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The characteristic time of low-Reynolds-number fluid–structure interaction scales
linearly with the ratio of fluid viscosity to solid Young’s modulus. For sufficiently
large values of Young’s modulus, both time and length scales of the viscous-elastic
dynamics may be similar to acoustic time and length scales. However, the requirement
of dominant viscous effects limits the validity of such regimes to micro-configurations.
We here study the dynamics of an acoustic plane wave impinging on the surface of
a layered sphere, immersed within an inviscid fluid, and composed of an inner
elastic sphere, a creeping fluid layer and an external elastic shell. We focus on
configurations with similar viscous-elastic and acoustic time and length scales, where
the viscous-elastic speed of interaction between the creeping layer and the elastic
regions is similar to the speed of sound. By expanding the linearized spherical
Reynolds equation into the relevant spectral series solution for the hyperbolic elastic
regions, a global stiffness matrix of the layered elastic sphere was obtained. The
maximal pressure difference induced by the acoustic wave on the creeping region was
found to occur for identical viscous-elastic and acoustic length scales. Comparing an
elastic sphere with an embedded creeping layer to a fully elastic sphere, a significant
reduction in magnitude and fluctuations (with regard to wavelength) are observed
for both the displacements of the solid and target strength of the sphere. This effect
was most significant for identical viscous-elastic and acoustic time scales. This work
relates viscous-elastic dynamics to acoustic scattering and may pave the way to the
design of novel metamaterials with unique acoustic properties.

Key words: acoustics, low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction
In this work we examine the dynamics of an elastic sphere with an embedded

viscous layer, excited by an impinging acoustic plane wave. We focus on configurations
with similar acoustic and viscous-elastic time scales as well as acoustic wavelengths
comparable with the sphere radius. The characteristic time scale of the linearized
interaction between an elastic structure and a creeping flow scales as ∝ µ/y (e.g.
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Sphere containing thin creeping region immersed in an acoustic region 101

Elbaz & Gat 2014) where the relevant Womersley number scales as ∝ ρr2y/µ2 (y is
Young’s modulus, µ is viscosity, r is characteristic length and ρ is density). Thus,
the characteristic time scale of the viscous-elastic interaction can be reduced, without
increasing inertial effects, by decreasing r2/µ inversely with µ/y. For geometries in
the micrometre scale, fluid–structure interaction at the creeping regime may occur at
time scales similar to the acoustic time scale r/c, where c is the speed of sound.

Transient and oscillatory viscous-elastic interaction dynamics are relevant to various
fields (Duprat & Stone 2015). Among these are biological configurations such as
propulsion of micro-organisms by flagella (Wiggins & Goldstein 1998; Camalet
& Jülicher 2000; Tony, Lauga & Hosoi 2006), analysis and testing of corneal
biomechanics (Chauhan & Radke 2002; Duchemin & Vandenberghe 2014; Han et al.
2014) and flows in small blood vessels (Lowe & Pedley 1995; Heil 1997; Canic
& Mikelic 2003). Other relevant fields are geophysical gravity currents involving
elastic surfaces (Balmforth, Craster & Hewitt 2015; Hewitt, Balmforth & De Bruyn
2015), elastic peeling problems (McEwan & Taylor 1966; Hosoi & Mahadevan 2004;
Lister, Peng & Neufeld 2013) and applications such as viscous-elastic pumps for the
creeping flow regime (Arco et al. 2014).

The subject of an acoustic plane wave impinging on an elastic spherical configuration
has been studied extensively (e.g. Love 1927; Faran 1951; Logan 1965). A common
interest in such problems is acoustic scattering (Bowen & Urzhumov 2016), which
defines the target strength of the sphere and is of importance to applications such
as ultrasound tests, tomography and seismology. Various previous studies examined
embedded layers as a mechanism to achieve a desired reduction of target strength of
a spherical configuration. These include Guild, Alu & Haberman (2011), who studied
the effect of a single metamaterial layer and showed a target strength reduction of
up to 30 dB for specific frequencies. In a later study Guild et al. (2015) examined
the effect of spherical fluid layers surrounding non-spherical elastic structures, and
obtained a reduction of 30–40 dB in scattering strength. Torrent & Sánchez-Dehesa
(2008) have proposed to use a large number of alternating metamaterial layers,
and later Huang, Zhong & Liu (2014) have extended this approach to include
turbulent flow, with moderate success. Analysis of acoustic scattering from spherical
configurations with an embedded viscous layer is presented in Skelton & James
(1997). However, due to an initial assumption of P-waves propagating within the
fluidic layer, and since viscosity is represented only as a damping mechanism to
these waves, the mathematical treatment of Skelton & James (1997) could not be
extended to the creeping regime, which is governed by the relevant Reynolds equation.

In this context, the goal of the current work is to study the interaction between
viscous-elastic dynamics and acoustic waves, for micro-configurations with similar
viscous-elastic and acoustic time and length scales. This requires extension of the
analysis of a spherical layered elastic structure and incorporation of the parabolic
Reynolds equation into the spectral series solution for the hyperbolic elastic and
acoustic regions. The structure of this work is as follows. In § 2 we define the
problem, apply order-of-magnitude analysis and develop the Reynolds equation to a
series of Legendre polynomials. In § 3 we develop the spectral stiffness matrix for
the creeping fluidic layer and incorporate it into the global stiffness matrix of the
elastic sphere. In § 4 we present and discuss the pressure and velocity within the
fluidic layer, as well as the effect of the viscous layer on the displacements and target
strength of the sphere. In § 5 we give concluding remarks.
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102 Y. Friedman and A. D. Gat

Region 3 – elastic shell

Region 2 – viscous film

Plane wave

r

Region 1 – elastic sphere

Region 4 – acoustic domain

FIGURE 1. (Colour online) Illustration of the layered sphere, the coordinate system and
the impinging acoustic wave.

