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Non-spectral Problem for Some Self-similar
Measures

Ye Wang, Xin-Han Dong, and Yue-Ping Jiang

Abstract. Suppose that 0 < ∣ρ∣ < 1 and m ⩾ 2 is an integer. Let µρ ,m be the self-similar measure
deûned by µρ ,m(⋅) = 1

m ∑
m−1
j=0 µρ ,m(ρ−1(⋅) − j). Assume that ρ = ±(q/p)1/r for some p, q, r ∈ N+

with (p, q) = 1 and (p,m) = 1. We prove that if (q,m) = 1, then there are at most m mutually
orthogonal exponential functions in L2(µρ ,m) andm is the best possible. If (q,m) > 1, then there are
any number of orthogonal exponential functions in L2(µρ ,m).

1 Introduction

Let µ be a Borel probability measure on Rd with compact support. We say that µ
is a spectral measure if there exists a discrete set Λ ⊂ Rd such that EΛ ∶= {e2πi⟨λ ,x⟩ ∶
λ ∈ Λ} forms an orthogonal basis of L2(µ). In this case, we call Λ a spectrum of µ
and (µ, Λ) a spectral pair, respectively.
A non-spectral measure µ belongs to one of the following two cases. In the ûrst

case, there exists an inûnite set of orthogonal exponential functions but no such set
forms a basis of L2(µ). In the second case, there are only ûnitely many orthogonal
exponential functions in L2(µ). For the second case, it is natural to investigate the
maximal cardinality of the orthogonal exponential functions in L2(µ). We study this
problem for one-dimensional self-similar measures.

he study of the spectral properties of self-similar measures started from the work
of Jorgensen and Pedersen [8]. hey constructed the ûrst example of a singular, non-
atomic spectral measure that is a Cantor-type measure and proved that there are only
ûnitelymany orthogonal exponential functions with respect to themiddle-third Can-
tor measure. his kind of problem has been studied extensively since then [3,6,11, 13–
15]. A well-known family of self-similar measures is the Bernoulli convolutions µρ
(0 < ρ < 1), which includes the classical Cantor measure and its variants [16]. Hu and
Lau [7] characterized when the ρ-Bernoulli convolutions admit an inûnite orthogo-
nal set of exponential functions, and Dai [1] proved that µ1/(2k) is the only class of
spectral measures for ρ-Bernoulli convolutions.
As a generalization of the Bernoulli convolutions, Dai, He, and Lau [2] studied

the spectral property of self-similar measures with consecutive digits and uniform
weights. Weuse µρ ,m to denote this type of self-similarmeasure, which is the invariant
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probability measure deûned as

µρ ,m( ⋅ ) =
1
m

m−1

∑
j=0

µρ ,m( ρ−1( ⋅ ) − j) ,(1.1)

where 0 < ∣ρ∣ < 1 and m ≥ 2. Deng [4] studied when L2(µρ ,m) admits an inûnite or-
thogonal set of exponential functions under the assumption thatm is a prime number.
In [17], the authors removed that assumption and obtained the followingmore general
conclusion.

heorem A ([17, heorem 1.1]) Let 0 < ∣ρ∣ < 1 and m ≥ 2 be an integer. Suppose that
µρ ,m is deûned by (1.1); then L2(µρ ,m) contains an inûnite orthonormal set of exponen-
tial functions if and only if ρ = ±(q/p)1/r for some p, q, r ∈ N+ with (p, q) = 1 and
(p,m) > 1.

We note that the above theorem indicates some connections between number the-
ory and spectral theory. It follows from heorem A that if (p,m) = 1, then every
orthogonal set of exponential functions in L2(µρ ,m) is ûnite. One can naturally ask:
What is themaximal cardinality of the orthogonal exponential functions in L2(µρ ,m)?
In fact, the origin of this kind of problem can be traced back to the study of non-
spectrality of the middle-third Cantor measure in [8]. here is a special interest in
studying non-spectral measures with only ûnitely many mutually orthogonal expo-
nential functions, like the existence of the Fourier frame. he ûrst examples of frame-
spectral fractal measures with only ûnitely many mutually orthogonal exponential
functions were constructed by Lai and Wang [12]. More recently, Dutkay et al. stud-
ied the existence of Riesz sequences with respect to non-spectral measures [5].

