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Relative vertex asphericity

Jens Harlander and Stephan Rosebrock

Abstract. Diagrammatic reducibility DR and its generalization, vertex asphericity VA, are combina-

torial tools developed for detecting asphericity of a 2-complex. Here we present tests for a relative

version of VA that apply to pairs of 2-complexes (L, K), where K is a subcomplex of L. We show that

a relative weight test holds for injective labeled oriented trees, implying that they are VA and hence

aspherical. �is strengthens a result obtained by the authors in 2017 and simplifies the original proof.

1 Introduction

A 2-complex L is vertex aspherical VA, if every combinatorial map from a 2-sphere
into L contains a pair of faces with a vertex in common so that the faces are mapped
mirrorwise across this vertex to the same 2-cell of L. Vertex asphericity implies
topological asphericity. �e closely related concept of diagrammatic reducibility DR
was introduced by Sieradski [14] in 1983. See also Gersten [8]. �e weaker notion
of VA was first considered by Huck–Rosebrock [11]. Recent developments concern-
ing combinatorial asphericity can be found in Barmak–Minian [1] and Blufstein–
Minian [2].

Relative vertex asphericity for pairs of 2-complexes K ⊆ L already appeared in
a previous article [9] by the authors, where it was used to establish asphericity of
injective LOT-complexes.

Other and related notions of relative combinatorial asphericity are in the literature.
Diagrammatic reducibility for relative presentations was considered by Bogley–Pride
[3] in 1992 and has found many applications over the years. See Bogley–Edjvet–
Williams [4] for a good overview. Very recently the idea of directed diagrammatic
reducibility was introduced and studied by the authors in [10].

A powerful method for showing that a 2-complex L is DR is by showing that it
satisfies a weight test. �is test appeared first in work of Sieradski [14], who called it a
coloring test, and was later generalized by Gersten [8] who saw it as a combinatorial
version of the Gauss–Bonet �eorem. Sieradski allowed only colors (now called
weights) 0 and 1, whereas any real number could be used for weights in Gersten’s
version. Wise [15] showed that if L satisfies the coloring test then it has nonpositive
sectional curvature and hence π1(L) is locally indicable.�is is not true in the context
of Gersten’s weight test. In this paper we give a relative weight test for pairs (L,K) that
implies relative VA.

Received by the editors December 19, 2019; revised April 10, 2020.
Published online on Cambridge Core June 16, 2020.
AMS subject classification: 57M20, 20F05, 20F06, 20F65.
Keywords: Diagrammatic reducibility, asphericity, 2-complex, weight test, relative asphericity.

https://doi.org/10.4153/S0008439520000454 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439520000454
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439520000454&domain=pdf
https://doi.org/10.4153/S0008439520000454


Relative Vertex Asphericity 293

�e Whitehead conjecture, which states that subcomplexes of aspherical 2-
complexes are aspherical, has motivated the development of combinatorial versions
of asphericity, such as DR and VA, and labeled oriented trees have long been known
to be an important testing ground for the conjecture. In [12] Huck and Rosebrock
proved that prime injective labeled oriented trees satisfy Sieradski’s coloring test.
In [9] the authors showed that injective labeled oriented trees are aspherical. We
strengthen this result here by showing that injective labeled oriented trees satisfy
a relative weight test with weights 0 and 1 and hence are VA. �e proof is a direct
generalization of the proof given in the prime case.

We thank the referee for several helpful comments and suggestions.

2 Relative Vertex Asphericity

A map f ∶X → Y between complexes is combinatorial if f maps open cells of X
homeomorphically to open cells of Y. Here a 2-complex will always mean a 2-
dimensional cell complex with combinatorial attaching maps. A spherical diagram
over a 2-complex L is a combinatorial map C → L, where C is a 2-sphere with
a cell structure. If a 2-complex L is nonaspherical, then there exists a spherical
diagram which realizes a nontrivial element of π2(L). In fact, π2(L) is generated
by spherical diagrams. So in order to check whether a 2-complex is aspherical or
not it is enough to check spherical diagrams. We also study surface diagrams. �ese
are combinatorial maps F → L, where F is an orientable surface with or without
boundary.

�e link of a vertex u, lk(L, u), is the boundary of a regular neighborhood of u in
L. So lk(L, u) is a graph whose edges are the corners of 2-cells at u. Suppose L is a
standard 2-complex with a single vertex u and oriented edge set X. �en the vertices
of lk(L, u) = lk(L) are {x+ , x− ∣ x ∈ X}, where x+ is a point of the oriented edge x
close to the beginning, and x− is a point close to the ending of that edge. �e positive
link lk+(L) is the full subgraph on the vertex set {x+ ∣ x ∈ X} and the negative link
lk−(L) is the full subgraph on the vertex set {x− ∣ x ∈ X}. �e positive and negative
links were called right and le� graph, respectively, in [12]. Let f ∶C → L be a spherical
diagram and let v be a vertex in C. Restricting to the link we obtain a combinatorial
map f ∣lk(C ,v)∶ lk(C , v) → lk(L, f (v)) for every vertex v ∈ C andwe let z(v) = c1 . . . cq
be the image, which is a closed edge path in lk(L, f (v)).
Definition 2.1 Let Ŵ be a graph and Ŵ0 be a subgraph. Let z = e1 . . . eq be a cycle
(closed edge path) in Ŵ. We say

(1) z is homology reduced if it contains no pair of edges e i , e j such that e i = ē j (the
bar indicates opposite orientation and we read z cyclically);

(2) z is homology reduced relative to Ŵ0 if any pair of edges e i , e j such that e i = ē j is
contained in Ŵ0.

