSGS.

2.2. The finite element formulation
A stabilized finite element formulation (Tezduyar et al. 1992) is utilized to discretize
the flow equations. The streamline-upwind/Petrov–Galerkin (known as SUPG) and
pressure-stabilizing/Petrov–Galerkin (known as PSPG) (Tezduyar et al. 1992) method is
employed to stabilize the computations against possible numerical oscillations. Six-noded
wedge elements, with equal-order interpolation for velocity and pressure, are used
for spatial discretization. The second-order accurate-in-time, Crank–Nicholson scheme,
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is employed for time integration. The algebraic equation systems resulting from the
finite-element discretization of the flow equations are solved using the matrix-free
generalized minimal residual (known as GMRES) technique (Saad & Schultz 1986)
in conjunction with diagonal preconditioners. The formulation is implemented on a
distributed memory parallel system. Message passing interface (known as MPI) libraries
have been used for interprocessor communication. For more details regarding the parallel
implementation, the interested reader may refer to the work by Behara & Mittal (2009).
The same computational set-up has been successfully applied to solve various flow
problems in past (Tezduyar et al. 1992; Singh & Mittal 2005; Chopra & Mittal 2017).

2.3. POD
Proper orthogonal decomposition of the pressure on the surface of the cylinder is utilized
to identify the coherent structures in the flow. Proper orthogonal decomposition is a
mathematical tool that extracts the coherent and energetically important structures from
the snapshots of an unsteady phenomenon (Berkooz, Holmes & Lumley 1993; Taira et al.
2017). In the present work, POD of the coefficient of pressure on the surface of the cylinder
(CP(θ, t)) is carried out. Here, θ is the azimuthal angle of a point on the surface of
the cylinder. With the application of POD, the fluctuating surface pressure data can be
represented as

CP(θ, t) = C̄P(θ)+
M∑

k=1

ak(t)Φk(θ). (2.4)

Here, C̄P(θ) is the time-averaged coefficient of surface pressure and M is the number of
snapshots that are used for carrying out the POD. Additionally, Φk(θ) are the optimal
spatial basis functions or modes and ak(t) are the corresponding expansion coefficients.
The eigenfunctions or modes and their respective energies are obtained by performing
singular value decomposition (known as SVD) of the covariance matrix (Chatterjee 2000;
Taira et al. 2017). The modes are arranged in order of decreasing singular values. The
singular values are square of eigenvalues and represent the energy associated with each
mode.

2.4. Problem set-up
Figure 1 shows a schematic of the problem set-up. A cylinder, of diameter D, spans the
entire computational domain along the z-axis. The streamwise and cross-stream extent of
the computational domain is Lx = 38D and Ly = 16D, respectively. First, computations are
carried out for Re = 3900 to compare the present results with those from earlier studies.
The span length for this case is identical to that used in the earlier studies (Lz = πD). The
main computations are carried out for 2 × 103 ≤ Re ≤ 4 × 105 and span lengths Lz = 1D
and 3D.

We now describe the boundary conditions used in the present study. They are marked
in figure 1. Uniform flow is prescribed on the inlet boundary. The stress vector at the
outflow boundary, is specified to be zero. The ‘slip wall’ condition is assigned on the
upper, lower and lateral boundaries; the velocity component normal to and the components
of stress vector along the boundary are prescribed zero value. The no-slip condition on the
velocity is applied on the cylinder surface. To simulate the conditions in the experiments,
computations have also been carried out for cylinder with end plates. The end plates shown
via the shaded surface in figure 1 are modelled by specifying a no-slip boundary condition
on the velocity. The dimensions of end plates are identical to those used by Szepessy &
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u = U∞

w = 0

v = 0

w = 0

σ23 = 0

σ13 = 0

w = 0

σ23 = 0

σ13 = 0

Lx

Lpx Lz

Ly Lpy

v = 0; σ12 = σ32 = 0

v = 0; σ12 = σ32 = 0

u = 0

D

y
z x

Figure 1. Flow past a circular cylinder: schematic of the computational domain and the boundary conditions.

(a) (b)

Figure 2. Flow past a circular cylinder: two-dimensional section of finite element mesh in the x–y plane;
(a) full view and (b) close-up view near the cylinder.

Bearman (1992) and Szepessy (1993) in experiments. The width, Lpx, of the end plate
is 8D, and their height, Lpy, is 7D. The leading- and trailing-edge of the plate is located
at 3.5D and 4.5D, respectively, from the centre of the cylinder. All results are expressed
in terms of non-dimensional time. It has been non-dimensionalized with D/U∞. Time
integration of the flow equations is carried out for longer duration for those Re, typically
in subcritical regime, wherein the time variation of flow shows low frequency modulation
owing to the expansion–contraction of the vortex formation region. Data for at least 60
non-dimensional time units have been used to estimate the time-average and r.m.s. of
various quantities presented in this work. The variation in the statistics by including data
for only half the time duration is found to be less than 2 %.

2.5. The finite element mesh and assessment of its adequacy
Figure 2 shows a two-dimensional section of the finite element mesh employed in the
present study. It consists of 116 166 nodes and 231 484 triangular elements. It is similar to
that used by Singh & Mittal (2005) and Chopra & Mittal (2017). The mesh was found to
be adequate to capture the boundary layer, its separation and transition of the separated
shear layer and subsequently reattached boundary layer. The height of the element lying
on the surface of the cylinder, normal to it, is 5.0 × 10−6D.

The number of elements along the surface of the cylinder is Nθ = 800. The
three-dimensional mesh is generated by stacking several copies of the two-dimensional
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Figure 3. The Re = 4.0 × 105 flow past a cylinder of Lz = 1D: surface distribution of (a) skin friction
coefficient; (b) y+ corresponding to the element height of the mesh on the surface of the cylinder for the
time- and span-averaged flow.

mesh along the span. The element length along the span is constant and isΔz = 0.02D for
both Lz = 1D and Lz = 3D. With this resolution, the three-dimensional mesh for Lz = 1D
consists of 5 924 466 nodes and 11 574 200 six-noded wedge elements, while that for
Lz = 3D consists of 17 657 232 nodes and 34 954 084 elements.

The variation of y+ (= yv∗/ν) corresponding to the first element height on the surface
of the cylinder, for the time- and span-averaged flow for Re = 4.0 × 105 and Lz = 1D,
is shown in figure 3. Here, y is the distance of the field point from the surface of the
cylinder and v∗ is the wall-friction velocity defined as v∗ = √

τw/ρ, where τw is the shear
stress at the wall. For reference, the skin friction coefficient, Cf = τw/

1
2ρU2∞, for the time-

and span-averaged flow is also shown. Figure 3 shows that y+ is less than 0.14, for the
highest Re considered in the present study, reflecting the adequacy of the mesh close to
the surface of the cylinder. For the same flow, we estimate the Kolmogorov length scale
as η = (ν3/ε)1/4, where ε is the dissipation of the turbulent kinetic energy defined as ε =
ν(∂u′

i/∂xj)(∂u′
i/∂xj + ∂u′

j/∂xi). The quantities with overbar represent time-average, while
those with prime denote the fluctuations with respect to the time-average. The average of
the ratio of the element mesh size to η, on the surface of the cylinder, is found to be 3.15
while it lies between 2.8 and 40 in the near wake (x/D ≤ 5).

The adequacy of the spatial resolution of the finite element mesh, to resolve the
flow structures, is checked by carrying out computations on meshes with enhanced
resolution along the span and circumference of the cylinder. The study is presented
in Appendix A. Section A.1 of Appendix A compares the results for Re = 3.0 ×
105 with meshes corresponding to Nθ = 800 and 1600. The spanwise and radial
resolution is identical for the two meshes. This Re lies in the supercritical regime
and the flow exhibits both LSB and SV. The aerodynamic coefficients as well as the
circumferential extent of the LSB and SV, from the two meshes, are in very good
agreement.

The study related to the effect of spanwise resolution of the mesh is presented
in § A.2 of Appendix A. Two meshes, with identical two-dimensional sections, with
spanwise resolution corresponding to Δz = 0.01D and 0.02D are considered for Lz = 1D.
Computations are carried out at three representative Re that lie in the subcritical, critical
and supercritical flow regime. The results from both meshes, for all three Re, are in good
agreement. Based on the results from the convergence study, all computations with slip
condition on velocity at the end walls are carried out with the mesh with Nθ = 800.
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Re = 2.0 × 104 Re = 4.0 × 104

Slip BC No-slip BC S & B Slip BC No-slip BC S & B

CD 1.182 1.211 — 1.419 1.395 1.470
CLrms 0.436 0.508 0.532 0.812 0.795 0.792
CDrms 0.093 0.086 — 0.153 0.155 —
St 0.192 0.191 — 0.203 0.204 —

Table 1. Flow past a circular cylinder of Lz = 1D with and without end plates at the lateral boundaries:
time-averaged coefficient of drag (CD); r.m.s. of coefficient of lift (CLrms) and non-dimensional vortex shedding
frequency (St) at Re = 2.0 × 104 and 4.0 × 104. The abbreviation ‘S & B’ stands for Szepessy & Bearman
(1992); BC denotes boundary condition.