In this paper, we study the non-spectral property of µρ ,m for the case ρ = ±( q
p )

1/r

with (p,m) = 1, where µρ ,m is deûned as in (1.1). We ûrst introduce a necessary
deûnition.

Deûnition 1.1 ([14]) Let µ be a Borel probability measure with compact support on
R. Let Λ be a ûnite or countable subset ofR, and let EΛ = {e2πiλx ∶ λ ∈ Λ}. We denote
EΛ by E∗Λ if EΛ is a maximal orthogonal set of exponential functions in L2(µ). Let

n∗(µ) ∶= sup{#Λ ∶ E∗Λ is a maximal orthogonal set},

and call n∗(µ) the maximal cardinality of the orthogonal exponential functions in
L2(µ).

Our two main results are heorems 1.2 and 1.3. We obtain the following theorems
depending on whether (q,m) = 1 or (q,m) > 1. In heorem 1.2, we derive the con-
clusion that if (q,m) = 1, then the maximal cardinality of orthogonal exponential
functions in L2(µρ ,m) is m; in heorem 1.3, we show that if (q,m) > 1, then there are
any number of orthogonal exponential functions in L2(µρ ,m).

heorem 1.2 Let ρ = ±( q
p )

1/r for some p, q, r ∈ N+ with (p, q) = 1, q < p. Let m ≥ 2
be an integer with (p,m) = 1, (q,m) = 1 and µρ ,m be deûned as in (1.1). hen there are
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at most m mutually orthogonal exponential functions in L2(µρ ,m), and m is the best
possible.

heorem 1.3 Let ρ = ±(
q
p )

1/r for some p, q, r ∈ N+ with (p, q) = 1, q < p. Let
m ≥ 2 be an integer with (p,m) = 1, (q,m) = d > 1, and let µρ ,m be deûned as in (1.1).
hen there are any number of orthogonal exponential functions in L2(µρ ,m). Hence,
n∗(µρ ,m) = ∞.

his paper is organized as follows. In Section 2, we set up some important lemmas
to characterize the orthogonality of the set of exponential functions and give the proof
ofheorem 1.2. In Section 3, we proveheorem 1.3 by constructing an orthogonal set
of exponential functions with cardinality equal to N , where N is any given positive
integer.

2 The Proof of Theorem 1.2

Let µ̂(ξ) = ∫ e−2πi ξxdµ(x) be the Fourier transform of a measure µ and let Z(µ̂) =
{ξ ∶ µ̂(ξ) = 0} be the zero set of µ̂. hen

Z(µ̂ρ ,m) = {
l

mρk ∶ k ∈ N
+ , l ∈ Z ∖mZ} ,

where N+ is the set of positive integers. Let #Λ be the cardinality of a set Λ and
N0 = N+ ∪ {0} . In this paper, we use (a, b) to denote the greatest common divi-
sor between two positive integers a and b. Assume that p, q, r ∈ N+ with (p, q) = 1.
We call px r − q = 0 a minimal polynomial of ( q

p )
1/r if x r −

q
p = 0 is the minimal

polynomial of ( q
p )

1/r over Q.
he following lemma about the minimal polynomial will play a crucial role in the

proof of our main theorems. We believe that the lemma is of independent interest.

Lemma 2.1 Let p, q, r ∈ N+ with (p, q) = 1. If px r−q = 0 is not aminimal polynomial
of ( q

p )
1/r , then there exist p1 , q1 , r1 ∈ N+ with (p1 , q1) = 1, r1∣r and r1 < r such that

(
q
p )

1/r = ( q1
p1
)1/r1 and p1x r1 − q1 = 0 is a minimal polynomial of ( q1

p1
)1/r1 .

Proof Let r = αn1
1 α

n2
2 ⋅ ⋅ ⋅ αn t

t be the prime decomposition of r with all n j > 0 and
α j1 ≠ α j2 for diòerent j1 , j2. Let N = ∑

t
j=1 n j . Since q

p ∉ −4Q4, by [9, heorem 8.1.6],
we obtain that there exists some j1 ∈ {1, 2, . . . t}, such that q

p ∈ Q
α j1 . hen q

p = (
q1
p1
)α j1

for some p1 , q1 ∈ N+ with (p1 , q1) = 1. Let r1 = r
α j1

. Hence, ( q
p )

1/r = ( q1
p1
)1/r1 . We

consider whether p1x r1 − q1 = 0 is a minimal polynomial of ( q1
p1
)1/r1 .