Let f ∶C → L be a spherical diagram. A vertex v ∈ C is called a folding vertex if
z(v) = c1 . . . cq ∈ lk(L, f (v)) is not homology reduced. In that case the pair of 2-cells(d i , d j) of C containing the preimages of c i and c j , respectively, satisfying c i = c̄ j is
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called a folding pair. We call f vertex reduced if it does not have a folding vertex. A 2-
complex L is called vertex asphericalVA if each spherical diagram over L has a folding
vertex. Clearly VA implies asphericity.

Definition 2.2 LetK be a subcomplex of the 2-complexL.We say that L is VA relative
to K if every spherical diagram f ∶C → L, f (C) /⊆ K, has a folding vertex with folding
pair of 2-cells in L − K.

We can phrase relative VA also in the following way. L is VA relative toK if in every
spherical diagram f ∶C → L, f (C) /⊆ K, there is a vertex v ∈ C so that z(v) = c1 . . . cq ⊆
lk(L) is not contained in lk(K) and is not homology reduced relative to lk(K).
�eorem 2.3 Let L be a 2-complex and K a subcomplex. If K is VA and L is VA relative
to K then L is VA.

Proof Assume f ∶C → L is a vertex reduced spherical diagram. Since L is VA
relative to K we have that f (C) ⊆ K. So f ∶C → K is a vertex reduced spherical
diagram, contradicting the assumption that K is VA. ∎
�eorem 2.4 If L is VA relative to K, then π2(L) is generated, as π1(L)-module, by
the image of π2(K) under the map induced by inclusion. In particular, if K is aspherical,
then so is L.

Proof Every vertex reduced spherical diagram f ∶C → L has its image f (C) in K.
�us f represents an element in π2(K). Since π2(L) is generated by vertex reduced
spherical diagrams, it follows that π2(L) is generated by the image of π2(K). ∎

3 Tests for Relative Vertex Asphericity

Let K ⊆ L be 2-complexes. We say a spherical diagram f ∶C → L is K-thin if for every
vertex v ∈ C there is a 2-cell in C containing v which is mapped to a 2-cell in L − K.
�us if f (lk(C , v)) = z(v) = c1 . . . ck , then at least one corner c i ∈ lk(L) − lk(K). We
can apply a “reversed subdivision” to C to turn a spherical diagram into a thin one.
�e idea is to collect material in C that forms an open disc in C which is mapped to
K and make it into a single 2-cell in C. For this to work we need to attach additional
2-cells to K.

Definition 3.1 Given a pair (L,K) of 2-complexes, where K is a subcomplex of L,
we say that (L̂, K̂) is a thinning expansion if the following holds

(1) K̂ is obtained from K by adding 2-cells and L̂ = L ∪ K̂;
(2) If there exists a vertex reduced spherical diagram f ∶C → L, f (C) /⊆ K, then there

also exists a K̂-thin vertex reduced spherical diagram f ′∶C′ → L̂, f ′(C′) /⊆ K̂.

�inning expansions always exist which can be seen in the following example.
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Example 1 Let (L,K) be a 2-complex pair and consider a spherical diagram
f ∶C → L. We can remove open discs from C to obtain a planar diagram g∶ F → L −{open 2-cells of K}, where F is a connected planar region. Each boundary component
S of Fmaps to K and presents a trivial element in π1(K). For each S we attach a 2-cell
toK using g∶ S → K as attachingmap.We do this for all spherical diagrams over L and
arrive at a complex K̂. Note that we can attach discs to F and produce a thin spherical
diagram f ′∶C′ → L̂ = L ∪ K̂. If C does not contain a folding pair (d1 , d2), d i ∈ L − K,
then neither does f ′∶C′ → L̂ = L ∪ K̂. �is construction gives the minimal thinning
expansion of (L,K). Note that (π1(L̂), π1(K̂)) = (π1(L), π1(K)).
Example 2 �emaximal thinning expansion is obtained by adding a 2-cell for every
closed edge path in K. In this case (π1(L̂), π1(K̂)) /= (π1(L), π1(K)).

If K is a 2-complex with oriented edges, then an attaching map of a 2-cell d ∈ K
has exponent sum 0, when traveling along the boundary of d in clockwise direction,
one encounters the same number of positive as of negative edges. Here is a setting we
will be using for applications.

Example 3 Suppose K = K1 ∨ . . . ∨ Kn ⊆ L and that the attaching maps of 2-cells of
K have exponent sum zero. We construct K̂ i from K i by attaching 2-cells to every
closed-edge path in K i of exponent sum zero. We let K̂ = K̂1 ∨ . . . ∨ K̂n and let L̂ =
L ∪ K̂. Note that (L̂, K̂) contains the minimal thinning expansion given in Example 1
and hence is itself a thinning expansion.

LetŴ be a graph and Ŵ̂ = Ŵ1 ∪ . . . ∪ Ŵn be a union of disjoint subgraphs.We do not
assume that Ŵ, or the Ŵi , are connected. We write Ŵ/Ŵ̂ for the graph obtained from Ŵ

by collapsing each Ŵi to a point.

