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This paper analyses a canonical class of one-dimensional superlinear indefinite boundary

value problems of great interest in population dynamics under non-homogeneous boundary

conditions; the main bifurcation parameter in our analysis is the amplitude of the superlinear

term. Essentially, it continues the analysis of López-Gómez et al. (López-Gómez, J., Tellini,

A. & Zanolin, F. (2014) High multiplicity and complexity of the bifurcation diagrams of

large solutions for a class of superlinear indefinite problems. Comm. Pure Appl. Anal. 13(1),

1–73) with empty overlapping, by computing the bifurcation diagrams of positive steady

states of the model and by proving analytically a number of significant features, which have

been observed from the numerical experiments carried out here. The numerics of this paper,

besides being very challenging from the mathematical point of view, are imperative from the

point of view of population dynamics, in order to ascertain the dimensions of the unstable

manifolds of the multiple equilibria of the problem, which measure their degree of instability.

From that point of view, our results establish that under facilitative effects in competitive

media, the harsher the environmental conditions, the richer the dynamics of the species, in

the sense discussed in Section 1.

Key words: Facilitation in polluted patches; Bifurcation diagrams; Superlinear indefinite prob-

lems; Unstable manifolds; Degree of instability; Uniqueness of local attractor

1 Introduction

This paper deals with the existence, multiplicity and stability of the positive equilibria

of

⎧⎨
⎩

∂tu− ∂xxu = λu+ ab(x)u
p x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = M, t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

(1.1)
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where u0 > 0 is a given positive function, M > 0, p > 1, λ < 0 is regarded as a real

parameter and ab(x) is the symmetric piece-wise constant function defined by

ab(x) =

{
−c if x ∈ [0, α) ∪ (1 − α, 1]

b if x ∈ [α, 1 − α]

for some α ∈ (0, 0.5), b � 0 and c > 0; the steady states of (1.1) are the positive solutions

of the one-dimensional boundary value problem

{
−u′′ = λu+ ab(x)u

p in (0, 1),

u(0) = u(1) = M.
(1.2)

Problem (1.1) is of sublinear degenerate type if b = 0, while it is a superlinear indefinite

problem if b > 0, as in this case ab changes sign in [0, 1]. These problems have attracted

a huge attention during the last two decades, as it becomes apparent by simply having a

look at [1, 5–7, 18, 21, 22, 27–29, 39] and references therein.

In population dynamics, (1.1) models the evolution of a single species in a harsh

(one-dimensional) inhabiting region, the interval (0, 1), which is surrounded by territories

where the population density equals M. In these models u(x, t) stands for the density of

the species at the location x ∈ (0, 1) and at time t > 0, λ < 0 measures the neat death rate

of the species in (0, 1) and u0 > 0 is the initial population density. In nature, λ is negative,

for example, when pesticides are used in high concentrations, or a certain patch of the

environment is polluted by introducing chemicals, waste products or poisonous substances.

When b = 0, as a0 = 0 in (α, 1 − α), the species u grows in that patch according to

Malthus’ law and, in particular, the resources are unlimited therein, whereas the evolution

of u is governed by the logistic law, with exponent p, in (0, α) ∪ (1 − α, 1). In such a case,

according to [30], (1.2) admits a unique positive solution, denoted by θ[λ,M], which is a

global attractor for (1.1). Naturally, θ[λ,M] < M in the inhabiting region because λ < 0, and

hence u′′ > 0. Essentially, through the edges of the polluted area there is a continuous flow

of individuals who die in the interior at the rate λ < 0 by the action of a contaminant. The

continuous flow of individuals through the boundary of the poisoned region can maintain

the population at θ[λ,M] level as time grows. Basically, the same situation occurs if λ > 0,

but the length of (α, 1 − α) is sufficiently small so that λ < [π/(1 − 2α)]2. Surprisingly,

when the birth rate of the species, measured by λ, crosses the threshold [π/(1 − 2α)]2, the

population remains bounded in (0, α) ∪ (1 − α, 1), much like in the classical logistic model,

while it grows approximating infinity in (α, 1 − α), which is the region where the evolution

of u is governed by Malthus’ law.

The main goal of this paper is to analyse how the dynamics of (1.1) changes as the

parameter b > 0 varies, perturbing from 0, when λ < 0. In population dynamics, b > 0

measures the interspecific facilitative effects of the species u in the patch (α, 1−α). In these

generalized logistic prototypes, the individuals of the species u compete for the natural

resources in the region where ab < 0, while they cooperate in the patches where ab > 0.

