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A low-dimensional Galerkin model is proposed for the flow around a high-lift
configuration, describing natural vortex shedding, the high-frequency actuated flow
with increased lift and transients between both states. The form of the dynamical
system has been derived from a generalized mean-field consideration. Steady state and
transient URANS (unsteady Reynolds-averaged Navier–Stokes) simulation data are
employed to derive the expansion modes and to calibrate the system parameters. The
model identifies the mean field as the mediator between the high-frequency actuation
and the low-frequency natural shedding instability.

1. Introduction
Periodic excitation is one of the fundamental tools of active flow control (see

for example Gad-el-Hak 1996, 2000; King 2007). In particular, separation of the
flow over airfoils at high angles of attack can be delayed using periodic actuation
(Seifert, Darabi & Wygnanski 1996; Amitay & Glezer 2002; Raju & Mittal 2002;
Collis et al. 2004; Becker et al. 2007). Effective options include high-frequency forcing
using synthetic jets and plasma actuators. A flow model of the actuated system is
desirable as a test-bed for physical understanding and is necessary for systematic
feedback control design. To be useful for feedback design, the model must be both
sufficiently simple for feasible real-time implementation, and yet robustly represent the
natural and actuated dynamics. In particular, models must be capable of representing
the cross-frequency interaction between high-frequency actuation and low-frequency
instabilities, and do so with the least feasible number of modes. The current paper
proposes a framework for such models. Separation control of the flow around a
high-lift configuration with high-frequency actuation serves as a benchmark for the
development of a least-order design model using proper orthogonal decomposition
(POD) and shift-modes (Noack et al. 2003).
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The high-lift configuration plays an essential role in the take-off and landing
performance of large commercial aircrafts, allowing lower landing and take-off speeds
and thus shorter runways. Conventionally, such a configuration consists of complex
heavy and expensive multi-element high-lift devices. Active separation control is
currently studied as a means for more compact and less heavy configurations,
or, alternatively, shorter takeoff and landing runs. In Günther et al. (2007) the
authors present an experimental and numerical investigation, showing that the
mean aerodynamic lift of a traditional three-element high-lift configuration can
be significantly enhanced by means of open-loop periodic excitation. As recently
shown by the authors (Pastoor et al. 2006; Henning et al. 2007; Pastoor et al. 2008),
the efficiency and efficacy of periodic actuation can be significantly improved by
closing the loop in flow control using sensor measurements. Building on these results,
the modelling framework suggested here is intended as an enabler for subsequent
model-based optimized and closed-loop design.

Low dimension and simplicity are key enablers in design-accessible flow models.
The Galerkin method, and more specifically, the POD Galerkin model (see Holmes,
Lumley & Berkooz 1998) is particularly appealing and widely used due to the
optimal efficiency in representing the dynamics of globally dominant coherent flow
structures. This strength is also a serious weakness when associated with periodic
zero-net-mass-flux actuation, such as the one considered in the current paper. One
issue is the fact that the interaction between the very local actuation and the globally
dominant coherent structures is mediated by a succession of small structures and
convective effects that the POD Galerkin framework is expressly designed to ignore.
For example, a direct inclusion of actuation, e.g. as a local volume force, will have
only a diminishingly small contribution to the Galerkin projection of the Navier–
Stokes equations onto the Galerkin basis. This is commonly addressed by identifying
the periodic actuation not with its immediate, local effect, but with locked-in forcing
effects on globally synchronized coherent structures associated with dynamics at the
actuation frequency (Noack, Tadmor & Morzyński 2004c). Time-scale separation
often allows to algebraically associate the forcing effect on the Fourier coefficients of
these modes with the direct and quadrature components of the actuation command.
The terminology is borrowed from power engineering, where the direct signal is
aligned with the sinusoidal reference, and the quadrature is time shifted by a quarter
period. The coefficients of this relationship, included in the control input term of
the actuated Galerkin model, are calibrated with empirical data as by Tadmor et al.
(2004).

A subsequent challenge arises when the actuation frequency is different, worse yet,
incommensurate with the frequency of the controlled phenomenon. Typically, the
actuation frequency is not harmonically related to the shear-layer frequency, and is
higher than the vortex-shedding frequency (Raju & Mittal 2002; Günther et al. 2007).
A low-dimensional model representing each of the leading harmonics by a mode pair
naturally accommodates amplitude and phase manipulations. Quadratic nonlinearity
allows to enrich this repertoire with frequency doubling and time variations. Yet, very
low-order models, based, e.g. on POD analysis of natural and actuated attractors, are
incapable of capturing the energy transfer between mode pairs that represent unrelated
frequencies. Even more so, the phase-independent open-loop stabilizing effect of
high-frequency actuation cannot be explained by direct mode interactions – even
when the actuation and the instability frequencies are harmonically related. This
difficulty is sharpened in the fairly common case, encountered in the current discussion,
where dominant coherent structures associated with different frequencies do not have
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significant spatial overlap. At the centre of the current developments is an outline
of the direct derivation of a mean-field model that accommodates multi-frequency
fluctuations, and of a subsequent counterpart in the Galerkin framework.

The model proposed in this note builds on the mean-field theory, as developed by
Noack et al. (2003). The underlying ideas trace back to Stuart’s work (1958), and
more recently, to Maurel, Pagneux & Wesfreid (1995) and Zielinska et al. (1997) where
the critical role of the time-varying base flow in saturating instabilities is elaborated.
The coupling between saturation amplitudes and base flow is communicated by the
Reynolds equation. This equation establishes the momentum balance between fast
fluctuations and base flow changes, captured by the Reynolds stress. Along with linear
instabilities, this energy balance is indeed a fundamental component of flow dynamics.
As shown by Noack et al. (2003) (see also Tadmor et al. 2007), mean-field dynamics
can be effectively captured by a single shift-mode, and its inclusion is essential to
a low-order (and minimum) POD Galerkin representation of natural transients and
subsequently to control-oriented models (Gerhard et al. 2003; Luchtenburg et al.
2006; Siegel et al. 2008).

Here, we postulate two mean-field modes, capturing energy exchanges between
mean flow structures and the fluctuations at the natural and the actuated frequencies.
The fact that fluctuations at the actuated frequency are naturally stable reflects, in this
context, a higher stabilizing effect of the mean-field changes induced at that frequency,
than those due to the natural instability. Consequently, the forced amplification of
the fluctuations at the actuated frequency, and of entailed base flow changes, leads
to the desired and observed attenuation of the natural instability. The mean-field
modes are therefore proposed as the missing component, mediating between the
high-frequency actuation and the natural lower frequency instability. The model is
validated and calibrated, using flow data of unsteady Reynolds-averaged Navier–
Stokes (URANS) simulations. As will be seen, the mean-field POD model is capable
to predict the effect of actuation on both the velocity field and on the associated lift
coefficient.

The paper is organized as follows. The benchmark system and its URANS
simulation are described in § 2. The mechanism of high-frequency forcing is elucidated
with an introductory example in § 3. The mean-field model is derived first in the
original context of the Navier–Stokes equation (NSE) in § 4. The least-order Galerkin
model that describes the transient and post-transient dynamics of the natural and
actuated flow is derived in § 5. In § 6, we compare the CFD simulation with the
prediction of the least-order Galerkin model. A discussion of the Galerkin-model is
provided in § 7. The main findings and their implications are summarized in § 8.

2. Numerical simulation
In this section, the benchmark simulation of the flow around the high-lift

configuration is outlined, including the configuration (§ 2.1), the simulation (§ 2.2)
and the flow properties (§ 2.3).

2.1. Configuration

We consider the incompressible two-dimensional flow over the swept constant chord
half (SCCH) high-lift configuration (see figure 1). This configuration is employed in
several experimental and numerical studies targeting passive and active flow control
(Kaepernick, Koop & Ehrenfried 2005; Schatz, Günther & Thiele 2006; Günther
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Figure 1. A sketch of the three-element high-lift configuration and the observation region for
the model. Periodic excitation (↔) is implemented at the upper part of the trailing edge flap.

et al. 2007). The control goal in these studies includes lift enhancement as well as
noise suppression.

The chord length of the configuration, with retracted high-lift devices, is denoted
by c. The three-component setup consists of a main airfoil equipped with a leading
edge slat and a trailing edge flap with relative chord lengths of csl = 0.158 c

and cf l = 0.254 c, respectively. Henceforth, all physical variables are assumed non-
dimensionalized with respect to the chord length c, the incoming flow velocity U∞
and the constant density ρ. The flow is considered at the Reynolds number of
Re = U∞ c/ν = 106 (ν: kinematic viscosity of the fluid). The slat deflection angle is
set to 26.5◦, the flap deflection angle to 37◦ and the angle of attack of the main wing
section is 6◦. At these conditions, the flow remains attached over the slat and the main
wing section, but is fully separated over the flap. Then, the wake is characterized by
the periodic generation and alternate shedding of leading and trailing edge vortices.

Periodic actuation is introduced via a zero-net-mass-flux actuator on a small wall
section at the upper side of the trailing edge flap. The imposed flow velocity is
orthogonal to the wall and is located at 0.04 c behind the leading edge of the flap
(see figure 1). The actuation velocity is prescribed by

b(t) = B cos (�at) , (2.1)

where �a is the angular actuation frequency and B the amplitude of actuation. This
frequency is given by

�a = 2πSta ,

where Sta = f ac/U∞ represents the Strouhal number with the actuation frequency
f a . The Strouhal number for natural (un-actuated) vortex-shedding frequency f n

is analogously defined, Stn = f nc/U∞. Experimental and computational studies
of flows around high-lift configurations often non-dimensionalize the frequencies
with the flap length cf l as opposed to the cord length c. Hence, we introduce
Stf l = f cf l/U∞ = (cf l/c)St with applicable superscripts ‘n’ and ‘a’ for later reference.