Definition 3.2 Let Ŵ be a graph and Ŵ̂ = Ŵ1 ∪ . . . ∪ Ŵn be a disjoint union as above.
We say Ŵ is a forest relative to Ŵ̂ if Ŵ/Ŵ̂ has no cycles. Ŵ is called a tree relative to Ŵ̂ if
in addition Ŵ is connected.

Let C be a cell decomposition of the 2-sphere with oriented 1-cells. A source in C
is a vertex with all its adjacent edges pointing away from it, and a sink is a vertex with
all its adjacent edges pointing towards it. A 2-cell d ∈ C is said to have exponent sum
0 if, when traveling along the boundary of d in clockwise direction, one encounters
the same number of positive as of negative edges. �e following theorem is due to
Gersten (see [8]):

�eorem 3.3 Let C be a cell decomposition of the 2-sphere with oriented edges, such
that all 2-cells have exponent sum 0. �en C contains a sink and a source.

Proof Fix a vertex v ∈ C. If w is a vertex in C, define h(w) to be the exponent sum
of an edge path in C that connects v to w. �e height h(w) is well defined because
of the exponent sum zero condition of C. A vertex of maximal height is a sink, and a
vertex of minimal height is a source. ∎
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A subcomplex K of a 2-complex L is called full, if for every 2-cell d ∈ L where
all boundary cells are in K we have d ∈ K. If K = K1 ∨ . . . ∨ Kn ⊆ L then lk+(K) =
lk+(K1) ∪ . . . ∪ lk+(Kn) is a disjoint union, and lk−(K) = lk−(K1) ∪ . . . ∪ lk−(Kn) is
a disjoint union as well.

�eorem 3.4 Let K = K1 ∨ . . . ∨ Kn ⊆ L. We assume the attaching maps of 2-cells in
L have exponent sum 0, and the K i are full. If lk

+(L) is a forest relative to lk+(K) or
lk−(L) is a forest relative to lk−(K) then L is VA relative to K. Furthermore, the inclusion
induced homomorphism π1(K i) → π1(L) is injective for every i = 1, . . . , n.
Proof Let us assume that lk+(L) is a forest relative to lk+(K). Consider a thinning
expansion (L̂, K̂) as in Example 3. Note that lk(L) − lk(K) = lk(L̂) − lk(K̂), and
hence lk+(L̂) is a forest relative to lk+(K̂). We will first show that there is no K̂-
thin vertex reduced spherical diagram f ∶C → L̂, f (C) /⊆ K̂. Suppose that there is
such a diagram. Since we assumed the exponent sums of attaching maps of 2-cells
in L are 0, the attaching maps of 2-cells in L̂ have this quality as well. �us C has
a source and a sink by �eorem 3.3. Let v ∈ C be a source. �en z(v) = c1 . . . cq ⊆
lk+(L̂), the image of the link of v in C, is homology reduced, and hence contained in
lk+(K̂) because lk+(L̂) is a forest relative to lk+(K̂). But this contradicts thinness of
f ∶C → L̂.

Assume L is not VA relative toK.�en byDefinition 3.1 there exists a K̂-thin vertex
reduced spherical diagram f ∶C → L̂, f (C)not contained in K̂. But we just proved that
such a spherical diagram does not exist.

Suppose the map π1(K i) → π1(L) is not injective for some i. �en there exists
a vertex-reduced Van Kampen diagram g∶D → L such that g(∂D) is a nontrivial
element of π1(K i). Note thatD has to contain 2-cells that are notmapped toK because
themap π1(K i) → π1(K) = π1(K1) ∗ . . . ∗ π1(Kn) is injective.�e boundary ofD has
exponent sum zero because the 2-cells in L are attached by maps of exponent sum 0.
We can cap off D with a disc d1 and obtain a spherical diagram f ∶C → L̂, f (C) /⊆ K̂.
Note that this spherical diagram is vertex reduced. If it were not, then there would
have to be a folding vertex v on the boundary of D with folding pair (d1 , d2), where
d2 is a 2-cell in D. But that would mean that f (d1) = f (d2) is a 2-cell in L. Since we
assumed K is full, this would imply that f (d1) is a 2-cell in K i , which contradicts
the fact that g(∂D) is a nontrivial element of π1(K i). By Definition 3.1 there exists a
K̂-thin vertex-reduced spherical diagram f ′∶C′ → L̂, f (C) /⊆ K̂. But we know already
from the beginning of this proof that no such spherical diagram exists. ∎

Let L be a 2-complex. We assign weights (or angles) ω(c) ∈ R to the corners of the
2-cells and obtain an angled 2-complex. If L = S is a closed orientable surfacewe define
the curvature of a 2-cell d ∈ S to be κ(d) = ∑q

i=1 ω(c i) − (q − 2), where c1 , . . . , cq
are the corners in d. �e curvature at a vertex is defined to be κ(v) = 2 −∑ω(c i)
where the c i are the corners at the vertex v. �e combinatorial Gauss–Bonet theorem
says

κ(S) = ∑
v∈S

κ(v) +∑
d∈S

κ(d) = 2χ(S).
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Note that if g∶ S → L is a surface diagram and L is an angled 2-complex, we can pull
back the weights and give S an induced angle structure. �e idea behind a weight test
is to give conditions on the link of an angled 2-complex that imply κ(S) ≤ 0 for every
vertex-reduced surface diagram g∶ S → L. �is in turn implies that there can not exist
vertex-reduced spherical diagrams f ∶C → L, and hence L is aspherical.

