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Abstract

The neuropsychological aspects of multiple sclerosis (MS) have evolved over the past three decades. What was once
thought to be a rare occurrence, cognitive dysfunction is now viewed as one of the most disabling symptoms of the
disease, with devastating effects on patients’ quality of life. This selective review will highlight major innovations and
scientific discoveries in the areas of neuropathology, neuroimaging, diagnosis, and treatment that pertain to our
understanding of the neuropsychological aspects of MS. Specifically, we focus on the recent discovery that MS produces
pathogical lesions of gray matter (GM) that have consequences for cognitive functions. Methods for imaging these GM
lesions in MS are discussed along with multimodal imaging studies that integrate structural and functional imaging
methods to provide a better understanding of the relationship between cognitive test performance and functional reserve.
Innovations in the screening and comprehensive assessment of cognitive disorders are presented along with recent
research that examines cognitive dysfunction in pediatric MS. Results of innovative outcome studies in cognitive
rehabilitation are discussed. Finally, we highlight trends for potential future innovations over the next decade.
(JINS, 2017, 23, 832–842)
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INTRODUCTION

Our understanding of the neuropsychological aspects of MS
was quite different 30 years ago than it is today. Most medical
textbooks in the 1980s viewed “intellectual” changes to be a
rare occurrence in MS patients. The most common estimate
was 5%, with the understanding that such changes only
occurred in patients with extensive physical disability and
with a long disease duration (>30 years). These opinions
were fairly universally accepted throughout the 20th century,
despite the astute clinical observations in 1877 by the French
neurologist, Jean Charcot, that most patients with MS had a
“marked enfeeblement of the memory” and “conceptions that
are formed slowly” (Charcot, 1877).

Two major scientific events occurred during the decade
between 1985 and 1995 that changed how the disease is
viewed from a neuropsychological perspective. The first was
the publication of large-scale, controlled studies using bat-
teries of standardized neuropsychological measures that
demonstrated the prevalence of cognitive dysfunction in MS
to be in the 40–65% range (for a review, see Rao, 1995).
Furthermore, these studies showed that cognitive dysfunction
is weakly correlated with physical disability (e.g., ambula-
tion) and disease duration (Rao, Leo, Bernardin, & Unver-
zagt, 1991); is most commonly observed on measures of
information processing speed (Rao, St Aubin-Faubert, &
Leo, 1989) and episodic memory (Rao, Leo, et al., 1989); and
can have a meaningful and specific impact on activities of
daily living (Rao, Leo, Ellington, et al., 1991).
The second event was the introduction of magnetic reso-

nance imaging (MRI). Because of its unique sensitivity to
changes in water content in tissue, MS-related white matter
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(WM) lesions could be readily observed as WM hyper-
intensities (WMH) on T2-weighted scans. Moderate corre-
lations between severity of cerebral WMH load and degree of
cognitive dysfunction were observed (Rao, Leo, Haughton,
St Aubin-Faubert, & Bernardin, 1989), clearly indicating that
cognitive dysfunction could be related to underlying MS-
related brain pathology rather than non-specific disease-
related factors, such as fatigue, depression, or anxiety.
Since these early studies, the neuropsychology of MS has

continued to evolve. This review is not designed to be an
exhaustive appraisal of this large body of scientific literature.
Rather, the intent is to highlight major innovations and
scientific discoveries in the areas of neuropathology, neuro-
imaging, diagnosis, and treatment that pertain to our under-
standing of the neuropsychological aspects of MS. Finally,
we highlight trends for potential future innovations over the
next decade.

NEUROPATHOLOGY

Traditionally, MS has been thought to be a disease of WM.
This view was supported by early pathological studies that
used standard histochemical myelin stains, such as luxol fast-
blue (LFB). However, LFB works well in WMwhere there is
an abundance of myelin, but is considerably less sensitive to
detecting scarce amounts of myelin as contained in gray
matter (GM). Only recently have investigators begun to
appreciate that GM demyelination is a common pathological
feature of MS. This newly found appreciation was made
possible with the development of more advanced immuno-
histochemistry techniques based on myelin basic protein and
proteolipid protein. Studies using these techniques have
shown that around 15% of the neocortex is demyelinated at
autopsy, with some outliers up to 70% of the total neocortical
volume (Haider et al., 2014; Kutzelnigg et al., 2005).
Furthermore, deep GM nuclei can be heavily affected, with