The actuation intensity is characterized by the non-dimensional momentum
coefficient

Cμ =
H

c

(
B

U∞

)2

,

where H is the slot width (H = 0.001238 cf l).
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(a) (b)

(c) (d )

(e) (f )

Figure 2. Comparison of a natural (a, c, e) and an actuated snapshot (b, d, f ). The top row
(a, b) shows a characteristic snapshot that is Reynolds decomposed into the respective attractor
mean (c, d ) and instantaneous fluctuation (e, f ). The flow field is visualized by streamlines.

2.2. Unsteady Reynolds-averaged Navier–Stokes simulation

The two-dimensional coherent structure dynamics are resolved by URANS equation.
Small-scale turbulent fluctuations are incorporated by the LLR k-ω model (Rung &
Thiele 1996). The URANS equation is discretized by an incompressible finite-volume
scheme of second-order accuracy in space and time. The numerical data used here
have been obtained with the numerical code ELAN developed at the Computational
Fluid Dynamics and Aeroacoustics Group (Professor F. Thiele) at the Berlin Institute
of Technology. The computational domain extends 15 c upstream, above and below
the airfoil and 25c downstream. This domain is discretized on a multi-block structured
mesh into 90 000 cells. The non-dimensional wall distance of the first cell centre is
kept below y+ = 1 over the entire surface.

2.3. Natural and periodically forced flow

The unactuated flow field around the trailing edge flap is characterized by massive
separation. The left side of figure 2 shows a characteristic snapshot and its Reynolds
decomposition. The dead-water zone is associated with periodic vortex shedding
above the upper surface of the flap. The spectrum of the lift coefficient reveals a
dominant Strouhal number of Stn

f l = f ncf l/U∞ = 0.32 corresponding to that vortex
shedding.

Actuation is added to the configuration at natural flow conditions. A parameter
study shows that, under periodic actuation, lift is maximized at a momentum
coefficient of Cμ = 400 × 10−5 and an excitation frequency of Sta

f l = 0.6. In this case,
the lift coefficient is increased by 19%. For the modelling task, we set Sta

f l = 0.6 and

Cμ = 114×10−5. This results in a lift increase of about 15% at an actuation frequency
that is 1.88 times larger than the natural shedding frequency, i.e. Sta

f l/Stn
f l = 1.88.

The effect on the flow field is the near complete attenuation of fluctuations at the
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natural frequency, and the emergence of a new attractor, locked-in on the actuation
frequency. The right side of figure 2 shows a characteristic snapshot of the actuated
flow. Spatially, the natural oscillations are most pronounced in the wake actuated
fluctuations are concentrated above and near the trailing edge flap.

3. Phenomenological modelling
In this section, the lift-increasing effect of high-frequency forcing is

phenomenologically modelled. Simple arguments will lead us to the same form of the
dynamical systems as a more elaborate derivation from the Navier–Stokes equation
in subsequent sections.

The dynamical system shall describe the following four aspects of the URANS
simulations:

(i) von Kármán vortex shedding without actuation;
(ii) lock-in shear-layer shedding under high-frequency forcing;
(iii) the transient from state (i) to state (ii) under forcing and
(iv) the transient from (ii) to (i) when forcing is turned off.

Oscillatory flows are characterized by an amplitude A and phase α. These quantities
can be considered as polar coordinates of the phase space (a1, a2) = A [cosα, sinα].
Superscripts ‘n’ and ‘a’ refer to the natural and actuated state, respectively.

The self-amplified amplitude-limited behaviour of vortex shedding may be described
by the Landau equation (Noack et al. 2003),

ȧn
1 = σ̃ n an

1 − ωn an
2 , (3.1a)

ȧn
2 = ωn an

1 + σ̃ n an
2 , (3.1b)

σ̃ n = σn − σn,n (An)2 , (3.1c)

where σn denotes the positive growth rate, σn,n the positive Landau constant and
as noted above, An =

√
(an

1 )
2 + (an

2 )
2 the amplitude. For reasons of simplicity, the

frequency ωn is assumed as constant.
The shear-layer dynamics is excited by high-frequency forcing with amplitude

B , phase β and frequency β̇ = ωa . The phase difference of the actuation signal
with respect to the oscillation of the flow is given by θ . This behaviour is most
easily represented by a linear damped oscillator with a periodic forcing at the
eigenfrequency:

ȧa
1 = σ a aa

1 − ωa aa
2 + g B cos(θ + β), (3.2a)

ȧa
2 = ωa aa

1 + σ a aa
2 + g B sin(θ + β). (3.2b)

Here, σ a denotes a negative growth-rate and g the gain of actuation.
We comprise both oscillations in a four-dimensional phase space

[a1, a2, a3, a4]
def
=

[
an

1 , an
2 , aa

1 , aa
2

]
with (3.1) and (3.2) governing the joint evolution of these variables. If B ≡ 0,
then a3 = a4 ≡ 0, and the resulting system describes the natural flow, according
to (i). By (ii), the oscillation at the natural frequency is suppressed when forcing
B > 0 is employed. This can be achieved by decreasing the growth rate of the
natural amplitude, eventually leading to damping, with the growth of the high-
frequency amplitude Aa =

√
(aa

1 )
2 + (aa

2 )
2. In complete analogy to the damping term

of Landau’s model, we add −σn,a (Aa)2 to (3.1c) following a similar reasoning (see
§ 4). The coefficient is chosen to be σn,a > σn/(Aa,a)2, where Aa,a is the constant
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Figure 3. Solution of the model problem (3.3) starting from the initial condition
[a1, a2, a3, a4] = [0.187, 0, 0, 0] with actuation. (a) The phase portrait of the first oscillator
(a1, a2); (b) the phase portrait (a3, a4) of the second oscillator.

value of the amplitude Aa at the forced state. This choice guarantees σ̃ n < 0 for all
An > 0 at Aa = Aa,a . Thus, the limit values a1 = a2 ≡ 0 are reached at the forced
state, according to (ii). In summary, the following system of two coupled oscillators
describes the observed behaviour of the natural and actuated states as well as the
transients between them, described by properties (i)–(iv):

ȧ1 = σ̃ na1 − ωna2, (3.3a)

ȧ2 = ωna1 + σ̃ na2, (3.3b)

ȧ3 = σ aa3 − ωaa4 + g B cos(θ + β), (3.3c)

ȧ4 = ωaa3 + σ aa4 + g B sin(θ + β), (3.3d)

σ̃ n = σn − σn,n (An)2 − σn,a (Aa)2 . (3.3e)

The reader is reminded that these equations will be analytically justified and re-
derived from the Navier–Stokes equation, in the following sections. For a qualitative
discussion, we adopt the identified parameters of table 3. Figure 3 shows a solution
of (3.3) for an actuated transient from natural to actuated state with periodic forcing
starting at time t = 0. The qualitative behaviour is as expected, exhibiting a decaying
natural oscillation and an excited forced one.

The competition between natural and actuated oscillators can be inferred from
(3.3e). During a slow transient, the time derivatives of the amplitudes An and Aa

are arbitrarily small and can be neglected, including σ̃ n = 0. Thus, the dependency
between both amplitudes is described by

σn = σn,n (An)2 + σn,a (Aa)2 . (3.4)

The associated energies are linearly related. One energy can only increase at the
expense of the other. Hence, the lift coefficient can be considered as a function of
either amplitude. From URANS data, it is observed to increase with the amplitude
of actuation.

Figure 4 shows the increase of Aa under forcing (figure 4a), corroborates
approximately (3.4) (see the quarter ellipse in figure 4b) – even for a fast transient –
and shows the increase of the lift during the transient (figure 4c).

4. Mean-field theory for multi-frequency fluctuations
Here, we discuss the structure of a mean-field model for our benchmark, as implied

by an analysis of the flow’s governing Navier–Stokes equation. The model will reveal
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Figure 4. Amplitude and lift dynamics for the transient displayed in figure 3. Note that (a)
Aa increases with time, (b) An decreases with increasing Aa and (c) cl increases with increasing
Aa . The non-monotonous behaviour of cl(A

a) is an overshoot phenomenon related to the fast
transient.

the role of mean-field dynamics in stabilizing an attractor and as a mediator between
high-frequency actuation and natural vortex shedding.

Starting with nomenclature, we denote the computational domain by � ⊂ �2.
Points in � are described in a Cartesian coordinate system, x = (x, y), where the
x-axis is aligned with the flow and the y-axis with the transverse direction. The origin
is at the leading edge of the configuration (with retracted high-lift devices). Similarly,
the velocity field is denoted by u = (u, v), where u and v are components aligned with
the x- and y-direction. The velocity field is embedded in the Hilbert space L2(�) of
square-integrable functions, associated with the standard inner product between two
vector fields f and g

( f , g)�
def
=

∫
�

dV f · g. (4.1)

For later reference, we define the inner product between two matrix-valued fields
A = (Aij ) and B = (Bij ),

(A, B)�
def
=

∫
�

dV A: B, (4.2)

where the colon ‘:’ denotes double contraction; here: A: B
def
=

∑2
i,j=1 AijBji . The norm

of a vector field is denoted by ‖ f ‖�
def
=

√
( f , f )�. In particular, the instantaneous

kinetic energy of a velocity field u is defined by K
def
= ‖u‖2

�/2.
The incompressible flow is governed by the equation of continuity

∇ · u = 0 (4.3)

and the Navier–Stokes equation

N [u]
def
= ∂t u + ∇ · (u ⊗ u) + ∇p − ν �u − ga = 0. (4.4)

Here, ν
def
= 1/Re is the non-dimensionalized kinematic viscosity, i.e. the reciprocal of

the Reynolds number. Boundary actuation effects the flow as an unsteady boundary
condition for the velocity field u. One example is the zero-net-mass-flux actuation
considered in this paper. For reasons of generality, a time-periodic and space-
dependent volume force ga(x, t) is also included. The Navier–Stokes operator N
is only a function of the velocity field, since the pressure field p is a function of the
velocity field – modulo a constant.