Further validation of the mesh and the finite element implementation of the method are
presented in Appendix B.

The mesh used for the computation of flow with end plates is described in Appendix C
along with the details of the horseshoe vortices observed in the boundary layer on the
end plates. A time step size Δt = 5 × 10−4 is used for computations in the subcritical
and critical regimes. To adequately resolve the time evolution of the flow structures,
progressively smaller time step is utilized with increase in Re beyond the critical regime.
For example, the time step used for computations at Re = 3 × 105 is Δt = 1.25 × 10−4

while it is Δt = 5 × 10−5 at Re = 4 × 105. The effect of Δt on the flow at Re = 4 × 105

is presented in Appendix A.

3. Results

3.1. The effect of the boundary layer on the end walls
The effect of the boundary layer on the end walls is investigated by carrying out
computations in the high subcritical regime, with and without the end plates for Lz = 1D.
The comparison of the time-averaged coefficient of drag (CD), r.m.s. of coefficient of
lift (CLrms), r.m.s. of coefficient of drag (CDrms) and non-dimensional vortex shedding
frequency obtained from the two sets of computations is presented in table 1. It is observed
that the results from the two sets of boundary conditions are in good agreement and also
close to the data reported by Szepessy & Bearman (1992). Further comparison of the
flows, for Re = 4.0 × 104, obtained from computations with the two boundary conditions
are presented in figure 4.

Two sets of results for a cylinder with no-slip sidewalls are shown in the figure. In
the first set of results, referred to as ‘no-slip wall’, the flow is averaged over the entire
span. Results are also shown for span averaging that excludes the regions corresponding
to boundary layers on the sidewalls. This is referred to as ‘no-slip wall excluding sidewall
boundary layer’. The time- and span-averaged streamlines as well as surface distribution
of the coefficients of pressure (CP) and skin friction (Cf ) for all the cases are in very
good agreement. The time- and span-averaged streamlines as well as surface distribution
of the coefficients of pressure (CP) and skin friction (Cf ) for all the cases are in very good
agreement. The spanwise variation of time-averaged coefficient of pressure at shoulder
(θ = 90◦) and base point (θ = 180◦), plotted in figure 4(c), confirms that the changes to
the flow caused by the boundary layer on the end walls are very local and have little effect
on the bulk of the flow. The displacement thickness (δ1) due to the boundary layer on
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Figure 4. The Lz = 1D, Re = 4.0 × 104 flow past a cylinder with and without end plates at the lateral
boundaries: surface distribution of time- and span-averaged (a) coefficient of pressure (CP) and (b) skin friction
(Cf ) for slip, no-slip conditions on the end plates and no-slip conditions on the end plates but excluding the
sidewall boundary layer (BL) while span averaging. Shown in panel (c) is the spanwise variation of CP at the
shoulder (θ = 90◦) via broken line and base of the cylinder (θ = 180◦) via solid line. Streamlines for the time-
and span-averaged are shown for (d) slip wall, (e) no-slip wall and ( f ) no-slip wall excluding the sidewall
boundary layer while span averaging.

the end wall at (x/D, y/D) = (0, 3), estimated from the time-averaged velocity profile,
is 0.0151D. This shows that the combined viscous region of the two end plates, for this
Re, is restricted to a mere 3 % of the span which is expected to become even smaller for
larger Re. For this reason, computations at larger Re are carried out with slip boundary
conditions on the lateral walls. The confinement effect of the lateral walls in restricting
three-dimensionality of the flow will be investigated in a later section.

3.2. Time-averaged drag: variation with Re and classification of regimes
Figure 5 shows the variation of time-averaged coefficient of drag (CD) with Re for
cylinder with span lengths, Lz = 1D and 3D. Also shown is the data from earlier studies
for various Lz. To enable further discussion, we first identify the various flow regimes.
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Figure 5. Flow past a circular cylinder: variation of time-averaged coefficient of drag (CD) with Reynolds
number. The abbreviations are: EP, cylinder with side end plates; S & B, Szepessy & Bearman (1992);
S, Schewe (1983); A, Achenbach (1968); L, Lehmkuhl et al. (2014); C, Cheng et al. (2017); B, Bearman (1969)
and D: Desai et al. (2020).

Achenbach (1968) classified the flow regimes based on variation of time-averaged
coefficient of drag (CD) with Re. Later, Schewe (1983) showed that the classification is
unambiguous if carried out on the basis of the variation of drag force (Fx) with Re. The
maxima and minima of Fx, respectively, correspond to the onset and end of the critical
regime. We utilize the method proposed by Schewe (1983). We recall that the mean
drag force is related to the time-averaged coefficient of drag as Fx = 1

2ρU2∞LzDCD. This
expression may be rewritten, in terms of Re, as Fx = QCDRe2, where, Q = μ2Lz/2ρD.
Here, Q is a constant for a given physical model and fluid. Therefore, the variation of Fx

can be studied via the variation of CDRe2 and used for classifying the flow regimes.
The onset of transition of boundary layer causes a reduction in drag with an increase in

Re, while its increase with a further increase in Re marks the end of the transition.
We test the proposed scheme by applying it to the data from Schewe (1983) for Fx and

CD. Figure 6(a) shows the variation of Fx and CDRe2 with Re for the data reported by
Schewe (1983). Both variables show similar variation with Re, including the location of
local maxima and minima. This confirms that CDRe2 can indeed be used as a proxy for
Fx for classifying the flow regime. Figure 6(b) shows the variation of CD and CDRe2 with
Re for the data from the present computations for Lz = 1D. The flow regimes, namely
subcritical, critical and supercritical are marked in the figure. It can be observed that
CDRe2 achieves a local maxima at Re = 1 × 105. This marks the onset of the critical
regime. In the critical regime both CD and CDRe2 decrease with an increase in Re. A local
minima of CDRe2 at Re = 1.5 × 105 marks the end of critical regime. In the supercritical
regime, CD continues to decrease with Re; CDRe2, however, increases with increase in Re.

We note from figure 5 that the variation of CD with Re, from the present study, for Lz =
1D is in good agreement with the experimental results of Szepessy & Bearman (1992).
It is also in good agreement with the computational results of Cheng et al. (2017) in the
subcritical regime. Their computations were carried out for Lz = 3D in the subcritical
regime and Lz = 1D at higher Re. We note that the variation in CD with Re, from the
present study, is very similar for Lz = 1D and 3D.

In addition, the boundary layer on the end plates does not have any significant effect on
CD. In the supercritical regime, at Re = 4.0 × 105, the CD from present computation is
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Figure 6. Flow past a circular cylinder: (a) the variation of time-averaged drag force Fx and CDRe2 with Re
for the data from Schewe (1983) for cylinder with Lz = 10D and (b) the variation of time-averaged coefficient
of drag (CD) and CDRe2 with Reynolds number from present numerical simulations on cylinder with Lz = 1D.

very close to that from Schewe (1983) and Bearman (1969). Schewe (1983) reported that
the onset of drag crisis takes place at Rec ≈ 2.8 × 105 for a cylinder with Lz = 10D. Desai
et al. (2020) carried out experiments on cylinder of Lz = 22.5D and observed that Rec
is 3.3 × 105. Experiments by Achenbach (1968) were carried out on cylinders with Lz =
3.3D and 6.6D. The drag crisis in their study was observed to be more gradual compared
with other studies including the present one. The Rec was not reported in computational
studies by Cheng et al. (2017) and Lehmkuhl et al. (2014). This figure clearly brings out the
effect of span length of the cylinder on the Rec. Also, Rec is relatively larger for cylinders
of large span. It varies between 2.8 × 105–3.3 × 105 for 10D ≤ Lz ≤ 22.5D. On the other
hand, it is relatively low for shorter span lengths. Figure 5 shows that Rec is approximately
1 × 105 for 1D ≤ Lz ≤ 3D.

3.3. Root mean square of force coefficients versus Re and effect of span length (Lz)
Other quantities that are sensitive to the span length of the cylinder are the r.m.s. of the
coefficient of lift (CLrms) and drag (CDrms). The variation of CLrms and CDrms with Re for
various Lz are shown in figure 7. Their trend is similar to the variation of CD with Re,
shown in figure 5. In general, both CLrms and CDrms increase with an increase in Re in the
subcritical regime and achieve a maxima prior to the flow entering the critical regime. The
peak value of CLrms and CDrms decreases with an increase in span length of the cylinder.
The overall variation of CLrms with Re, for the present study with Lz = 1D, is in very good
agreement with the data reported by Szepessy & Bearman (1992).