an average of approximately 30% demyelination. GM
demyelination is more common in the cerebellum (Gilmore,
DeLuca, et al., 2009; Kutzelnigg et al., 2007), hippocampus
(Geurts et al., 2007), and spinal cord GM (Gilmore, DeLuca,
et al., 2009; Gilmore, Geurts, et al., 2009), but essentially no
areas within the central nervous system are spared. Cerebellar
cortex can be almost entirely demyelinated in chronic MS
cases (Kutzelnigg et al., 2007). Although the thalamus is the
most frequently affected subcortical GM structure, lesions
have been detected within the caudate, putamen, pallidum,
claustrum, amygdala, hypothalamus, and substantia nigra
(Gilmore, Donaldson, et al., 2009; Huitinga et al., 2001;
Vercellino et al., 2009).
Whereas deep GM damage develops early in the disease,

neocortical demyelination predominates in later stages (Haider
et al., 2014). Cortical lesions are generally characterized by
an intact blood–brain barrier and a lack of inflammatory cell
infiltration (Bo, Vedeler, Nyland, Trapp, & Mork, 2003;
Peterson, Bo, Mork, Chang, & Trapp, 2001; van Horssen,
Brink, de Vries, van der Valk, & Bo, 2007; Wegner,
Esiri, Chance, Palace, & Matthews, 2006). Neuronal loss is

generally limited to cortical lesions in contrast to the wide-
spread changes observed in neurodegenerative diseases like
Alzheimer’s disease. Nevertheless, a neuronal density
reduction of 18–23% has been reported (Vercellino et al.,
2005).
Furthermore, loss of glia cells (~36%) and synapses

(~47%) have also been found (Wegner et al., 2006). On
occasion, signs of cortical inflammation have been observed
in MS. One post-mortem study found rims of activated
microglia at the border of cortical lesions (Kooi, Strijbis, van
der Valk, & Geurts, 2012), and two others found meningeal
B-cell follicle-like structures, associated with cortical
demyelination (Howell et al., 2011; Magliozzi et al., 2007).
Neuropsychological investigators have come to realize that

the presence and severity of cognitive impairment in MS may
not be fully explained by WM pathology alone. Our under-
standing of the role of GM pathology in the development of
cognitive dysfunction, however, is dependent on our ability
to visualize these lesions in vivo using novel neuroimaging
technologies.

NEUROIMAGING

Initial attempts to image GM lesions using conventional
T2-weighted and three-dimensional (3D) fluid-attenuated
inversion recovery (FLAIR) imaging were largely unsuc-
cessful, with detection of only 5% of the GM lesions
observed at autopsy (Geurts, Bo, et al., 2005). Newly devel-
oped MRI sequences, such as 3D-double inversion recovery
(see Figure 1A) (Calabrese & Gallo, 2009; Geurts, Pouwels,
et al., 2005; Geurts et al., 2011; Nelson et al., 2007), phase-
sensitive inversion recovery (Nelson et al., 2007; Sethi et al.,
2012), 3D MPRAGE (Nelson, Poonawalla, Datta, Wolinsky,
& Narayana, 2014; Nelson, Poonawalla, Hou, Wolinsky, &
Narayana, 2008), and T2* imaging (Nielsen et al., 2012)
have been more successful, but still detected only the tip of
the pathological iceberg (Seewann et al., 2011). Using higher
MR field strengths (7T) and quantitative MRI methods,
investigators have shown that subpially located cortical GM
lesions, which form the bulk of the GM demyelination in
progressive MS, are especially hard to find at lower field
strengths (see Figure 1B) (Kilsdonk et al., 2016; Mainero
et al., 2015).
Despite these technical limitations, several imaging studies

have demonstrated that GM pathology is clinically relevant
to the study of cognitive deficits in MS. Calabrese and
colleagues found that, although patients may have similar
T2-weighted WMH loads, cognitively impaired patients had
more cortical lesions than patients who were cognitively
intact (Calabrese et al., 2009). Other studies have shown
strong correlations between cortical lesions and worse per-
formance on measures of information processing speed,
episodic memory, and learning capacity (Mike et al., 2011;
Nelson et al., 2011; Roosendaal et al., 2009, 2008).
Because of the difficulty in visualizing GM lesions with