As a first element of mean-field theory, the ensemble average is introduced and
denoted by an overbar, e.g. u. An approximation of this Reynolds average may be
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the running average over a time period T ,

u(t) =
1

T

∫ T
2

− T
2

dτ u(t + τ ). (4.5)

A discussion of this computation is provided in Appendix A.
Based on the observed phenomenology of the flow, we make the following

simplifying assumption.

Assumption NSE 1 (A generalized Krylov–Bogoliubov ansatz). The velocity
field is dominated by the sum of a slowly varying base flow and two oscillatory
components which are nearly pure harmonics at the natural and the actuation frequency.
Other temporal harmonics are negligible. Thus,

u(x, t) = uB(x, t) + un(x, t) + ua(x, t), (4.6)

where the superscripts B, n and a are respectively used to denote terms related to the
slowly varying base flow component, to oscillations at the natural shedding frequency and
to oscillations at the actuation frequency. Here, uB satisfies the steady, inhomogeneous
boundary conditions, un the homogenized version and ua accounts for the residual to
the unsteady boundary conditions, in particular, those associated with the actuation.

This ansatz implies – in analogy to the Reynolds decomposition – that the
fluctuations have vanishing ensemble averages,

uB = uB, un = 0, ua = 0. (4.7)

Following Dus̆ek, Le Gal & Fraunié (1994), the assumed slow variation of the mean
flow and the oscillation amplitudes, frequencies and phase shifts can be formalized
by introducing a small parameter ε  1 and slowly varying amplitude functions uB

0 ,
un

1,2, ua
1,2, such that

uB(x, t) = uB
0 (x, εt), (4.8a)

un(x, t) = un
1(x, ε t) cos (�n t) + un

2(x, ε t) sin (�n t) , (4.8b)

ua(x, t) = ua
1(x, ε t) cos (�a t) + ua

2(x, ε t) sin (�a t) , (4.8c)

where the angular frequency is defined as � = 2πSt with applicable superscripts
‘n ’ and ‘a ’. The reciprocal of the small parameter, i.e. 1/ε, is assumed to be the
characteristic time scale on which the amplitude functions change. This ansatz implies,
for instance, that time derivatives of the amplitude functions are of order O(ε), which
shall be neglected in the present discussion.

A second simplifying assumption is

Assumption NSE 2 (A non-commensurability ansatz). There is no direct
interaction between un and ua via the quadratic Navier–Stokes term ∇ · (u ⊗ u).

This assumption is supported by the numerically observed fact that the natural and
actuated oscillations are not harmonically related by integral or half-integral ratios.
An even stronger corroboration comes from the observation that the activity regions
of these fluctuations rarely overlap. Finally, on each of the two respective attractors,
fluctuations in the other frequency are negligible.

We substitute the Krylov–Bogoliubov ansatz NSE 1 into the Navier–Stokes equation
and sort terms by the 0th harmonic and the first harmonics at frequency Stn and Sta .
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Employing the above approximations yields

0 = ∇ · (uB ⊗ uB) + ∇ · (un ⊗ un) + ∇ · (ua ⊗ ua) + ∇pB − ν �uB, (4.9a)

∂t un = −∇ · (un ⊗ uB) − ∇ · (uB ⊗ un) − ∇pn + ν �un, (4.9b)

∂t ua = −∇ · (ua ⊗ uB) − ∇ · (uB ⊗ ua) − ∇pa + ν �ua + ga. (4.9c)

Note that mixed quadratic terms such as ∇ · (ua ⊗ un) are eliminated in all equations.
In (4.9a), that elimination does not require assumption NSE 2 and can be obtained
for Stn �= Sta by the projection (A 1a), as explained in the Appendix.

In (4.9b, c), we invoke the simplifying assumption NSE 2. The temporal behaviours
of the quadratic terms ∇ · (uB ⊗ uB), ∇ · (un ⊗ un) and ∇ · (ua ⊗ ua) are characterized
by the zero and respective second harmonics of the two frequencies. These terms
are averaged out by the Krylov–Bogoliubov ansatz or can be filtered out by the
windowed projections (A 1b) and (A 1c) in the Appendix. This explains the absence
of these terms from (4.9b) and (4.9c). The terms (un ⊗ uB), (uB ⊗ un), (ua ⊗ uB) and
(uB ⊗ ua) are associated with time oscillations at the natural and actuated frequencies,
and are therefore invariant under the respective projections.

Together, the three coupled equations (4.9) constitute mean-field equations at the
Navier–Stokes equation level. This model is the cornerstone of the developments in
this paper and of the mean-field Galerkin model, that is developed in § 5. Contrary to
the original mean-field theory of Stuart (1958), we do not assume weakly nonlinear
instability and closeness to the steady Navier–Stokes solution.

We make the next two assumptions in preparation for the presentation of the
reduced-order Galerkin model.

Assumption NSE 3 (Phase invariance). The decomposition (4.6) is phase invariant.
By this we mean that the simplified dynamics (4.9) remains valid when un(x, t), ua(x, t)
and the actuation command b(t) are substituted by un(x, t + τn), ua(x, t + τa) and b(t +
τa) for arbitrary time shifts τn and τa . The actuation command may be the amplitude of
the volume force ga or the employed boundary actuator.

Note that only relative time shifts between the three components are significant.
Hence, there is no added generality if we allow time shift also in the base flow
(i.e. such a time shift can be factored out by shifting the entire time axis). We
call this hypothesis phase invariance since time shifts are immediately translated to
independent phase shifts of oscillations in the respective two frequencies. We do not
assume arbitrary phase shifts between the actuation b and ua , since ua is interacting
with, and eventually locked in, on the actuation. The phase invariance hypothesis
is feasible due to the lack of direct phase-dependent interactions between the two
oscillatory flow components. It is often a reasonable approximation in POD models for
vortex-shedding phenomena. Phase invariance assures that the averaging procedure
implied in the simplified dynamics (4.9) yields meaningful results. Counter examples
of non-phase-invariant systems are provided in Noack & Copeland (2000).

Assumption NSE 4 (Linearized Reynolds equation). We assume that the
Reynolds equation (4.9a) can be linearized around the steady solution us . Let uB =
us + u. The linearized Reynolds equation for the mean-field correction u is obtained
by substitution in (4.9a), subtracting the steady Navier–Stokes equation and neglecting
quadratic terms in u:

0 = ∇ · (us ⊗ u) + ∇ · (u ⊗ us) + ∇ · (un ⊗ un) + ∇ · (ua ⊗ ua) + ∇p − ν �u. (4.10)
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This assumption implies that there is a linear relationship between the Reynolds
stresses and the mean-field correction. The mere purpose of this assumption is to
simplify expressions in the Galerkin model we shall present in § 5. It is stressed that
our results readily extend to the more general case, where we appeal to the nonlinear
Reynolds equation in its original form. The price paid for that generality is the
inclusion of higher-order terms in the expression for the mean-field correction, as will
be explained in § 5.

We conclude highlighting some significant observations associated with the mean-
field equations (4.9).

(i) The dynamic base flow is effected by two independent Reynolds stresses (hence
vector field orientations) yielding the volume forces ∇ · (un ⊗ un) and ∇ · (ua ⊗ ua).

(ii) In the un-actuated natural flow, ua is negligible. In that case, the mean-field
model highlights the dynamic interactions and energy exchange between the base flow
uB and the periodic fluctuation u′ = un. The latter induces a mean-field change u

via the respective Reynolds-stress term, whereas the former acts as either a stabilizing
agent for high-level fluctuations or a destabilizing agent for a nearly steady flow, via
the terms ∇ ·

(
un ⊗ uB + uB ⊗ un

)
. Over the attractor, the flow balances this two-way

energy exchange with dissipation. This is the essence of the traditional mean-field
model, and the basis for the development of the mean-field Galerkin model in Noack
et al. (2003).

(iii) The mechanism by which ua interacts with the mean-field is structured in
complete analogy to the natural instability. However, the fact that ua is negligible
without actuation suggests that the total power into ua from production, dissipation
and convection alone acts as a sink and that actuation power is required to maintain
the lock-in oscillation. In particular, the Reynolds stress due to ua gives rise to
base flow changes that do not change this stabilizing, energy absorbing effect
on ua .

(iv) Of the three equations (4.9a), (4.9b) and (4.9c), the actuated unsteady boundary
condition as well as volume force actuator effects directly only (4.9c). The actuation-
induced oscillations in ua can interact with (and suppress) the instability at the natural
frequency, only by using the varying base flow uB as a mediating agent. The Reynolds
stress due to the excited ua changes uB , and the change in uB has a stabilizing effect
on un, despite the counter-acting effect of un on uB , via its own Reynolds-stress
contribution. This key observation therefore provides the sought mechanism for
cross-frequency actuation. In particular, it explains the phase independence of this
stabilizing effect, hence the ability to suppress shedding with open-loop actuation.

Our decomposition of the flow field into a base flow and two non-commensurable
frequency contributions is formally very similar to the triple decomposition in
Reynolds & Hussain (1972) into the base flow, the coherent-structure contribution
and the stochastic contribution. Not surprisingly, the balance equations for the triple
decomposition are equivalent at steady-state condition.