The boundary layer on the end plate does not appear to have any significant effect
on either CLrms or CDrms. The peak value, as well as the Rec where CLrms experiences
a steep decrease with increase in Re, show good match. Furthermore, CLrms and CDrms
decrease sharply with an increase in Re in the critical regime. In the supercritical regime,
they undergo a gradual decrease up to Re = 3.0 × 105 followed by an increase with
further increase in Re. A similar increase in the supercritical regime was also observed
in experimental studies by Fung (1960), Schewe (1983) and Desai et al. (2020). Keefe
(1962) reported data for the variation of CLrms with Re in the subcritical regime for
Lz = 3D. The results from the present study are in very good agreement with this data.
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Figure 7. Flow past a circular cylinder: variation of r.m.s. of coefficient of (a) lift (CLrms) and (b) drag (CDrms)
with Reynolds number. The abbreviations are: EP, cylinder with end plates; S & B, Szepessy & Bearman
(1992); K, Keefe (1962); F, Fung (1960); S, Schewe (1983); R, Rodríguez et al. (2015); D, Desai et al. (2020).

The very significant effect of Lz on variation of CLrms with Re is clearly seen from
figure 7. For example, for Lz = 1D, the flow becomes critical at Re ≈ 1 × 105 beyond
which CLrms decreases sharply (present results and Szepessy & Bearman 1992). It becomes
critical at Re ≈ 1.4 × 105 for Lz ≈ 6D (Fung 1960; Szepessy & Bearman 1992), and at
Re ≈ 2.8 × 105 (Schewe 1983) for Lz = 10D. Szepessy & Bearman (1992) and Cadot
et al. (2015) proposed that the drop in CLrms in the critical regime is due to weakening
of vortex shedding. This and the very interesting variation of CD and CLrms with Re in the
subcritical regime is explored, in a later section in this work.

To investigate the effect of span length, we consider the flow at Re = 0.5 × 105 for
Lz = 1D and 3D. Figure 8(a,b) shows ww on x–z plane at y = 0.05D for Lz = 1D using
slip and no-slip boundary conditions on the plate. The same for Lz = 3D, and with slip
boundary conditions on the end walls, is shown in figure 8(c). The ww field is a measure
of three-dimensionality in the flow. We utilize it to study the confinement effect of the
lateral walls. It is observed that the three-dimensionality in the flow is significantly higher
for Lz = 3D, compared with Lz = 1D. On the other hand, the boundary layer on the end
plates do not appear to have a significant effect on the three dimensionality as indicated by
the images for Lz = 1D. In fact, as seen in § 3.1, they do not have any significant effect on
the flow. This is further confirmed by the span-averaged, u′u′ component of the Reynolds
stress on the x–y plane shown in figure 8(d,e). The same for Lz = 3D, in figure 8( f ) shows
relatively lower stress in the near wake, indicating lower level of activity related to the
instability of the shear layer, compared with Lz = 1D. The confinement of the flow by
closing in of lateral walls, therefore, leads to formation of LSB at lower Re and early
onset of transition. We also note that, as observed by Kravchenko & Moin (2000), periodic
boundary conditions on the lateral walls are not suitable for studying the effect of AR of
the cylinder on the flow. Perhaps this explains the prediction of delayed transition in the
computational studies of Cheng et al. (2017), Rodríguez et al. (2015) and Lehmkuhl et al.
(2014) who employ a relatively short span but impose periodic conditions on the lateral
boundaries.

3.4. SV and LSB
Figure 9 shows the time- and span-averaged streamlines for various Re. Following the
separation of flow, a pair of counter-rotating standing vortices form the wake separation
bubble, which is observed at all Re. In addition, a smaller region of recirculation
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Figure 8. Flow past a Re = 0.5 × 105 circular cylinder: (a–c) ww in the x–z plane at y/D = 0.05 and (d–f )
span-averaged u′u′ in the x–y plane where panels (a,d) are for a cylinder with Lz = 1D and slip condition on
lateral boundaries, panels (b,e) are for Lz = 1D and no-slip condition on the end plates and panels (c, f ) are for
Lz = 3D and with slip condition on lateral boundaries.

appears downstream of the separation point for Re > 0.05 × 105. It can be clearly seen
in figure 9(b,c) for Re = 0.2 × 105 and Re = 0.4 × 105. In fact this bubble continues to
exist in the critical and supercritical regimes but in a modified form. Son & Hanratty (1969)
also observed such a circulation region in the subcritical regime and referred to it as an
SV. For consistency, we use the same nomenclature. Cheng et al. (2017) also observed the
secondary vortex but only in the subcritical regime. In contrast, Ono & Tamura (2008)
observed the SV even in the supercritical regime.

An LSB appears in the flow for Re ≥ 1.2 × 105 as shown in figure 9(d, f ) for certain
Re. The presence of LSB and its role in the transition of the flow has been reported in
several earlier studies (Achenbach 1968; Singh & Mittal 2005; Lehmkuhl et al. 2014;
Cheng et al. 2017; Chopra & Mittal 2017; Pandi & Mittal 2019). We identify the separation
and attachment points associated with the SV and LSB via the variation of the time- and
span-averaged surface skin friction distribution (Cf ) along the surface of the cylinder; Cf
changes sign at these points. Based on the presence of SV and LSB, the flow can be broadly
classified in three regimes. A representative flow in each of the three regimes is shown in
figure 10 along with the surface distribution of CP and Cf .

In the first of the three regimes, the boundary layer is in a laminar state when it separates
and does not reattach. The SV is also not observed in this case. This state is observed
for Re ≤ 2 × 103. A schematic of the flow in this regime is shown in figure 11(a). The
acronym LS in the figure refers to the separation of the laminar boundary layer. An
SV appears in the second regime. The flow, however, is devoid of the LSB. The flow
exhibits this state for 5 × 103 ≤ Re ≤ 1 × 105. The end of this regime marks the end
of the subcritical regime. Figure 10(b) shows an example of the flow in this regime
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Figure 9. Flow past a circular cylinder with Lz = 1D: time- and span-averaged streamlines for (a) Re = 0.02 ×
105, (b) Re = 0.2 × 105, (c) Re = 0.4 × 105, (d) Re = 1.4 × 105, (e) Re = 3.0 × 105, and ( f ) Re = 3.5 × 105.
The insets shows the close-up views of the flow to bring out the SV and LSB.

for Re = 2 × 104. The SV is located downstream of the separation point of the laminar
boundary layer. It is attached to the surface of the cylinder and embedded inside the
wake separation bubble. The extent of SV can be identified by the region of positive Cf
downstream of LS point. A schematic of the flow for this state is shown in figure 11(b). We
refer to the separation and attachment points of the SV as SS and SA points, respectively.
The direction of streamlines in the SV is opposite to those in the wake separation bubble.
As a result, as shown in figure 11(b), SS is to the right of SA.

The formation of LSB marks the onset of third regime (Re ≥ 1.2 × 105). Figure 10(c,d)
shows the flow and Cf for a representative flow at Re = 4 × 105. A schematic of the same
is shown in figure 11(c). Both, SV and LSB are observed in the flow. The laminar boundary
layer separates downstream of the shoulder. The separated shear layer undergoes transition
to turbulent state and reattaches to the surface (Singh & Mittal 2005) at the TA point (see
figure 11c). An LSB forms between LS and TA. Compared with regime 2, which is devoid
of LSB, the peak negative value in the Cf is relatively large in regime 3. This variation of
Cf can be used to check the existence of LSB in the flow. The turbulent boundary layer
separates farther downstream at the TS point. As seen from figures 9(c,d) and 10(c), LSB
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Figure 10. Flow past a circular cylinder with Lz = 1D: the left-hand column of the figure shows the close-up
view of the time- and span-averaged streamlines near the upper shoulder of the cylinder and the right-hand
column shows the time- and span-averaged coefficient of pressure and skin friction distribution of the upper
surface of cylinder (0 ≤ θ ≤ 180) for Re = (a) 0.02 × 105, (b) 0.2 × 105, and (c) 4.0 × 105. The close-up view
of the upper shoulder to enlarge the SV and LSB for Re = 4.0 × 105 is shown in panel (d). The LS, secondary
attachment (SA), secondary separation (SS), turbulent attachment (TA) and turbulent separation (TS) points
are also shown in the figure.
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Figure 11. Flow past a circular cylinder with Lz = 1D: schematic of time- and span-averaged streamlines to
show various flows observed in present study. (a) Laminar separation of boundary layer without TA; neither SV
nor LSB is observed. Panel (b) shows LS without TA; SV is observed downstream of LS. Panel (c) shows LS
with TA; both SV and LSB are observed. Panel (d) shows the variation of time- and span-averaged LS, SA, SS,
TA and TS points with Re. The regions of SV and LSB are shaded in purple and sky-black colours, respectively.
The abbreviations are: C, Cheng et al. (2017); A, Achenbach (1968); S & H, Son & Hanratty (1969).

is much larger than SV. In fact, SV is embedded inside the LSB. The size of SV and LSB
have been exaggerated in the schematic, shown in figure 11(c), to bring out this feature.

