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This work looks at the asymptotic behaviour of the solution to the Helmholtz equation in
a penetrable domain of IR* with a thin layer of thickness 6 which tends to 0. We use the
method of multi-scale expansion to derive and justify an asymptotic expansion of the solution
with respect to the thickness ¢ up to any order. We then provide approximate transmission
conditions of order two defined on an interface located inside the thin layer, with accuracy
up to 0(5?), which allow one to take into account the influence of the thin layer.
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1 Introduction

In this work, we study the asymptotic behaviour of the solution to the Helmholtz equation

div (a5Vus) + k3us =0 in R3,
| ‘hm |x] (alx\ - ikexl) (ué - “inc) =0, (1.1)
X|—+00

where o5 and k3 are piecewise constant functions defined by

Oext if x€ Qext,éa kgxt if x € Qext,éa
os(x) =155 ifxeQs ; kix)=<k ifxeQ,
Oing  1f X € Qjnes, k2. if X € Qing,

where o5 and oy, are two strictly positive constants describing the contrast properties of
Qs and Qi s relative to the exterior propagation domain Qg s. The refractive properties
of the media are defined by k2, and ki which are two complex numbers with strictly
positive real parts and positive imaginary parts. We also assume that oex and kex; are
strictly positive constants and that gex, Gint, Kext, kint are independent of 6. The domain

Qints 1s a three-dimensional bounded domain with regular boundary I';;, surrounded by

https://doi.org/10.1017/5095679251500056X Published online by Cambridge University Press


https://doi.org/10.1017/S095679251500056X

Scattering of a scalar time-harmonic wave 265

2 L5

0,

(@) 5 Qext.s

52

FIGURE 1. Geometric data.

a thin layer Q; of thickness 6 (which tends to 0) and Q. is the exterior domain defined
by Qexts = R\ (Qins UTs51 UQs UTs,) (see Figure 1). This work looks at the scattering
of an incident wave uj,c(x) = eeu(*d)/%x by the penetrable domain (Qins U5 U Q5),
where d is a unit vector of IR? giving the direction of the plane wave u.

Numerical simulations of scattering problems as the one considered here need to mesh
the thin layer. Since this can be a very costly task [39], it is of great interest to take into
account the effect of such thin layer thanks to suitable approximate boundary conditions.
The latter can be derived by studying the asymptotic behaviour, as 6 — 0, of the total
field us. The asymptotic behaviour of solutions to problems with thin layers has been
addressed by many authors in the last decade (cf, e.g., [5,7,8,12,15,17,20,33]...). Many
different techniques have been used in these papers and a variety of results have been
obtained. More precisely, approximate transmission conditions have been derived for the
electro-quasistatic equations in [29] and time-harmonic Maxwell equations in [28] for thin
layer and in [11,12] for the Laplace equation in the case of thin periodic coating. Higher
order approximation were derived in smooth geometries of conductive thin sheets for
the Helmholtz equation in [37] and for the eddy current problem in [38]. The case of a
thin ring with regularly spaced inhomogeneities has been treated in [15,17] for the 2D
Helmholtz equation.

Here, we derive transmission conditions to approximate the solution us to Problem (1.1)
by a solution u§’ to a problem (#§") with the Helmholtz equation defined in a domain
without a thin layer with Ventcel-type transmission conditions, involving tangential differ-
ential operators of order two, with accuracy up to 0(52). We propose a technique (see [8])
that consists of dividing Qs into two thin layers separated by a surface I' parallel to I'5;
and I'5; (see Figures 2 and 3) and choosing it in such a way that transmission conditions
ensure existence and uniqueness of the solution u§" to the approximate problem. The main
difficulty here, compared to the studies performed in [7,8], is that the Helmholtz equation
is not elliptic implying, for example, that we do not readily have a stability result which
is uniform with respect to . Another difficulty comes from the unbounded setting of the
study.