5. Mean-field Galerkin model
In this section, the mean-field model of § 4 is transcribed into the least-order

Galerkin model that is capable to resolve the key flow processes in our benchmark.
The discussion begins with a brief review of the Galerkin method in § 5.1. In § 5.2, we
discuss the implications of the mean-field model on a Galerkin approximation with
a minimal number of modes. The associated Galerkin system of ordinary differential
equations is derived in § 5.3.
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5.1. The Galerkin method

The Galerkin method (see, e.g. Ladyzhenskaya 1963; Fletcher 1984; Holmes et al.
1998) is based on a Galerkin expansion of the form

u(x, t) =

N∑
i=0

ai(t) ui(x), (5.1)

where u0(x) is a steady base flow (e.g. the attractor mean or the steady solution
of the Navier–Stokes equation) and {ui}N

i=1 ⊂ L2(�) is an orthonormal basis. Time
dependency is described by the Fourier coefficients ai . Following a notation of
Rempfer & Fasel (1994), a0 ≡ 1 by definition.

One common mode selection is obtained from the empirical POD (see, e.g. Holmes
et al. 1998). It is optimal in the sense that it extracts the most energetic structures
from a known flow solution. In the mathematical approach (Noack & Eckelmann
1994), completeness of the Galerkin expansion is guaranteed. The physical method
(e.g. Rummler 2000) utilizes stability eigenmodes, thus economically describing linear
behaviour.

An ordinary differential equation governing the Fourier coefficients ai(t) is
obtained by substituting (5.1) into the Navier–Stokes equation (4.4) (actuation is
not considered), and projecting onto the subspace spanned by the expansion modes:

(N [u(x, t)] , ui(x))� = 0 for i = 1, . . . , N. (5.2)

The resulting Galerkin system is quadratically nonlinear

d

dt
ai = ν

N∑
j=0

lij aj +

N∑
j,k=0

qijk aj ak for i = 1, . . . , N. (5.3)

Table 1 provides the derivation of the coefficients lij and qijk . The contribution of
the pressure term to the Galerkin system (last row in table 1) is neglected, since for
absolutely unstable wake flows this term is relatively small (see, e.g. Noack, Papas &
Monkewitz 2005). Alternatively, since the pressure term does not change the model
structure, it can be lumped in the other coefficients.

In vector notation, the system reads

d

dt
a = c + L(a) + Q(a, a), (5.4)

where we use the vector notations a
def
= [a1, . . . , aN ]T , c

def
= [c1, . . . , cN ]T and

c|i
def
= νli0 + qi00, L(a)|i

def
=

N∑
j=1

(νlij + qi0j + qij0) aj , Q(a, a)|i
def
=

N∑
j,k=1

qijk ajak.

Truncation effects and numerical issues may result with substantial distortions of
the predicted dynamics. Such distortions can be resolved by calibration methods
(Galletti et al. 2004; Tadmor et al. 2004; Ausseur & Pinier 2005; Favier, Cordier &
Kourta in press).

A Galerkin model of the boundary-actuated flow is challenging. A standard
POD procedure slaves boundary unsteadiness with flow unsteadiness, i.e. boundary
actuation is predicted by the dynamical system and cannot be imposed as actuation
command. Most subdomain POD models fall in this category. Examples exist for
the transitional boundary layer (Rempfer & Fasel 1994), the laminar and transitional
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NSE NSE with Galerkin Galerkin Simplified
u = u0 + u′ projection system nomenclature

∂t u = ∂t u′= (ui , ∂t u′)� =
d

dt
ai =

d

dt
ai =

−∇ · [u ⊗ u] −∇ · [u0 ⊗ u0] − (ui , ∇ · [u0 ⊗ u0])� qc
i00

−∇ · [u′ ⊗ u0] − (ui , ∇ · [u′ ⊗ u0])� +
N∑

j=1

qc
ij0aj

−∇ · [u0 ⊗ u′] − (ui , ∇ · [u0 ⊗ u′])� +
N∑

j=1

qc
i0j aj

−∇ · [u′ ⊗ u′] − (ui , ∇ · [u′ ⊗ u′])� +
N∑

j,k=1

qc
ijkaj ak

N∑
j,k=0

qc
ijkaj ak

+ν�u +ν�u0 +ν (ui , �u0)� +νli0

+ν�u′ +ν (ui , �u′)� +ν
N∑

j=1

lij aj +ν
N∑

j=0

lij aj

−∇p −∇p0 − (ui , ∇p0)� +q
p

i00

−∇p′ − (ui , ∇p′)� +
N∑

j,k=0
j+k>0

q
p
ijkaj ak +

N∑
j,k=0

q
p
ijkaj ak

Table 1. Derivation of the Galerkin system (GS). In each column the terms of the
Navier–Stokes equation (NSE) are enlisted. The rows show the local acceleration, convective
acceleration, viscous and pressure term. From left to right, the NSE is transformed into the
GS in five steps: (i) NSE in its original form, (ii) NSE after Reynolds decomposition, (iii)
Galerkin projection, (iv) GS and (v) a simplified nomenclature of the GS employing a0 ≡ 1.
The Galerkin projection of the pressure term is derived in Noack et al. (2005).

shear layer (Noack et al. 2005) and the turbulent mixing layer (Ukeiley et al. 2001;
Noack et al. 2004a).

Boundary actuation is generally not derivable from the Galerkin projection, since
this projection is explicitly designed to ignore boundary perturbations that are defined
over a set of measure zero. However, on the Galerkin approximation level, boundary
effects can be incorporated by additional actuation modes with imposed amplitudes.
This technique has been employed in mathematical Galerkin models for decades
(Ladyzhenskaya 1963; Hu et al. 1996). Recently, actuation modes have also been
incorporated in the POD pendant, e.g. for wakes behind rotating and oscillating
cylinders (Graham, Peraire & Tang 1999; Noack, Tadmor & Morzyński 2004b;
Bergmann, Cordier & Brancher 2005) and for forced synthetic jets (Rediniotis, Ko &
Kurdila 2002). The added control term in the Galerkin system (5.4) is state dependent
and includes both the control command and its time derivative.

In the current discussion as in the generic case of periodic boundary actuation,
the control command is restricted to be oscillatory with slowly varying periodic
characteristics. In this case, the effect of forcing on the flow is often modelled by a
forcing term B b with actuation command b, as, e.g. in Siegel, Cohen & McLaughlin
(2003), Rowley & Juttijudata (2005); Samimy et al. (2007). Here, we follow this
example and employ a constant matrix B. As in (2.1), we focus on a periodic actuator
where the velocity b = B cos(β) satisfies dβ/dt = �a with a slowly varying amplitude
B and phase shift β − �a t . The acceleration reads db/dt = −�a B sin(β). The
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command and its derivative are comprised in

b
def
=

⎡
⎣ b

−db/dt

�a

⎤
⎦ = B

[
cos(β)

sin(β)

]
. (5.5)

This convention allows to identify time and phase shifts in the control vector. The
resulting terms contain the most important subset of the forcing terms induced by
the actuation mode (Noack et al. 2004b). In summary, the actuated Galerkin system
reads

d

dt
a = c + L(a) + Q(a, a) + B b. (5.6)

The physical justification of this form is given in § 7.3.
Following the literature, we assume that the same form can be employed for

the URANS equations. Indeed, most POD models follow the URANS turbulence
modelling philosophy by incorporating fine-scale fluctuations via one additional eddy
viscosity (e.g. Aubry et al. 1988; Ukeiley et al. 2001), or via a modal eddy viscosity
distribution (e.g. Rempfer & Fasel 1994; Couplet, Sagaut & Basdevant 2003). Some
authors (e.g. Galletti et al. 2004) add a calibrated linear term. All these auxiliary
models affect only the coefficients of the linear term L(a), not the very form of (5.6).
The issue of turbulence modelling is re-visited in § 7.1.

5.2. The least-order Galerkin approximation

The least-order Galerkin approximation builds on the assumption NSE 1. We
therefore look for modes which resolve the three flow contributions uB , un and
ua in (4.6). Optimal resolution of un and ua over the natural and the actuated
attractors, where these fluctuations are respectively most prominent, is achieved by
POD expansions.

Indeed, let un
i and ua

i , i = 1, 2, be the dominant POD modes of these two attractors.
We merge these four modes in an orthonormal basis {ui}4

i=1 via Gram–Schmidt
normalization, so that ui = un

i , ui+2 = ua
i , i = 1, 2. As seen in figure 6, the modes ua

i

reach peek fluctuation over and near the airfoil whereas the fluctuations represented
by un

i are concentrated further downstream. This fact, along with the differences in
the respective wavelengths imply that the two mode pairs are nearly orthogonal, to
begin with, and the orthogonalization effect is minimal. We shall therefore maintain
the association of the respective Fourier coefficient pairs with the natural and the
actuated frequencies:

an = a1 e1 + a2 e2, aa = a3 e3 + a4 e4,

where ei
def
= [δi,1, . . . , δi,N ]T is a unit vector in the ith direction and where we use the

approximations

un(x, t) =

2∑
i=1

ai(t) ui(x), ua(x, t) =

4∑
i=3

ai(t) ui(x).