current imaging technologies (Geurts et al., 2011), MS
researchers have focused on comparing GM and WM
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atrophy, measurements of which can be reliably reproduced
across imaging centers despite disease heterogeneity. In a
4-year longitudinal study, Fisher et al. (Fisher, Lee, Nakamura,
& Rudick, 2008) reported that WM atrophy increased
three-fold, but this rate of change was similar across disease
stages (relapsing-remitting, secondary progressive, and pri-
mary progressive MS, and clinically isolated syndrome).
In contrast, GM atrophy increased in proportion to disease
stage, that is, three-fold increase in early stage (clinically
isolated syndrome converting to relapsing remitting MS)
versus a 14-fold increase in late stage (secondary
progressive MS).
MRI-based atrophy measures have been assumed to reflect

a neurodegenerative process. This assumption was recently
confirmed using combined post-mortem whole-brain in situ
MRI imaging and histopathology in brain donors with
chronic MS (Popescu et al., 2015). Neuronal and axonal
pathology were identified as the predominant substrates of
MRI-measured cortical volume.
Furthermore, GM atrophy has been shown to be regionally

specific, with early volume loss of the thalamus and basal
ganglia, as well as within the limbic system (Audoin et al.,
2010; Bergsland et al., 2012; Schoonheim et al., 2012;
Zivadinov et al., 2013), and to be of relevance for under-
standing cognitive impairment (Damjanovic et al., 2017;
Preziosa et al., 2016; Tillema et al., 2016).
Regional GM atrophy appears to be topographically

associated with lesion pathology in the adjacent WM, but
only in relapse-onset MS. For primary progressive MS,
no such correlation was found (Riccitelli et al., 2011).
This, however, may be largely a technical issue, as a diffusion
tensor approach did show a spatial association between GM

atrophy and adjoining diffuse WM damage (Bodini et al.,
2009). The latter finding was later confirmed longitudinally
(Bodini et al., 2016), and it was suggested that WM damage
causes GM atrophy more so than the other way around.
While this may certainly be true, second-order effects may
start playing a role in later disease stages.
This means that WM lesions or more subtle WM damage

may initially lead to local GM damage, but later GM damage
will also be affected by connected, damaged cortical or deep
GM, leading to an increasing GM atrophy rate over time.
This would entail that WM damage will have less of an effect
on the total GM damage over time, which was indeed shown
(Steenwijk et al., 2016). In other words, GM damage
(demyelination and atrophy) seems to grow into an inde-
pendent pathological process, with potential implications for
the rate of progression of cognitive dysfunction.
Numerous studies have demonstrated correlations between

cognitive testing and brain volume measures (Batista et al.,
2012; Benedict, Ramasamy, Munschauer, Weinstock-Guttman,
& Zivadinov, 2009; Calabrese et al., 2009; Rao et al., 1985).
For example, Benedict and colleagues (Benedict et al., 2009;
Houtchens et al., 2007) showed that mesial temporal lobe
(hippocampus and amygdala) and deep GM (thalamus and
caudate) volumes correlated with recall and recognition
memory, respectively. Amato and colleagues showed that
overall normalized cortical volume was related to neuro-
psychological tests of verbal memory and fluency, as well as
attention/concentration (Amato et al., 2004).
In addition to structural imaging studies, functional MRI

(fMRI) is gaining increasing attention in the MS field.
Combining functional and structural imaging data are indis-
pensable to understanding the brain mechanisms responsible