In order to accomplish our goal, we derive an asymptotic expansion of the solution
us to Problem (1.1). Two different approaches are often used: the matched asymptotic
expansions method (cf, e.g., [2,3,15,21,24]) and the method of multi-scale expansion (cf.,
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FIGURE 3. The thin layer Q;.

e.g., [4,7,37]). However, the problem is not defined on the exterior of the thin layer and
thus the multi-scale expansion method is more suitable since we are dealing with the
transmission problem [7,8].

The paper is organized as follows. In Section 2, we give the statement of the problem
considered, the existence and uniqueness theorem for the solution to Problem (1.1) together
with a uniform stability estimate for us. Section 3 recalls some basic definitions and
notation from the differential geometry of surfaces.

In Section 4, we construct a formal asymptotic expansion for the solution to Problem
(1.1), while Section 5 focuses on the justification of the asymptotics and the convergence
of this ansatz. In Section 6, we model the effect of the thin layer by a problem with
Ventcel-type transmission conditions. The well-posedness of Problem (9‘5” ) will also be
proved.

Finally, in Section 7, we extend our results to the case of materials having high magnetic
permittivity in the domain Q5.
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2 Problem setting

We consider a parallel surface I to I'5; and I'5, dividing Qs into two thin layers Qs
and Qs, of respective thickness p;d and p,d, where p; and p, are strictly positive real
numbers satisfying p; + p» = 1 and such that p; and p, belong to a small neighbourhood
of 1/2 (see Figures 2 and 3). The term small neighbourhood means that the constants p;
and p, are not too close to 1 or 0, in order to avoid having a layer too thin compared to
the other because the following analysis does not lend itself to this case. Let us denote by
Uext s> Udy 5, Ud, o and uine s the restrictions of u;s respectively to the domains Qeyxt s, 252, Q5.1
and Qinys. Under the aforementioned assumptions, we investigate in H. .(R?) the solution
us to the following equivalent problem:

div (0exVitents) + keyettexts =0 in Qe (2.1a)
div (G5Vug,s) + Kjug,s =0 in Qs,, (2.1b)
div (75Vua,5) + kg5 =0 in Qs1, (2.1¢)
div (6inVitinis) + Kigttings =0 in Qings, (2.1d)

with transmission conditions

Udy 5155 = Uext,d|Ts on I's), (2.1e)
a—éang,zudz,é\l"g_z = O—extangvzuext,é\l"gyz on F6,2> (Zlf)
Ug, 5\r = Udy 5|1 onl, (21g)
Onllg, 5/r = Onllg, 51 onl, (2.1h)
Uint 5|5, = Ud,.5|Ts, on I'sy, (2.17)
o‘intaﬂ(“ “im,éu“o-.l = J{ﬁanm ”dl,é\ml on F(S,la (21])
and radiation condition

lim |x| (alx\ - ikext) (uext,(5 - uinc) =0, (Zlk)

|x]—>+00

where Oy, ,,0n,0n;, and 0,, denote the derivatives in the direction of the unit normal
vectors m,ng ,nsy and n, to I's 1, 1", I's» and 0L respectively (see Figure 1). The following
theorem gives the well-posedness of (2.1).

Theorem 2.1 Problem (2.1) has one and only one solution us in H} (IR3).

Proof Uniqueness follows by Rellich’s lemma (cf. [13,35]). Existence of a solution is
obtained by standard arguments involving the limiting absorption principle (cf., e.g., [30]).

We now rewrite the problem in a truncated domain (see [3-5] for a similar reduction) in
order to get a uniform stability result with respect to . The latter is actually going to be
useful for proving error estimates between us and the asymptotic expansion that is going
to be built in the next sections.

Let Q be a bounded domain of class ¥* which contains the thin layer Qs as depicted
in Figure 4.
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FIGURE 4. The truncated domain.