In Noack et al. (2003), the effect of the Reynolds stress due to the natural oscillations
is represented by a shift-mode u ∝ un

0 − us , where us is the steady Navier–Stokes
solution and un

0 is the mean of the natural attractor. For later use, we introduce also
the corresponding notation of the mean of the actuated attractor, ua

0. We shall follow
this example and relate to an approximation of the time-varying base flow using two
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u0
n

aΔuΔ

a5 uΔ
n

us

a6 uΔ
a

u0
a

Figure 5. The relation between the steady solution and mean flows corresponding to the
natural and actuated attractor. The steady solution us and the mean of the natural flow
un

0 and actuated pendant ua
0 are depicted as solid circles. The shift-modes un

, ua
 are the

vectors pointing from the steady solution to the natural and actuated mean flow, respectively.
The normalized difference between the actuated and natural mean flows, denoted by u,
corresponds to the shift-mode in figure 6(b).

shift-modes corresponding to the two attractors of interest,

uB(x, t) = us(x) + u(x, t) = us(x) + a5(t) u5(x) + a6(t) u6(x), (5.7)

where {ui}6
i=5 are derived by a Gram–Schmidt orthogonalization from un

 ∝ un
0 − us

and ua
 ∝ ua

0 − us , removing also any projection over {ui}4
i=1. The Fourier coefficients

of the two shift-modes are also collected in a column vector,

aB = a5 e5 + a6 e6.

The two mean flows un
0 and ua

0 are approximated by the respective initial and terminal
values of the time-varying base flow uB trajectory in transients connecting the two
attractors. Thus, the relevant linear approximation of the base flow is

uB(x, t) = un
0(x) + a(t) u(x), (5.8)

where u
def
= (ua

0 − un
0)/‖ua

0 − un
0‖�. Figure 5 provides a schematic depiction of the

resolution of the difference between the two mean flows.
The actual computation of {ui}6

i=5 necessitates the difficult extraction of an unstable
steady solution. In fact, we did not explicitly compute these modes. Invoking (5.8)
instead of (5.7), the velocity field of the URANS data was approximated by the
expression

u(x, t) = un
0(x) + a(t) u(x) +

4∑
i=1

ai(t) ui(x). (5.9)

Nonetheless, expression (5.7) with both shift modes is still included in the formal
Galerkin expansion that is used in the derivation of the Galerkin system, in § 5.3,

u(x, t) = us(x) +

6∑
i=1

ai(t) ui(x). (5.10)

Since the Galerkin system coefficients will be obtained by a calibration method,
using empirical data, the main purpose of (5.10) is to understand the implications
on simplifying, special aspects of the structure of the Galerkin system, that will be
utilized to facilitate system parameter estimation.

Decomposition (5.9) of the velocity field is schematically illustrated in figure 6.
On the left, the mean of the natural and actuated flow, un

0 and ua
0 respectively,
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Mean-flow modes Phase portrait Oscillatory (POD) modes

(a) Natural mean flow (d )

(e)

(b) Shift mode

(c) Actuated mean flow
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Figure 6. Principal sketch of the dynamics of a natural and actuated flow around a high-lift
configuration. The flow is visualized by contour lines of the vertical velocity component,
where continuous (dashed) lines indicate positive (negative) values. The depicted domain is
the observation region indicated in figure 1. On the left, the mean fields of the natural (a)
and actuated flow (c) are depicted. The shift-mode u (b) is the normalized difference between
them. On the right, the POD modes u1, u2 of the natural- (d) and of the actuated flow u3, u4

(e) are visualized. The middle column shows the phase portrait of the model, where the natural
(actuated) attractor is depicted as the limit cycle spanned by a1, a2 (a3, a4). The actuated
transient is from top to bottom and the natural transient vice versa.

along with the connecting (normalized) shift-mode u ∝ un
0 − ua

0 is depicted. Modes
representing the fluctuations are depicted on the right. Those include the first two
POD modes of the natural and actuated attractor, u1,2 and u3,4, respectively. The
phase portrait of the Fourier coefficients ai is shown in the middle. A model based on
this approximation accommodates the key physical phenomena of interest, including
the natural and actuated limit cycles with their respective base flows, and transients
between them. During an actuated transient, the coefficients representing the natural
oscillator decay from their natural values to (near) zero at the actuated attractor,
whereas the coefficients corresponding to the actuated oscillator grow from zero to
their values on the actuated attractor.

5.3. The least-order Galerkin system

The least-order Galerkin system is obtained by substitution of the approximation
(5.10) into the mean-field Navier–Stokes equations (4.9b, c) and (4.10), followed by
a Galerkin projection of these equations on the expansion modes. Table 2 illustrates
the derivation of the Galerkin system. In particular, we present the Galerkin system
corresponding to the mean-field equation (4.9b) in table 2. The remaining four
equations are derived in a similar fashion.
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NSE (4.9b) GS

∂t un = d
dt

ai = i ∈ I

−∇ ·
[
un ⊗ uB

] ∑
j∈I

∑
k∈K

qijkaj ak

−∇ ·
[
uB ⊗ un

]
+

∑
j∈K

∑
k∈I

qijkaj ak

+ν�un +ν
2∑

j=1

lij aj

−∇pn + 0

Table 2. Projection of the mean-field Navier–Stokes equation (4.9b) (NSE) to form the
Galerkin system (GS) using the least-order approximation (5.10). In the first column the terms
of the NSE are provided and in the second one the corresponding GS counterparts. The
employed index sets are I = {1, 2} and K = {5, 6}.

The complete Galerkin system can be summarized in vector notation,

d

dt
an = L(an) + Q(aB, an) + Q(an, aB), (5.11a)

d

dt
aa = L(aa) + Q(aB, aa) + Q(aa, aB) + B b, (5.11b)

0 = L(aB) + Q(an, an) + Q(aa, aa). (5.11c)

Here, we slightly abuse notations, identifying an and aa with the respective �2

vectors [a1, a2]
T and [a3, a4]

T . The notational polymorphism extends to the matrix
coefficients: in (5.6), B represents a 6 × 2 matrix whereas in (5.11b) the same notation
denotes the non-vanishing 2 × 2 sub-matrix.

In Appendix B we show that under the current assumptions and the assumption of
phase invariance (NSE 3) the mean-field Galerkin system has the following structure:

d

dt

⎡
⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ̃ n −ω̃n 0 0

ω̃n σ̃ n 0 0

0 0 σ̃ a −ω̃a

0 0 ω̃a σ̃ a

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2

a3

a4

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 0

0 0

κ −λ

λ κ

⎤
⎥⎥⎥⎦ b, (5.12)

where the state-dependent coefficients are of the form

σ̃ n = σn − σn,n (An)2 − σn,a (Aa)2 ,

ω̃n = ωn + ωn,n (An)2 + ωn,a (Aa)2 ,

σ̃ a = σ a − σ a,n (An)2 − σ a,a (Aa)2 ,

ω̃a = ωa + ωa,n (An)2 + ωa,a (Aa)2 ,

(5.13)

and An def
= ‖an‖ and Aa def

= ‖aa‖ are the respective oscillation amplitudes. Without the
linearization assumption NSE 4, the parameters are represented by a Taylor series in
(An)2 and (Aa)2.

5.4. Discussion of the dynamical system

In this section, dynamical system (5.12) is analysed in more detail. The assumed phase
invariance and lock-in of the actuation response enable a notational simplification of
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the system by transforming to polar coordinates. The discussion leads to algebraic
constraints of the system parameters. In addition, we further simplify the dynamical
system.

The natural fluctuation an is characterized by the amplitude An and phase αn.
Similarly, polar coordinates of the forced fluctuation aa are the amplitude Aa and
phase αa . Thus,

an = An [cos(αn) e1 + sin(αn) e2],

aa = Aa [cos(αa) e3 + sin(αa) e4].
(5.14)

The control command (5.5) acts in the evolution equation (5.6) only on the forced
fluctuation. Hence,

b = B [cos(β) e3 + sin(β) e4].

Finally, by Observation B.3 in the Appendix, the matrix coefficient B can be written
in the form

B = g

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

]
. (5.15)

Using these notations, we rewrite (5.12) as

dAn

dt
= σ̃ nAn, (5.16a)

dαn

dt
= ω̃n, (5.16b)

dAa

dt
= σ̃ aAa + gB cos(β + θ − αa), (5.16c)

dαa

dt
= ω̃a +

gB

Aa
sin(β + θ − αa), (5.16d)

where we refer to the state dependencies of σ̃ n, σ̃ a , ω̃n and ω̃a , as defined in (5.13).
On the two attractors, the time derivatives of the amplitudes in (5.16a) and (5.16c)

must vanish, and the right-hand side terms of (5.16b) and (5.16d) must be equal to the
respective steady-state shedding frequency and the actuation frequency. In deriving
these equations, we denote by An,n (respectively Aa,a) the steady-state value of An

on the natural (respectively actuated) attractor. According to assumption NSE 1,
the natural harmonic vanishes under forcing and the actuation harmonic vanishes
without forcing. Hence, the values of An on the actuated attractor and of Aa on the
natural attractor are set to zero.

The converged amplitudes on the natural and the actuated attractor, i.e. dAn/dt = 0
and dAa/dt = 0, respectively, lead to the following equations:

0 = σn − σn,n (An,n)2 , (5.17a)

0 = (σ a − σ a,a(Aa,a)2)Aa,a + gB cos(β + θ − αa). (5.17b)

The lock-in property implies dαa/dt = dβ/dt = �a on the actuated attractor. Thus,
β + θ − αa is constant in (5.17b) and (5.18b). We shall re-visit this term shortly.

The constant frequency conditions yield

�n = ω̃n,n, (5.18a)

�a = ω̃a,a +
gB

Aa,a
sin(β + θ − αa), (5.18b)

where again, the notation ω̃n,n stands for the steady-state value of ω̃n on the natural
attractor and ω̃a,a for the actuated attractor value of ω̃a .
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Equation (5.18b) is simplified by assuming that the oscillation frequencies are
independent of Aa and An and that the flow locks in with the actuation frequency ωa .
In other words, the coefficients describing amplitude-dependent frequency changes
vanish:

ωn,n = ωn,a = ωa,a = ωa,n = 0. (5.19)

The approximation ωn,n = ωn,a = 0 appears admissible for the vortex-shedding
frequency from dead-water zones with well-defined transverse extent. Typically,
frequency changes are at most of the order of 10%. Equation ωa,n = ωa,a = 0 is
implied by the assumed lock-in. Thus, we have

ω̃n = ωn = �n, (5.20a)

ω̃a = ωa = �a, (5.20b)

θ = αa − β. (5.20c)

In particular, cos(β + θ − αa) = 1 on the actuated attractor, hence in (5.17b).