Note that if p1x r1 − q1 = 0 is a minimal polynomial of ( q1
p1
)1/r1 , then the conclu-

sion follows. In the other case, arguing similarly as above, there exists some j2 ∈
{1, 2, . . . t}, such that q1

p1
∈ Qα j2 . herefore, q1

p1
= (

q2
p2
)α j2 for some p2 , q2 ∈ N+ with
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(p2 , q2) = 1. Let r2 = r1
α j2

= r
∏2

k=1 α jk
. hus,

(
q
p
)

1/r
= (

q1

p1
)

1/r1
= (

q2

p2
)
α j2 /r1

= (
q2

p2
)

1/r2
.

We consider whether p2x r2 − q2 = 0 is a minimal polynomial of ( q2
p2
)1/r2 . If it is, then

we derive the conclusion. If not, we continue the discussion as above. Without loss
of generality, we assume that through N − 1 steps, we obtain pN−1 , qN−1 ∈ N+ with
(pN−1 , qN−1) = 1 such that qN−2

pN−2
= (

qN−1
pN−1
)α jN−1 . Let rN−1 =

rN−2
αN−1

= r
∏N−1

k=1 α jk
. hus,

(
q
p )

1/r = ( qN−1
pN−1
)1/rN−1 .

If pN−1x rN−1−qN−1 = 0 is aminimal polynomial of ( qN−1
pN−1
)1/rN−1 , then the conclusion

follows. If not, then there exists some jN ∈ {1, 2, . . . t} such that qN−1
pN−1

∈ Qα jN ; i.e.,
there exist pN , qN ∈ N+ with (pN , qN) = 1, such that qN−1

pN−1
= (

qN
pN
)α jN . Let rN = rN−1

α jN
=

r
∏N

k=1 α jk
= 1; thus ( q

p )
1/r = ( qN

pN
)1/rN =

qN
pN

. Now we prove that pNx rN − qN = 0 is a

minimal polynomial of ( qN
pN
)1/rN , i.e., pNx − qN = 0 is a minimal polynomial of qN

pN
.

Since x − qN
pN

= 0 is an irreducible polynomial overQ, it is the minimal polynomial of
qN
pN

. Hence, the lemma follows. ∎

In the following, we characterize the orthogonality of the set of exponential func-
tions in L2(µρ ,m). We divide it into two cases. he conclusions are given in Lem-
mas 2.2 and 2.3 depending on whether px r − q = 0 is a minimal polynomial of ( q

p )
1/r .

Lemma 2.2 Let ρ = ±(
q
p )

1/r for some p, q, r ∈ N+ with (p, q) = 1, q < p. Let
m ≥ 2 be an integer with (p,m) = 1. Assume that Λ is a ûnite or countable subset of
R. If px r − q = 0 is a minimal polynomial of ( q

p )
1/r , then EΛ is an orthogonal set of

exponential functions in L2(µρ ,m) if and only if there exists an i ∈ {0, 1, . . . , r − 1} such
that (Λ − Λ) ∖ {0} ⊆ Zi , where

Z0 = {
l
m
(
p
q
)

n
∶ n ∈ N+ , l ∈ Z ∖mZ} ,

and

Zi = {
l
m
(
p
q
)

n
(
p
q
)

i/r
∶ n ∈ N0 , l ∈ Z ∖mZ} for i ∈ {1, 2, . . . r − 1}.

Proof It is easy to see that EΛ is an orthogonal set of exponential functions in
L2(µρ ,m) if and only if (Λ−Λ)∖{0} ⊂ Z(µ̂ρ ,m). Assume that (Λ−Λ)∖{0} ⊆ Zi for
some i ∈ {0, 1, . . . , r − 1}, where Zi is deûned as in the lemma. hen the suõciency
comes from the fact that Z(µ̂ρ ,m) = {

l
mρk ∶ k ∈ N+ , l ∈ Z ∖ mZ} = { l

m (
p
q )

k
r ∶ k ∈

N+ , l ∈ Z ∖mZ} = ⋃r−1
i=0 Zi .