A cycle in a graph is called reduced if no oriented edge in the cycle sequence is
followed immediately by its inverse. Here is the weight test as defined by Gersten [8]
which implies the asphericity of L:

Definition 3.5 Let L be a 2-complex. L satisfies the weight test, if there are weights
ω(c) ∈ R assigned to the corners of the 2-cells of L such that

(1) ∑i ω(c i) ≤ q − 2 if c1 , . . . , cq are the corners of a 2-cell of L and
(2) if z = e1 . . . en is a reduced cycle in l k(L) then∑n

i=1 ω(e i) ≥ 2.

We next define a relative weight test. It is coarse but will be sufficient for the
applications we have in mind. Assume K = K1 ∨ . . . ∨ Kn ⊆ L. We assume L contains
a single vertex v. We define lk(L,K) in the following way: If y1 , . . . , y l are the edges of
K i then we denote by ∆(K i) the full graph on the vertices y±1j of lk(K i) together with
an edge attached at each y+j (a loop at that vertex) and at each y−j . Every pair of vertices

in ∆(K i) is connected by an edge, and at every vertex we have a loop. For each i we
remove lk(K i) from lk(L) and insert ∆(K i) instead. �e resulting graph is lk(L,K).
Note that if K̂ is any 2-complex obtained from K by attaching 2-cells and f ∶C →
L̂ = L ∪ K̂ is a spherical diagram, then f (lk(C , v)) yields a cycle in lk(L,K). Let
∆(K) = ∆(K1) ∪ . . . ∪ ∆(Kn), a disjoint union. Further note that lk+(L,K) is a forest
relative to ∆+(K) if and only if lk+(L) is a forest relative to lk+(K). And similarly
for − in place of +.
Definition 3.6 AssumeK = K1 ∨ . . . ∨ Kn ⊆ L andwe are in the setting of Example 3,
that is the attachingmaps of 2-cells ofK have exponent sum zero.We say L satisfies the
weight test relative to K if there is a weight function ω on the set of edges of lk(L,K),
such that

(1) ∑i ω(c i) ≤ q − 2 if c1 , . . . , cq are the corners of a 2-cell of L not contained in K,
(2) if z = e1 . . . en is a homology reduced cycle in lk(L,K) containing at least one

corner from lk(L,K) − ∆(K), then∑n
i=1 ω(e i) ≥ 2 and

(3) ω(c) = 0 if c is an edge of ∆+(K i) or ∆−(K i), ω(c) = 1 if c connects a vertex of
∆+(K i) with one of ∆−(K i), i = 1, . . . , n.

Lemma 3.7 Assume we are in the setting of Definition 3.6. If z is a cycle in lk(L,K)
containing at least one corner from lk(L,K) − ∆(K) and z is homology reduced relative
to ∆(K), then ω(z) ≥ 2.
Proof Let z = c1 . . . cq be a cycle as in the statement of the lemma. If z is homology
reduced then ω(z) ≥ 2 since we assume Condition (2) holds. If z is not homology
reduced then there exists a pair ck , c l satisfying c l = c̄k . Since we assume z is
homology reduced relative to ∆(K), ck , c l ∈ lk(∆(K i)) for some i. Let z1 =
c1 . . . ck−1c l+1 . . . cq and z2 = ck+1 . . . c l−1. Both z1 , z2 are cycles and are homology
reduced relative to ∆(K). Assume first that both z1 , z2 contain at least one corner
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from lk(L,K) − ∆(K). �en by induction of the cycle length we have ω(z i) ≥ 2.
Since ck , c l ∈ ∆(K) both carry weights ≥ 0 and we have

ω(z) = ω(z1) + ω(z2) + ω(ck) + ω(c l) ≥ ω(z1) + ω(z2) ≥ 2 + 2 = 4.
For the remaining case we assume z1 contains a corner from lk(L,K) − ∆(K) but

z2 does not. But in that case z2 ⊆ ∆(K i). �en ω(z1) ≥ 2 and ω(z2) ≥ 0. We have

ω(z) = ω(z1) + ω(z2) + ω(ck) + ω(c l) ≥ ω(z1) + ω(z2) ≥ 2. ∎

�eorem 3.8 Assume K = K1 ∨ . . . ∨ Kn ⊆ L, each K i is full and we are in the setting
of Example 3, that is the attaching maps of 2-cells of K have exponent sum zero. Assume
further that L satisfies the weight test relative to K. �en L is VA relative to K. If in
addition the attaching maps of the 2-cells of L have exponent sum zero, then all the
inclusion induced homomorphisms π1(K i) → π1(L) are injective.
Proof Let (L̂, K̂) be the thinning expansion constructed in Example 3. We first
make L̂ into an angled 2-complex. Since L̂ − K̂ = L − K, we have already weights on
the corners of 2-cells in L̂ − K̂. If d̂ is a 2-cell of K̂ we assign to corners in lk+(K̂) and
in lk−(K̂) weight 0, and weight 1 to all the other corners in d̂. Suppose L is not VA
relative toK.�en there exists a vertex-reduced spherical diagram f ∶C → L that is not
already a diagram over K. By Definition 3.1 there also exists a K̂-thin vertex-reduced
spherical diagram f ′∶C′ → L̂ that is not already a diagram over K̂. We pull back the
weights of L̂ and thus turn C′ into an angled 2-complex. Condition (1) in the weight
test implies that the curvature of a 2-cell not mapped to K̂ is ≤ 0. If d ∈ C′ is a 2-cell
which ismapped to K̂ it has exponent sum 0, so there are at least 2 corners with weight
0 (the other corners of d have weight 1). So the curvature of d will also be ≤ 0.