5.5. Parameter identification

The parameters of the least-order model are identified by calibration with simulation
data. We chose to use for that purpose a data trajectory that involves step changes in
the actuation, as described in § 6. That reference was selected as a generic example of
open-loop actuation. It is noted that abrupt transients present an inherent challenge
for low-order models, due to the fact that they tend to involve far richer dynamics
than what can ideally be represented, say, by a mere single mode pair per frequency. In
particular, transient data has limited value to the calibration procedure, necessitating
some added simplification in the model, as discussed in the previous section (5.19). In
view of this, the success demonstrated in § 6 illustrates the robustness of the proposed
modelling concept, corroborating its fundamental underpinning in the physics of the
system.

System (5.16), with state-dependent coefficients given by (5.13), contains 14
unknown parameters: σn, σn,n, σn,a , ωn, ωn,n, ωn,a , σ a , σ a,n, σ a,a , ωa , ωa,n, ωa,a , g

and θ . Using the results of the previous section, (5.17), (5.19) and (5.20), this number
reduces to seven. These remaining degrees of freedom (σn, σn,n, σn,a , σ a , σ a,n, σ a,a , g)
are estimated from (5.16), using transient amplitude data. Specifically, the parameters
are selected as the solutions of the following least-mean square problems

min

∫ t1

t0

dt

[
dAn

dt
− σ̃ n An

]2

, (5.21a)

min

∫ t1

t0

dt

[
dAa

dt
− σ̃ a Aa − g B cos (β + θ − αa)

]2

, (5.21b)

subject to the algebraic constraints (5.17).
In summary, the algorithm for determining the parameters of the least-order

Galerkin system is as follows:
(a) Natural frequency (ωn, ωn,n, ωn,a): The parameters are algebraically determined

by (5.19) and (5.20a).
(b) Actuated frequency (ωa , ωa,n, ωa,a): These parameters are determined by (5.19)

and (5.20b).
(iii) Growth-rate of the fluctuation at natural frequency (σn, σn,n, σn,a): The

coefficients determining the growth rate σ̃ n are constrained by (5.17a). This constraint
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t

a Δ

Actuation on

Figure 7. The shift-mode amplitude a as obtained from Galerkin projection of the
URANS data. Actuation is switched on at t = 0 and is switched off at t = 12.5.

is used to express σ̃ n in terms of σn and σn,a , i.e. σ̃ n(σn, σ n,a). A transient part of the
trajectory is used to determine σn and σn,a by a least-mean-square fit (5.21a).

(iv) Growth-rate of the fluctuation at the actuated frequency (σa , σ a,n, σ a,a) and
actuation gain (g): The coefficients determining the growth rate σ̃a and the gain g

are constrained by (5.17b). The expression for the rate is simplified to σ̃ a = σ a ,
i.e. σ a,n = σ a,a = 0. Note that the lock-in assumption implies a fixed phase difference
θ = αa −β . Hence, the control term is zero without actuation and gB under actuation.
This means that constraint (5.17b) simplifies to 0 = σ a + g B . This constraint is used
to express σ̃ n in terms of σ a . A transient part of the trajectory is used to determine
σ a , by a least square fit (5.21b).

6. Comparison of the Galerkin model with URANS simulation
The Galerkin model derived in § 5 is compared with the empirical data from a

transient URANS simulation. This comparison includes the Galerkin approximation
of the flow field (§ 6.1), the Galerkin system for the dynamics (§ 6.2) and the lift
coefficient (§ 6.3).

6.1. Galerkin approximation of the transient simulation

Here, the transient URANS data are analysed. The snapshots of the velocity field
are Galerkin approximated as in (5.8) and (5.10). The shift-mode amplitude a is
shown in figure 7. The amplitude indicates how the mean flow changes from the
value at the natural attractor. As actuation is turned on, the mean flow changes and
settles at the actuated attractor. At the same time the Fourier coefficients a1 and a2,
corresponding to the first oscillator, decrease to near-zero at the actuated attractor
(see figure 8a). The coefficients of the second oscillator, a3 and a4, are excited by the
periodic actuation (see figures 8a and 8b). If actuation is turned off, the roles of both
coefficient pairs are reversed. This behaviour is also elucidated in the principal sketch
in figure 6.
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Figure 8. Phase portraits of the URANS simulation (a,b) and the least-order Galerkin model
(c,d ). The left column (a,c) shows the trajectory (a1, a2), the right (b,d ) shows the trajectory
(a3, a4) associated with the natural and actuated flow.

6.2. Least-order Galerkin model of the transient data

In this section, the URANS data are compared with the least-order Galerkin model
prediction (5.16). The Fourier coefficients that result from projection onto the Galerkin
expansion are used as a database for the calibration. The values of the model
parameters are given in table 3. These parameters yield growth and decay rates in
(5.12) that are bounded at |σ̃ n| < 10 and |σ̃ a| < 1. An order of magnitude estimation
using (5.16a), which has an exponential solution at a fixed instant in time, shows that
the decay rate must be large to describe the steep descent, thus explaining the high
values in table 3. These values of the rate coefficients in the table are due the fast
convection of the structures in the observation region (see figure 1) and the short
transients.

The phase portraits as predicted by time integration of the least-order Galerkin
model are shown in figures 8(c) and 8(d ) and can be compared with the projected
values from the URANS simulation in the first row of figure 8. A comparison of
the behaviour of the low-pass filtered amplitudes An and Aa from URANS data and
integration of (5.16) are shown in figure 9. A good agreement is achieved. However,
the natural attractor of the URANS simulation has a small residual level in Aa

relative to An. According to our assumption NSE 1, the actuation harmonic vanishes
without forcing. Hence, this level vanishes in the model.
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Parameter Value

ωn 7.92
Linear dynamics ωa 14.85

σn 10.00
σ a −0.80

σn,n 286.0
Mean-field effects σn,a 8243.0

ωn,n 0.0
ωn,a 0.0
σ a,n 0.0
σ a,a 0.0
ωa,n 0.0
ωa,a 0.0

g 2.06× 10−2

actuation θ −3.69

Table 3. Identified parameters for the generalized mean-field model (see (5.16)). The
actuation amplitude B = 1.91 is determined by the URANS configuration.

0 5 10 15 20 25

0

0.05

0.10

0.15

0.20 Actuation on

A

t

An

Aa

Figure 9. The amplitudes An and Aa of the URANS data (continuous lines) and the
predictions by the least-order Galerkin model (dashed lines) in dependency of the time.
Actuation is switched on at t = 0 and is switched off at t = 12.5. The URANS values are
low-pass filtered.

From figure 6, it can be seen that the dominant natural harmonic is mainly present
after the flap in a large separation zone, whereas the actuated mode is active in a
smaller region starting at the leading edge of the flap. The modes thus act as rivals,
where only one can be fully alive in its own space.

Particularly important for flow control is the phase prediction by the model. The
approximate lock-in on the actuated attractor is shown for Fourier coefficient a3 in
figure 10.

6.3. Estimation of the lift coefficient

The model predictions can be related to quantities of engineering interest. As an
example, we show the prediction of the lift coefficient by the model. The lift coefficient

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

49
65

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004965


A generalized mean-field model 305
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Figure 10. A phase portrait of the forced dynamics. Fourier coefficient a3 versus the actuation
command b = B cos(β). The URANS data is shown by a continuous line and the least-order
Galerkin model prediction by a dashed line. The approximate lock-in of URANS to the forcing
frequency is clearly visible.

will be inferred from the reduced-order model in two ways. Following the overall
pattern of this section, we provide here a calibrated polynomial expression based on
the least-order Galerkin model. In § 7.4, we briefly outline an analytic approximation
using the definition of the lift coefficient, and compare its prediction with both the
least-order model and the actual lift coefficient.

We assume that the lift coefficient is function of the Fourier coefficients cl(a1, . . . , a4).
The oscillatory behaviour of the lift coefficient is modelled by a linear combination
of a1, a2, a3 and a4. The influence of the mean-field deformation during transients is
taken into account by a Taylor series of second order in (An)2 and (Aa)2 (see (5.11c)).

Thus, the measurement equation for the lift coefficient is assumed to be of the
following form:

cl(t) = cl0 +

4∑
i=1

ki ai(t) + k5(A
n)2 + k6(A

a)2 + k7(A
n)4 + k8(A

a)4. (6.1)

The first part of the functional form, up to the quadratic terms, follows directly from
the Navier–Stokes equation. The two remaining fourth-order terms are conjectured
to account for unmodelled mode deformations. The parameters k1, . . . , k8 obtained
from a least-squares fit from natural and actuated transients are listed in table 4.

The result is shown in figure 11, where the original lift coefficient is compared with
the prediction of the model. The least-order Galerkin model performs surprisingly
well. Prediction during fast transients (particularly, the second one) requires a more
accurate dynamical model.

7. Discussion
In this section, we address Galerkin modelling aspects related to the pursued

structure and parameter identification for turbulent flows represented by URANS
data. In principle, the model should be derivable from the Navier–Stokes equation
from accurate DNS data. In practice, only URANS or PIV data may be available
for turbulent flows and the mean-field considerations as well as the parameter

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

49
65

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004965


306 D. M. Luchtenburg, B. Günther, B. R. Noack, R. King and G. Tadmor

Parameter Value

cl0 2.05
Linear dynamics k1 0.15

k2 −0.55
k3 −0.47
k4 0.70

k5 15.19
Mean-field effects k6 212.31

k7 −436.00
k8 −3.75 × 104

Table 4. Identified parameters of the measurement equation for the lift coefficient (see (6.1)).