Now we prove the necessity. Assume that EΛ is an orthogonal set of exponential
functions in L2(µρ ,m). hen (Λ−Λ)∖{0} ⊂ Z(µ̂ρ ,m). Without loss of generality, we
assume that 0 ∈ Λ. So we have

Λ ∖ {0} ⊂ (Λ − Λ) ∖ {0} ⊂ Z(µ̂ρ ,m) = {
l

mρk ∶ k ∈ N
+ , l ∈ Z ∖mZ} .
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Assume that λ1 and λ2 are any two distinct elements in Λ ∖ {0} with

λ1 =
l1

mρk1
and λ2 =

l2
mρk2

,

where k1 , k2 ∈ N+ and l1 , l2 ∈ Z ∖mZ. hen there exists λ3 =
l3

mρk3 ∈ Z(µ̂ρ ,m) where
l3 ∈ Z ∖mZ, such that λ1 − λ2 = λ3, i.e.,

λ1 − λ2 =
l1

mρk1
−

l2
mρk2

=
l3

mρk3
.

Let K = max{k j ∶ 1 ≤ j ≤ 3}. hen

l1ρK−k1 − l2ρK−k2 = l3ρK−k3 ;

i.e.,
l ′1 ∣ρ∣

K−k1 − l ′2∣ρ∣
K−k2 = l ′3∣ρ∣

K−k3 ,
where l ′j = (±1)K−K j l j ( j = 1, 2, 3). Since l ′j ∈ Z ∖ {0}, K − k j ≥ 0 ( j = 1, 2, 3) and
px r − q = 0 is a minimal polynomial of ( q

p )
1/r(= ∣ρ∣), by [4, Lemma 2.5], we have

K − k1 = K − k2 = K − k3 (mod r),

i.e., k1 = k2 = k3 (mod r). Denote k1 (mod r) by i. hus, we have λ1 , λ2 , λ1−λ2 ∈ Zi .
Since λ1 , λ2 are any two distinct elements in Λ ∖ {0}, the lemma follows. ∎

In fact, the conclusion of Lemma 2.2 also holds even if px r − q = 0 is not a min-
imal polynomial of ( q

p )
1/r . he only modiûcation we need is to substitute p, q, r by

p1 , q1 , r1, where p1 , q1 , r1 are deûned in Lemma 2.1. We provide a short proof in the
next lemma.

Lemma 2.3 Under the assumptions of Lemma 2.2, if px r − q = 0 is not a minimal
polynomial of ( q

p )
1/r , then let p1 , q1 , r1 be deûned as in Lemma 2.1. hen EΛ is an

orthogonal set of exponential functions in L2(µρ ,m) if and only if there exists a j ∈
{0, 1, . . . , r1 − 1} such that (Λ − Λ) ∖ {0} ⊆ Z̃ j , where

Z̃0 = {
l
m
(
p1

q1
)

n
∶ n ∈ N+ , l ∈ Z ∖mZ}

and

Z̃ j = {
l
m
(
p1

q1
)

n
(
p1

q1
)

j/r1
∶ n ∈ N0 , l ∈ Z ∖mZ} for j ∈ {1, 2, . . . r1 − 1}.

Proof From Lemma 2.1, we obtain p1 , q1 , r1 ∈ N+ with (p1 , q1) = 1, r1∣r and r1 < r.
Moreover, ( q

p )
1/r = ( q1

p1
)1/r1 . Since q < p, we have q1 < p1. Let α = r

r1
∈ N+. Now

(
q
p )

1/r = ( q1
p1
)1/r1 implies q

p = (
q1
p1
)α . hus, p = q

qα1
⋅ pα1 . Since p ∈ N+ and (p1 , q1) = 1,

we get qα1 ∣q. Let β =
q
qα1

∈ N+. Hence, p = βpα1 . Since (p,m) = 1, we have (p1 ,m) = 1.
Since ρ = ±(

q
p )