Fig. 1. (A) Intracortical lesions and mixed GM and WM lesions are shown (arrows) using double inversion recovery MR images obtained
at 3 Tesla (T) field strength; reprinted with permission (Geurts, Calabrese, Fisher, & Rudick, 2012). (B) Post-mortem GM lesions detected
at 7T FLAIR and 7T T2* images and on histology, but not detected on 3T images; reprinted with permission (Kilsdonk et al., 2016).
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for cognitive decline. Researchers have begun to look at the
effects of MS related tissue changes on cognition, integrating
information from multimodal imaging and demonstrating
widespread functional network abnormalities to be present in
MS (Rocca et al., 2015).
As an example, thalamic volume together with thalamic

activation were identified as the best predictors of impaired
information processing speed and executive function in
RR-MS patients (Koini et al., 2016). In another fMRI
study involving recognition memory, WMH load was shown
to correlate positively with retrieval activation, but not with
encoding activation, suggesting that the retrieval stage is
more affected by disease burden than the encoding stage
(Bobholz et al., 2006).
However, subsequent work showed that the association

between brain pathology and retrieval difficulties was medi-
ated by the strength or integrity of initial learning (DeLuca,
Leavitt, Chiaravalloti, & Wylie, 2013). In a recent fMRI
study (Nelson et al., 2017), reduced activation of prefrontal
cortex was observed in cognitively impaired MS patients on a
working memory task compared to MS patients who were
cognitively intact.

NEUROPSYCHOLOGICAL ASSESSMENT

Beatty and colleagues demonstrated that frequently used tests
for senile dementia, including the Folstein Mini-Mental State
Exam (Folstein, Folstein, & McHugh, 1975), were insensi-
tive to MS cognitive disorders (Beatty & Goodkin, 1990).
Considerable effort has focused on identifying the most
psychometrically sound and valid tests for assessing cogni-
tion in MS, with the primary emphasis on the two domains,
processing speed and learning/memory, that are most com-
monly impaired based on large-scale, controlled neuro-
psychological studies. In 2001 (Benedict et al., 2002), a
consensus conference (including RHBB, SR, and JD) iden-
tified what was dubbed the Minimal Assessment of Cognitive
Function in MS (MACFIMS), a battery that is typically
administered in roughly 90 min. The MACFIMS was sub-
sequently validated in numerous studies (e.g., Benedict et al.,
2006).
The MACFIMS panel recognized several confounds to the

interpretation of neuropsychological data. Major depression
is related toWM and GM abnormalities in the frontotemporal
region (Feinstein et al., 2010, 2004), and likely accounts for
some impairment on cognitive testing (Arnett et al., 1994).
The influence of dysphoria among MS patients not in the
throes of a major depression episode is less certain. Fatigue,
another common subjective complaint is usually not corre-
lated with performance based neurocognitive test results
(Morrow, Weinstock-Guttman, Munschauer, Hojnacki, &
Benedict, 2009).
One cognitive test, in particular, the Symbol Digit Mod-

alities Test (SDMT) (Smith, 1982) has repeatedly been found
to be exceptionally reliable and sensitive, and correlated most
robustly with other outcomes, such as brain MRI metrics
and employment. As noted above, deep GM atrophy is a

particularly relevant MRI abnormality in MS. Third ventricle
widening and thalamus volume loss are robustly correlated
with SDMT performance defcits, even when analyses
account for the effects of depression and education (Benedict,
Carone, & Bakshi, 2004; Houtchens et al., 2007; Minagar
et al., 2013). As a result, the SDMT has figured prominently
in brief, widely used international monitoring tools (Benedict
et al., 2012) and composites for neurological performance in
clinical trials (Benedict et al., 2017). While the Brief
International Cognitive Assessment for MS (BICAMS) was
not designated a GM battery per se, deficits on the battery
are strongly correlated with deep GM atrophy (Batista
et al., 2012). A self-administered, computerized version
of the test has recently been adapted to the iPad platform
(Rao et al., 2017).
Surprisingly, well-controlled longitudinal studies of MS

cognitive function are few, and have yielded inconsistent
results. Considering the plethora of studies on brain MRI
abnormalities in MS, involving demyelinating lesions and
GM atrophy, one may wonder why more patients do not
suffer from cognitive impairment and evidence clear decline
within a few years. Part of the answer may reside in the
cognitive reserve theory which was first investigated in MS
by Sumowski and colleagues (Sumowski, Chiaravalloti,
Wylie, & Deluca, 2009).
In a cross-sectional study, the investigators showed that the