We denote by T the DtN operator (Dirichlet-to-Neumann) defined on H'/2(3Q) by
T ¢ := —0n,w, where ng is the unit normal to 0Q directed out of © and w is the unique
solution to the following problem:

Find o € H} (R*\Q)

div (dex Vo) + k20 =0 in R*\Q,

Dpe = @ on 69, (22)
lim \x| (6‘\‘ — ikext) w=0.

[x[—400

The DtN operator T is a pseudo-differential operator of order one [4] and is linearly
continuous from H'/2(0Q) to H~'/2(0Q). The next lemma, whose proof uses standard
elliptic regularity (cf,, e.g., [4]), gives a useful decomposition of the DtN operator.

Lemma 2.1 Let ¢ € H/?(0Q) and ¢y € H' (R*\ Q) be the unique solution to the following
coercive scattering problem:

A(po—(p()zo 11’11R3\§
Qo= ¢ on 0Q.

Now let us consider To¢p = —On,po. Then, Ty is bounded and coercive from H'?(3Q)
into H='/2(0Q). In addition, there exists a compact operator K acting from H'/*(0Q) into
H32(0Q) such that

T=T,+K. (2.3)
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Using the DtN operator T, Problem (1.1) can be written as

Find us € H'(Q) such that
div (65Vus) +k3us =0 in Q, (2.4)
(Ong + T) s = (Ong + T) thine 0N Q.

A variational formulation of (2.4) is then given by
Find u; € H'(Q), Vv € H(Q)

as (us,v) = / osVus.Vo — kgu(sﬁ dQ + Gext <Tu5’E>H’1/2(69)><H1/2(ag) (2.5)
Q
= l5(v),

where (.,.) jj-120p)xu12@p) denotes the duality pairing between H~'/(0Q) and H'/*(0Q)
and [5 is an arbitrary linear form on H'(Q). For Problem (2.4), I5 is defined by

15(0) = Gext/ (anQ + T) UincD do.
oQ
For our purpose, one needs to know about the dependence of us as é goes to zero.

Theorem 2.2 (Uniform stability) Suppose that
36 >0, G5 = 05 7), k2 = 0(5~%); (2.6)
Joo >0, Vo >0, R(os) > o; (2.7)

then, for all l5 in (HI(Q))/ , Problem (2.5) admits a unique solution in H'(Q). Furthermore,
there exists a positive constant ¢ independent of 0 such that

”uéHH](Q) <c Hlé H(HI(Q))’ .

Proof We neced to prove that
|as(us,v)|
lus | gy < C sup ———.
veH!(Q) HUHHI(Q)

To do so, we use a standard proof (cf. e.g., [16,23]), and proceed by contradiction by
assuming that there exists sequences (9,),>o and (“(5"),1>0 (denoted by (u,),>0) such that

lim 6, =0, upllgioy =1, Vne N, lim sup |as,(un, @) =0.
oo ) @ =5 > am 5, (tn> @
ot "2E )| g1 gy =1

From Rellich’s embedding theorem, we can extract a subsequence, still denoted by (u,),>0,
such that

u, — up in L>(Q),
u, — up in H' (Q).
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Since o5 and k§ satisfy (2.6), one gets

{ g5 — 0 = GimXQim(x) + Gex{xéex‘(x) in Lz (Q) ’ (2 8)

k§ - k(% = kizntXQim(x) + kezxtxf)cxl(x) in L2 (Q) >

where Qy = (lsin?) ”Qints and Ezext = Q\Qiy (see Figure 2) and y¢ denotes the indicator

function of the open set (. Indeed,
2 2 2 ~ 2 2
\m—wmwz/ﬁm—mdmsf MMﬂm+/dem+/|%mmm
Qs Qs Q5 Qs
Using Lebesgue dominated convergence theorem, we obtain

. 2 . 2
lim |O-int| dQﬁ,l = 1_11’11 |O-ext‘ dQ¢3,2 =0.
000, 0005,

Moreover, we have
~ 12 Cie)? 2¢
/ los|”dQs < C (5 2 L) meas(Qs) = Co*meas(I") —s_0 0.
Qs
Now, upon using (2.8), we get
lim_as, (1, ) = / aoVie.Vo — kiugp dQ for all ¢ in H' (Q),
n—-00 Q

so uy € H' (Q) satisfies
div (6oVug) + k%uo =0 in Q,
(Ony + T)ug=0 on 0Q.