1/r = ±(
q1
p1
)1/r1 and p1x r1 − q1 = 0 is a minimal polynomial of

(
q1
p1
)1/r1 , the conclusion follows from Lemma 2.2. ∎
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Now we are ready to prove heorem 1.2. We divide the proof into two cases de-
pending on whether px r − q = 0 is a minimal polynomial of ( q

p )
1/r . In the ûrst case,

we ûrst prove that there are at most m mutually orthogonal exponential functions in
L2(µρ ,m) based on Lemma 2.2. hen prove that m is the best possible by constructing
an orthogonal set of exponential functions EΛ0 such that #EΛ0 = m. We prove that
the conclusion holds in the second case by applying Lemma 2.3 and using the result
in the ûrst case.

Proof of Theorem 1.2 We divide the proof into two cases.

Case 1: px r − q = 0 is a minimal polynomial of ( q
p )

1/r .
We ûrst prove that there are at most m mutually orthogonal exponential functions

in L2(µρ ,m). We prove this by contradiction. Assume that there are m + 1 mutually
orthogonal exponential functions in L2(µρ ,m) with exponent set Λ. Without loss of
generality, assume that 0 ∈ Λ. From Lemma 2.2, we see that

Λ ∖ {0} ⊂ (Λ − Λ) ∖ {0} ⊂ Zi ,

for some ûxed i ∈ {0, 1, . . . r − 1} with

Λ ∖ {0} = {λ1 , . . . , λm},

where λ j =
l j
m (

p
q )

n j(
p
q )

i/r . Let n = max{n j ∶ 1 ≤ j ≤ m}; then

Λ ∖ {0} =
1
m

1
qn (

p
q
)

i/r
{pn jqn−n j l j ∶ 1 ≤ j ≤ m} .

Let Λ′ = {pn jqn−n j l j ∶ 1 ≤ j ≤ m}. Since (p,m) = 1, (q,m) = 1, and m ∤ l , we have

m ∤ pn jqn−n j l j , ∀ j ∈ {1, 2, . . .m},

i.e.,
pn jqn−n j l j ≠ 0 (mod m).

Together with #Λ′ = m, we see that there exist at least two diòerent j1,
j2 ∈ {1, 2, . . .m}, such that

pn j1 qn−n j1 l j1 = pn j2 qn−n j2 l j2 (mod m).

So,

λ j1 − λ j2 =
1
m
(
p
q
)

i/r 1
qn (p

n j1 qn−n j1 l j1 − pn j2 qn−n j2 l j2) ∶=
1
m
(
p
q
)

i/r 1
qn km ∉ Zi ,

where k ∈ Z ∖ {0}. he last relation comes from (q,m) = 1 and the deûnition of Zi .
Since if there exists some λ = l

m (
p
q )

i/r( p
q )

n′ ∈ Zi , such that λ j1 − λ j2 = λ, then we
have

1
m
(
p
q
)

i/r 1
qn km =

l
m
(
p
q
)

i/r
(
p
q
)

n′

,

i.e., 1
qn km = (

p
q )

n′ l , hence qn′km = qn pn′ l . Since (p, q) = 1 and (p,m) = 1, we have
pn′ ∣ k and thus qn′k′m = qn l , where k′ ∈ Z ∖ {0}.

If n′ ≥ n, we have qn′−nk′m = l , which contradicts m ∤ l ; If n′ < n, we have
k′m = qn−n′ l . Since (q,m) = 1, we have k′′m = l for some k′′ ∈ Z ∖ {0}, which
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also contradicts the condition on l . Hence, there are at most m mutually orthogonal
exponential functions in L2(µρ ,m).

In the following, we prove thatm is the best possible by constructing an orthogonal
set of exponential functions with cardinality equal to m. Let

Λ0 = {0} ∪ {
j
m
(
p
q
)

t
(
p
q
)

i/r
∶ 1 ≤ j ≤ m − 1} ,

for some i ∈ {0, 1, . . . r− 1} and some t ∈ N+. It is easy to check that (Λ0−Λ0)∖{0} ⊂
Zi . hus, EΛ0 is an orthogonal set of exponential functions in L2(µρ ,m) by Lemma 2.2.
Hence m is the best possible.