2. Problem formulation and order-of-magnitude analysis
We examine an acoustic wave interacting with a core-in-shell geometry consisting

of an elastic sphere surrounded by thin viscous and elastic layers. In order to
examine configurations with significant spatial pressure variation, we focus on acoustic
wavelengths similar to the radius of the sphere. The configuration is illustrated in
figure 1 and contains four regions: region 1 (r 6 r(1)) is an inner elastic sphere;
region 2 (r(1) < r 6 r(2)) is a thin viscous layer with negligible inertial effects; region
3 (r(2) < r 6 r(3)) is an elastic spherical shell; and region 4 (r(3) < r) is an acoustic
region with negligible viscous effects. We examine micro-configurations where the
characteristic time scale of viscous-elastic interaction is similar to the time scale of
the acoustic wave.

We employ a spherical coordinate system, denoted by (θ, φ, r), with origins
located at the centre of the sphere at rest. Time is denoted by t. The velocity of
the acoustic wave is parallel to the φ = θ = 0 direction and thus the configuration is
axisymmetric with regard to the φ = θ = 0 line. The displacements and velocity in
region M are defined by d(M)= (d(M)r , d(M)θ ) and u(M)= (u(M)r , u(M)θ ), respectively, where
u(M) = ∂d(M)/∂t. Stress in region M is denoted by σ

(M)
jk , where the stress is in the

j-direction and acts on the plane perpendicular to the k-direction. Density is denoted
by ρ(M). In the fluidic regions (M = 2, 4) we denote pressure as p(M). The pressure
amplitude of the acoustic wave in region 4 is denoted by pa, the acoustic wavelength
is denoted by l and the speed of sound is c(M).

The Newtonian fluidic layers are governed by Navier–Stokes equations, while the
linearly elastic regions are governed by the Cauchy–Navier equations. For all regions,
conservation of mass,

∂ρ(M)

∂t
+∇ · (ρ(M)u(M))= 0, (2.1)

and conservation of momentum (neglecting body forces),

ρ(M)
Du(M)

Dt
=∇ · σ̄ (M), (2.2)

are applied, where σ̄ M is the stress tensor. In the fluidic regions (M = 2, 4) the
constitutive relation is given by

σ̄ (M) =µ(M)[∇u(M) + (∇u(M))t] + [p(M) − ( 2
3µ

(M) − λ(M))(∇ · u(M))]Ī, (2.3)
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Sphere containing thin creeping region immersed in an acoustic region 103

where p = −tr(σ̄ (M))/3, while in the elastic layers (M = 1, 3) (Howell, Kozyreff &
Ockendon 2009)

σ̄ (M) =µ(M)[∇d(M) + (∇d(M))t)+ λ(M)(∇ · d(M))Ī. (2.4)

For the fluidic regions (M = 2, 4) µ(M) and λ(M) are the shear and bulk viscosity
coefficients, respectively. For the elastic regions (M= 1, 3) λ(M) and µ(M) are the Lamé
constants, given by

µ(M) = y(M)

2(1+ ν(M)) (2.5a)

and

λ(M) = y(M)ν(M)

(1+ ν(M))(1− 2ν(M))
, (2.5b)

where y(M) is Young’s elastic modulus and ν(M) is Poisson’s ratio. In addition, we
require the fluid in region 2 to be governed by interaction between fluid viscosity
and the elasticity of the bounding regions (1, 3), and thus assume negligible
compressibility effects, ρ(2) = const.

Our analysis examines configurations that agree with the following small geometric
parameters, representing the ratio between the width of the viscous layer and the
radius of the inner sphere,

ε(2) = r(2) − r(1)

r(1)
� 1, (2.6a)

and the width of the elastic shell layer to the radius of the inner sphere

ε(3) = r(3) − r(2)

r(1)
� 1. (2.6b)

In addition, we focus on the acoustic pressure field, which is significantly
non-uniform across the surface of the sphere. This sets the characteristic acoustic
wavelength in region 4 to ∼O(r(1)) and thus the characteristic acoustic time scale is
ta= r(1)/c(4). We denote t∗ as the characteristic viscous-elastic time scale and (d∗r , d∗θ )
are characteristic displacements of the elastic regions. The geometric requirements
(2.6) are thus supplemented by the physical requirements of similar viscous-elastic
and acoustic time scales,

t∗ ∼ ta = r(1)

c(4)
, (2.7a)

small elastic displacements,

d∗r
r(1)
,

d∗θ
r(1)
� 1, (2.7b)

negligible inertia in region 2,

(α(2))2 = ρ
(2)(r(2) − r(1))2

µ(2)t∗
� 1, (2.7c)
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104 Y. Friedman and A. D. Gat

and negligible viscosity in region 4,

(α(4))2 = ρ
(4)(r(1))2

µ(4)ta
� 1, (2.7d)

where (α(2))2 and (α(4))2 denote the Womersley numbers in regions 2 and 4,
respectively.

We apply order-of-magnitude analysis in order to quantify the physical requirements
described in (2.7) in terms of material properties and geometric parameters of the
layered sphere. Hereafter normalized variables are denoted by capital letters and
characteristic values are denoted by superscript asterisks.