Figure 11 shows the variation of LS, SS, SA, TA and TS points with Re. These points
are identified from the variation of Cf on the surface the cylinder. We note from the figure
that TA and TS are very close to each other for 1.2 × 105 ≤ Re ≤ 2.5 × 105. Therefore,
time- and span-averaged streamlines, and not the surface distribution of Cf , are utilized to
identify TA and TS for this range of Re. Also shown in the figure are the results from earlier
studies. The region on the surface of the cylinder occupied by SV and LSB are marked
in purple and black colour, respectively. In the subcritical regime, the circumferential
extent of the SV first increases with increase in Re for 5 × 103 ≤ Re ≤ 4 × 104 and then
decreases. The SV is much smaller in the critical and supercritical regimes, compared
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Figure 12. Flow past a circular cylinder with Lz = 1D: (a) surface distribution of time- and span-averaged
coefficient of pressure (CP) for various Re and (b) variation of time- and span-averaged coefficient of peak
suction pressure (−CPpeak) and its location (θCPpeak ) with Re. The abbreviations are: P, present; T, Tani (1964);
C, Cheng et al. (2017); S & B, Szepessy & Bearman (1992).

with that in subcritical regime. Its circumferential extent decreases slightly with increase
in Re in the critical and supercritical regimes. The circumferential extent of the LSB,
decreases with increase in Re. This is consistent with observations made by Roshko (1961)
and Lehmkuhl et al. (2014). The point of TS moves downstream with increase in Re.
The location of TS from the present computations is in good agreement with those from
Achenbach (1968).

Figure 12 shows the time- and span-averaged distribution of CP for various Re on the
surface of cylinder with Lz = 1D. The signature of LSB and SV in the CP distribution is
very interesting. Past studies have shown that LSB leads to a plateau in the CP distribution
(Achenbach 1968; Lehmkuhl et al. 2014; Cheng et al. 2017; Chopra & Mittal 2017).
Figure 12 shows that the plateau is followed by a sharp dip in CP and recovery, resembling
a ‘kink’. Figure 10(c) shows a close-up of the same along with the structure of the flow.
The ‘kink’ in the CP distribution is between the points of SS and SA, and can therefore be
attributed to the SV. Ono & Tamura (2008) reported that the SV and LSB coexist in the
supercritical regime. Although not pointed out by them, a ‘kink’ can be observed in their
plot as well for the surface CP distribution. Recently, Eljack et al. (2021) observed SV and
LSB together in flow past a NACA 0012 airfoil at Re = 5 × 104 and 9 × 104. Although
not pointed out by them, a kink can be seen in their plots as well for the surface CP
distribution. On the other hand, Pandi & Mittal (2019) reported an LSB, without the SV, on
an Eppler 61 airfoil for Re beyond Re = 2 × 104. Consistent with our findings, the plateau
in CP distribution due to the LSB, is devoid of the kink. For Re = 1.2 × 105, as shown in
figure 12, the LSB is observed only on top half of the cylinder. The one sided transition
has also been observed in earlier studies by Schewe (1983), Bearman (1969), Lehmkuhl
et al. (2014), Cadot et al. (2015) and Chopra & Mittal (2017). We further observe that the
local variations of CP, within the LSB are stronger in the supercritical regime compared
with the critical regime. Chopra & Mittal (2017) explained this via the intermittent nature
of LSB during transition. A similar behaviour was reported by Deshpande et al. (2017) for
the LSB on a sphere. In the subcritical regime, the SV is weak and as a result it does not
cause significant variation in the surface CP distribution. In the critical and supercritical
regimes, the kink associated with the SV in the surface CP distribution becomes sharper
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with an increase in Re pointing to an increase in the strength of SV despite a decrease in
its circumferential extent. Although not reported here, the extent and location of SV and
LSB have been compared for Lz = 1D and 3D for the flow at Re = 3.0 × 105. They are
found to be in good agreement.

The variation of peak suction coefficient (−CPpeak) and its location on the surface of
the cylinder (θCPpeak ) with Re are shown in figure 12(b). The average of the values from the
lower and upper surface of the cylinder is plotted. The peak surface suction increases with
Re up to Re ∼ 4 × 104 and then decreases with further increase in Re in the subcritical
regime. Its location is close to 70◦ in this regime which is well upstream of the point
of separation (see figure 11). The variation of −CPpeak with Re correlates well with the
variation of points of LS and SA as shown in figure 11. Furthermore, −CPpeak increases
and θCPpeak moves downstream with an increase in Re in the critical and supercritical
regimes. The sharp increase in peak suction in the critical regime correlates well with
the formation of LSB and the associated delay in the flow separation (see figure 11). Also
shown in figure 12(b) is the data from earlier studies (Tani 1964; Szepessy & Bearman
1992; Cheng et al. 2017). The data from the various studies are in very good agreement in
the subcritical regime. We note that the study by Cheng et al. (2017) predicts a much
larger peak suction, and its location is closer to the shoulder of the cylinder, in the
supercritical regime compared with the other studies. The results from the present study
are in good agreement with those from Tani (1964). The diagnostics on the velocity field
that demonstrate the transition of the flow are presented in Appendix D.

3.5. The symmetric and antisymmetric modes
Figure 13 shows the space–time plot of CP(θ, t) at midspan for three Re. Vortex shedding
appears as the periodic activity with alternating values of low and high pressure. Amongst
the three Re, for which the pictures are shown, it is most prominent at Re = 6 × 104.
We note from figure 7 that CLrms is maximum at this Re, indicating the strongest vortex
shedding in the entire range of Re investigated in this study. Desai et al. (2020), in their
laboratory experiments, observed that the flow in the high subcritical regime is associated
with ‘irregular shedding’, i.e. there are random occurrences of weakened vortex shedding.
The same was reported earlier by Perrin et al. (2008) and Cao & Tamura (2015). Desai
et al. (2020) observed that during such instances the lift coefficient varies with smaller
amplitude, and base pressure is relatively higher. It was shown that the low frequency
modulation in the time histories of CL is related to the expansion–contraction of the
vortex formation region. They identified the various modes in the flow via POD of the
surface pressure data. However, their analysis is restricted to the high subcritical and
critical regimes and the experiments were conducted for a cylinder of relatively large span
(Lz/D ∼ 22). We perform a similar analysis for a cylinder with low AR (Lz/D = 1) and
extend it flow in the supercritical regime.

The right-hand panels of figure 13 show the time histories of the CP at midspan and θ =
90◦ for three Re. They are associated with three distinct time scales. The high frequency,
and somewhat random, variation (C′

P) is primarily due to the shear layer vortices while the
relatively time periodic variation (CPv) is caused by the von Kármán vortex shedding. The
low frequency variations (ĈP) that result in modulations in the amplitude of variations
due to vortex shedding have been attributed to expansion–contraction of the vortex
formation region (Desai et al. 2020). It is possible to estimate these components related
to disparate time scales by using appropriate filtering. Chopra & Mittal (2017) proposed
a double decomposition, CP(θ, t) = C̃P(θ, t)+ C′

P(θ, t). They estimated C̃P(θ, t) via a

930 A12-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.895


Transition of boundary layer on a circular cylinder

360

270

180

90

0
0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 10 20 30

t t
40 50

360

270

180

90

0

360

270

180

90

0

–0.6

–1.2

–1.8

–2.4

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60

0 10 20 30 40 50

–1.5

–1.8

–2.1

–2.4

–2.5

–2.6

1.0

0.5

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

0

CP CP C̃P

θ

θ

θ

Re = 0.6 × 105

Re = 1.5 × 105

Re = 3.5 × 105

(a)

(b)

(c)

Figure 13. Flow past a circular cylinder: space–time variation of the coefficient of pressure (CP(θ, t)) on the
surface of the cylinder (left) and time variation of CP(θ = 90◦, t) (right) at midspan for Re = (a) 0.6 × 105,
(b) 1.5 × 105 and (c) 3.5 × 105. Additionally, C̃P(θ = 90◦, t) is shown in the line plots on the right.

simple procedure akin to low pass filtering. The procedure involves a moving average of
CP(θ, t)) over a few shear layer cycles, C̃P(θ, t) = (1/T)

∫ t+T/2
t−T/2 CP(θ, t) dt. They utilized

a window size of T = Tk/10 for the averaging, where Tk is the time period of the von
Kármán vortex shedding. We utilize the same procedure in the present work. In addition
to CP(θ = 90◦, t) at midspan, figure 13 also shows C̃P(θ = 90◦, t). The difference of the
two may be utilized to estimate C′

P(θ = 90◦, t).
Proper orthogonal decomposition of the coefficient of pressure at the surface of the

cylinder is carried out at various Re, to identify the coherent flow structures. We are
primarily interested in flow features related to vortex shedding and expansion–contraction
of the recirculation bubble (Desai et al. 2020). Therefore, we conduct POD on
the span-averaged C̃P(θ, t). Now 15 000–25 000 snapshots during approximately 60
non-dimensional time units, for the fully developed unsteady flow, are used to carry out the
analysis at each Re. To reduce the computational effort, not all grid points on the surface of
the cylinder are used; rather every fourth point is chosen. Therefore, the spanwise-averaged
data corresponding to only 200, of the 800, points of C̃P(θ, t) on the surface of the cylinder
is used for the POD analysis.