Case 2: px r − q = 0 is not a minimal polynomial of ( q
p )

1/r .
Let p1 , q1 , r1 be as in Lemma 2.1. hen p1, q1, r1 ∈ N+, (p1 , q1) = 1 and r1∣r. Recall

from the proof of Lemma 2.3 that α = r
r1
∈ N+, β =

q
qα1

∈ N+. From q = βqα1 and
(q,m) = 1, we see that (q1 ,m) = 1. Also recall from the proof of Lemma 2.3 that
(p1 ,m) = 1 and q1 < p1.

Since ρ = ±(
q
p )

1/r = ±(
q1
p1
)1/r1 and p1x r1 − q1 = 0 is a minimal polynomial of

(
q1
p1
)1/r1 , by the result of Case 1, we see that there are at most m mutually orthogonal

exponential functions in L2(µρ ,m), and m is the best possible.
his completes the proof. ∎

3 Proof of Theorem 1.3

It follows fromheoremA that if (p,m) = 1, then every orthogonal set of exponential
functions in L2(µρ ,m) is ûnite. But to our surprise, there are any number of orthog-
onal exponential functions in L2(µρ ,m) under the assumption that (q,m) > 1. We
prove the conclusion by constructing an orthogonal set of exponential functions in
L2(µρ ,m) with cardinality equal to N , where N is any given positive integer. he con-
struction of such sets is divided into two cases depending on whether ( q

p )
1/r admits

px r − q = 0 as a minimal polynomial.
We ûrst introduce a deûnition that plays an important part in the construction of

such sets.

Deûnition 3.1 ([10]) Let n > 0, (a, n) = 1 and let s be the smallest positive integer
such that as = 1 (mod n); then s is called themultiplicative order of a (mod n).

Lemma 3.2 Under the assumptions of heorem 1.3, assume that px r − q = 0 is a
minimal polynomial of ( q

p )
1/r . For any given positive integer N, and for any given integer

i with i ∈ {0, 1, . . . , r − 1}, let

Λ∗ = {λn =
p(N+n)s

m
(
p
q
)

ns
(
p
q
)

i/r
∶ 1 ≤ n ≤ N} ⊂ Zi ,

where s is the multiplicative order of p (mod m), and Zi is deûned as in Lemma 2.2.
hen (Λ∗ − Λ∗) ∖ {0} ⊂ Zi .

https://doi.org/10.4153/S0008439519000304 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000304


Non-spectral Problem for Some Self-similar Measures 325

Proof Without loss of generality, we assume that i = 0. For any integers n1 , n2 with
1 ≤ n2 < n1 ≤ N , we have

λn1 − λn2 =
p(N+n1)s

m
(
p
q
)

n1 s
−

p(N+n2)s

m
(
p
q
)

n2 s

=
1
m
(
p
q
)

n1 s
(p(N+n1)s − p(N+n2)s ⋅ (

q
p
)
(n1−n2)s

)

=
1
m
(
p
q
)

n1 s
(p(N+n1)s − p(N+n2)s−(n1−n2)s ⋅ q(n1−n2)s)

=
1
m
(
p
q
)

n1 s
(p(N+n1)s − p(N−n1+2n2)s ⋅ q(n1−n2)s) .

In order to prove that λn1 − λn2 ∈ Z0, we only need to prove that

(3.1) p(N+n1)s − p(N−n1+2n2)s ⋅ q(n1−n2)s ≠ 0 (mod m).
Since ps (mod m) = 1, we have

(3.2) pks (mod m) = 1
holds for any positive integer k.

We claim that for any two positive integers a, b,

(3.3) pasqb = qb ≠ 1 (mod m).
We prove this by contradiction. Assume that qb (mod m) = 1; then there exists

some integer t, such that qb = tm + 1, i.e., qb − tm = 1. Since d ∣ q and d ∣ m, we have
d ∣ 1, which contradicts the fact that d > 1. Hence the claim follows.
From (3.2) and (3.3), we obtain that (3.1) holds. Hence,

λn1 − λn2 ∈ Z0 .
Since n1 and n2 are arbitrary, together with the property Z0 = −Z0, we obtain that
(Λ∗ − Λ∗) ∖ {0} ⊂ Z0 . ∎

If px r − q = 0 is not a minimal polynomial of ( q
p )

1/r , then let p1 , q1 , r1 be deûned
as in Lemma 2.1. Recall from the proof of Lemma 2.3 that (p1 ,m) = 1. We prove that
(q1 ,m) > 1 and then construct the set Λ̃∗ by using the conclusion of Lemma 3.2.