We define the normalized radial coordinate and time,

R= r
r(1)
, T = t

t∗
, (2.8a,b)

and the normalized velocity and pressure of region 2,

(U(2)
θ ,U(2)

r )=
(

u(2)θ
u(2),∗θ

,
u(2)r

u(2),∗r

)
, P(2) = p(2)

pa
, (2.9a,b)

where (u(2),∗r , u(2),∗θ ) is the characteristic speed in region 2. The normalized displace-
ments of the elastic boundaries of region 2 are

(D(1)
r ,D(1)

θ )=
(

d(1)r (r= r(1))
d∗r

,
d(1)θ (r= r(1))

d∗θ

)
(2.10)

and

(D(2)
r ,D(2)

θ )=
(

d(2)r (r= r(2))
d∗r

,
d(2)θ (r= r(2))

d∗θ

)
. (2.11)

The characteristic fluid velocity, solid displacement and viscous-elastic time
scale may be estimated by substituting (2.8)–(2.11) into (2.1)–(2.4) and applying
order-of-magnitude analysis. From the governing equations of the creeping region 2,
we obtain

u(2),∗θ ∼ pa(ε
(2))2r(1)

µ(2)
, u(2),∗r ∼ ε(2)u(2),∗θ , t∗ ∼ d∗r

u(2),∗r

(2.12a−c)

and

σ
(3),∗
rθ ∼µ(2)

u(2),∗θ

ε(2)r(1)
, σ (3),∗rr = pa. (2.13a,b)

Order-of-magnitude analysis of the governing equations of the elastic region 3, and
specifically (2.4), yields

d∗θ ∼
par(1)

λ(3)
, d∗r ∼

par(1)

ε(2)λ(3)
, t∗ ∼ µ(2)

(ε(2))3ε(3)λ(3)
(2.14a−c)
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Sphere containing thin creeping region immersed in an acoustic region 105

and

σ
(3),∗
rθ ∼ paε

(2), σ
(3),∗
θθ ∼

pa

ε(3)
. (2.15a,b)

Applying (2.7) and substituting (2.8)–(2.11) into (2.1)–(2.3), the leading-order
normalized governing equation for region 2 is the relevant linearized Reynolds
equation,

1
sin θ

∂

∂θ

(
sin θ

∂P(2)

∂θ

)
∼ 12

(
∂D(2)

r

∂T
− ∂D(1)

r

∂T

)
+ 6

sin θ
∂

∂θ

[
sin θ

(
∂D(2)

θ

∂T
+ ∂D(1)

θ

∂T

)]
.

(2.16)

From (2.12)–(2.15), we can relate our physical requirements (2.7) to the geometric
and material properties of the configuration. These include the requirements of similar
viscous-elastic and acoustic time scales,

µ(2)c(4)

(ε(2))3ε(3)λ(3)r(3)
∼O(1), (2.17a)

small deformations,
pa

ε(3)λ(3)
� 1, (2.17b)

negligible inertial effects in region 2,

(α(2))2 = ρ
(2)(ε(2))5ε(3)λ(3)(r(1))2

(µ(2))2
� 1, (2.17c)

and negligible viscous effects in region 4

(α(4))2 = ρ
(4)r(3)c(4)

µ(4)
� 1. (2.17d)

The requirements of small deformation in region 3 (2.17b) and negligible inertial
effects in region 4 (2.17d) are easily satisfied for a wide range of common geometric
configurations and material properties. However, the requirement of negligible inertial
effects in region 2 (2.17c) combined with the requirement of similar acoustic and
viscous-elastic time scales (2.17a) severely limits the range of validity of the current
analysis. Even for highly viscous fluids (e.g. silicone oil with µ(2) ≈ 100 Pa s) and
rigid solids (e.g. steel with y(3) = 200 GPa and ν(3) = 0.29) surrounded by water
(ρ(4) = 1000 kg m−3 and c(4) = 1484 m s−1), the above requirements limit the sphere
diameter to 2r(1) 6 2 mm and thus to ultrasound frequencies > 750 kHz. In addition,
since (r(2) − r(1))/r(1) � 1, the results are practically valid only for microfluidic
configurations where r(2) − r(1) ≈ 100 µm or less.

3. Incorporating the Reynolds equation into the acoustic stiffness matrix
Acoustic scattering of plane waves from spherical configurations has been studied

extensively, and the treatment of regions 1, 3 and 4 may be found elsewhere (e.g.
Love 1927; Logan 1965; Skelton & James 1997) and will be omitted here. The aim
of this section is the incorporation of the parabolic region 2 into the standard scheme
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106 Y. Friedman and A. D. Gat

for the hyperbolic elastic and acoustic regions. In spherical coordinates, the impinging
plane wave in region 4, denoted by P(4)i = p(4)i /pa, is given by

P(4)i =
∞∑

n=0

in(2n+ 1)jn(kr)Ln(cos θ). (3.1)

where k= ω/c(4) is the impinging wavenumber, Ln is Legendre polynomial and jn is
the spherical Bessel function of the first kind.

The total scattered pressure in the external acoustic fluid, denoted by P(4)s =
P(4)r + P(4)e , can be presented as the sum of the pressure reflected from a rigid sphere,
P(4)r , and the additional pressure due to elastic displacements of the sphere, P(4)e (all
pressures are scaled by pa). The acoustic scattering due to a rigid sphere, given by
P(4)r = p(4)r /pa, is

P(4)r =−
∞∑

n=0

in(2n+ 1)jn(kr)
j′n(kr(3))
h′n(kr(3))

hn(kr(3))Ln(cos θ), (3.2)

where hn is the spherical Hankel function of the first kind.
We thus hereafter focus on calculation of acoustic scattering due to elastic

displacements of the sphere P(4)e . In order to incorporate the dynamics of the Reynolds
equation governing region 2 (2.16) into the calculation of P(4)e , we require series
solution of the radial displacements and stress on the boundaries of region 2 to be
of the form