As a result, well-known properties of uniqueness of the solution to this type of problem
based on Rellich’s lemma and the operator T imply that uy = 0. It only remains to
show that lirE [tnll 1) = O. Note that, since ug is uniquely determined, the whole

sequence (u,),>o that converges to up. To obtain the contradiction, we now show that
’11irfw [Vl ;2q) = 0. From (2.7), we have

WM@@<C/®WMZM
Q
=CR (an(una un) +/ k(%n |un\2 dQ — Oext <Tumun>Hl/2><Hl/2> .
Q

Using Lemma 2.1, we infer

HV“nHiZ(Q) <C {ER |:an(una“n) +/ k(%n |“n‘2 dQ — Gex <Kuna“n>H—l/2><Hl/2:| }
Q
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As u, — ug=01in L*(Q) and k3 wnd k3 in L*(Q), it follows that
" n—+o0

n—+00

k2 |un* dQ — 0.
o n—+0o0
Since K is compact and u, — 0 in H' (Q), (Kthn, ) 125 12— 0. Finally, the hypo-
. . . . —>+00
thesis 111413 R [a,(uy, u,)] = 0 yields llr_{l [Vitn | 2q) =0 contraalctmg [tnl g1 () = 1-
n—-00 n—+oo

Remark 2.1 In the proof of Theorem 2.2, we require the convergence in L*> of a5 and ks.
This justifies assumption (2.6) used to prove that (2.8) holds.

3 Tools of differential geometry

The goal of this section is to define and to collect the main features of differential
geometry [19] (see also [27]) in order to formulate our problem in a fixed domain
(independent of ¢). This technique is a key tool to determine the asymptotic expansion of
the solution us.

3.1 Parametrization of the surface I

Let (%, ¢) be a local coordinate patch for the surface I', with % being an open domain
of R? and
o : U - T

(€8 - m=¢(E.8).
A basis of the tangent plane T,,(I") to I' at the point m € I" is given by

To(m) R

o=1,2.

We assume that the coordinate patch {,},_, , is compatible with the orientation, namely,

the unit normal n(m) to I' at point m is given by

Ty X1

n(m) := BLEARES ,
71 X 12

where x and |.| are respectively the usual cross product and norm in IR3.

We denote by # the symmetric linear operator of the tangent plane T,(I") that charac-

terizes the curvature of I' at point m, and defined by

on(m)
il

= RAm)ty; a=1,2.

Let I1,, be the orthogonal projector from R? into T,,(I') and w a vector of R?, we have
w=wr + wyn = Il,w + wyn,

where wr = I1,,w is the tangential component and w, is the normal component of w.
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3.2 Differential operators on I

Let v be a smooth function defined on I'. The surfacic gradient Vro(m) of vatme I' is

defined by
2 T2

Vrv(m) = Z G*(m)
1

i=1 La=

0
il

wop) (&',¢%) | wlm),

where (G**(m)) is the inverse of the metric tensor (t;(m).7,(M));.0=1.-
If ¥ is a function defined in a neighbourhood of I', we have

Vr@)(m) = I1,,(Vo(m)) ; meT.