Although there are extensive reviews about the experimental evidence of interspecific

competition (see, e.g. [14, 42]) and positive interactions are well documented among

organisms from different kingdoms, as they can make significant contributions to each

other’s needs without sharing the same resources (see, e.g. [24, 41, 43]), finding positive
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interactions among similar organisms seems to be a huge task in empirical studies,

since they do not arise alone but in combination with competition. However, according

to the abiotic stress hypothesis of [8], the importance of positive interactions in plant

communities increases with abiotic stress or consumer pressure. Several empirical studies

support the validity of the abiotic stress hypothesis and, actually, a substantial number

among documented positive interactions in plant communities have been isolated in

harsh environmental conditions (see, e.g. [12,40]). Consequently, (1.1) seems to be a rather

reasonable mathematical model for studying the effects of combined facilitation and

competition in polluted habitat patches.

By some classical results in elliptic regularity theory (see, e.g. [19]), any weak solution

u of (1.2) must satisfy u ∈ C∞[0, α) ∩ C∞[α, 1 − α] ∩ C∞(1 − α, 1] ∩ C1[0, 1]. Moreover,

thanks to the maximum principle (see [32]), any non-negative solution of (1.2) must

satisfy u(x) > 0 for all x ∈ [0, 1]. These are the solutions considered in this paper, even if

not said explicitly.

Problem (1.2) with a piece-wise constant ab goes back to [38], where it was shown

how the qualitative complexity of the global bifurcation diagrams of (1.2), using b

as a main continuation parameter, increases dramatically as the secondary parameter

−λ > 0 grows. From the perspective of population dynamics, it is imperative to design

efficient numerical algorithms to compute the steady states of (1.1), as well as the

dimensions of their respective unstable manifolds, which cannot be determined from the

existing analytical tools. This is the first task that we have accomplished in this paper, in

Section 2, through some extremely sophisticated, local and global path-following numerical

solvers, which are not available in any commercial package, such as AUTO [16, p. 18],

where the following is admitted: Note that, given the non-adaptive spatial discretization,

the computational procedure here is not appropriate for PDEs with solutions that rapidly

vary in space, and care must be taken to recognize spurious solutions and bifurcations . This

is just one of the main problems that we found in our numerical experiments in Section 2,

as the number of critical points of the solutions increases according to the dimensions

of unstable manifolds, and the turning and bifurcation points are extremely close. As

evidenced by the numerics, the following new findings become apparent:

• For every λ < 0, there is bc = bc(λ) > 0 such that the interval (−∞, bc(λ)] provides us

with the set of b’s for which (1.2) admits a positive solution.

• limλ↓−∞ bc(λ) = +∞.

• The unique stable positive steady state of (1.1) is the minimal one, although (1.2) can

admit an arbitrarily large number of solutions.

Actually, these are the main new findings of this paper, which will be proven in Sections

3 and 4. Although in this paper we often invoke some previous results going back

to [4,30,38], the overlapping of our new results here with those of these three cited works

is absolutely empty.

According to [38], it is already known that, for any integer n � 0, (1.2) possesses

solutions with n strict critical points in the interval (α, 1 − α) if −λ > 0 is sufficiently large

for certain ranges of b. Moreover, these solutions must be asymmetric if n � 2 is even in

spite of the symmetry of the problem. The solution with 0 strict critical points, referred to
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as the trivial solution of (1.2), will play an important role in explaining and understanding

the complexity of the global bifurcation diagrams of (1.2), as it behaves like an organising

centre in singularity theory (see, e.g. [20]). It can be constructed as follows. Let uM(x)

denote the unique solution of{
−u′′ = λu− cup in (0, α)

u(0) = M, u′(α) = 0
,

and set m0 := uM(α). Then the constant function m0 solves −u′′ = λu + bup if and only

if b = b∗, where b∗ := −λ/mp−1
0 , and for such value of b the trivial solution u∗ is defined

through

u∗(x) =

⎧⎨
⎩
uM(x), x ∈ [0, α),

m0, x ∈ [α, 1 − α],

uM(1 − x), x ∈ (1 − α, 1],

(1.3)

which is symmetric around x = 0.5.

Basically, as illustrated by the left plot of Figure 1, for λ < 0, λ ∼ 0, the global structure

of the positive solutions of (1.2) consists of a primary curve establishing a homotopy

between the unique solution of{
−u′′ = λu+ a0(x)u

p in (0, 1),

u(0) = u(1) = M,
(1.4)

and the metasolution (large solution prolonged by infinity)

m(x) :=

⎧⎨
⎩
u∞(x), x ∈ [0, α)

∞, x ∈ [α, 1 − α]

u∞(1 − x), x ∈ (1 − α, 1]

,

where u∞ stands for the unique solution of the singular problem{
−u′′ = λu− cup in [0, α)

u(0) = M, u(α) = ∞ . (1.5)

Then, as −λ > 0 increases, a piece of the primary curve rotates counterclockwise around

the trivial solution u∗ and almost after every half rotation an additional closed loop

emanates from it. The loop consists of solutions of asymmetric type and it persists for all

further values of −λ (see the series of Figures 1–3). Indeed, thanks to [38], the number

of turning points of the primary curve, as well as the number of bifurcation points along

it, is unbounded as λ ↓ −∞. This explains why the numerics of (1.2) carried out in this

paper is a mathematical challenge.