Since f ′∶C′ → L̂ is K̂-thin and vertex reduced, for every v ∈ C′ the image
f ′(lk(C′ , v)) yields a cycle z ∈ lk(L̂, K̂) that is homology reduced relative to ∆(K)
and contains a corner from a 2-cell in L − K. �us by Lemma 3.7 ω(z) ≥ 2 which
implies that the curvature at v in C′ is ≤ 0. So the curvature of C′ is ≤ 0. �is is a
contradiction because C′ is a 2-sphere and so the curvature is 2.

Injectivity of the homomorphisms π1(K i) → π1(L) follows by the arguments
already provided in the proof of �eorem 3.4. ∎

An (ε, δ)-corner of lk(L,K) for ε, δ ∈ {+,−} is a corner between vertices x εi and
xδj for some i , j.

�eorem 3.9 Let K = K1 ∨ . . . ∨ Kn ⊆ L. Assume

(1) the attaching maps of 2-cells in L have exponent sum zero;
(2) lk+(L) is a forest relative to lk+(K) = lk+(K1) ∪ . . . ∪ lk

+(Kn) and lk−(L) is a
forest relative to lk−(K) = lk−(K1) ∪ . . . ∪ lk

−(Kn).

With the assignment ω∶ Edges of lk (L,K) → {0, 1}
ω(c) = { 0 if c is a (++) − corner or a (−−) − corner

1 if c is a (+−) − corner
L satisfies the weight test relative to K.
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Proof Note that lk+(L) is a forest relative to lk+(K) if and only if lk+(L,K) is
a forest relative to ∆+(K) (the same for − in place of +). Let (L̂, K̂) be a thinning
expansion as in Example 3. Since we assumed that the attaching maps for the 2-
cells of L have exponent sum zero, the same is true for the 2-cells of L̂. �us if
c1 , . . . , cq are the corners in a 2-cell of L̂, then there is at least one (++) and one(−−)-corner among them. So ∑ω(c i) ≤ q − 2 and the first condition of the weight
test holds.

Let z be a homology reduced cycle in lk(L,K) containing at least one corner from
a 2-cell of L − K. If z contains one (+−)-corner it has to contain at least two (+−)-
corners and then ω(z) ≥ 2. So assume z contains only (++)-corners (or only (−−)-
corners). But since lk+(L,K) is a forest relative to ∆+(K) and z contains a corner of
L − K, z is homology reducible. �is is a contradiction. ∎

4 Applications to Labelled Oriented Trees

A standard reference for labeled oriented graphs, LOGs for short, is [13]. Here are the
basic definitions. A LOG is an oriented finite graphŴ on vertices x and edges e, where
each oriented edge is labeled by a vertex. Associatedwith a LOGŴ is the LOG-complex
K(Ŵ), a 2-complex with a single vertex, edges in correspondence with the vertices of
Ŵ and 2-cells in correspondence with the edges of Ŵ. �e attaching map of a 2-cell de

is the word xz(zy)−1, where e is an edge of Ŵ starting at x, ending at y, and labeled
with z.

A labelled oriented graph is called compressed if no edge is labelled with one of
its vertices. A LOG Ŵ is called boundary reducible if there is a boundary vertex x ∈ Ŵ

which does not occur as an edge label and boundary reduced otherwise. A LOG is
injective if each vertex occurs as an edge label at most once. An injective LOG is called
reduced if it is compressed and boundary reduced. A labeled oriented tree, LOT, is a
labeled oriented graph where the underlying graph is a tree.

It can be shown that an injective LOT can be transformed into a reduced injective
LOT without altering the homotopy-type of the LOT-complex. If Ŵ is a LOT and Ŵ1

is a sub-tree of Ŵ with at least one edge, such that each edge label of Ŵ1 is a vertex of
Ŵ1, then we callŴ1 a sub-LOT ofŴ. A sub-LOTŴ1 ofŴ is proper, ifŴ1 ≠ Ŵ. A sub-LOT
Ŵ1 of Ŵ is maximal if it is not contained in a bigger proper sub-LOT of Ŵ. A LOG is
called prime if it does not contain proper sub-LOTs.

�e LOT consisting of a single edge labeled by one of its vertices is prime but not
boundary reduced. All other prime LOTs are boundary reduced, since a boundary
reducible LOT containing more than one edge contains a proper sub-LOT. It follows
that compressed prime LOTs containing at least two edges are boundary reduced and
hence reduced.

In [9] the authors have shown that injective LOTs are aspherical. In this section we
prove

�eorem 4.1 Let Ŵ be a compressed injective LOT.�en K(Ŵ) is VA.
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Figure 1: A reduced injective nonprime LOT which does not satisfy the weight test (with any

orientation of its edges). See Huck–Rosebrock [12].

�is generalizes a result obtained by Huck and Rosebrock.

�eorem 4.2 (Huck–Rosebrock [12]) Let Ŵ be a reduced injective prime LOT. �en
K(Ŵ) satisfies the weight test with weights from {0, 1}. In particular K(Ŵ) is DR (and
therefore also VA).