Figure 14 shows the results from the POD analysis of the surface C̃P(θ, t) for Re =
0.6 × 105. The percentage energy content of the first 10 modes and the eigenmodes
corresponding to the first four modes are shown in the figure. We note that the first two
modes account for nearly 94 % of the energy. The most dominant modes is antisymmetric
with respect to θ = 0◦ and contains 87 % of the energy; we refer to this mode as
AS1, where AS points to its antisymmetric nature. It corresponds to the von Kármán
vortex shedding. The second mode is symmetric about the wake axis and contains
approximately 7 % of the energy. We refer to it as mode-S1. Desai et al. (2020)
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Figure 14. The POD of moving and span-averaged surface pressure (C̃P(θ, t)) for Re = 0.6 × 105: (a) the
energy content of the first 10 modes; (b,c) the top two antisymmetric and symmetric modes, respectively.

showed that while the non-dimensional time frequency associated with mode-AS1 is
0.2 approximately and corresponds to the Strouhal number of von Kármán vortex
shedding, mode-S1 has a much lower frequency. They further showed that mode-S1 is
associated with expansion–contraction of vortex formation region. With its low frequency
variation, it is responsible for amplitude modulations in time history of pressure, and
force coefficients. Figure 14 shows that modes 3 and 4 have relatively low energy. Owing
to their symmetry property about the wake centreline, we refer to them as S2 and AS2,
respectively.

The POD analysis was carried out at other Re. Mode-AS1 is found to be the most
dominant mode at all Re in the range studied. Figure 15(a) shows the percentage energy
carried by the leading four modes at various Re. As also found by Desai et al. (2020),
energy of mode-AS1 decreases, while that of mode-S1 increases with an increase in Re in
the high subcritical and critical regimes. The decrease in energy of mode-AS1 points to
weakening of vortex shedding in these regimes, with increase in Re. On the other hand, it
again picks up in the supercritical regime, as shown by the increase in percentage energy
of the mode-AS1.

Figures 15(b) to 15(e) show the evolution of the POD modes AS1 and S1 with an increase
in Re. The points of LS, TA and TS are marked in figure 15(c,e) for Re = 1.5 × 105 and
3.5 × 105. We recall that the LSB forms between LS and TA. Also marked in the figures
is the region of SV via thick solid lines. We note that both AS1 and S1 have imprint of
the LSB and SV. The effect is very similar as observed in the time- and span-averaged
CP distribution (see figures 10c and 12). The local peaks in the modes increase with an
increase in Re. Except for Re = 1.2 × 105, the LSB forms symmetrically downstream of
the two shoulders. It is quite interesting that its imprint is seen not just in the mode S1, but
also mode AS1 that is responsible for the vortex shedding.

3.6. Variation of vortex shedding with Re
We further investigate the evolution of vortex shedding with increase in Re. Alternate
shedding of vortices from the cylinder causes it to experience time varying lift force. The
r.m.s. of CL for various Re is shown in figure 7. A very significant decrease in CLrms, with
increase in Re, occurs in the high subcritical and critical flow regime. The variation of
CLrms in the supercritical regime is very interesting. It decreases very gradually with an
increase in Re up to Re = 3.0 × 105 followed by a gradual increase with a further increase
in Re. The unsteadiness in the pressure near the two shoulders of the cylinder is the main
contributor to CLrms. Therefore, we also study the variation of r.m.s. of CP at the shoulder
of the cylinder for various Re. Here, CPrms are estimated at θ = ±90◦ and their average is
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Figure 15. POD of low-pass filtered span-averaged surface pressure (C̃P(θ, t)): (a) variation of percentage
energy content of AS1, S1, S2 and AS2 modes with Re. Surface pressure distribution of eigenmodes
corresponding to mode AS1 (b) and S1 (d) for various Re. Panels (c,e) show the close-up views of panels
(b,d), respectively, to bring out the variations in AS1 and S1 modes due to SV and LSB at Re = 1.5 × 105 and
3.5 × 105. Here, LS, TA and TS correspond to the points of laminar separation, TA and turbulent separation,
respectively. The variation within the SV is shown with a thicker line in panels (c,e).

plotted in figure 16(a). Here, values for CLrms, shown in figure 7, are replotted in the figure
for comparing the variations with Re. As expected, the variation of CLrms and CPrms with
Re are very well correlated. This information can be useful in experimental investigations
wherein CPrms at the shoulder can be utilized to study vortex shedding.

The vortex formation length (Lf ) from the present computations, for various Re, is
shown in figure 16(b) along with that from Szepessy & Bearman (1992), Bloor (1964) and
Desai et al. (2020). It is the streamwise location where u′u′ is maximum along the wake
centreline. The Lf from present computations is in good agreement with that reported by
Szepessy & Bearman (1992). Figure 16 shows that the variation of CLrms with Re, in the
subcritical and critical regimes, is inversely proportional to Lf . In the subcritical regime,
Lf decreases with an increase in Re up to Re = 0.4 × 105. The trend of Lf from the present
computations is in good agreement with that from Bloor (1964). The experiments of Desai
et al. (2020) were conducted with a model of large AR (= 22). Therefore, the critical Re
for the onset of drag crisis is much larger in their experiments (≈3.9 × 105). All the data
points shown in figure 16(b) from their experiments, are for the high subcritical regime. We
observe that the variation of Lf from their experiments follows the same trend as that from
the present computations in the critical and high subcritical regimes. These results show
that the reduction in CLrms in the high subcritical and critical regimes is primarily due to
two phenomena: (i) decrease in the strength of vortices and (ii) increase in vortex formation
length. Figure 16(b) further shows that Lf decreases with increase in Re in the supercritical
regime. The variation of Strouhal number (St) with Re, along with results from earlier
studies, is shown in figure 17. It is estimated from the dominant frequency in the time
variation of the lift coefficient. The St estimated from the time histories of the cross-flow
component of velocity in the near wake leads to very similar values; St is close to 0.2 in
the subcritical regime. It increases sharply with an increase in Re in the critical and early
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Figure 16. Flow past a circular cylinder with Lz = 1D: (a) variation, with Re, of r.m.s. of CP (= CPrms)
averaged on the two shoulders (θ = ±90◦) of the cylinder and r.m.s. of CL (CLrms). Shown in panel (b) is
the variation of the vortex formation length (Lf ) with Re. The abbreviations are: P, present; S & B, Szepessy &
Bearman (1992); B, Bloor (1964); D, Desai et al. (2020).
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Figure 17. Flow past a circular cylinder: variation of non-dimensional vortex shedding frequency, Strouhal
number (St), with Reynolds number. The abbreviations are: S & B, Szepessy & Bearman (1992); R, Rodríguez
et al. (2015); S, Schewe (1983); B, Bearman (1969).

supercritical regime. For the present computations, it is 0.43 at Re = 4 × 105, which is
almost twice the value that is observed in subcritical regime. As seen from figure 17, it can
be as large as 0.46 − 0.48 for higher Re in supercritical regime (Bearman 1969; Schewe
1983).

3.6.1. Spanwise correlation of vortex shedding
Figure 15(a) shows that the vortex shedding persists through the entire Re range, including
the critical regime. How, then, does its coherence across the span vary with Re? To
investigate the same we utilize the Pearson’s correlation coefficient that is a measure
of the linear correlation between two variables φ(t) and ψ(t). It is defined as Rφψ =
(φ − φ̄)(ψ − ψ̄)/

√
(φ − φ̄)2

√
(ψ − ψ̄)2, where an overbar represents the time-average

of the corresponding quantity. Following the work of Szepessy (1994) we utilize CP(θ =
90◦, t) on the surface of the cylinder to estimate Rpp between a point fixed at midspan and
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another at a different span location. Further, we attempt to filter out the variation in CP
due to vortex shedding and use it to estimate Rpp.

Time histories of CP at midspan and θ = 90◦ for three Re are shown in the right-hand
panels of figure 13. We propose a triple decomposition of the time series to enable us
to estimate the time variations due to vortex shedding, CP(θ, t) = ĈP(θ, t)+ CPv(θ, t)+
C′

P(θ, t). Here, C′
P is the contribution due to activity of vortices generated via instability

of the shear layer; CPv is the contribution from vortex shedding/mode-AS1 and ĈP is the
low frequency modulation arising from the expansion–contraction of the vortex formation
region (Desai et al. 2020) due to mode-S1. Let C̃P(θ, t) = ĈP(θ, t)+ CPv(θ, t) be the
moving average over a few shear layer cycles as described in the previous subsection.
Therefore, CP(θ, t) may also be expressed as CP(θ, t) = C̃P(θ, t)+ C′

P(θ, t). In a similar
manner, ĈP(θ, t) can also be estimated via a moving average of CP(θ, t), but over
a window of larger time period that spans a few vortex shedding cycles, ĈP(θ, t) =
(1/T)

∫ t+T/2
t−T/2 CP(θ, t) dt. We choose T = 2Tk, where Tk is the time period of vortex

shedding. The contribution to CP(θ, t) from the vortex shedding is then estimated via
CPv(θ, t) = C̃P(θ, t)− ĈP(θ, t).