Let wr be a smooth tangent vector field defined on I'. The surfacic divergence of wr is
the scalar function defined on I' through Stokes formula

/(f)dinWT dr = —/ Vr(l’).WT dF,
r r

where ¢ is any regular function on I' and dI' = |t X 15| d&'dE? denotes the surfacic
measure on I'. The scalar Laplace—Beltrami operator on I' is finally given by

Ar = din (Vr)

3.3 Parametrization of Q;;

In what follows, the Greek index f takes the values 1 and 2. Let I5; = (—9,0) and
Isp = (0,0). We parameterize the thin shell ;5 by the manifold I' x I5g through the
mapping 1z defined by

g
I xIsg — Qsp

(m,ng) —  x :=m+ pgngn(m).
As is well known [19], if the thickness of ;s is small enough, s is a C*-diffeomorphism
of manifolds and it is also known [32, Remark 2.1] that the normal vector nsp to I'sg

can be identified with n.
With each function v defined on Qs g, we associate the function vp defined on I' x I5 g by

{Eﬁ(m,ﬂ/:) = vp(x),
x =g (mng).
One then has
Op o dug OX'
0r ~ £ 0xl 02"

= Vup. (I + p/ﬂ’]/;ﬂ) Ty 0 =1,2

and
vy 3 dvp Ox'
ong S ox' Ong

= pgVug.n,
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where [ is the identity operator on the tangent plane T,,(I").
Since the vector (I + pgnp#)ty, is in T,,(I') and (I + ppng#) is a symmetric operator, we
can write
L/ (I + ppnpR) 1, Vo
af‘“ = p[gﬂ[;, ) m L[;.‘Cx,

or equivalently [18]
1o ~
I1,Vvg = (I —}-pﬁr]/;,%) Vrug.

One gets
_ ~ o7,
Vog = (I + pynp) ' Vit + pj! #n.
B
The volume element on the thin shell Q54 is given by
0x 0x Ox
dQsp =~ X 25— dE'dE dn.
o8 = ger X 38T By & dé dny
As
0x 0x
a—il X a—iz = (I —1—p/3}7[;,%) 7] X (1 —i—pﬁnp%) T = det (1 —i—pﬁﬂp%) (t1 X 12),
and
|1'1 X ’L'z‘ déldéz = dF,
we obtain

dQs g = pp det (1 —|—p[ﬂ1/}§i)) ar dng.

Now, we introduce the scaling sg = #5/d, and the intervals I} = (—1,0) and I, = (0,1)
such that the C*-diffeomorphism ®;, defined by

@
QF =T xIy 5 Qs
(m,sg) — x :=m+ dpgspgn(m),

parameterizes the thin shell Q5 g.
To any function vy defined on Q; g, the function v!?! defined on QF is associated through

{ vl (m,sp) = vp(x),
X = @[;(m, S/;).

Then, in local coordinates (¢!, ﬁz,sﬁ), the gradient takes the form

(A
Vog = (I + 5pﬁs,;§i>)_1 Vil 4 pyts! aavs n. (3.1)
B
The volume element on the thin shell Q53 becomes
d.Q(sﬁﬁ = p/gé det J(s,[; dFdS/g, (3.2)
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where
Jsp =1+ pdspR,
and the surfacic measure on I'sg is

dls 3 =det (I +(—1)PppR) dI'

Let ug and vg be two regular functions defined on Q5. From (3.1) and (3.2), we get the
change of variables formula

/ Vug.Vug dQ(S’/f = p/;(S/ J({éVru[ﬂ].Vrv[ﬁ] detJ(;,ﬁ dl"ds,;
Qg‘ﬁ Qb
+pjlo! / 0, ulM0,, 0P det Jy 4 dI dsg, (3.3)

/Q upvp dQ(S’/f = pﬁé /Qﬁ ulflplhl detJ(;,,; dFdS[g. (3.4)
0.8

Remark 3.1 For any function u defined in a neighbourhood of I , we denote, for convenience,
by wy the trace of u on I' indifferently in local coordinates or in Cartesian coordinates.

4 The asymptotic analysis

This section is devoted to the asymptotic analysis of the solution to Problem (2.1). From
now on, we assume that ; and k; are independent of ¢ (denoted by ¢ and k respectively)
to simplify the overall presentation. We give a hierarchy of variational equations defined
in a domain that does not depend on ¢ suited to the construction of a formal asymptotic
expansion up to any order. We then calculate the first two terms and we conclude with a
convergence theorem ensuring the validity of the ansatz.