An astonishing phenomenon evidenced by our numerics in Section 2 is that the larger

the value of −λ, the larger the range of values of the main parameter b for which (1.2)

possesses some positive solution, and simultaneously smaller the positive solutions of (1.2)

at α. This feature entails that the turning points of the primary curve are extremely closed,

which makes the implementation of the numerical computations of this paper a very

hard task. By simply having a glance at Figure 3, which represents the global bifurcation

diagram of (1.2) for λ = −2000, the reader will easily realize what we mean. Although
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bc = 1.2463985×107, most of the positive solutions in the diagram satisfy u(α) ∼ 10−4, and,

in addition, the first loop bifurcates from the primary branch at b = 1.2463984×107, which

is extremely close to bc. Consequently, even looking so simple, the prototype model (1.2)

generates highly intricate global bifurcation diagrams whose numerical computation is

extremely challenging not only because of the complexity of the structure of the diagrams

themselves but also by the scales of the parameters at which the phenomenologies of

practical interest arise.

The organisation of this paper is as follows. Section 2 shows the numerical results,

Section 3 establishes the existence of bc(λ) and shows that limλ↓−∞ bc(λ) = ∞ and Section

4 proves that the minimal positive solution of (1.2) is the unique (locally) stable positive

steady state of (1.1).

From the point of view of applications in population dynamics, our numerical experi-

ments show that, under facilitative effects in competitive media, the harsher the environ-

mental conditions, the richer the dynamics of the species. For example, for λ = −2, 000,

there is a range of values of b around b∗ = 0.7007 × 107 where (1.2) exhibits 12 positive

solutions, say θj , 0 � j � 11 (see Figure 3). Subsequently, for any 0 � j � 11, we will

denote by Wu
j (resp. Ws

j ) the unstable (resp. stable) manifold of θj . According to Theorem

4.1, the minimal positive solution, say θ0, is the unique local attractor of (1.1). Local

attractor means that the unique solution of (1.1), denoted by u(t; u0), satisfies

lim
t↑∞

u(t; u0) = θ0, provided u0 is sufficiently close to θ0,

i.e Wu
0 = span[0]. Naturally, if u0 stays far away from θ0, u(t; u0) might approximate

any of the remaining equilibria θj ’s, or it might oscillate among several of them for a

sufficiently long time, or it might even approximate some metasolution. According to our

numerical experiments in Section 2, the positive solutions of (1.2) at λ = −2, 000 can be

labelled so that

dimWu
j = dimWu

11−j = j, 1 � j � 5, dimWu
11 = 6.

It is well known that Ws
j is a local infinite-dimensional (nonlinear) sub-manifold of C[0, 1]

with

codimWs
j = dimWu

j ,

for all 0 � j � 11. Moreover,

lim
t↑∞

u(t; u0) = θj if u0 ∈ Ws
j , 0 � j � 11.

Consequently, each of the positive equilibria can be approximated by the solutions of

(1.1) by choosing u0 sufficiently close to θj on Ws
j , although if u0 ∈ Wu

j , the solution will

separate away from θj as time passes by. Ascertaining the behaviour of u(t; u0) in such

cases is an extremely challenging open problem. These examples can be constructed for

all θj , 1 � j � 11, except for θ0, since it is a local attractor. Precisely, the dimensions

of the (local nonlinear) unstable manifold Wu
j measure the degree of instability of the

corresponding θj .

The fact that the number of steady states of (1.1) grows arbitrarily as the degree of

inhabitability of the environment blows up as an effect of interspecific facilitative effects.
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This has been observed for the first time in this paper in the context of spatial ecology,

and it might be a relevant feature in the theory of ecosystems.

2 A series of significant global bifurcation diagrams

Throughout this section we will fix α = 0.3, p = 2, M = 100 and c = 1, whereas b and

λ will be regarded as the primary and secondary parameters of the problem, respectively.

Since the value of c is substantially smaller than M, the associated solutions of (1.2) can

though be of approximations to the large solutions of the associated equation

−u′′ = λu+ ab(x)u
p.

A large solution means a classical solution with u(0) = u(1) = ∞ (see [30, 38]). Precisely,

we will give to the parameter λ a series of significant values ranging in the interval (−∞, 0]

and, for each of these values, b will be regarded as the main bifurcation parameter to

compute the corresponding global bifurcation diagrams of (1.2). Our main goal is to show

their complexity as −λ > 0 increases and to get some quantitative properties such as the

dimensions of unstable manifolds of all positive solutions along them.