A reduced non-prime injective LOT may not satisfy the weight test. An example
is shown in Figure 1.

If Ŵ1 is a proper sub-LOT of an injective LOT Ŵ, we can collapse Ŵ1 in Ŵ and obtain
a quotient LOT Ŵ̄1 in the following specific way: �ere exists a unique vertex x in Ŵ1

that does not occur as an edge label inŴ1, sinceŴ1 is injective. xmay ormay not occur
as an edge label in Ŵ. Collapse Ŵ1 in Ŵ to x to obtain a quotient tree Ŵ̄1 of Ŵ with edge
set the edges of Ŵ − Ŵ1 and vertex set the vertices that come with the edges in Ŵ − Ŵ1

together with x. If y is the label of an edge e in Ŵ − Ŵ1, then that edge carries the same
label y in Ŵ̄. We denote the quotient map by Ŵ→ Ŵ̄1 and define z̄ to be the image of a
vertex z under that map.

Let Ŵ be a reduced injective LOT that is not prime. Choose a maximal proper sub-
LOT Ŵ1 and collapse it to obtain the quotient Ŵ̄1 of Ŵ. �is quotient is injective. If it is
not prime choose a maximal proper sub-LOT Ŵ̄2 in Ŵ̄1 and collapse it to obtain Ŵ̄12.
We continue this process until we arrive at an injective prime quotient Ŵ̄12.. .n :

Ŵ → Ŵ̄1 → Ŵ̄12 . . . Ŵ̄12.. .(n−1) → Ŵ̄12.. .n∪ ∪ ∪ ∪
Ŵ1 Ŵ̄2 Ŵ̄3 Ŵ̄n

Note that Ŵ̄2 does not contain the vertex x that Ŵ1 is collapsed to, because that would
contradict maximality of Ŵ1. �us the sub-LOT Ŵ2 that maps to Ŵ̄2 under the first
collapse is disjoint fromŴ1.�is procedure gives a disjoint set of sub-LOTsŴ1 , . . . ,Ŵn

of Ŵ so that

Ŵi → Ŵ̄i is a maximal sub-LOT of Ŵ̄12.. .(i−1) .

We call a set of sub-LOTs Ŵ1 , . . . ,Ŵn of Ŵ obtained in this fashion complete, if Ŵ̄12.. .n

is a compressed injective prime LOT that is not just a vertex. Such a set may or may
not exist. It could happen that all injective prime quotients Ŵ̄12.. .n that we obtain are
not compressed.

A labelled oriented graph Ŵ
′ is a reorientation of a labelled oriented graph Ŵ if Ŵ

′

is obtained from Ŵ by changing the orientation of some edges. �e following lemma
was used in the proof of�eorem 4.2. It is not explicitly stated as a lemma in [12], but
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the first three lines of Section 3, page 288, of [12] state the result, and the proof is given
on pages 289 and 290.

Lemma 4.3 (Huck–Rosebrock [12]) If Ŵ is a reduced injective prime LOT, then there
is a reorientationŴ

′ ofŴ such that lk+(K(Ŵ′)) and lk−(K(Ŵ′)) are trees. In particular
K(Ŵ′) satisfies the weight test by assigning weight 0 to all corners in lk+(K(Ŵ′)) and
lk−(K(Ŵ′)), and weight 1 to all other corners.

We can adapt this to our more general setting:

Lemma4.4 IfŴ is a reduced injective LOTwith a complete set of sub-LOTsŴ1 , . . . ,Ŵn ,
then there is a reorientation Ŵ

′ of Ŵ such that lk+(K(Ŵ′)) and lk−(K(Ŵ′)) are
trees relative to lk+(K(Ŵ′1 ∪ . . . ∪ Ŵ

′
n)) and lk−(K(Ŵ′1 ∪ . . . ∪ Ŵ

′
n)), respectively. In

particular K(Ŵ′) satisfies the relative weight test by assigning weight 0 to all corners
in lk+(K(Ŵ′)) and in lk−(K(Ŵ′)), and weight 1 to all other corners.
Proof Collapsing each Ŵi in Ŵ results in an injective compressed prime LOT Ŵ̄ =
Ŵ̄1. . .n . By Lemma4.3we can reorient Ŵ̄ to Ŵ̄

′
so that both l k+(K(Ŵ̄′)) and l k−(K(Ŵ̄′))

are trees.We pull back the edge-orientations of Ŵ̄
′
to edge-orientations ofŴ to achieve

a reorientationŴ
′ ofŴ. Note that this reorientation does not affect theŴi (soŴ

′
i = Ŵi).

Since both l k+(K(Ŵ̄′)) and l k−(K(Ŵ̄′)) are trees, l k+(K(Ŵ′)) is a tree relative to
l k+(K(Ŵ′1 ∪ . . .Ŵ′n)) and l k−(K(Ŵ′)) is a tree relative to l k−(K(Ŵ′1 ∪ . . .Ŵ′n)). �en
�eorem 3.9 implies that K(Ŵ′) satisfies the weight test. ∎

�e next lemma was also used in the proof of �eorem 4.2:

Lemma 4.5 (Huck–Rosebrock [11]) Let Ŵ be a reduced injective LOT that satisfies
the weight test with weights 0 and 1.�en any reorientation of Ŵ satisfies the weight test
with weights 0 and 1.