(D(1)
R ,D(2)

R , S(1)RR, S(2)RR)= eiΩT
∞∑

n=0

Ln(cos θ)(D(1)
R,n,D(2)

R,n, S(1)Rθ,n, S(2)Rθ,n), (3.3a)

where D(1)
R and D(2)

R are amplitudes of radial displacements at R= R(1) and R= R(2),
respectively. Similarly, S(1)RR and S(2)RR are amplitudes of radial stress at R = R(1)
and R = R(2), respectively. In addition, we require series solution of the tangential
displacements and stress on the boundaries of region 2 to be of the form

(D(1)
θ ,D(2)

θ , S(1)Rθ , S(2)Rθ )= eiΩT
∞∑

n=0

∂Ln(cos θ)
∂θ

(D(1)
θ,n,D(2)

θ,n, S(1)RR,n, S(2)RR,n), (3.3b)

where D(1)
θ and D(2)

θ are amplitudes of displacements in the θ -direction at R=R(1) and
R = R(2), respectively. The parameters S(1)Rθ and S(2)Rθ are amplitudes of shear stress at
R= R(1) and R= R(2), respectively.

In the examined limit of incompressible lubrication flow, the pressure in region 2
is independent of r, and applying (3.3a) yields a general solution in terms of the
orthogonal Legendre polynomials

P(2)(θ)=
∞∑

n=0

P(2)n Ln(cos(θ)), (3.4)

where P(2)n are constants representing the pressure amplitude of each Legendre mode.
Substituting (3.3) and (3.4) into (2.16) and utilizing the identity

1
sin(θ)

∂

∂θ

(
sin(θ)

∂Ln(cos(θ))
∂θ

)
= n(n+ 1)Ln(cos(θ)) (3.5)
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yields P(2)n ,

P(2)n = iΩ
[

12
n(n+ 1)

(D(2)
R,n −D(1)

R,n)+ 6(D(2)
θ,n +D(1)

θ,n)

]
, (3.6)

and U(2)
θ,n can be obtained from the tangential momentum equation,

U(2)
θ,n = eiΩT ∂Ln(cos(θ))

∂θ

[
P(2)n

H(H − 1)
2

+D(1)
θ,n +H(D(2)

θ,n −D(1)
θ,n)

]
, (3.7)

where H = (r− r(1))/(r(2) − r(1)). Since substitution of (3.6) into the lubrication
equation (2.16) yields u(2)θ and σ

(2)
rθ to be series of the derivatives of Legendre

polynomials, the series representation of region 2 agrees with the requirements of
both (3.3a) and (3.3b). Thus we can proceed and incorporate parabolic region 2 into
the acoustic scheme for the hyperbolic regions 1, 3 and 4.

Hereafter we revert to dimensional parameters. Applying the leading-order
lubrication relations p(2) ∼ σ (2)rr and σ

(2)
rθ ∼ µ(2)∂u(2)θ /∂r, we can obtain from (3.6)

and (3.7) a relation between the traction vector sn= [σ (1)rr,n, σ
(1)
rθ,n, σ

(3)
rr,n, σ

(3)
rθ,n] created by

excitation of the form of Legendre polynomial of order n and the displacement vector
dn = [d(1)r,n, d(1)θ,n, d(3)r,n, d(3)θ,n] on the boundaries of region 2. This yields {dn} = [v ij]−1{sn},
where v ij is the dimensional stiffness matrix for the Reynolds region 2 given by

v ij,n =



12µ(2)iω
(ε(2))3r(1)n(n+ 1)

− 6µ(2)iω
(ε(2))2r(1)

− 12µ(2)iω
(ε(2))3r(1)n(n+ 1)

− 6µ(2)iω
(ε(2))2r(1)

6µ(2)iω
(ε(2))2r(1)n(n+ 1)

− 4µiω
ε(2)r(1)

− 6µ(2)iω
(ε(2))2r(1)n(n+ 1)

− 2µiω
ε(2)r(1)

12µ(2)iω
(ε(2))3r(1)n(n+ 1)

− 6µ(2)iω
(ε(2))2r(1)

− 12µ(2)iω
(ε(2))3r(1)n(n+ 1)

− 6µ(2)iω
(ε(2))2r(1)

− 6µ(2)iω
(ε(2))2r(1)n(n+ 1)

2µ(2)iω
ε(2)r(1)

6µ(2)iω
(ε(2))2r(1)n(n+ 1)

4µ(2)iω
ε(2)r(1)


. (3.8)

A global spectral matrix of the tractions and the displacements for Legendre mode n,
connecting Reynolds region 2 to regions 1, 3 and 4, may now be obtained,

d(3)r,n

d(3)θ,n
d(2)r,n

d(2)θ,n
d(1)r,n

d(1)θ,n


=


e11 + f11 e12 e13 e14 0 0

e21 e22 e23 e24 0 0
e31 e32 e33 + v11 e34 + v12 v13 v14
e41 e42 e43 + v21 e44 + v22 v23 v24
0 0 v31 v32 v33 + g11 v34 + g12
0 0 v41 v42 v43 + g21 v44 + g22


−1

,n


σ (3)rr,n

0
0
0
0
0

 , (3.9)

where σ (3)rr,n = −pain+1(2n + 1)(c(4))2/ω2r(3)h′n(r
(3)ω/c(4)) is the stress applied by the

impinging plane wave. The coefficients for the acoustic region 4 and the elastic
regions 1 and 3 are presented in the Appendix and their derivation may be obtained
from Skelton & James (1997). Specifically, f11 is defined in (A 1), e is defined in
(A 2) and g is defined in (A 23).
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FIGURE 2. (Colour online) Normalized pressure and r-averaged velocity in region 2.
(a) Distribution of the r-averaged speed in the θ -direction 〈Uθ 〉. (b) Pressure P angle θ
for λ = 0.5r(1) (green dashed), λ = r(1) (black full) and λ = 1.5r(1) (red dotted). In all
cases µ(2)c(4)/(ε(2))3ε(3)λ(3)r(1) = 1. As expected, λ = r(1) exhibits the most variance in
fluidic pressure and the characteristic length scale of the induced velocity is similar to
the external wavelength.