To discretize (1.2) we have used a pseudo-spectral method combining a trigonometric

spectral method with collocation at equidistant points, as in most of our previous nu-

merical works in [21, 23, 31, 33–36]. The spectral method uses trigonometric modes. This

gives high accuracy at a very low computational cost (see, e.g. [13]). For general Galerkin

approximations, the local convergence of paths at regular, turning and simple bifurcation

points was proven in [9–11, 31, 37]. In all these situations, the local topological structures

of the solution curves for the continuous and discrete models are equivalent. The global

continuation solvers used to compute the solution curves, and the dimensions of the

unstable manifolds of all the solutions along them have been built by ourselves from the

theory on continuation methods of [2, 15, 17, 25, 26, 31].

The complexity of the bifurcation diagrams, as well as their quantitative features,

required an extremely careful control of all the steps in subroutines. In the implementation

of the available continuation methods, we found, essentially, two main difficulties. Namely,

one must be extremely careful in choosing the shot direction to compute the bifurcated

closed loops from the primary curve, and, in addition, one should adopt an appropriate

re-scaling procedure to compute automatically all turning points along the primary curve

as they are extremely closed. As a result, the available algorithms in the specialized

literature do not work for sufficiently large −λ > 0; in particular, the standard bifurcation

package AUTO cannot be used in our context.

The left picture in Figure 1 shows the plot of the bifurcation diagram of (1.2) for

λ = −5. As in all subsequent bifurcation diagrams, we are representing the value of b in

the horizontal axis versus the value of u(α) in the vertical one.

The bifurcation diagram consists of a single primary curve emanating from the unique

positive solution of (1.4) at b = 0, whose existence and uniqueness was established in [30],

and it continues towards the right to reach a critical value, b = bc, where it goes backwards,

exhibiting a subcritical turning point. Once it passed the turning point, the solutions on

the upper half-branch can be continued for every 0 < b < bc and as b ↓ 0, they blow up in
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Figure 1. (Colour online) Bifurcation diagrams for λ = −5 (left), λ = −70 (centre) and λ = −300

(right). The thick points mark the position of u∗ (see (1.3)). Small squares indicate changes in the

number of critical points of the solution.
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Figure 2. (Colour online) Global bifurcation diagram for λ = −750 (left), λ = −800 (centre) and

λ = −1300 (right).

[α, 1 − α], while in [0, α) they approximate the unique solution u∞ of the singular problem

(1.5). Consequently, for every b ∈ (0, bc), (1.2) admits at least two solutions. The solutions

along the lower half-branch are linearly asymptotically stable (local attractors), while

those on the upper half-branch are unstable with one-dimensional unstable manifold.

The centre plot in Figure 1 shows the bifurcation diagram for λ = −70. Now, as in

all subsequent diagrams, u∗ appears on the branch of linearly unstable solutions. The

right diagram in Figure 1 has been computed for λ = −300 and exhibits a secondary

loop bifurcated as a consequence of a symmetry breaking from the principal curve. The

bifurcation points of the loop are of pitchfork type. As λ decreased from −70, there was

the first value for which the loop appeared. Then the loop persisted for all smaller values

of λ. The solutions on the loop are asymmetric, and for fixed b the one on its upper

branch is the symmetrization of the one on the lower branch.

As λ decreased from λ = −300 to reach the value, λ = −750, whose associated global

bifurcation diagram has been plotted in the first diagram in Figure 2, the primary branch

rotated counterclockwise around u∗, originating two additional turning points along it:

one of these turning points is supercritical and the other is subcritical. In this picture, as

in all the subsequent ones, by the scale chosen in the plots, a piece of the first bifurcated

loop could not be plotted.

Further, the second loop of asymmetric solutions emerged from the primary branch,

following the same patterns as the first one. The central plot in Figure 2 shows it for

λ = −800, while the right one shows the bifurcation diagram for λ = −1, 300, where

an additional rotation of the primary branch has occurred. This alternation between

rotations of the principal branch around the trivial solution and secondary bifurcations of

loops of asymmetric solutions is maintained as λ decreases, as it can be inferred from the
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Figure 3. (Colour online) Global bifurcation diagram for λ = −2, 000.

bifurcation diagram in Figure 3, computed for λ = −2, 000. Therefore, there are ranges of

the parameter b for which number of solutions of (1.2) grows arbitrarily as λ ↓ −∞.