0 5 10 15 20 25
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Actuation on

t

c l

Figure 11. The original lift coefficient (continuous line) compared with the reconstructed lift
coefficient (dashed line) based on the least-order Galerkin model. Actuation is switched on at
t = 0 and is switched off at t = 12.5.

identification require a more rigorous justification. These modelling aspects include
effects of turbulence (§ 7.1), of non-equilibrium (§ 7.2) and of actuation (§ 7.3). In § 7.4,
the lift formula is derived from first principles and compared with the identified
formula.

7.1. Turbulence effects

The rational of URANS simulations is that large-scale coherent structures are resolved
in space and time while small-scale fluctuations are modelled via an eddy viscosity
ansatz. This implies that the generalized Krylov–Bogoliubov approximation (4.6)
should be augmented with a term ut representing the contribution of small-scale
dynamics:

u(x, t) = uB(x, t) + un(x, t) + ua(x, t) + ut (x, t). (7.1)

Small-scale fluctuations are characterized by high-frequency behaviour which can
be expected to be uncorrelated with the large-scale coherent structures. Assuming
that to be the case, ut and products with it vanish under ensemble averaging and
low-pass filtering. In particular, the filtered Navier–Stokes equations, like (4.9) and
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its derivations, are not effected by ut . This small-scale fluctuation is the difference
between an accurate DNS and ideal URANS simulation.

However, ut acts as an energy sink in the evolution equations. In URANS and
LES an eddy viscosity accounts for these losses. In POD Galerkin models, Rempfer
& Fasel (1994) proposed modal eddy viscosities νT,i to account for that effect – in
analogy to spectral pendants:

ȧi = (ν + νT,i)

N∑
j=0

lij aj +

N∑
j,k=0

qijk aj ak. (7.2)

The eddy viscosity has a negligible effect on frequencies since lij is a diagonal matrix
in good approximation.

A comparison of the Galerkin projected system and the identified system, at the
natural and actuated attractor, shows that the frequencies of both systems are similar.
In contrast, the growth rates are not predicted correctly by the Galerkin projection.
This is due to the neglected effect of turbulence, as described above.

In summary, neglecting the small-scale fluctuation is standard in reduced-order
models. This is expected neither to change the mean-field equations nor the derived
structure of the least-order Galerkin system. The effect of this simplification is mostly
restricted to growth rates, which can be corrected by careful calibration. This seems
to be an acceptable price for the level of simplicity and physical insight associated
with the reduced-order model. In particular, a minimum number of free parameters
makes this approach particularly suited for the evaluation of experimental PIV data.

7.2. Non-equilibrium effects

The steady solution is critical for the derivation of the standard and the presented
generalized mean-field model. More specifically, the two shift modes that govern the
nonlinear fluctuation growth rates are defined as the unit vectors pointing from the
steady solution to the respective mean flows of the natural and the actuated attractors.

Thus, the knowledge of the steady solution is necessary for the derivation of the
dynamical model from the Navier–Stokes equation. However, this unstable solution
cannot be obtained from the URANS solver. Fortunately, the parameters governing
the dynamical model can be estimated from URANS transient data (see § 5.5), and
the steady solution as well as the shift modes are not needed. In a similar spirit,
experimentalists have determined the constants of the Landau equation for the onset
of vortex shedding without inquiring the Navier–Stokes equation.

Equation (5.8) serves as an auxiliary model to the mean-field system (5.12), where
a could be obtained as a fitted polynomial of the oscillation amplitudes An and Aa .
Similarly, the lift coefficient (6.1) is embedded in the model by a fitted polynomial of
the modal coefficients a1, . . . , a4 and the oscillation amplitudes.

7.3. Actuation effects

In this section, the actuation model is re-considered. The effect of the zero-net-
mass-flux actuator was represented by an equivalent volume force term. In the first
principles treatment, this effect can be resolved by an additional actuation mode
u−1(x) with amplitude a−1(t) (see, e.g. Graham et al. 1999). This results in the
Galerkin approximation

u(x, t) =

N∑
i=−1

ai(t) ui(x). (7.3)
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The choice of the actuation mode is a free design parameter, for which the literature
offers many variants. Here, we shall only be concerned whether the postulated
surrogate volume force term is consistent with an actuation mode ansatz under
nearly periodic forcing. The actuation mode has two particularities: firstly, it is not
necessarily orthogonal to the POD modes, and secondly, its amplitude is a control
input. We can identify b1 = a−1 and b2 = ȧ−1/ω

a in (5.5). Galerkin projection of (7.3)
onto the Navier–Stokes equation yields (Noack et al. 2004c)

ȧi = −mi,−1 ȧ−1 + ν

N∑
j=−1

lij aj +

N∑
j,k=−1

qijk aj ak for i = 1, . . . , N.

or, equivalently,

ȧi = ν

N∑
j=0

lij aj +

N∑
j,k=0

qijk aj ak

+

[
ν li,−1 + (qi,0,−1 + qi,−1,0) +

N∑
j=1

(qi,j,−1 + qi,−1,j ) aj

]
b1

− mi,−1 ωab2. (7.4)

Under non-actuated conditions, b1 = b2 ≡ 0, and (7.4) is equivalent to (5.3). Under
periodic forcing, a1 = a2 ≡ 0, a5, a6 are constant and a3, a4, b1 and b2 are locked-in
at the same frequency ωa . In this case (7.4) can be approximated by

ȧi = ν

N∑
j=0

lij aj +

N∑
j,k=0

qijk aj ak + Bi1b1 + Bi2b2 (7.5)

neglecting higher harmonics. Here, Bi1 and Bi2 can be easily derived from (7.4).
Equation (7.5) can be derived under more general Krylov–Bogoliubov assumptions.
Note that (7.5) is equivalent to (5.6) and thus justifies the volume force ansatz.

7.4. Lift formula

In this section, a formula for the lift coefficient is derived in terms of the Fourier
coefficients from the Navier–Stokes equation. The result of this analytical formula is
compared with the calibrated lift coefficient in § 6.3.

The lift coefficient comprises a pressure and viscous contribution:

cl =
1

1/2ρ(U∞)2c

(
−

∫
�

pn dS + ν

∫
�

∇u · n dS

)
· ey, (7.6)

where � is the contour of the high-lift configuration, n the outward normal vector
and ey defines the direction of the lift.

The viscous contribution can easily be expressed in terms of the Fourier coefficients
by substituting the Galerkin approximation (5.1) in (7.6). The pressure field p is
expanded into N modes pi which are obtained from the M pressure snapshots
pm in complete analogy to the corresponding velocity snapshots um at the same
times. More specifically, let ui =

∑M

m=1 Tm
i um be the formula of the POD snapshot

method with the transformation matrix Tm
i of the observation region in figure 1.

Then, pi =
∑M

m=1 Tm
i pm. Physically, this corresponds exactly to the empirical pressure

model of Noack et al. (2005), which is found to be a good approximation for all
considered free shear flows, including shear-layers and wakes (Noack 2006). The
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Figure 12. Comparison of the actual, modal and identified lift coefficient at the natural
attractor: (a) actual (continuous line) and modal lift coefficient (dashed line), (b) modal
(continuous line) and identified lift coefficient (dashed line).

resulting expansions of the flow variables read

u(x, t) =

N∑
i=0

ai(t) ui(x), (7.7a)

p(x, t) =

N∑
i=0

a
p
i (t) pi(x), (7.7b)

where a0 ≡ 1 and a
p

0 ≡ 1 by definition. Thus, the lift coefficient can be written as

cl(t) =
1

1/2ρ(U∞)2c

N∑
i=0

{
−

(∫
�

pi(x)ndS

)
a

p
i (t) + ν

(∫
�

∇ui(x) · ndS

)
ai(t)

}
· ey.

(7.8)
We compute the modal lift coefficient for N = 2 at the natural attractor. The

comparison of the actual and modally decomposed lift coefficient is shown in
figure 12(a). A good agreement is achieved with only two modes. Figure 12(b)
shows the comparison of the modal and identified lift coefficient (see also figure 11).
It can be seen that the identified lift coefficient is smoother than the modal one.
This observation directly correlates with the temporal amplitudes of the velocity
field, which are much smoother than the amplitudes of the pressure modes. The latter
correlate better with the lift coefficient. The identified lift coefficient is in this sense the
best approximation given the modal amplitudes of the velocity field. Most important
for the purpose of the present discussion, we have now tied the postulated linear
dependence of the lift on the Fourier coefficients of the oscillatory fluctuations to an
analytic derivation from the Navier–Stokes equation.

8. Conclusions
We have proposed a low-dimensional Galerkin model for the flow around a high-

lift configuration. This model provides the least-order representation of periodic
fluctuations using a single pair of POD modes per frequency. The novelty in this model
lies in the inclusion of modes representing mean-field variations due to natural and
actuated fluctuations. These modes are the key enabler for capturing the attenuating
effect of high-frequency actuation on the natural instability. Thus, the mean-field
model explains the mediation between the fluctuations at the natural and the actuated
frequencies. The modelling approach is schematically illustrated in figure 13.
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actuated flow u1
a u2

a

u2
nu1

n

uΔ
n

uΔ
a

uΔ

aΔ

Aa

An

amplitudes
natural flow

steady solution

Figure 13. Principal sketch of the generalized mean-field model. The considered equilibrium
flow states include the steady solution, natural and actuated flow (rectangles). The transitions
are denoted by double arrows. The required Galerkin modes for each state are indicated by
the circles. The grey rectangles connect the modes employed for the transients between the
natural and actuated flow. The amplitudes for slowly varying transition between both states
are depicted on the right side.