correlation between brain atrophy and cognitive function is
moderated by cognitive reserve (Sumowski et al., 2009). The
results were soon replicated in a longitudinal study showing
decline on SDMT over 5 years, only in patients with low
versus high cognitive reserve (Benedict, Morrow, Weinstock
Guttman, Cookfair, & Schretlen, 2010). Since then, other
aspects of reserve including estimated brain growth capacity,
leisure activities, and personality traits such as Neuroticism
and Conscientiousness have also been shown to influence the
trajectory of cognitive decline in this disease (Roy et al.,
2016; Sandroff, Schwartz, & DeLuca, 2016).
Traditionally, MS is not thought of as a chronic, pro-

gressive neurodegenerative disease, but a disease character-
ized by episodes of acute exacerbation followed by
remission. Until recently, MS relapses have been defined by
transient neurologic signs, not mental status changes. Seren-
dipitously, Morrow et al. discovered that during a year-long
observational study, including surveillance of mental status
by monthly SDMT assessments, relapses were in fact
accompanied by declines in SDMT (Morrow, Jurgensen,
Forrestal, Munchauer, & Benedict, 2011). Subsequently, in
studies including more carefully defined MS samples and
non-relapsing controls, neuropsychological assessments
demonstrate that cognitive relapses do occur (Benedict,
Rodgers, Emmert, Kininger, & Weinstock-Guttman, 2014;
Pardini et al., 2014), and that the patient recovery falls short
of baseline levels of function. In this way, neuropsychology
is providing an important tool for redefining MS disease
activity.
Some investigators have tried to better characterize the

nature of the cognitive disruption in MS. In a particularly
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creative study of episodic memory, DeLuca and colleagues
(DeLuca, Barbieri-Berger, & Johnson, 1994) found that the
primary MS deficit was in the acquisition or learning aspect
of memory performance. When MS patients and controls
were tested to a criterion level of performance, patients
required more learning trials, but then recalled and recog-
nized the learned information normally. In other words, the
episodic memory deficit was ameliorated by overcoming a
deficit in acquisition, subsequently found to be associated
with slowed processing speed and executive dysfunction. As
noted previously, while an fMRI study (Bobholz et al., 2006)
noted that lesion burden correlated more with activation
during retrieval than encoding, subsequent work found
that the strength of initial learning mediated the relationship
between brain atrophy and retrieval (DeLuca et al., 2013).
Future studies are needed to resolve these differences.

COGNITIVE DYSFUNCTION IN PEDIATRIC
MS

Traditionally, MS has been thought to be a disease of adult
onset. Until recently, neuropsychological studies focused
exclusively on adults with MS. In recent years, epidemiological
studies, with improved diagnostic criteria, have called attention
to pediatric onset MS, defined as symptoms beginning before
18 years of age. While relatively rare (only 2–5% of the
MS population), the majority of pediatric MS patients
(80–90%) are adolescents who have already reached puberty,
but children as young as 20–25 months can present with their
initial episode of MS (L.B.K.’s clinical practice; Sivaraman &
Moodley, 2016).
Cognitive deficits have been identified in approximately

one third of individuals, with the most prominent deficits in
motor and cognitive processing speed as well as in attention,
verbal and visual memory, expressive and receptive lan-
guage, and visuo-motor integration (Amato et al., 2014;
Charvet et al., 2014; Pardini et al., 2014; Till et al., 2013).
These studies suggest that language acquisition may be more
vulnerable to disruption in children than in adults with MS.
A recent multimodal imaging study (Rocca et al., 2014)

identified several brain MRI differences among pediatric MS
participants classified as cognitively preserved versus cog-
nitively impaired. The two groups differed most on verbal
and visual memory performance as measured by the Brief
Repeatable Neuropsychological Battery (Rao, 1991). On
multivariate analysis, cognitive impairment was linked to
diffusivity abnormalities in the cingulum and corpus callo-
sum, and reduced resting state functional connectivity of the
precuneus. Increases in resting state functional connectivity
of the anterior cingulate cortex were noted among cognitively
preserved pediatric MS participants relative to healthy con-
trols (Rocca et al., 2014).
Among pediatric-onset MS patients who underwent fMRI

while completing the SDMT (Akbar et al., 2016), those with
MS and normal performance showed increased activation in
the frontal lobes relative to healthy controls, with faster
response times associated with increased activation. The