Mode n = 0 corresponds to spatially uniform pressure in region 4, for which
the stiffness matrix of region 2 (v ij,n) and thus the global stiffness matrix (3.10)
are singular. This singularity expresses the trivial solution for the fluid θ -direction
momentum conservation equation. Resolving this requires directly applying mass
conservation to region 2, yielding d(1)r,n=0=d(2)r,n=0 combined with symmetry requirements
d(3)θ,n=0 = d(2)θ,n=0 = d(1)θ,n=0 = 0. The resulting simplified system of equations for the
displacements for n= 0 is[

d(3)r,n=0

d(2)r,n=0

]
=
[

e11 + f11 e13
e21 e23

]−1

n=0

[
σ
(3)
rr,n=0

0

]
. (3.10)

4. Results and comparison to a fully elastic sphere
Figure 2 presents the velocity and pressure fields in region 2 due to the impinging

acoustic plane wave. In order to comply with the physical requirements described in
(2.17a), the examined configuration consists of highly rigid elastic regions 1 and 3
(steel with y(1) = y(3) = 200 GPa, ν(1) = ν(3) = 0.29) and the embedded viscous film
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Average radial displacement
Average tangential displacement

Elastic sphere with a creeping layer

Average radial displacement
Average tangential displacement

0.5 1.0 1.5

0.5

0

1.0

1.5

2.0

Fully elastic sphere

FIGURE 3. Normalized average displacements in the θ - and r-directions (〈D(3)
θ 〉 and

〈D(3)
r 〉, respectively) versus the normalized wavelength λ/r(1).

of region 2 is a highly viscous silicone oil (ρ(2)= 970 kg m−3, µ(2)= 100 Pa s). The
geometry of the layered sphere is defined by r(1) = 0.6 mm, r(2) = 1.2r(1) and r(3) =
1.4r(1). The sphere is submerged in water (ρ(4)= 1000 kg m−3, µ(4)= 10−3 Pa s) with
speed of sound of c(4) = 1480 m s−1.

Figure 2(a) presents the r-averaged speed in the θ -direction 〈Uθ 〉, defined by

〈Uθ 〉 =
∫ R(2)

R(1)
U(R, θ) dR, (4.1)

for impinging wavelengths of λ/r(1) = 0.5 (green dashed line), 1 (black full line) and
1.5 (red dotted line). In all cases, the magnitude of the average speed, induced due
to both the pressure gradient and the elastic displacements of the boundaries in the
θ -direction, is maximal near θ ≈ 160◦. The density of the velocity peaks increases
inversely with λ/r(1) and, while λ/r(1) = 1 yields the maximal values of 〈Uθ 〉, all
wavelengths yield speeds with similar order of magnitude.

Figure 2(b) presents the pressure in region 2 versus θ for identical wavelengths
as in figure 2(a) (λ/r(1) = 0.5, 1 and 1.5). Similarly to 〈Uθ 〉, the pressure increases
in the direction in which the wave impinges on the surface of the sphere. Unlike
figure 2(a), an order-of-magnitude difference in the characteristic pressure is evident
for λ/r(1)= 0.5 compared to λ/r(1)= 1.5, representing a smaller effective length scale
in the θ -direction (see (2.12)). The maximal pressure difference within the creeping
layer occurs for λ/r(1) = 1, where the viscous-elastic and acoustic time and length
scales are identical. In addition, for λ/r(1) = 1 and 1.5 the number of zeros of 〈Uθ 〉
is identical to the number of extremum points of P (for 0◦<θ < 180◦). However, for
λ/r(1)= 0.5, the first zero of 〈Uθ 〉 is at θ ≈ 80◦ and there are several small extremum
points of P without a corresponding zero of 〈Uθ 〉. This indicates that 〈Uθ 〉 at the
backward surface of the sphere (relative to the direction of the impinging wave) is
dominated by θ -displacement of the elastic shell and not by the pressure gradient.

Figure 3 presents the average absolute magnitude of the displacements of the outer
shell in the radial and tangential directions for a fully elastic sphere (grey lines) and
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Elastic sphere with a creeping layer Fully elastic sphere

(a) (b) (c)

FIGURE 4. The displacement modes for wavelengths of λ/r(1) = 0.5 (a), 1 (b) and 1.5
(c). The grey circles are the sphere at rest. Dotted lines denote a fully elastic sphere and
the smooth lines denote the elastic sphere with an embedded creeping layer.

an elastic sphere containing a thin creeping layer (black lines). The properties of the
sphere are identical to the case presented in figure 2. The multiple peaks presented
correspond to resonance frequencies of the fully elastic sphere. The effect of the
thin creeping layer is clearly significant, and effectively eliminates the fluctuations
in the radial displacements of the elastic sphere as a function of the wavelength of
the impinging acoustic plane wave. In addition, while no tangential displacements
occur for a fully elastic sphere, the creeping layer creates significant tangential
displacements, which are similar in magnitude to the radial deflections. Figure 4
supplements figure 3 and presents a more detailed description of the displacements
of the outer surface of the sphere for a given wavelength. Figure 4(a–c) presents
wavelengths of λ/r(1)= 0.5, 1 and 1.5, respectively. For all wavelengths, in accordance
with results of figure 3, the amplitude of the displacements is significantly reduced.
In addition, for λ/r(1) = 1 and 1.5, additional maxima points of the deflection field
are created due to the embedded creeping layer.