�e analogous result for the general situation is

Lemma 4.6 Let Ŵ be a reduced injective LOT with a complete set of sub-LOTs
Ŵ1 , . . . ,Ŵn . If K(Ŵ) satisfies the weight test relative to K(Ŵ1 ∪ . . . ∪ Ŵn) with weights 0
and 1, then for any reorientationŴ

′ the 2-complex K(Ŵ′) satisfies the weight test relative
to K(Ŵ′1 ∪ . . . ∪ Ŵ

′
n) with weights 0 and 1.

Before we give a proof we introduce some useful notation. A signed LOT Ŵ is a
labeled oriented tree where we allow vertices to carry signs. An oriented edge from
x ε1 to yε2 , ε j = ±1, labeled by z gives a 2-cell in K(Ŵ)with attachingmap x ε1z(zyε2)−1.
Given a labeled oriented tree Ŵ and a subset X of the vertices of Ŵ, we define ŴX to
be the signed LOT obtained from Ŵ by replacing each vertex x ∈ X with x−1. It is
important to note that edge labels and edge orientations inŴ andŴX are the same.One
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Figure 2: l k(K(Ŵ)) = l k(K(Ŵx)): �e corners of the original 2-cell also appear in the 2-cell

with the edge x reversed, only the order in which the corners appear changes.

of the key observations is that the link does not change under this vertex sign change:
l k(K(Ŵ)) = l k(K(ŴX)). See Figure 2. In particular if K(Ŵ) satisfies the weight test,
then so does K(ŴX).
Proof of Lemma 4.6. Assume Ŵ

′ is obtained from Ŵ by reversing a single edge
labeled x. Suppose first that x is not contained in any of the Ŵi . �en

l k(K(Ŵ),K(Ŵ1 ∪ . . . ∪ Ŵn)) = l k(K(Ŵx),K(Ŵ1 ∪ . . . ∪ Ŵn)).
Since (K(Ŵ),K(Ŵ1 ∪ . . . ∪ Ŵn)) satisfies the weight test with weights 0, 1, so does(K(Ŵx),K(Ŵ1 ∪ . . . ∪ Ŵn)). Let ϕx ∶K(Ŵx) → K(Ŵ′) be the homeomorphism that
changes the orientation of all x-edges in the attaching maps of 2-cells. It induces a
homeomorphismof the corresponding expansions andpreserves theweight test.�us
K(Ŵ′) satisfies the weight test relative K(Ŵ1 ∪ . . . ∪ Ŵn) with weights 0, 1.

Next assume that x is contained in one of the Ŵi , say Ŵ1. If we proceed as above we
run into a technical difficulty: the attaching maps of the 2-cells in the subcomplex
K(Ŵ1x ∪ Ŵ2 ∪ . . . ∪ Ŵn) do not all have exponent sum zero, so we are not in the
setting of the weight test as given in Definition 3.6 anymore. Here is how we fix
this. Let X be the set of vertices of Ŵ1. Note that the attaching maps in K(Ŵ1X) do
have exponent sum zero. Now we argue exactly as above with X in place of x. �e
homeomorphism ϕX ∶K(ŴX) → K(Ŵ′) now changes the orientation of all x-edges,
x ∈ X, in the attaching maps of 2-cells.

Proposition 4.7 LetŴ be a reduced injective LOTwhich is not prime. Assume there is a
complete set of sub-LOTsŴ1 , . . . ,Ŵn .�en K(Ŵ) is VA relative to K(Ŵ1) ∪ . . . ∪ K(Ŵn).
Proof By Lemma 4.4 there exists a reorientation Ŵ

′ so that K(Ŵ′) satisfies the
weight test relative K(Ŵ′1 ∪ . . . ∪ Ŵ

′
n) with weights 0 and 1. By Lemma 4.6 K(Ŵ) itself

satisfies the weight test relative K(Ŵ1 ∪ . . . ∪ Ŵn)with weights 0 and 1. It follows from
�eorem 3.8 that K(Ŵ) is VA relative to K(Ŵ1) ∪ . . . ∪ K(Ŵn). ∎

�is proposition would quickly lead to a proof of our main �eorem 4.1 if all
nonprime reduced injective LOTs had a complete set of sub-LOTs. �is, however, is
not true. See Figure 3. We thank the referee for catching this problem.
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Figure 3: �e figure shows a reduced injective LOT that does not contain a complete set of

sub-LOTs (for any orientation of its edges). Note that it freely decomposes.

We say a LOTŴ freely decomposes ifŴ = ŴL ∪ ŴR , where theŴL andŴR are proper
sub-LOTs of Ŵ, intersecting in a single vertex.

Proposition 4.8 Suppose Ŵ is a reduced and injective LOT that is not prime. �en
either

(1) Ŵ contains a complete set of sub-LOTs, or
(2) Ŵ freely decomposes.

Proof Wemake two observations:

(1) Let Ŵ be an injective compressed LOT and let Ŵ1 be a maximal proper sub-LOT. If
the quotient Ŵ̄1 is not compressed, then Ŵ = Ŵ1 ∪ e, where e is an edge attached to
Ŵ1, whose vertex y not in Ŵ1 does not occur as an edge label in Ŵ1. In particular, Ŵ
is not boundary reduced.