Figure 18 shows the span-time variation of CP(t, z), C̃P(t, z) and CPv(t, z) at θ = 90◦

for three Re in the subcritical (= 0.6 × 105), critical (= 1.5 × 105) and supercritical
(=3.5 × 105) regimes. Vortex shedding can be identified in all the panels by time variations
that alternate between low and high values. Now C̃P filters out the shear layer activity
from CP. As expected, the difference between the two fields is significant in the critical
and supercritical regimes. Additionally, CPv shows the estimate of the time variations in
CP due to vortex shedding. The range of the colourmap has been suitably adjusted for
each Re. Amongst the three Re for which data is presented in the figure, the shedding is
strongest at Re = 0.6 × 105 and weakest at 3.5 × 105. Figure 19(a) shows the spanwise
variation of the two-point correlation coefficient Rpp(CP) between the CP at midspan
and another spanwise location at various Re. The variations corresponding to Re in the
subcritical and critical regimes are shown in solid lines, while those in the supercritical
regime are shown in broken lines. Consistent with the symmetry of the problem set-up
about midspan, Rpp exhibits symmetry with respect to z = 0. The correlation decreases as
one moves away from midspan. The decrease is quite rapid in the critical and supercritical
regime. It becomes as low as 0.24 in the supercritical regime at the far end of the cylinder.
Furthermore, Rpp(CP) decreases with an increase in Re, at any span location, as is also
evident from the panels in the first row of span-time variation of CP(t, z).

Next, the correlation coefficient is computed by utilizing the low-pass filtered time
series, C̃P. Figure 19(b) shows Rpp(C̃P) along the span, for various Re. The vortices that
form due to the rolling up of the separated shear layer are relatively farther in the wake
in the subcritical regime. Therefore, they do not have a significant effect on the surface
pressure at the shoulder of the cylinder. Consequently, Rpp(C̃P) is very similar to Rpp(CP)
in this regime. However, the differences are significant in the critical regime and beyond.
In general, for a given Re and at any span location, Rpp(C̃P) is higher than Rpp(CP). Unlike
Rpp(CP), which decreases with an increase in Re, Rpp(C̃P) shows little variation with Re
beyond Re = 1.5 × 105. We note that the results presented by Szepessy (1994) are based
on similarly filtered time series of surface static pressure.

The correlation coefficient computed using CPv(t, z) is referred to as Rpp(CPv). Its
spanwise variation for various Re is shown in figure 19(c). The correlation coefficient
for the subcritical Re (= 0.6 × 105) is virtually identical for the three cases that utilize
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Figure 18. Flow past a circular cylinder: space–time plot of coefficient of pressure (CP(θ = 90◦, t, z)) (a,d,g),
moving averaged coefficient of pressure (C̃P(θ = 90◦, t, z)) (b,e,h) and fluctuations associated with vortex
shedding (CPv(θ = 90◦, t, z)) (c, f,i) for (a–c) Re = 0.6 × 105, (d–f ) Re = 1.5 × 105 and (g–i) Re = 3.5 × 105.
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Figure 19. Flow past a circular cylinder: variation of spanwise correlation coefficient Rpp with z/D for
different Re at θ = 90◦ based on (a) CP, (b) C̃P and (c) CPv .

either CP or C̃P or CPv; the vortex shedding across the span is highly correlated. Now
Rpp(CPv) decreases with an increase in Re in the critical regime. It increases with a further
increase in Re beyond 3.0 × 105. This indicates that the spanwise coherence of vortex
shedding decreases with an increase in Re in the critical regime and then increases in
the supercritical regime. This is consistent with the observation from the panels showing
the span-time variation of CPv at the shoulder of the cylinder in figure 18. The increase
in spanwise coherence in the supercritical regime is not captured by the correlation
coefficient based on either CP or C̃P.

4. Conclusions

Large eddy simulation of flow past a circular cylinder of low AR (AR = 1 and 3) has been
carried out for 2 × 103 ≤ Re ≤ 4 × 105 spanning the subcritical, critical and supercritical
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flow regimes. The classification proposed by Schewe (1983) for identifying the critical
regime, based on a variation of Fx with Re, has been utilized in the present work. The
proposal by Schewe (1983) is extended to non-dimensional quantities. The local maxima
and minima in the variation of CDRe2 with Re are utilized to identify the onset and end of
critical regime. The effect of AR is found to be very significant, especially in the subcritical
and critical regimes. The transition of the flow occurs at a significantly lower Re for
cylinders with low AR. The present results show that the critical Re for the onset of drag
crisis is 1 × 105 for AR = 1. Experimental studies for larger span lengths, 10 ≤AR≤ 22,
report the critical Re to lie between 2.8 × 105–3.3 × 105. We note that the transition of
flow is also sensitive to experimental conditions such as free stream turbulence and surface
roughness of the cylinder. The cause of the effect of AR has been explored in this work
by investigating the role of the boundary layer on the end walls. Simulations with slip and
no-slip conditions on the velocity on the end plates, for AR = 1, show that the boundary
layer on the sidewalls does not have any significant effect on the bulk of the flow. Rather,
the confinement effect of the lateral walls in restricting the three-dimensionality of the
flow is found to be the major reason for the difference in flows between cylinders of low
and high AR. This is brought out by a comparison between the subcritical flow for AR = 1
and 3. Compared with higher AR, the flow with lower AR cylinder is associated with
stronger Reynolds stresses and activity related to the instability of the shear layer. This
leads to higher CLrms in the subcritical regime and onset of transition at a lower Re for the
lower AR cylinder. The variations of CD and CLrms, with Re, for AR = 1 from the present
study are in excellent agreement with the measurements of Szepessy & Bearman (1992).
The periodic boundary conditions at the lateral boundaries do not correctly simulate the
confinement effect of the end walls. Therefore, even for low AR cylinders, results from
past studies that have utilized periodic boundary conditions are closer to experimental
measurements with cylinders of relatively large AR.

The evolution of SV, LSB with Re has been investigated. The SV forms in the low
subcritical regime while the LSB appears in the flow in the critical regime. Both, the LSB
and SV coexist in flow in the critical and supercritical regimes, wherein, SV is embedded
inside the LSB. The separation and attachment points of these flow structures are identified
using the time- and span-averaged distribution of surface skin friction and utilized to
study their evolution with Re. The circumferential extent of SV, in the subcritical regime,
increases for 5 × 103 ≤ Re ≤ 0.4 × 105 and decreases thereafter. It decreases slightly with
increase in Re in the critical and supercritical regimes. The LS and turbulent attachment
points associated with the LSB move downstream and upstream, respectively, leading to
a decrease in the circumferential extent of LSB with increase in Re. The LSB can be
identified from a plateau in CP on the surface of the cylinder, while the SV leads to a
sharp dip followed by a recovery, resembling a ‘kink’. Interestingly, there is no perceptible
imprint of the SV in the CP distribution when the flow is devoid of LSB. The formation
of LSB leads to an increase in peak suction coefficient (−CPpeak) on the surface of the
cylinder. Furthermore, the −CPpeak increases sharply with an increase in Re in the critical
regime and its location moves downstream. The peak suction is located upstream of the
shoulder of the cylinder for all Re studied.

The strength of vortex shedding and its coherence along the span has been investigated
for the cylinder with AR = 1. The POD of the surface pressure reveals the existence of
antisymmetric (AS1) and symmetric modes (S1). Mode-AS1 is the most dominant mode
while the S1 mode carries the next largest percentage of energy of the flow, for all the Re in
the study. In the high subcritical and critical regimes, the percentage of energy associated
with mode-AS1 decreases with increase in Re signalling the weakening of vortex shedding,
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while that with mode-S1 increases. The weakening of vortex shedding is attributed to a
decrease in the strength of vortices, reduction in spanwise coherence, as well as an increase
in formation length. The percentage energy of the mode-AS1 increases once again in the
supercritical regime, and the formation length decreases, signifying rejuvenation of vortex
shedding. An imprint of LSB and SV is seen in the eigenmodes for both, AS1 and S1
in the critical and supercritical regimes. The spanwise coherence of vortex shedding is
assessed via correlation in the unsteadiness of the pressure signal at midspan with other
spanwise locations. A novel triple decomposition is proposed and utilized to filter out
the time variations due to vortex shedding. It is found that the vortex shedding is highly
correlated along the span in the subcritical regime. Its spanwise coherence decreases with
increase in Re in the critical regime and shows improvement again, beyond Re ∼ 3 × 105

in the supercritical regime.
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Appendix A. Mesh and time step size convergence study

A.1. Effect of circumferential element length
The adequacy of the circumferential mesh resolution on the surface of cylinder is
investigated by considering two meshes for Lz = 1D with Nθ = 800 and 1600. The
spanwise mesh resolution for both is same (Δz = 0.02D). Computations with the two
meshes are carried out at Re = 3.0 × 105 which lies in the supercritical flow regime and
is associated with both SV and LSB. The time-averaged coefficient of drag (CD), r.m.s. of
coefficient of lift (CLrms), non-dimensional vortex shedding frequency (St), circumferential
extent of the SV (ΔθSV ), LSB (ΔθLSB), obtained from both meshes are listed in table 2. The
comparison of the surface distribution of time- and span-averaged coefficient of pressure
(CP) and skin friction coefficient (Cf ) for meshes M1 and M2 are presented in figure 20.
This shows that the mesh with Nθ = 800 is good enough to resolve the flow structures
associated with these flows and is used for all the computations in the present study.