Figure 5 presents the effect of the creeping fluid layer on the target strength Ts of
the sphere. The target strength, measured in decibels, represents acoustic visibility and
following common practice is defined here by

TS = 20 log10

∣∣∣∣ps(r= r(3), θ = 180◦)
pa

∣∣∣∣ . (4.2)

The total scattered pressure in the external acoustic fluid p(4)s = p(4)r + p(4)e is the sum
of the pressure reflected from a rigid sphere p(4)r (3.2) and the additional pressure due
to elastic displacements of the sphere, p(4)e , given by

p(4)e = ρc(4)ω
∞∑

n=0

(
hn(kr(3))
h′n(kr(3))

)
d(3)r,nLn(cos(θ)). (4.3)

Figure 5(a) compares target strength (defined by (4.2)) of a fully elastic sphere
(grey line) with an elastic sphere with a viscous layer (black line) versus the scaled
wavelength of the impinging plane wave. All of the physical and geometric parameters
are identical to these used in figure 2, with the exception of µ(2), which is defined by
setting the ratio t∗/ta = µ(2)c(4)/(ε(1))3ε(2)λ(3)r(1) = 1. The viscous layer significantly
reduces the fluctuations of target strength with the wavelength λ/r(1). The difference
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FIGURE 5. (Colour online) Target strength (defined in (4.2)) versus scaled wavelength
of the impinging acoustic wave λ/r(1). (a) The target strength of an elastic sphere with
an embedded viscous layer and t∗/ta = 1 (black line) and the target strength of a fully
elastic sphere (grey line). (b) A close-up of wavelength in the region 0.56 λ/r 6 0.9 with
additional values of t∗/ta.

between the minimal and maximal values of the target strength is reduced from ≈
27 dB (from ≈−27 to ≈ 0.25) for the fully elastic sphere to ≈ 8.7 dB (from ≈−13.4
to ≈−4.7) for the sphere with a creeping layer. Furthermore, for wavelengths in the
range 0.56 λ/r(1)6 0.9 the fluctuations are under 1 dB and the target strength is only
weakly dependent on the wavelength λ/r(1). As the impinging wavelength increases,
the effect of the creeping layer is diminished, becoming negligible for λ/r(1)≈ 2. This
occurs since the sphere experiences spatially uniform temporally oscillating pressure
at the limit of large wavelengths, which involves no viscous flow in region 2 and is
described by the fully elastic n= 0 mode (see (3.10)).

Figure 5(b) is a close-up of figure 4(a) for the region 0.5 6 λ/r(1) 6 0.9 and
compares several values of t∗/ta=µ(2)c(4)/(ε(1))3ε(2)λ(3)r(1) denoted by markers within
the figure. While a region of stability of target strength is evident for all values of
t∗/ta, the wavelength range of this region is maximal for t∗/ta = 1. Viscosity may be
expected to have maximal effect for t∗/ta ≈ 1 since for t∗/ta � 1 the viscous layer
does not have sufficient time to react to the acoustic oscillations. For the opposite
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case of t∗/ta � 1, the viscous layer will be in a quasi-steady state and will have
nearly uniform pressure p(2) ≈ const.

5. Concluding remarks
This work examined the dynamics of an acoustic plane wave impinging on the

surface of a sphere with an embedded creeping layer, focusing on micro-configurations
with similar viscous-elastic and acoustic time and length scales. By expanding the
linearized spherical Reynolds equation into the relevant spectral series solution for the
hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was
obtained.

As expected, the results showed that both the pressure and velocity within the
creeping layer are maximal near the region on which the plane wave impinges.
In addition, the maximal pressure difference induced by the acoustic wave on the
creeping region 2 was shown to occur for λ/r(1) = 1, where the viscous-elastic and
acoustic regions have identical time and length scales. Comparing an elastic sphere
with an embedded creeping layer to a fully elastic sphere, a significant reduction
in magnitude and fluctuations (with regard to wavelength) are observed for both the
displacements of the solid and the target strength of the sphere. This effect was most
significant for λ/r(1) = 1.

The physical regime examined in this work required similar characteristic acoustic
and viscous-elastic time- and length scales, as well as negligible inertial effects in
the creeping region 2 and negligible viscous effects in the acoustic region 4. Order-
of-magnitude analysis yielded that the region of validity of this physical regime is
limited to micro-configurations involving highly viscous fluids. Extension to greater
length scales may be obtained by combining multiple spheres, which may be viewed
as a metamaterial. Alternatively, a similar physical regime may be examined in porous
structures, which commonly involve micrometre-sized pores.

Appendix. Components of the global stiffness matrix
For completeness, we list here the components of the global stiffness matrix (3.9)

representing regions 1, 3 and 4 (see Skelton & James 1997). We denote jn, yn and hn
as the spherical Bessel function of the first kind, the spherical Bessel function of the
second kind, and the spherical Hankel function of the first kind, respectively.