Let vy be in H'(Q5). We denote by vg, its restriction to Qs 5. Multiplying equation

div (6Vugs) + K*ugs = 0 in Qj,
by test functions vy, using (2.1f)—(2.1h), (2.1j) and Green’s formula, we get

(TintOns, Uint 6[Ts 1> Oy Ty ) H-V2(Ts )< HV2(T's1)

_<Gexlané.2”ext,5\ra,2’ Udy|Is >H*1/2(r5,2)xH1/2(r5,2)

+5/ Vugas.Vvg dQ; _'];2/ ug5vq dQs = 0.
Qs Q5
Using the dilation of the thin layers, (3.3) and (3.4), one obtains

1
<Gmtan51umt§|ﬂ>1 o ®y(m,—1), Uc[z ](m —D)u- V2(F x{—1})xHU2(I" x{—1})

<0extan>2uexr5\r“ o @y(m, 1),05 (m, 1)) - V2 x (1)< HV(I x{1})

+Z [5aﬁ] (udb,vd ) +5b (udo,vﬂ[f}])] =0, 4.1)
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where the bilinear forms a([sﬁ] (.,.) and b([sﬁ] (-,.) ( = 1,2) are defined by
al’ (ul), o) = Gpg /ﬂ T gVrulP vl det Js 5 dI dsg
Q
+ opplo? / 05, uP0,, 0 det J5 5 dT dsp, (4.2)
QF

and

b([sm (uw],vw]) = —Ezpﬁ /Qﬁ ulflylhl detJsp dI' dsg, (4.3)
for every ulfl and v in H'(Q"). Standard regularity results for elliptic problems (see
e.g. [1]) ensure that the trace of us on I's; or I's, is ¥*. This fact allows us to write
Problem (4.1) as

/ TinOntlinsiry, © P1(m,—1)o} (m, 1) det(I — p o) dI
I

— | GextOny s thextoirs, © Pa(m, 1ol (m, 1) det(I + prd ) dT
I

£3° [oal? (o) + o5 (uf]o1)] =0, (44)
=1

S

which is the starting point of the asymptotic analysis.

4.1 Hierarchy of the variational equations

To carry out an asymptotic expansion of the solution us; of (2.1) in powers of o, we
consider two asymptotic expansions. Exterior expansions corresponding to the expansion
of u; restricted to Qe s and to iy 5 are characterized by the ansatz

Uext,y = Uext0 + 5uexl,l +-, (45)
Uints = Uint0 + Olling1 + 7, (4.6)

where the terms uey, and uine, (n € IN) are independent of § and respectively defined on
Qext = Qexio U 52U Q5, and on Qi = Qins U I'51 U Q5. The latter are the limits of
Qexts and Qi s when 6 — 0. They fulfil

div (O'intvuint,n) + kizmuint,n =0 in Qi

div (Gextvuext,n) + kezxt”ext,n =0 in Qexts (47)
| ‘hIE |X| (a\x\ - ikexl) (uext,n - 50,nuinc’) = O,

X|—+0

where g, indicates the Kronecker symbol. An interior expansion corresponding to the
asymptotic expansion of ug, s written in a fixed domain is now defined by the ansatz

ull = ul +oul’ +--- | in QF, (4.8)
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where the terms ul’l, n € N, are independent of §. Using a Taylor expansion in the

normal variable, we formally infer

Uings\rs, = Uingor + 0(Uing1yr — P1Onlincor) + -7+ »

2
On;, Uins(1s, = Onllineoir + O(Onlling1ir — P1O0pUingoir) + -+ »

and

Uext 5T, = Uext 0 + O(Uext,1ir + P20nlextor) + 7+ s

2
an,;{zuext,é\l"g_z = anuext,O\F + 5(anuext,1|F + p2anuext,0\1") +

Transmission conditions (2.1e), (2.1g) and (2.1i) become

Uext, 0| + 5(uext,1\r + p2anuext,0\1") +o = u([)2‘12=1 + 5“512:1 +, (49)
ubd ooull 4=l sl (4.10)