The solutions on the primary branch are symmetric about 0.5, with a single strict critical

point in (α, 1 − α) until b reaches a certain critical value, the one marked with a small

square in the diagrams, where the number of critical points increases by two. This pattern

is maintained until u∗ is reached, and afterwards the number of critical points decreases

by two at every small square, to become one again. In most of the cases, along the nth

loop, the (asymmetric) solutions have 2n − 1 strict critical points near the bifurcation

points and 2n critical points in the central parts of the loop. An absolutely new and rather

remarkable feature, which could not be observed in [38], is the fact that the dimensions of

unstable manifolds of all the solutions along the primary curve increase by one, starting
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with 0 (at b = 0), each time that a bifurcation, or a turning point, is crossed, until the

interior of the last emanated loop is reached. Then these dimensions decrease, according

to the same rule, until they became one-dimensional again. In particular, although the

model can have an arbitrarily large number of steady states, the numerics suggest that

the minimal one is a unique linearly stable steady state, i.e. a unique local attractor – an

absolutely new feature that will be proven analytically in Section 4.

3 Some sharp existence results

By simply having a glance at the bifurcation diagrams of Figures 1–3, it is easily realized

that the maximal value of b for which the problem admits a positive steady state should

approximate ∞ as λ ↓ −∞. The following result establishes it rigourously.

Theorem 3.1 For every λ < 0 there exists bc = bc(λ) > 0 such that (1.2) has a positive

solution for each b ∈ [0, bc(λ)) and it does not admit any positive solution if b > bc(λ).

Moreover, (1.2) has a minimal positive solution if it admits some, which is linearly stable.

Furthermore,

lim
λ↓−∞

bc(λ) = ∞. (3.1)

Proof Fix λ < 0 and consider the associated sublinear problem (1.4). As a consequence

from [30, Th. 3.5], (1.4) possesses a unique positive solution, which is linearly asymptotic-

ally stable. Thus, according to the implicit function theorem, there exists δ > 0 such that

(1.2) admits a positive solution for each b ∈ [0, δ). On the other hand, based on [29, Th.

4.1(b)], it becomes apparent that (1.2) cannot admit any positive solution for sufficiently

large b > 0, because the positive solutions of (1.1) blow up in a finite time. Moreover,

using the method of sub- and super-solutions, it is easy to see that (1.2) possesses a

positive solution for all b ∈ [0, b0] if it admits a positive solution for b = b0. Therefore, the

existence of bc(λ) > 0 satisfying the requirements of the statement of the theorem holds.

Next, we will show the existence and the local linearized stability of the minimal positive

solution of (1.2). Suppose (b, u) is a solution of (1.2) with b > 0. As (0, u) is an ordered

sub-supersolution pair, the existence of a (unique) minimal solution umin in the ordered

interval [0, u] follows from [4, Th. 6.1]. The linear stability of umin can be obtained by

contradiction, as in [4, Th. 7.3]. Indeed, suppose that σ := σ[L(b,umin)] < 0, where, for any

given positive solution (b, u) of (1.2),

L(b,u) := − d2

dx2
− λ− abpu

p−1

and σ[L(b,u)] stands for the principal eigenvalue of L(b,u) in (0, 1) under homogeneous

Dirichlet boundary conditions. Let φ > 0 be an eigenfunction associated with σ. We claim

that ū := umin −εφ > 0 is a strict supersolution to (1.2) for sufficiently small ε > 0. Indeed,

according to the definition of umin and φ, we find that

−ū′′ = λū+ ab

(
u
p
min − εpφu

p−1
min

)
− εσφ in (0, 1). (3.2)
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Now, setting f(ε) := (umin − εφ)p, the Taylor formula for ε ∼ 0 yields

ūp = f(ε) = f(0) + εf′(0) + o(ε) = u
p
min − εpφu

p−1
min + o(ε)

and hence, since σ < 0, it becomes apparent from (3.2) that

−ū′′ = λū+ abū
p − εσφ+ o(ε) > λū+ abū

p in (0, 1)

for sufficiently small ε > 0. Moreover, ū(0) = ū(1) = M, by construction. As ū > 0 for

sufficiently small ε > 0 and zero is a sub-solution of (1.2), once again from [4, Th. 6.1],

we find that (1.2) possesses a minimal positive solution in [0, umin − εφ]. Naturally, this

contradicts the minimality of umin and hence it shows that σ � 0. This concludes the proof

of the existence and linear stability of the minimal positive solution of (1.2).

To prove (3.1) we will use the next lemma.

Lemma 1 Suppose λ < 0, L > 0, and M1,M2 ∈ (0,∞]. Then the problem{
−u′′ = λu− cup in (0, L),

u(0) = M1, u(L) = M2,
(3.3)

has a unique positive solution; denoted by u = uλ. Moreover,

lim
λ↓−∞

uλ = 0 uniformly on compact subsets of (0, L). (3.4)

Proof The existence and the uniqueness of uλ are easy consequences from [30, Th. 3.5].

Moreover, it follows from the maximum principle that 0 < uλ < uμ < u0 if λ < μ < 0, and

hence limλ↓−∞ uλ < u0 is well defined. Let 0 < x1 < x2 < L and consider the function

ϕ(x) := sin

(
π(x− x1)

x2 − x1

)
, x ∈ [x1, x2].