�ere exists an edge ē in Ŵ̄1 with vertices x̄ and ȳ and edge label x̄. Since Ŵ is
compressed it follows that x̄ is the vertex the sub-LOT Ŵ1 is collapsed to, and it
follows that we have a sub-LOT Ŵ1 ∪ e in Ŵ, where the edge label of e is a vertex
in Ŵ1. So Ŵ1 ∪ e is a sub-LOT of Ŵ containing Ŵ1. Maximality of Ŵ1 in Ŵ implies
that Ŵ = Ŵ1 ∪ e. All vertices in Ŵ1 except x occur in Ŵ1 as edge labels (by the way
we collapse), so y is not an edge label of Ŵ1.

(2) Let Ŵ be an injective compressed LOT and suppose

Ŵ → Ŵ̄1 → Ŵ̄12

∪ ∪
Ŵ1 Ŵ̄2

is a 2-stage quotient of Ŵ so that Ŵ̄1 is compressed but Ŵ̄12 is not. �en Ŵ freely
decomposes.

Weknow fromObservation (1) that Ŵ̄1 = Ŵ̄2 ∪ ē where ē is attached to Ŵ̄2 at a vertex
x̄, the other vertex ȳ does not label an edge in Ŵ̄2, and ē has as edge label a vertex
from Ŵ̄2. Let z̄ be the vertex Ŵ1 is collapsed to. Note that z̄ can not be in Ŵ̄2 because of
maximality, so z̄ = ȳ. But then it follows that Ŵ = Ŵ2 ∪ e ∪ Ŵ1. If we take ŴL = Ŵ2 ∪ e
and ŴR = Ŵ1 we have a free decomposition of Ŵ.

Using the two observations we complete the proof of Proposition 4.8. SupposeŴ is
not prime and Ŵ̄12.. .n is an injective prime quotient that is not compressed. Note that
n ≥ 2 because of the first observation (1): if n = 1 then Ŵ is not boundary reduced,
contradicting the assumption that Ŵ is reduced. �ere exists a j so that Ŵ̄12.. . j →
Ŵ̄12.. . j+1 → Ŵ̄12.. . j+2, so that both Ŵ̄12.. . j and Ŵ̄12.. . j+1 are injective and compressed, but
Ŵ̄12.. . j+2 is not. �en by observation (2) Ŵ̄12.. . j freely decomposes: Ŵ̄12.. . j = Ŵ̄L ∪ Ŵ̄R .
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We claim Ŵ = Ŵ̄12.. . j . If not, then let x̄ be the vertex in Ŵ̄1. . . j that Ŵ̄ j ⊆ Ŵ̄12.. .( j−1) is
collapsed to. But then x̄ is in Ŵ̄L or in Ŵ̄R , contradictingmaximality of Ŵ̄ j in Ŵ̄12.. .( j−1).
So Ŵ = Ŵ̄12.. . j , and we have that Ŵ freely decomposes. ∎

We need two more lemmas before we can complete the proof of �eorem 4.1.

Lemma4.9 SupposeŴ0 ⊆ Ŵ andŴ0 is obtained fromŴ by a boundary reduction.�en
K(Ŵ) is VA if and only if K(Ŵ0) is VA.
Proof If K(Ŵ) is VA, then so is K(Ŵ0) because the VA property is hereditary.
Assume that K(Ŵ0) is VA. If Ŵ consists of one edge then K(Ŵ) is VA. Let Ŵ contain
at least two edges. �en Ŵ = Ŵ0 ∪ e where e is attached to Ŵ0 at a vertex x, and the
other vertex y of e does not occur as an edge label in Ŵ. K(Ŵ) contains a 2-cell with
a free boundary edge y. So any vertex-reduced spherical diagram f ∶C → K(Ŵ)maps
to K(Ŵ0). ∎
Lemma 4.10 If an injective LOT Ŵ freely decomposes Ŵ = ŴL ∪ ŴR and both K(ŴL)
and K(ŴR) are VA, then K(Ŵ) is VA.
Proof Consider a vertex-reduced spherical diagram f ∶C → K(Ŵ). f (C) cannot be
contained in one of K(ŴL) or K(ŴR) only, because K(ŴL) and K(ŴR) are VA. Let x
be the common vertex of ŴL and ŴR . x is an edge label at most once in Ŵ since Ŵ is
injective. So assume x is not an edge label in ŴR . Let γ ∈ C be a boundary component
of a maximal region, which maps to K(ŴR). Each edge of γmaps to x, and so γmaps
to a word in x and x−1 of exponent sum zero. So there is a vertex v ∈ γ where two edges
e1 , e2 ∈ γ end. Now v is a folding vertex with a folding pair of 2-cells d1 and d2 which
both map to K(ŴR) containing e1 and e2, respectively. ∎
Proof of�eorem 4.1 Let Ŵ be a smallest injective compressed LOT such that
K(Ŵ) is not VA. Minimality implies that Ŵ is boundary reduced because of Lemma
4.9, so Ŵ is reduced. Ŵ is not prime because of �eorem 4.2. Ŵ does not freely
decompose by Lemma 4.10. So by Proposition 4.8 Ŵ contains a complete set of sub-
LOTs Ŵ1 , . . . ,Ŵn . Proposition 4.7 implies that K(Ŵ) is VA relative to K(Ŵ1) ∪ . . . ∪
K(Ŵn). Since K(Ŵ) is the smallest non-VA injective compressed LOTwe have that all
the K(Ŵi) are VA. But then�eorem 2.3 implies that K(Ŵ) is VA in contradiction to
our assumption.
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