Dynamics covered by the model include natural vortex shedding, the effect of
high-frequency forcing, as well as actuated and un-actuated transients based on
URANS data. The model captures the original URANS simulation surprisingly
well considering the very low order. The phase relation of flow and actuation of the
URANS and least-order Galerkin model data is in good agreement. This agreement is
important for flow control design. Model predictions include the lift coefficient which
is also in good agreement with the original data. As can be expected, predictions by
this least-order model erode during fast transients, and more accurate representation
requires higher-order models. This applies, in particular, to prediction of the lift
coefficient during fast transients.

The developed model generalizes existing mean-field theory by including an
additional frequency. It is straightforward to include more frequencies if the
assumptions in §§ 4 and 5.3 hold correspondingly. From figure 13, this can be
conceptualized by including a row that describes an additional ‘flow operating
condition’ with corresponding oscillatory and shift-modes. This modelling approach
is expected to work for flows that are dominated by coherent structures. A main
advantage of the analytical model is the possibility of a simple and robust calibration
of a given data set. Thus, the low-dimensional model can be used as a quick test-bed
for explanatory studies in simulation and experiment. It can, for instance, be used for
improvement of open-loop control, observer design and sensor placement. The results
are very encouraging for multi-frequency systems and the authors are pursuing the
approach also for experimental data. Moreover, the discussed mechanism for high-
and multi-frequency actuation is embedded in a recent finite-time thermodynamics
formalism for fully nonlinear, infinite horizon attractor control (Noack el al. 2008).
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Appendix A. Window filters
Here, we describe a general approach to split up the Navier–Stokes equations

into separate equations for each flow contribution in partition (4.6). In the following
observation, we use the standard notation of L2 loc. Specifically, given (an implicitly
known) Hilbert space H , the space L2 loc is the linear space of measurable functions
f : � �→ H with the property that f |[a,b] ∈ L2[a, b] for all finite intervals, −∞ <

a < b < ∞. For example, in the context of Navier–Stokes solutions, H = L2(�) is
the space of velocity fields. The reason L2 loc is used is to allow periodic infinite time
trajectories, which are not members of L2 of the infinite time axis.

Observation A.1. Let f (t) ∈ L2 loc satisfy assumption NSE 1:

f (t) = f B(t) + f n(t) + f a(t),

where f B , f n and f a satisfy the counterparts of (4.8). Let T > 0 be a set length of a
time window. Then there exist kernels KB(τ ), Kn(τ ), Ka(τ ) ∈ L2

(
[− T

2
, T

2
]
)

such that
the following approximation is satisfied to an order O(ε):

f B(t) =

∫ T
2

− T
2

dτ KB(τ ) f (t + τ ), (A 1a)

f n(t) =

∫ T
2

− T
2

dτ Kn(τ ) f (t + τ ), (A 1b)

f a(t) =

∫ T
2

− T
2

dτ Ka(τ ) f (t + τ ). (A 1c)

The significance of Observation A.1 in the present discussion is that the window
filters in (A 1) commute with time differentiation; when applied to the velocity field
u(x, t), the same holds for spatial derivatives. Hence, this filter has one important
property of the Reynolds average (Monin & Yaglom 1971).

Proof. Denote �
def
= {�i(τ )}5

i=1 = {1, cos(ωnτ ), sin(ωnτ ), cos(ωaτ ), sin(ωaτ )}, and
let A : �5 �→ span(�) ⊂ L2{[− T

2
, T

2
]} be defined as

A d =

5∑
i=1

di�i(τ ). (A 2)

Then, the adjoint A∗ : span (�) �→ �5 is an integral operator and the orthogonal

projection of L2{[− T
2
, T

2
]} onto span(�) is �

def
= A (A∗ A)−1 A∗. In particular, the
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linear combination coefficients of the projection �ζ are given by integral functionals:

d =
(
A∗ A

)−1
A∗ ζ ⇔ di =

∫ T
2

− T
2

dτ Ki(τ ) ζ (τ ), (A 3)

where the kernels Ki are linear combinations of the base functions �i . In the simple
case where T = Tn is the natural period and the two frequencies are harmonically
related, this formulation reduces to a partial Fourier expansion and Ki are the
standard normalized versions of the trigonometric functions.

Now let f (t) be a time function satisfying NSE 1. This means that over a window
[t− T

2
, t+ T

2
] the three components of the function ζ (τ ) = f (t+τ ) can be approximated

to an order O(ε) in the form

f B(t + τ ) = f B(t),
f n(t + τ ) = ηn cos(ωnτ + θn)

= ηn [cos(θn) cos(ωnτ ) − sin(θn) sin(ωnτ )] ,

f a(t + τ ) = ηa cos(ωaτ + θa)
= ηa [cos(θa) cos(ωaτ ) − sin(θa) sin(ωaτ )] .

(A 4)

Each of the functions on the right-hand side of (A 4), as well as their sum, is a
member of span(�). Thus, we can approximate ζ (τ ) = f (t + τ ) = Ad as in (A 2). The
approximation is accurate up to an order O(ε) (say, relative to the L2 [−T/2, T /2]
norm). The coefficients di are computed by integral filters, as in (A 3).

Since the three approximate expressions for f B(t + τ ), f n(t + τ ) and f a(t + τ ) in
(A 4) are all continuously differentiable in τ , they can be evaluated at τ = 0, leading
to evaluating the coefficients di , i = 1, 2, 4 as f B(t) = d1, f n(t) = ηn cos(θn) = d2 and
f a(t) = ηa cos(θa) = d4. The proof is complete by comparing these expressions with
the expressions from (A 3). Notice that the values of di , i = 3, 5, are not needed to
evaluate f n(t + τ ) and f a(t + τ ) at τ = 0.

It is observed that the proof remains valid when the spanning set � is enlarged
to include a predetermined number of higher and mixed harmonics of the two base
frequencies, that are deemed non-negligible in the flow under consideration. This is
valid because while � is implicitly assumed linearly independent, we do not assume
orthogonality of the base functions. The significance of this observation is that the
projection formulas in (A 1) can be made to filter out additional harmonics due to
the quadratic terms in the Navier–Stokes equations, as computed below.

Appendix B. Structure of the Galerkin system
Here, we derive the structure of the Galerkin system from (5.11), and the hypotheses

made heretofore. These assumptions include NSE 1 to NSE 4, in the Navier–Stokes
framework and their effect on the Galerkin system through Galerkin projection.
Inaccuracies that result from the linearization (5.11c) are partially compensated
for by the calibration of system parameters. This linearization leads to the linear
dependence of aB on (An)2 = ‖an‖2 and (Aa)2 = ‖aa‖2, as stated in Observation B.1.
The expression for aB without that assumption includes higher-order terms in (An)2

and (Aa)2.
Equations (5.12) and (5.13) can be derived from (5.11a), (5.11b) and (5.11c)

in a straightforward manner by a lengthy calculation exploiting the phase-
invariance assumption. Here, we choose a more compact and insightful Hilbert-space
consideration.
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Observation B.1. Under the assumptions stated above, there exists a 2 × 2 matrix
AB such that

aB = AB

[
(An)2

(Aa)2

]
(B 1)

Note that aB = 0 at Aa = An = 0 since the steady Navier–Stokes solution serves as
base flow.

Proof. By NSE 1 the base flow satisfies time-independent boundary conditions,
whence the mean-flow deformation u = uB − us satisfies homogeneous boundary
conditions. The linear mean-field deformation term in (4.10) reads

∇ · (us ⊗ u + u ⊗ us) − ν �u. (B 2)

This linear operator with homogeneous boundary conditions has the counterpart
linear term L(aB) in (5.11c). We stipulate that the operator (B 2) and the corresponding
matrix L are non-singular, in agreement with empirical observations. Inverting that
matrix, a linear expression for aB in terms of Q(an, an) + Q(aa, aa) is obtained.

The phase invariance hypothesis implies that the two quadratic terms Q(an, an)
and Q(aa, aa) are both phase independent. They are therefore linearly determined by
(An)2 and (Aa)2, respectively.

Observation B.2. Equation (5.11a) can be written in the form

d

dt
an =

[
σ̃ n −ω̃n

ω̃n σ̃ n

]
an (B 3)

where the state-dependent coefficients are of the form

σ̃ n = σn − σn,n (An)2 − σn,a (Aa)2,

ω̃n = ωn + ωn,n (An)2 + ωn,a (Aa)2.
(B 4)

Proof. Clearly, the right-hand side of (5.11a) is linear in an. It can therefore be
re-written in the form

d

dt
an = F (aB) an, (B 5)

where the matrix F (aB) depends on aB in an affine manner. Invoking Observation
B.1, the dependence on aB may be substituted by dependence on (An)2 and (Aa)2. The
fact that (B 5) is phase invariant means that the matrix F must commute with any
rotation matrix. As such, it must be a scaled rotation matrix. That is, F must be of
the form specified in (B 3). The affine dependence on the parameters implies (B 4).

Observation B.3. Equation (5.11b) can be written in the form

d

dt
aa =

[
σ̃ a −ω̃a

ω̃a σ̃ a

]
aa +

[
κ −λ

λ κ

]
b (B 6)

where the state-dependent coefficients are of the form

σ̃ a = σ a − σ a,n(An)2 − σ a,a(Aa)2,

ω̃a = ωa + ωa,n(An)2 + ωa,a(Aa)2.
(B 7)
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The proof of this observation is completely analogous to the proof of Observation
B.2 and is left out. This completes the derivation of (5.12) and (5.13) from (5.11a),
(5.11b) and (5.11c).
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