In region 4, we define k(4)=ω/c(4), where c(4) is the speed of sound. In § 4 the value
of c(4) = 1480 m s−1 is used, representing sea water, and the relevant component in
(3.10) is

f11 = ρ(4)c(4)ω
(

hn(k(4)r(3))
h′n(k(4)r(3))

)
. (A 1)

For the elastic regions M= 1 and M= 3 we define k(M)s =ω/c(M)s and k(M)l =ω/c(M)l ,
where c(M)s and c(M)l are speeds of pure transverse and longitudinal waves in the elastic
solid, respectively. In § 4 the values of cs= 3130 m s−1 and cl= 5760 m s−1 are used,
corresponding to steel. The coefficient matrix of elastic region 3 is given by

[e] = [I0][a][b]−1, (A 2)

where I0 is a diagonal matrix with diagonal values of [1, 1,−1,−1] required in order
to adjust for directionality in the boundary conditions. The components of matrix a
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are

a11 = λ(3)
{

k2
l j′′n(klr(3))+ 2k2

l j′n(klr(3))
r(3)

− n(n+ 1)jn(klr(3))
(r(3))2

}
+ 2µ(3)k2

l j′′n(klr(3)), (A 3)

a12 = λ
{

k2
l y′′n(klr(3))+ 2k2

l y′n(klr(3))
r(3)

− n(n+ 1)yn(klr(3))
(r(3))2

}
+ 2µ(3)k2

l y′′n(klr(3)), (A 4)

a13 =−2µ(3)n(n+ 1)
{

ksj′n(ksr(3))
r(3)

− jn(ksr(3))
(r(3))2

}
, (A 5)

a14 =−2µ(3)n(n+ 1)
{

ksy′n(ksr(3))
r(3)

− yn(ksr(3))
(r(3))2

}
, (A 6)

a21 = 2µ(3)
[

klj′n(klr(3))
r(3)

− jn(klr(3))
(r(3))2

]
, a22 = 2µ(3)

[
kly′n(klr(3))

r(3)
− yn(klr(3))

(r(3))2

]
,

(A 7a,b)

a23 =µ(3)
[

2jn(ksr(3))
(r(3))2

− k2
s j′′n(ksr(3))− n(n+ 1)jn(ksr(3))

(r(3))2

]
, (A 8)

a24 =µ(3)
[

2yn(ksr(3))
(r(3))2

− k2
s y′′n(ksr(3))− n(n+ 1)yn(ksr(3))

(r(3))2

]
, (A 9)

a31 = λ(3)
{

k2
l j′′n(klr(2))+ 2k2

l j′n(klr(2))
r(2)

− n(n+ 1)jn(klr(2))
(r(2))2

}
+ 2µ(3)k2

l j′′n(klr(2)),

(A 10)

a32 = λ(3)
{

k2
l y′′n(klr(2))+ 2k2

l y′n(klr(2))
r(2)

− n(n+ 1)yn(klr(2))
r(2)

}
+ 2µ(3)k2

l y′′n(klr(2)),

(A 11)

a33 =−2µ(3)n(n+ 1)
{

ksj′n(ksr(2))
r(2)

− jn(ksr(2))
(r(2))2

}
, (A 12)

a34 =−2µ(3)n(n+ 1)
{

ksy′n(ksr(2))
r(2)

− yn(ksr(2))
(r(2))2

}
, (A 13)

a41 = 2µ(3)
[

klj′n(klr(2))
r(2)

− jn(klr(2))
(r(2))2

]
, a42 = 2µ(3)

[
kly′n(klr(2))

r(2)
− yn(klr(2))

(r(2))2

]
,

(A 14a,b)

a43 =µ(3)
[

2jn(ksr(2))
(r(2))2

− k2
s j′′n(ksr(2))− n(n+ 1)jn(ksr(2))

(r(2))2

]
, (A 15)

a44 =µ(3)
[

2yn(ksr(2))
(r(2))2

− k2
s y′′n(ksr(2))− n(n+ 1)yn(ksr(2))

(r(2))2

]
, (A 16)

and the components of matrix b are

b11 = klj′n(klr(3)), b12 = kly′n(klr(3)), b13 =−n(n+ 1)
r(3)

jn(ksr(3)), (A 17a−c)
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b14 =−n(n+ 1)
r(3)

yn(ksr(3)), b21 = jn(klr(3))
r(3)

, b22 = yn(klr(3))
r(3)

, (A 18a−c)

b23 =−
(

jn(ksr(3))
r(3)

+ ksj′n(ksr(3))
)
, b24 =−

(
yn(ksr(3))

r(3)
+ ksy′n(ksr(3))

)
,

(A 19a,b)

b31 = klj′n(klr(2)), b32 = kly′n(klr(2)), b33 =−n(n+ 1)
r(2)

jn(ksr(2)), (A 20a−c)

b34 =−n(n+ 1)
r(2)

yn(ksr(2)), b41 = jn(klr(2))
r(2)

, b42 = yn(klr(2))
r(2)

, (A 21a−c)

b43 =−
(

jn(ksr(2))
r(2)

+ ksj′n(ksr(2))
)
, b44 =−

(
yn(ksr(2))

r(2)
+ ksy′n(ksr(2))

)
.

(A 22a,b)

The stiffness matrix of the interior elastic sphere (region 1) is given by

[g] = [s][t]−1, (A 23)

where the components of the matrix s are

s11 = λ(1)
[

k2
l j′′n(klr(1))+ 2k2

l j′n(klr(1))
r(1)

− n(n+ 1)jn(klr(1))
(r(1))2

]
+ 2µ(1)k2

l j′′n(klr(1)), (A 24)

s12 =−2µ(1)n(n+ 1)
[

ksj′n(ksr(1))
r(1)

− jn(ksr(1))
(r(1))2

]
, (A 25)

s21 = 2µ(1)
[

klj′n(klr(1))
r(1)

− jn(klr(1))
(r(1))2

]
, (A 26)

s22 =µ(1)
[

2jn(ksr(1))
(r(1))2

− k2
s j′′n(ksr(1))− n(n+ 1)jn(ksr(1))

(r(1))2

]
, (A 27)

and the components of the matrix t are

t11 = klj′n(klr(1)), t12 =−n(n+ 1)
r(1)

jn(ksr(1)), (A 28a,b)

t21 = jn(klr(1))
r(1)

, t22 =−
[

jn(ksr(1))
r(1)

+ ksj′n(ksr(1))
]
. (A 29a,b)

REFERENCES

ARCO, R. M., VÉLEZ-CORDERO, J. R., LAUGA, E. & ZENIT, R. 2014 Viscous pumping inspired
by flexible propulsion. Bioinspir. Biomim. 9 (3), 036007.