increased activation could reflect adaptive changes used to
overcome MS associated brain injury.
Results from longitudinal studies of cognitive functioning

in pediatric MS have been variable. In a United States cohort
tested twice over a mean of 1.6 years, approximately one-
third were impaired relative to published normative data both
at baseline and at follow-up, but little change in test scores
occurred over time (Charvet et al., 2014). In contrast, among
an Italian cohort of pediatric MS patients serially assessed at
baseline and at 2 and 5 years, more than half declined at the
5-year follow-up (Amato et al., 2014).
In the only study in which the same set of both healthy

controls and pediatric MS patients were tested twice over
approximately 12 months (Till et al., 2013), healthy controls
compared to those with MS were much more likely to improve
on repeated testing (69% vs. 18%), with 25% of pediatric MS
demonstrating a decline in performance over time. Neither
clinical features nor neuroimaging findings predicted who
declined. However, those whose parents had 16 years or more
of education were more likely to show improvement. Taken
together, it is reasonable to conclude that many children and
adolescents with MS show cognitive deficits at any point in
time and that they are less likely than healthy controls to show
age appropriate gains on serial cognitive testing.
Cognitive difficulties take a toll. Interviews of the parents

with pediatric MS (Amato et al., 2014) uncovered that a third
(all of whom had cognitive impairment) were having serious
academic problems requiring grade retention or tutorial sup-
port (Amato et al., 2014). This study also showed that 75% of
cognitively impaired children experience negative effects
on family or social relationships. Other studies (Charvet,
Cersosimo, Schwarz, Belman, & Krupp, 2016) indicated
that pediatric MS patients with cognitive dysfunction are
more likely to report behavioral and emotional problems
than those without cognitive impairment. Securing support
services and special school accommodations can therefore be
very helpful.

COGNITIVE REHABILITATION

Given the frequency and severity of cognitive impairments in
MS and the impact on everyday life, the next question is its
rehabilitation. The latest Cochrane review (das Nair, Martin,
& Lincoln, 2016) indicates that there is significant support for
memory rehabilitation for immediate and long-term follow-
up, which significantly improves quality of life. For instance,
a randomized control trial by Chiaravalloti and colleagues
(Chiaravalloti, Moore, Nikelshpur, & DeLuca, 2013) pro-
vided class I evidence that a behavioral intervention (i.e.,
modified Story Memory Technique, mSMT) designed to
improve the acquisition of new learning, significantly
improved learning and memory as well as reported everyday
life functioning. Several other authors have shown similar
improvements from behavioral interventions in persons with
MS focusing on attention, working memory, and executive
functions (for a review, see Sandry, Akbar, Zuppichini, &
DeLuca, 2016).
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The success of the mSMT is based on the concept of
compensation or memory strategy training. Specifically,
persons with MS are trained to use specific techniques (i.e.,
context and imagery) to improve or strengthen the learning of
new information, thus improving retrieval. Several other
memory strategy training techniques have been shown to be
effective in improving the acquisition and retrieval of newly
learned information, including spaced learning, self-
generated learning, and retrieval practice (or the Testing
effect) (Sandry et al., 2016).
Other studies have focused on restoring or strengthening

cognitive constructs such as memory, attention and executive
functions, or even preventing cognitive decline by holding
it stable. Such restorative cognitive training programs
have primarily used computer interventions, including
home-based programs (Stuifbergen et al., 2012). The
majority of these studies have shown positive effects in
improving cognition (Sandry et al., 2016). However, such
computerized programs that have been designed to serve as
rehabilitation intervention tools must be distinguished from
commercially available programs that advertise cognitive
improvements. These products have generally not been
studied in persons with MS and, thus, should not be viewed
as rehabilitation or treatment (for a review, see Simons et al.,
2016).
Numerous studies have shown that cognitive rehabilitation

not only improves cognitive functions and everyday life
activity, but does so by promoting adaptive changes in brain
activity via neuroplasticity. For example, Chiaravalloti et al.
have shown that the cognitive and behavioral improvements
observed using the mSMT behavioral intervention was
associated with increased activity in several brain networks,
increased resting state functional connectivity between the
hippocampus and other brain structures, and that these
effects were maintained at long-term follow-up. There are now
dozens of research studies showing similar adaptive plasticity
changes following various types and forms of cognitive reha-
bilitation in persons with MS (for a review, see Chiaravalloti,
Genova, & DeLuca, 2015). How cognitive reserve, that is,
effects of early life experiences, moderates the outcomes
of cognitive rehabilitation has not received adequate attention
as yet.
Finally, there have been mixed, but generally negative,