Lemma 3.3 Under the assumptions of heorem 1.3, if px r − q = 0 is not a minimal
polynomial of ( q

p )
1/r , let p1 , q1 , r1 be deûned as in Lemma 2.1. For any given positive

integer N, and for any given integer j with j ∈ {0, 1, . . . , r1 − 1}, let

Λ̃∗ = {λ̃n =
p(N+n)̃s
1

m
(
p1

q1
)

ns̃
(
p1

q1
)

j/r1
∶ 1 ≤ n ≤ N} ⊂ Z̃ j ,

where s̃ is the multiplicative order of p1 (mod m), and Z̃ j is deûned as in Lemma 2.3.
hen (Λ̃∗ − Λ̃∗) ∖ {0} ⊂ Z̃ j .

Proof From Lemma 2.1, we obtain that p1 , q1 , r1 ∈ N+ with (p1 , q1) = 1, r1∣r and
r1 < r. Moreover, ( q

p )
1/r = ( q1

p1
)1/r1 . Recall from the proof of Lemma 2.3 that α = r

r1
∈

N+, β =
q
qα1

∈ N+, and p = βpα1 . Since (p,m) = 1, we obtain that (β,m) = 1. From
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q = βqα1 and (q,m) > 1, we have (q1 ,m) > 1. Also recall from the proof of Lemma 2.3
that (p1 ,m) = 1 and q1 < p1.

Since ρ = ±( q
p )

1/r = ±( q1
p1
)1/r1 and p1x r

1 −q1 = 0 is aminimal polynomial of ( q1
p1
)1/r1 ,

from Lemma 3.2, we see that (Λ̃∗ − Λ̃∗) ∖ {0} ⊂ Z̃ j . ∎

Now we are ready to proveheorem 1.3.

Proof of Theorem 1.3 If px r −q = 0 is a minimal polynomial of ( q
p )

1/r , then for any
given positive integer N and for any given i ∈ {0, 1, . . . , r − 1}, let Λ∗ be deûned as
in Lemma 3.2. Since (Λ∗ − Λ∗) ∖ {0} ⊂ Zi , from Lemma 2.2, we see that EΛ∗ is an
orthogonal set in L2(µρ ,m) with #EΛ∗ = N , i.e., there are any number of orthogonal
exponential functions in L2(µρ ,m). Hence, n∗(µρ ,m) = ∞. he conclusion follows.

If px r − q = 0 is not a minimal polynomial of ( q
p )

1/r , then we can derive the same
conclusion from Lemmas 3.3 and 2.3. his completes the proof. ∎

Acknowledgments he authors would like to thank Professor Palle Jorgensen for
many valuable suggestions and Professor Jing-Cheng Liu for many helpful discus-
sions. he authors also would like to thank Dr. Sayan Das for helpful comments on
the presentation of this paper.

References

[1] X. R. Dai,When does a Bernoulli convolution admit a spectrum? Adv. Math. 231(2012), 1681–1693.
https://doi.org/10.1016/j.aim.2012.06.026

[2] X. R. Dai, X. G. He, and K. S. Lau, On spectral N-Bernoulli measures. Adv. Math. 259(2014), 511–531.
https://doi.org/10.1016/j.aim.2014.03.026

[3] X. R. Dai and Q. Y. Sun, Spectral measures with arbitrary Hausdorò dimensions. J. Funct. Anal.
268(2015), 2464–2477. https://doi.org/10.1016/j.jfa.2015.01.005

[4] Q. R. Deng, Spectrality of one dimensional self-similar measures with consecutive digits. J. Math. Anal.
Appl. 409(2014), 331–346. https://doi.org/10.1016/j.jmaa.2013.07.046

[5] D. Dutkay, S. Emami, and C. K. Lai, Existence and exactness of exponential Riesz sequences and
frames for fractal measures. arxiv:1809.06541