A.2. Effect of spanwise resolution
The adequacy of the spanwise resolution is investigated by considering two meshes
with Δz = 0.01D and 0.02D. We refer to these as meshes M1 and M3, respectively.
Computations with the two meshes are carried out at three representative Re that lie
in the subcritical, critical and supercritical flow regime for Lz = 1D. The time-averaged
coefficient of drag (CD), r.m.s. of coefficient of lift (CLrms) and non-dimensional vortex
shedding frequency, Strouhal number (St), obtained from two meshes are listed in table 3.
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Figure 20. The Re = 3.0 × 105 flow past a cylinder: surface distribution of time- and span-averaged
(a) coefficient of pressure (CP) and (b) skin friction coefficient (Cf ) obtained from meshes M1 (Nθ = 800)
and M2 (Nθ = 1600).

Mesh Nθ CD CLrms St ΔθSV (
◦) ΔθLSB(

◦)

M1 800 0.203 0.042 0.387 5.850 21.150
M2 1600 0.205 0.039 0.376 6.070 21.150

Table 2. The Re = 3.0 × 105 flow past a circular cylinder: time-averaged coefficient of drag (CD), r.m.s. of
coefficient of lift (CLrms), non-dimensional vortex shedding frequency (St), the circumferential extent of SV
(θSV ) and LSB (θLSB) obtained from two finite element meshes with different spatial resolution along the
surface of cylinder.

Re = 0.4 × 105 Re = 1.0 × 105 Re = 4.0 × 105

Mesh Δz CD CLrms St CD CLrms St CD CLrms St

M1 0.02D 1.419 0.812 0.200 1.302 0.733 0.191 0.187 0.061 0.430
M3 0.01D 1.421 0.851 0.191 1.321 0.765 0.180 0.188 0.071 0.413

Table 3. Flow past a circular cylinder with Lz = 1D: time-averaged coefficient of drag (CD), r.m.s. of
coefficient of lift (CLrms) and non-dimensional vortex shedding frequency (St) for Re = 0.4 × 105, 1.0 × 105

and 4.0 × 105 obtained from two finite element meshes with different spatial resolution along the span.

The results from both meshes are in good agreement. We investigate the case of Re =
4.0 × 105 in more detail. It is the highest Re considered in this study. First, we study
the effect of Δz on the SV and LSB. The streamlines and surface distribution of CP
and Cf corresponding to the time- and span-averaged flow from the meshes are shown
in figure 21. The circumferential extent of the SV and LSB for mesh M1 is 2.25◦ and
13.05◦, respectively. These numbers for mesh M3 are 2.60◦ and 14.50◦. The streamwise
variation of time- and span-averaged streamwise component of velocity (ū/U∞) at y = 0
and u′u′/U2∞ at y/D = 0.05 for meshes M1 and M3 are shown in figure 22. Reasonable
agreement is observed in the results from the two meshes. Therefore, it can be concluded
that mesh M1 provides adequate spanwise resolution for the Re considered in this study.
All the computations in this study are carried out with a spanwise resolution corresponding
to Δz = 0.02D.
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Figure 21. The Re = 4.0 × 105 flow past a cylinder: time- and span-averaged streamlines for meshes
(a) M1(Δz = 0.02D) and (b) M3 (Δz = 0.01D). Also shown are the surface distribution of time- and
span-averaged (c) coefficient of pressure (CP) and (d) skin friction (Cf ) obtained from meshes M1 and M3.
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Figure 22. The Re = 4.0 × 105 flow past a cylinder: variation of time- and span-averaged (a) streamwise
component of velocity (ū/U∞) at y/D = 0, (b) u′u′ component of Reynolds stress at y/D = −0.05 obtained
from meshes M1 (Δz = 0.02D) and M3 (Δz = 0.01D).

A.3. Effect of time step size
The adequacy of the time step size is investigated for the flow at Re = 4.0 × 105 which
lies in the supercritical regime via computations on mesh M1 with two time step sizes,
Δt1 = 2.5 × 10−4 and Δt2 = 5 × 10−5. The comparison of the surface distribution of
time- and span-averaged coefficient of pressure (CP) and skin friction coefficient (Cf )
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Figure 23. The Re = 4.0 × 105 flow past a cylinder: surface distribution of time- and span-averaged
(a) coefficient of pressure (CP) and (b) skin friction coefficient (Cf ) obtained with computations on mesh
M1, and time step size Δt1 = 2.5 × 10−4 and Δt2 = 5 × 10−5.

obtained with the two time step size, and presented in figure 23, show that the results
are in good agreement. All the results presented in the paper for Re = 4.0 × 105 are with
Δt2 = 5 × 10−5.

Appendix B. Validation study

B.1. Re = 3900
The computational results from the present study are compared with those from
experiments by Norberg (1994), LES by Kravchenko & Moin (2000), Parnaudeau et al.
(2008) and DNS by Lehmkuhl et al. (2013) for the Re = 3900 flow. The span length and
the spanwise resolution are same as in the earlier computational studies (Kravchenko &
Moin 2000; Parnaudeau et al. 2008) to enable a direct comparison. They are Lz = πD and
Δz = 0.065D. The present computations use slip conditions on the velocity on the lateral
boundary, while the studies by Kravchenko & Moin (2000), Parnaudeau et al. (2008),
Lehmkuhl et al. (2013) and Cheng et al. (2017) employ periodic boundary conditions.
The results from the various studies are listed in table 4. Here, St, the non-dimensional
vortex shedding frequency, from all the studies is in very good agreement. Additionally,
−CPb from the present study is in good agreement with experimental values of Norberg
(1994) but slightly lower than the numerical value reported by Kravchenko & Moin
(2000). Consistent with the trend of −CPb, the value of CD predicted by the present
computations is slightly lower than that reported by Kravchenko & Moin (2000) from their
LES. The slight difference between the various computational studies can be attributed
to the difference in boundary conditions on the end walls as well as the time duration
for which flow is averaged. Lehmkuhl et al. (2013) reported that a symmetric mode,
associated with very low frequency expansion–contraction of vortex formation region,
has a significant effect on the force coefficients and flow in the near wake. They used data
for tU∞/D ≈ 3900, which corresponds to approximately 836 cycles of vortex shedding,
to estimate the flow statistics. Kravchenko & Moin (2000) carried out averaging for seven
vortex shedding cycles while it has been done for approximately 25 cycles (tU∞/D = 160)
in the present study.

Figure 24(a,b) shows the cross-stream profiles of time-averaged streamwise component
of velocity (ū/U∞) and u′u′ component of Reynolds stress at several streamwise locations.
Also shown are the results from earlier studies. The two peaks in the profile of u′u′ arising
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Author(s) Method CD −CPb St

Present Computation, LES 0.997 0.906 0.213
Norberg (1994) Experiment — 0.890 0.210
Kravchenko & Moin (2000) Computation, LES 1.040 0.940 0.215
Parnaudeau et al. (2008) Computation, LES — — 0.208
Lehmkuhl et al. (2013) Computation, DNS 1.015 0.935 0.215

Table 4. The Re = 3900 flow past a circular cylinder: time-averaged coefficient of drag (CD), time-averaged
base suction (−CPb) and Strouhal number (St) obtained from present computations and earlier studies.
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Figure 24. The Re = 3900 flow past a circular cylinder: (a) cross-stream variation of time-averaged
streamwise component of velocity (ū/U∞) and (b) cross-stream variation of u′u′ component of Reynolds stress
at several streamwise locations. Also shown are the variations from earlier studies. The abbreviations are: K,
Kravchenko & Moin (2000); P, Parnaudeau et al. (2008); C, Cheng et al. (2017); L, Lehmkuhl et al. (2013).

from the shear layer activity in the wake are captured well by the computations. The
velocity and u′u′ profiles are in good agreement with earlier studies.