BALMFORTH, N. J., CRASTER, R. V. & HEWITT, I. J. 2015 The speed of an inclined ruck. Proc.
R. Soc. Lond. A 471, 20140740.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

13
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.138


Sphere containing thin creeping region immersed in an acoustic region 115

BOWEN, P. T. & URZHUMOV, Y. A. 2016 Three forms of omnidirectional acoustic invisibility
engineered using fast elastodynamic transfer-matrix method. J. Opt. 18 (4), 044025.

CAMALET, S. & JÜLICHER, F. 2000 Generic aspects of axonemal beating. New J. Phys. 2, 24.1–24.23.
CANIC, S. & MIKELIC, A. 2003 Effective equations modeling the flow of a viscous incompressible

fluid through a long elastic tube arising in the study of blood flow through small arteries.
SIAM J. Appl. Dyn. Syst. 2 (3), 431–463.

CHAUHAN, A. & RADKE, C. J. 2002 Settling and deformation of a thin elastic shell on a thin fluid
layer lying on a solid surface. J. Colloid Interface Sci. 245 (1), 187–197.

DUCHEMIN, L. & VANDENBERGHE, N. 2014 Impact dynamics for a floating elastic membrane.
J. Fluid Mech. 756, 544–554.

DUPRAT, C. & STONE, H. A. 2015 Fluid–Structure Interactions in Low-Reynolds-Number Flows.
Royal Society of Chemistry.

ELBAZ, S. B. & GAT, A. D. 2014 Dynamics of viscous liquid within a closed elastic cylinder
subject to external forces with application to soft robotics. J. Fluid Mech. 758, 221–237.

FARAN, J. J. JR 1951 Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23 (4),
405–418.

GUILD, M. D., ALU, A. & HABERMAN, M. R. 2011 Cancellation of acoustic scattering from an
elastic sphere. J. Acoust. Soc. Am. 129 (3), 1355–1365.

GUILD, M. D., HICKS, A. J., HABERMAN, M. R., ALÙ, A. & WILSON, P. S. 2015 Acoustic
scattering cancellation of irregular objects surrounded by spherical layers in the resonant
regime. J. Appl. Phys. 118 (16), 164903.

HAN, Z., TAO, C., ZHOU, D., SUN, Y., ZHOU, C., REN, Q. & ROBERTS, C. J. 2014 Air puff
induced corneal vibrations: theoretical simulations and clinical observations. J. Refract. Surg.
30 (3), 208–213.

HEIL, M. 1997 Stokes flow in collapsible tubes – computation and experiment. J. Fluid Mech. 353,
285–312.

HEWITT, I. J., BALMFORTH, N. J. & DE BRUYN, J. R. 2015 Elastic-plated gravity currents. Eur. J.
Appl. Maths 26 (01), 1–31.

HOSOI, A. E. & MAHADEVAN, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet.
Phys. Rev. Lett. 93 (13), 137802.

HOWELL, P., KOZYREFF, G. & OCKENDON, J. 2009 Applied Solid Mechanics. Cambridge University
Press.

HUANG, X., ZHONG, S. & LIU, X. 2014 Acoustic invisibility in turbulent fluids by optimised cloaking.
J. Fluid Mech. 749, 460–477.

LISTER, J. R., PENG, G. G. & NEUFELD, J. A. 2013 Viscous control of peeling an elastic sheet
by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.

LOGAN, N. A. 1965 Survey of some early studies of the scattering of plane waves by a sphere.
Proc. IEEE 53 (8), 773–785.

LOVE, A. E. H. 1927 A Treatise on the Mathematical Theory of Elasticity, vol. 1. Cambridge
University Press.

LOWE, T. W. & PEDLEY, T. J. 1995 Computation of Stokes flow in a channel with a collapsible
segment. J. Fluids Struct. 9 (8), 885–905.

MCEWAN, A. D. & TAYLOR, G. I. 1966 The peeling of a flexible strip attached by a viscous
adhesive. J. Fluid Mech. 26 (01), 1–15.

SKELTON, E. A. & JAMES, J. H. 1997 Theoretical Acoustics of Underwater Structures. Imperial
College Press.

TONY, S. Y., LAUGA, E. & HOSOI, A. E. 2006 Experimental investigations of elastic tail propulsion
at low Reynolds number. Phys. Fluids 18 (9), 091701.

TORRENT, D. & SÁNCHEZ-DEHESA, J. 2008 Acoustic cloaking in two dimensions: a feasible approach.
New J. Phys. 10 (6), 063015.

WIGGINS, C. H. & GOLDSTEIN, R. E. 1998 Flexive and propulsive dynamics of elastica at low
Reynolds number. Phys. Rev. Lett. 80 (17), 3879.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

13
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.138

	Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time and length scales
	Introduction
	Problem formulation and order-of-magnitude analysis
	Incorporating the Reynolds equation into the acoustic stiffness matrix
	Results and comparison to a fully elastic sphere
	Concluding remarks
	Appendix.Components of the global stiffness matrix
	References