Multiplying the differential equation of (3.3) by ϕ and integrating by parts in (x1, x2)

yields

λ

∫ x2

x1

uλϕ− c

∫ x2

x1

u
p
λϕ = −

∫ x2

x1

u′′
λϕ = −

[
u′
λϕ

]x2

x1
+

∫ x2

x1

u′
λϕ

′

=

∫ x2

x1

[
(uλϕ

′)′ − uλϕ
′′]

= uλ(x2)ϕ
′(x2) − uλ(x1)ϕ

′(x1) +

(
π

x2 − x1

)2 ∫ x2

x1

uλϕ

and hence,[
λ−

(
π

x2 − x1

)2
] ∫ x2

x1

uλϕ− c

∫ x2

x1

u
p
λϕ = uλ(x2)ϕ

′(x2) − uλ(x1)ϕ
′(x1)

> u0(x2)ϕ
′(x2) − u0(x1)ϕ

′(x1),
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because ϕ′(x2) < 0 < ϕ′(x1). Therefore,[
λ−

(
π

x2 − x1

)2
] ∫ x2

x1

uλϕ > u0(x2)ϕ
′(x2) − u0(x1)ϕ

′(x1)

and, consequently, letting λ ↓ −∞ in this inequality, (3.4) holds. �

We have all the ingredients to complete the proof of (3.1). By [38, Th. 3.3], we have

that

b∗(λ) := −λ/m0(λ)
1
p−1 � bc(λ),

because (1.2) admits a positive solution for b = b∗(λ); remember that we are denoting

m0(λ) := u(α), where u a unique solution of{
−u′′ = λu− cup in (0, α),

u(0) = M, u′(α) = 0.

By Lemma 1 applied with L = 2α and M1 = M2 = M, we find that

lim
λ↓−∞

m0(λ) = 0.

Consequently,

lim
λ↓−∞

b∗(λ) = ∞ � lim inf
λ↓−∞

bc(λ).

The proof is complete. �

4 Uniqueness of the stable solution

The main result of this section shows that (1.1) possesses a unique linearly stable

positive steady state for all b � 0 for which (1.2) admits a positive solution. It can be

stated as follows.

Theorem 4.1 Suppose (1.2) admits a positive solution for b = b0 > 0 and let (b0, u0) denote

the minimal one. Then, (b0, u0) is the unique linearly stable positive solution of (1.1).

The proof of this theorem follows after a series of preliminary technical results.

Proposition 1 Let (b0, u0) be a linearly asymptotically stable positive solution of (1.2). Then

there exist ε > 0 and a differentiable map u : (b0−ε, b0+ε) → C1(Ω̄) such that u(b0) = u0 and

(b, u(b)) is a linearly asymptotically stable positive solution of (1.2) for all b ∈ (b0 −ε, b0+ε).

Moreover, the map (b0 − ε, b0 + ε) → C(Ω̄), b → u(b) is increasing and there exists a

neighbourhood U of (b0, u0) in � × C1(Ω̄) such that Pb(U) ⊂ (b0 − ε, b0 + ε) and (b, u) =

(b, u(b)) if (b, u) ∈ U is a solution of (1.2); Pb stands for the projection operator on b.

Proof The solutions of (1.2) are the zeros of the operator F : �× C1
0(Ω̄) → C1

0(Ω̄) defined

by

F(b, v) := v − (−Δ)−1 [λ(v +M) + ab(v +M)p] . (4.1)
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As (b0, u0) solves (1.2), setting v0 := u0 −M we have that F(b0, v0) = 0 and DvF(b0, v0) is an

isomorphism because we are assuming σ[L(b0 ,u0)] > 0. Consequently, the implicit function

theorem guarantees the existence, the uniqueness and the regularity of a function v, defined

in an ε-neighbourhood of b0, for which u := v+M has the desired properties. The points

of this curve are solutions or (1.2) since v0 > −M and, by continuity, v(b) > −M for

all b ∼ b0. The fact that the solutions (b, u(b)) are linearly asymptotically stable follows

easily from σ[L(b0 ,u0)] > 0 and the continuity of the principal eigenvalue with respect to

the potential, shortening U if necessary. Finally, as (b, u(b)) solves (1.2), by the theorem

of differentiation of Peano, w := du
db

(b) satisfies

L(b,u(b))w(b) = a+u
p(b) > 0 in (0, 1), w(0) = w(1) = 0,

where a+ denotes the characteristic function of (α, 1−α). Therefore, the maximum principle

implies that w � 0, which shows the monotonicity of u(b) in b and ends the proof. �

As a byproduct of Proposition 1, the next consequence from Theorem 3.1 holds.