B.2. Surface pressure and skin friction distribution at higher Re
The variation of time- and span-averaged surface pressure (CP) and coefficient of skin
friction (Cf ) from the present computations are compared with results from earlier studies.
Figure 25 shows the time- and span-averaged surface distribution of coefficient pressure
(CP) for Re = 0.2 × 104, 0.4 × 105 and 4.0 × 105. Very good agreement between the
results from the present and earlier studies is observed. It is seen from figure 25(a),
for Re = 0.2 × 105, that Lz = 3D is associated with larger peak suction and lower base
pressure compared with Lz = 1D. The lower base pressure for Lz = 3D leads to higher
CD (see figure 5) than for Lz = 1D. Similarly, the larger peak suction is responsible
for the large CLrms for Lz = 3D, at this Re (see figure 7). Now Re = 4.0 × 105 lies in
the supercritical regime, where a LSB as well as an SV is observed. The CP at this
Re is in good agreement with the measurements by Tani (1964) for Re = 3.8 × 105 and
4.65 × 105. The present computations accurately predict the location of peak suction as
well as its value. The LSB can be identified by a plateau in the CP distribution at θ ≈ 108◦.
Its location is in good agreement with that reported by Tani (1964). As will be shown in
a later section, the presence of SV leads to a ‘kink’ in the CP distribution following the
plateau due to LSB.
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Figure 25. Flow past a circular cylinder: surface distribution of time- and span-averaged coefficient of pressure
(CP) for Re = (a) 0.2 × 105, (b) 0.4 × 105 and (c) 4.0 × 105. The abbreviations are: C, Cheng et al. (2017);
S & B, Szepessy & Bearman (1992); T, Tani (1964).
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Figure 26. Flow past a circular cylinder: surface distribution of time- and span-averaged coefficient of skin
friction (Cf ) for (a) Re = 0.2 × 105 and (b) Re = 1.0 × 105. The abbreviations are: C, Cheng et al. (2017);
A, Achenbach (1968).

The variation of Cf on the surface of the cylinder is shown in figure 26 for Re = 0.2 ×
105 and 1.0 × 105. The former lies in the subcritical regime, while the latter is at the onset
of critical regime. The results for Lz = 1D and 3D are very close, except that the peak Cf
is slightly higher for Lz = 3D compared with that for Lz = 1D. The surface distribution of
Cf for Lz = 3D is in good agreement with Cheng et al. (2017). The measurements from
Achenbach (1968) show a slight over prediction of Cf for Re = 1.0 × 105 compared with
the present results and those from Cheng et al. (2017).

Appendix C. Flow past a cylinder with end plate

The finite element mesh is modified to adequately resolve the boundary layer on the end
plates at the lateral walls. A two-dimensional section of the mesh in the x–y plane is shown
in figure 27(a). The extent of the end plate is shown as well via a blue line. The mesh near
the leading edge of the end plate as well as upstream of the cylinder, where horseshoe
vortices are expected, is suitably modified. To adequately resolve the boundary layer on
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(a) (b)

z y
x

Figure 27. Flow past a circular cylinder (AR = 1) with no-slip condition on the end plates at the lateral
boundaries. (a) Close-up view of the finite element mesh in the x–y plane. The boundary of the end plate
is marked using a blue line. (b) The Q = 1 isosurface of the instantaneous flow showing the horseshoe vortices
in the flow. Only half of the span is shown.

the end plates, the grid spacing along the span is small and it gradually increases towards
the midspan. The grid spacing is 5 × 10−3D near the end wall and 0.02D at midspan. The
circumferential and radial distribution of grid points close to the cylinder is similar to that
described earlier. Figure 27(b) shows the horseshoe vortices in the flow in the presence
of a no-slip end plate for Re = 0.4 × 105. The horseshoe vortices act as a disturbance to
the boundary layer on the end plate. At this Re the disturbances decay beyond x/D ∼ 3,
as indicated by the streamwise variation of the local skin friction coefficient (not shown
here). However, at larger Re, the boundary layer at the end wall might undergo transition
owing to these disturbances and interact with the wake.

Appendix D. Transition of boundary layer

Figure 28 shows the velocity profiles, of the span- and time-averaged flow for Re = 4 ×
105 in the supercritical regime, near the surface of the cylinder at several circumferential
locations in the terms of the inner variables: u+ versus y+, where u+ = uθ /v∗ and y+ =
yv∗/ν. Here, uθ is the time- and span-averaged tangential component of flow velocity, y is
the distance from the surface of the cylinder and v∗ is the wall-friction velocity defined as
v∗ = √

τw/ρ, where τw is the shear stress at the wall. For reference, the viscous sublayer
and the log law, corresponding to the velocity profile of a turbulent boundary layer over
a flat plate with zero pressure gradient are shown. Also shown, along with the velocity
profile, is the radial variation u′

ru′
θ component of Reynolds stress. The profiles of these two

quantities reveal the laminar/turbulent state of the boundary layer. Furthermore, θ = 90◦
lies upstream of the point of LS (see figure 11). Therefore, the flow is expected to be
laminar at this location. Indeed, u′

ru′
θ is close to zero at θ = 90◦ and the velocity profile is

devoid of any correspondence to the log layer. At θ = 116.10◦, for which the flow profile
is shown in figure 28, lies downstream of the TA point, but upstream of the TS point.
Therefore, the flow can be expected to exhibit the signature of a turbulent boundary layer.
The velocity profile follows the characteristics of viscous sublayer close to the wall and
that of the log law for a certain region outwards. Interestingly, u′

ru′
θ is significantly larger
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Figure 28. The Re = 4 × 105 flow past a circular cylinder with Lz = 1D: variation of time-averaged velocity
(u+) and u′

ru′
θ component of Reynolds stress with y+ at (a) θ = 90◦, (b) θ = 116.10◦ at Re = 4 × 105. Also

shown are the velocity profiles in the viscous sublayer (u+ = y+) and log layer (u+ = 1
0.41 loge( y+)+ 4.4) for

a turbulent boundary layer over a flat plate with zero pressure gradient.

in the region of log law, compared with that in the viscous sublayer, which is consistent
with the nature of a turbulent boundary layer.

The shape factor (H = δ1/δ2), ratio of the displacement- to momentum-thickness of the
boundary layer, is useful in diagnosing the transition of the boundary layer from a laminar
to turbulent state. It was effectively utilized by Cheng et al. (2017) to demonstrate the
transition of their computed flow. Figure 29 shows the variation of H along the surface of
the cylinder for two Re: 1 × 105 and 4 × 105 which lie in the subcritical and supercritical
regimes, respectively. Here, δ1 and δ2 are estimated as follows: δ1 = ∫ δ

r0
(1 − uθ /Ue) dr,

δ2 = ∫ δ
r0
(uθ /Ue)(1 − uθ /Ue) dr. The edge of the boundary layer, r = δ, is identified as

the radial location where uθ is maximum (Cheng et al. 2017). We refer to the maximum
value of uθ as Ue. Here, r0 is zero, except in the region of LSB. That is, the integrations
to estimate δ1 and δ2 at each circumferential location, are carried out from the surface of
the cylinder up to the edge of the boundary layer. At the circumferential locations that
are associated with an LSB, the integration to estimate δ1 and δ2 does not begin from the
surface of the cylinder. Rather, the region of reverse flow is ignored. Now r0 is assigned as
the radial location, away from the surface of the cylinder, where uθ is zero. Also marked
in figure 29 are H = 2.60 and 1.44 that are observed for laminar and turbulent boundary
layer, respectively, on a flat plate with zero pressure gradient (FPZPG). For Re = 1 × 105

flow past a cylinder, the present computations show that H is approximately 2.2 for θ ≤
60◦. Its proximity with H = 2.6 for the laminar boundary layer on FPZPG indicates the
laminar state of the boundary layer. Furthermore, H increases with further increase in θ
up to the point of LS. This increase correlates well with the onset of adverse pressure
gradient on the surface of the cylinder as seen in figure 12. The variation of H is in very
good agreement with that reported by Cheng et al. (2017). The surface distribution of H for
Re = 4 × 105 is similar to that for Re = 1 × 105 up to the LS point. As seen from figure 12
the peak suction for Re = 4 × 105 occurs closer to shoulder of the cylinder, causing a
downstream movement of the adverse pressure gradient. Accordingly, the rise in H for
Re = 4 × 105 begins at a more downstream location compared with that for Re = 1 × 105.
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Figure 29. Flow past a circular cylinder with Lz = 1D: surface distribution of shape factor (H) of the boundary
layer for Re = 1 × 105 and Re = 4 × 105. The LS (black filled circle), turbulent attachment (green filled circle)
and turbulent separation (purple filled circle) points are also marked in the figure. C denotes Cheng et al. (2017).

Now H peaks to approximately 3.7 at the laminar separation point and continues to drop
through the LSB and beyond the point of TA. It achieves a value as low as 1.7 at θ ∼ 115◦,
which indicates the boundary layer being in a turbulent state. This is consistent with the
observations from figure 28 which show that the velocity profile in this region is turbulent.
Owing to the adverse pressure gradient, H rises farther downstream and eventually the
boundary layer undergoes a turbulent separation at θ ∼ 131◦.
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