[6] D. Dutkay, D. Han, and Q. Y. Sun, On the spectra of a Cantor measure. Adv. Math. 221(2009),
251–276. https://doi.org/10.1016/j.aim.2008.12.007

[7] T. Y. Hu and K. S. Lau, Spectral property of the Bernoulli convolutions. Adv. Math. 219(2008),
554–567. https://doi.org/10.1016/j.aim.2008.05.004

[8] P. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L2-spaces. J. Anal. Math. 75(1998),
185–228. https://doi.org/10.1007/BF02788699

[9] G. Karpilovsky, Topics in ûeld theory. North-Holland Publishing Co., Amsterdam, 1989.
[10] Z. Ke and Q. Sun, Lectures of the theory of numbers. Higher Education Press, Beijing, 2003.
[11] I. Łaba and Y. Wang, On spectral Cantor measures. J. Funct. Anal. 193(2002), 409–420.

https://doi.org/10.1006/jfan.2001.3941
[12] C. K. Lai and Y. Wang, Non-spectral fractal measures with fourier frames. J. Fractal Geom. 4(2017),

305–327. https://doi.org/10.4171/JFG/52
[13] J. L. Li, Spectra of a class of self-aõne measures. J. Funct. Anal. 260(2011), 1086–1095.

https://doi.org/10.1016/j.jfa.2010.12.001
[14] J. C. Liu, X. H. Dong, and J. L. Li, Non-spectral problem for the planar self-aõne measures. J. Funct.

Anal. 273(2017), 705–720. https://doi.org/10.1016/j.jfa.2017.04.003
[15] R. Strichartz, Convergence of Mock Fourier series. J. Anal. Math. 99(2006), 333–353.

https://doi.org/10.1007/BF02789451
[16] B. Solomyak, Notes on Bernoulli convolutions. In: Fractal geometry and applications: A Jubilee of

Benoît Mandelbrot. Part 1. Proc. Sympos. Pure Math., 72, American Mathematical Society,
Providence, RI, 2004, pp. 207–230.

https://doi.org/10.4153/S0008439519000304 Published online by Cambridge University Press

https://doi.org/10.1016/j.aim.2012.06.026
https://doi.org/10.1016/j.aim.2012.06.026
https://doi.org/10.1016/j.aim.2014.03.026
https://doi.org/10.1016/j.aim.2014.03.026
https://doi.org/10.1016/j.jfa.2015.01.005
https://doi.org/10.1016/j.jmaa.2013.07.046
http://www.arxiv.org/abs/1809.06541
https://doi.org/10.1016/j.aim.2008.12.007
https://doi.org/10.1016/j.aim.2008.05.004
https://doi.org/10.1007/BF02788699
https://doi.org/10.1006/jfan.2001.3941
https://doi.org/10.1006/jfan.2001.3941
https://doi.org/10.4171/JFG/52
https://doi.org/10.1016/j.jfa.2010.12.001
https://doi.org/10.1016/j.jfa.2010.12.001
https://doi.org/10.1016/j.jfa.2017.04.003
https://doi.org/10.1007/BF02789451
https://doi.org/10.1007/BF02789451
https://doi.org/10.4153/S0008439519000304


Non-spectral Problem for Some Self-similar Measures 327

[17] Z. Y. Wang, Z. M. Wang, X. H. Dong, and P. F. Zhang, Orthogonal exponential functions of
self-similar measures with consecutive digits in R. J. Math. Anal. Appl. 467(2018), 1148–1152.
https://doi.org/10.1016/j.jmaa.2018.07.062

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P.R. China
and
Department of Mathematics, he University of Iowa, Iowa City, IA 52242, USA
e-mail : hnsdwangye@163.com

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P.R. China
e-mail : xhdonghnsd@163.com ypjiang731@163.com

https://doi.org/10.4153/S0008439519000304 Published online by Cambridge University Press

https://doi.org/10.1016/j.jmaa.2018.07.062
https://doi.org/10.1016/j.jmaa.2018.07.062
mailto:hnsdwangye@163.com
mailto:xhdonghnsd@163.com
mailto:ypjiang731@163.com
https://doi.org/10.4153/S0008439519000304