Corollary 1 Assume λ < 0. Then there exists ε > 0 such that (1.2) admits, at least, a

linearly asymptotically stable solution for every b ∈ [0, ε).

To study the nature of the bifurcation diagrams of (1.2) in a neighbourhood of a

neutrally stable positive solution we need the next version of the Picone identity going

back to [27, Lemma 4.1].

Lemma 2 Suppose Ω ⊂ �N , N � 1, is a sufficiently smooth bounded domain of �N and

let u, v ∈ C1(Ω̄) ∩ C2(Ω) a.e. be such that v/u ∈ C1(Ω̄). Then, for every f : � → � of class

C1, ∫
Ω

f
( v
u

)
[uΔv − vΔu] =

∫
∂Ω

f
( v
u

)[
u

∂v

∂n
− v

∂u

∂n

]
−

∫
Ω

f′
( v
u

)
u2

∣∣∣∇ v
u

∣∣∣2 . (4.2)

The next result establishes that, around a linearly neutrally stable solution, the bi-

furcation diagram consists of a subcritical quadratic turning point, filled in by linearly

asymptotically stable solutions on its lower half-branch and linearly unstable solutions

on the upper one.

Proposition 2 Let (b0, u0) be a linearly neutrally stable positive solution of (1.2), and let

ψ0 > 0 be a positive eigenfunction associated with σ[L(b0 ,u0)] = 0. Then there exist ε > 0

and a differentiable function (b, u) : (−ε, ε) → � × C1(Ω̄) such that (b(0), u(0)) = (b0, u0)

and (b(s), u(s)) is a positive solution of (1.2) for each s ∈ (−ε, ε). Moreover,

u(s) = u0 + sψ0 + w(s), b(s) = b0 + b2s
2 + O(s3), (4.3)
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where w(s) = O(s2) as s ↓ 0,
∫ 1

0
w(s)ψ0 = 0 for all s ∈ (−ε, ε), and

b2 = −p(p− 1)

2

∫ 1

0
ab0
u
p−2
0 ψ3

0∫ 1

0
a+u

p
0ψ0

< 0,

where a+ denotes the characteristic function of (α, 1 − α). Furthermore, there is a neigh-

bourhood U of (b0, u0) in � × C1(Ω̄) such that (b, u) = (b(s), u(s)) for some s ∈ (−ε, ε) if

(b, u) ∈ U solves (1.2), and, as far as the stability of those solutions, we have that

sign b′(s) = sign σ[L(b(s),u(s))] for every s ∈ (−ε, ε). (4.4)

Proof After the usual change of variables u = v+M, the existence of ε and the functions

b(s) and u(s), as well as the local uniqueness and expansions (4.3), follow from [3, Th. 2.1]

applied to the operator F introduced in (4.1). Indeed, in this case, DvF(b0, v0) = L(b0 ,u0),

where u0 = v0 +M is a Fredholm operator of index zero and

ker[DvF(b0, v0)] = span[ψ0],

∫ 1

0

a+u
p
0ψ0 > 0. (4.5)

To derive (4.4), which describes the stability of the solutions, we can adapt [4, Prop. 20.8].

Substituting (4.3) in (1.2) and differentiating with respect to s, yields

L(b(s),u(s))u
′(s) = b′(s)a+u

p(s) in (0, 1).

Thus, multiplying this equation by a positive eigenfunction associated with σ[L(b(s),u(s))],

say ψ(s), integrating in (0, 1), and integrating by parts, we obtain

σ[L(b(s),u(s))]

∫ 1

0

u′(s)ψ(s) = b′(s)

∫ 1

0

a+u
p(s)ψ(s),

which implies (4.4), as u′(0) = ψ0 � 0 implies u′(s) � 0, s ∼ 0, by continuity. The

formula for b2 follows by substituting (4.3) in (1.2), differentiating twice with respect to

s, particularising at s = 0, multiplying by ψ0 and integrating in (0, 1). To get its sign,

recalling (4.5), we should prove that∫ 1

0

ab0
u
p−2
0 ψ3

0 > 0. (4.6)

To show (4.6) we apply Lemma 2 with v = ψ0, u = u0 and f(t) = t2. For this choice, all

the boundary terms in (4.2) vanish as ψ0(0) = ψ0(1) = 0. Moreover,

u0ψ
′′
0 − ψ0u

′′
0 = −(p− 1)ab0

u
p
0ψ0,

and hence the left-hand side of (4.2) becomes −(p− 1)
∫ 1

0
ab0
u
p−2
0 ψ3

0 . Combining this with

the fact that the right-hand side of (4.2) equals

−2

∫ 1

0

ψ0u0

∣∣∣∣
(
ψ0

u0

)′∣∣∣∣
2

< 0,
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because ψ0 cannot be a multiple of u0, it is easily seen that (4.6) holds. �

We are ready to complete the proof of Theorem 4.1. First, observe that the arguments in

the proof of Theorem 3.1 show the linear stability of (b0, u0). Thus, by Propositions 1 and

2, there exists an increasing arc of differentiable curve filled in by linearly asymptotically

stable positive solutions of (1.2) in the left neighbourhood, in b, of (b0, u0). Let C0 denote

the lower left-component in b of the set of positive solutions of (1.2) containing the

solutions on this left-side arc. As C0 consists of solutions of (1.2), it cannot bifurcate from

u = 0, because (b, u) ∈ C0 implies u(0) = u(1) = M > 0. Hence, by construction, and due to

Propositions 1 and 2, we have that (b, u) ∈ C0 implies b � b0 and u ∈ (0, u0]. Actually C0 is

a closed arc of differentiable curve. Moreover, one of the following two alternatives occurs:

(A1) Every (b, u) ∈ C0 is linearly asymptotically stable for all b < b0.

(A2) There exists a neutrally stable positive solution (b1, u1) ∈ C0 with b1 < b0.

Alternative (A2) is excluded as due to Proposition 2 there should not exist any positive

solution on the right-side neighbourhood of (b1, u1), which contradicts the construction

of C0 by the left-path-following from (b0, u0). Therefore, alternative (A1) occurs, and

hence C0 consists of linearly asymptotically stable solutions, except, possibly, (b0, u0). By

the implicit function theorem (see the proof of Proposition 1), this entails (0, θ[λ,M]) ∈ C0,

where θ[λ,M] is the one defined in Section 1. Also, by the local uniqueness given by

Propositions 1 and 2, and compactness, the solutions along C0 are the unique ones close

to C0. Suppose that (b0, ũ0) is a linearly stable solution with ũ0 � u0. Reasoning as above,

there exists another component of the set of positive solutions of (1.2), denoted by C̃0,

such that (0, θ[λ,0]) ∈ C̃0. Consequently, C0 = C̃0 and therefore, since C0 is a differentiable

curve, ũ0 = u0, which is a contradiction.

Corollary 2 Suppose (b0, u0) is a linearly neutrally stable solution of (1.2). Then (1.2) cannot

admit any positive solution for b > b0.

Proof By [30, Th. 3.5], b0 > 0. Moreover, by Proposition 2, the set of positive solutions

of (1.2) in the neighbourhood of (b0, u0) is a subcritical quadratic turning point. Suppose

(1.2) admits a solution (b1, u1) with b1 > b0. Then, due to Theorem 3.1, there exists

a positive solution (b1, umin), which is linearly stable. Adapting the proof of Theorem

4.1, there exists a differentiable curve C0 such that (b1, umin) ∈ C0, which is filled in by

linearly asymptotically stable solutions of (1.2), except, at most, (b1, umin). By Theorem

4.1, (b0, u0) ∈ C0, which is impossible. �

5 Conclusions

In this paper we computed the (rather intricate) bifurcation diagrams of (1.2) by

coupling a pseudo-spectral method with collocation with a path-following solver designed

by the authors for this work. The numerics suggested the following features:

(a) For every λ < 0, there is bc = bc(λ) > 0 such that the interval (−∞, bc(λ)] provides us

with the set of b’s for which (1.2) admits a positive solution.
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(b) limλ↓−∞ bc(λ) = +∞.

(c) The unique stable positive steady state of (1.1) is the minimal one, although (1.2) can

admit an arbitrarily large number of equilibria.

Properties (a) and (b) are proved in Section 3, and property (c) is proved in Section 4.

Regarding (1.1) as a model for the evolution of a species u in an unfavourable environ-

ment, where the individuals compete for the available resources in some regions while they

cooperate in others, our analysis shows how the dynamics becomes more and more com-

plex as the toxicity of the environment blows up, quantifying such complexity through

the computation of the degree of instability of all the steady states. This astonishing

result, rather unexpected, suggests the development of empirical studies to validate our

predictions. Plant interactions in arid regions might be easily reproduced in laboratory

and should give more insight into this problem. As a consequence of the multiplicity of

the steady states and the dimensions of their unstable manifolds, under the appropriate

initial conditions, the species might approximate any of them by taking the initial values

on their stable manifolds. Otherwise, if the initial values lie outside the stable manifolds

of the steady states, the solution might oscillate for some time among some of the steady

states of the problem and then either blow up as an effect of facilitation, or approximate

the minimal equilibrium of the problem, which is a unique local attractor.
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[31] López-Gómez, J., Eilbeck, J. C., Duncan, K. & Molina-Meyer, M. (1992) Structure of

solution manifolds in a strongly coupled elliptic system, IMA Conference on Dynamics of

Numerics and Numerics of Dynamics (Bristol, 1990). IMA J. Numer. Anal. 12, 405–428.
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