results of pharmacological interventions to improve memory
in MS (Krupp et al., 2004, 2011; Morrow et al., 2013). Sev-
eral recent studies have focused on exercise as a means to
improve cognition in persons with MS. While promising,
definitive effects of exercise on cognition awaits further
research with improved methodological designs (Sandroff,
Motl, Scudder, & DeLuca, 2016). To date, cognitively based
interventions remain the most efficacious approach to treat-
ing cognitive impairment in persons with MS.

FUTURE DIRECTIONS

Much progress has been made in understanding the neu-
ropsychological aspects of MS over the past three decades

The authors have defined several areas of inquiry that may
define the field over the next decade.

Improved Detection of Cognitive Dysfunction in
the MS Clinic

Despite the existence of brief, reliable cognitive tests like the
SDMT, neuropsychological assessments are not uniformly
applied in MS clinics. Referrals for assessment are typically
generated by patient or caregiver reports of cognitive symp-
toms or the need to document impairment for disability
claims. Unfortunately, self-reported cognitive deficits exhibit
weak correlation with neuropsychological testing (Carone,
Benedict, Munschauer, Fishman, & Weinstock-Guttman,
2005; O’Brien et al., 2007) and healthcare professionals,
without the benefit of neuropsychological testing, are
also inaccurate in detecting the often subtle cognitive
deficits associated with MS (Romero, Shammi, & Feinstein,
2015).
That said, perspectives are changing (Langdon, 2016), and

we predict that MS clinics will increasingly use brief mea-
sures like the SDMT for screening purposes to detect subtle
progression of dementia or transient declines associated with
MS relapses. Computerized cognitive tests that are patient
self-administered are an attractive option for routine clinic
visits (for examples, see (Charvet, Shaw, Frontario, Langdon,
& Krupp, 2017; Rao et al., 2017). Another model involves
telemedicine in which cognitive tests are administered via
telephone or the Internet; for an example, see Barcellos et al.
(2017). Comparing routine tests to baseline measures might
identify “cognitive” exacerbations, monitor disease progres-
sion, and the baseline measures themselves may be used to
screen patients for the need for more comprehensive eva-
luation. With additional large-scale data collections, research
may demonstrate that the prevalence, severity, and long-
itudinal progression of cognitive dysfunction may be differ-
ent when we move from convenience sampling to whole
clinic populations.

Neuroimaging

Future studies will increasingly use approaches that
combine multiple structural (volumetrics, WM and GM
lesions, diffusion tensor imaging) and functional techniques
(task activation and resting state fMRI) to better understand
how MS disrupts the efficiency of interacting brain circuitry.
Longitudinal studies using such technologies will capture
the transition from adaptive to maladaptive cognitive
functions, thus providing a window to understanding how
the brain’s “functional reserve” becomes exhausted by
this disease.

Pediatric MS

An unresolved question is whether the disease affects the
course of adolescent brain development. Specifically, what
are the consequences of demyelination and inflammation in
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the context of ongoing myelination? With the emergence of
collaborative worldwide networks of pediatric MS centers,
we will see the emergence of controlled longitudinal studies
usingMRI, cognitive and academic testing, and quality of life
assessments on large samples of children and adolescents
with MS.

Cognitive Rehabilitation

Future work will focus on providing more class I studies
specifically aimed at questions such as proper dosage, time
when services should be provided (e.g., early vs. late),
examining longer term consequences, and the impact on
everyday life activities. The cognitive rehabilitation literature
has focused almost exclusively on relapsing-remitting MS
patients; future research will examine the effects on pro-
gressive MS patients. Ultimately, we believe rehabilitation of
cognitive functions in persons with MS will likely be a
combination of behavioral (cognitive and exercise) and
pharmacological approaches. But given the current lack of
evidence of pharmacological and exercise approaches, cog-
nitive rehabilitation is the current intervention of choice.
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