0ls1=0 1]s1=0 0ls2=0 1]51=0 , :
Uintor + O(Uine,(jr — P1OaUingor) + - = “([)1\;:—1 + 5”51\11:—1 +oo (4.11)

We now use the identity
detJsy = 1+ 2ppspd o + (ppspd)’ A,

where 27 = tr& and " := det # are respectively the mean and the Gaussian curvatures
of the surface I'. We obtain

/ GintOns, Uint,5|Iy, © (151(m,—1)v‘[11](m,—1)det(l —p1oR) dI’
r
= / Gint [Onthinoir + 0 (Onthing1/r — P1Oqttingoir — 2p1# Onlhingoir)
r
2 2 1 5.3
+ 07 | Onltint2)r — P10xUin1jr + §P1anuim,0\r — 2p1 A Bnlhine 11
+ 293 A ingr + PIA Onthineoyr ) + -+ | v (m,—1) dI, (4.12)
and
/ Gexngatiensgirys © Pa(m, 1o (m, 1) det(l + ps322) dI
r
= / Oext [anuext,0|F + 0 (anuext,l\l" +p26121uext,0\l" + 2p2%anuext,0\l")
r
2 2 L 5.3
+ 67 | Onttextoir + P20qUexe1r + Epzanuext,O\I" + 2pr H Bpliexi 11
+ 2034 Quexcor + P3A ntiexeorr) + -+ | v (m, 1) dI' (4.13)

It remains to give the expansion of a([;ﬂ ] (.,.) defined in (4.2) in powers of . We use the
identity (see [4, p. 1680])

J53 =1 = 253ppd R + 3 (ppspdR)” + - +n (—ppsgdR)"™ + (—spppdR)" [} +J53].
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The bilinear form a ( .) then admits the expansion
() = o7l + o7l + (ald+ alfl) +0alll + -+l o), (414)

[A]

where the forms a;; are independent of 6 and are given by

. i~
a([)l,z] (o) = /Qﬂ Py 705, ul"0,, 0 dr dsy,

[B] — G
a1/,}2 (u[ﬁ],vlﬁ]) o /Q/f 20 # s a%/:“ﬁ Ogs0 v dr dsg,
o) (P, W) = /m pyc A 5305, ulPdg, 0 dr dsg,

a([,’,‘ﬂ (ul, o) ::/ PV ul Vo dr dsy,

aEﬁ =/ s/; (A1 — R)VrulPl v P drl dsg,
ol
agﬁ / p 0 fl —4%@4—3@2) S/;Vru Vol ar dsg,
QF
a,[ﬁl, / pgo (n— AR —(n—1)2H4R">

+n,@"71] (—Sﬁ) IVru[ﬂ].Vrv[ﬁ] al’ dsg, n>3,
in which the index 1 in the bilinear forms a[ﬁ ! (ul,011) corresponds to the derivatives
of ulfl and v/ with respect to the tangentlal variables and the index 2 refers to the

derivatives of u’! and v/ with respect to the normal variable sg. The remainder of
Expansion (4.14) is expressed as follows:

r,[,ﬁ](u[m,u[m) = / o (Bn,(s + 24 By_15 + (%”Bn,z,(;) sgvru[m.vpv[mdfdsﬂ,
Qb

with
(—2)" (nJ(;é + Jg,%) ifn>0

B”,(s = )
J(;[% otherwise.

The form bgm(., .) has the finite expansion
b (L) =B () +6b () + 628 (), (4.15)
where
b[ﬁ] u[ﬁ],v[m :2/ _ '];214[5]0[5] drdsg,
o ( ) o PP b
pIT (ulh), plh) ;=/ —ppk22sp Ul ar dsg,
oF

B (u), o) = /Q —ps ) ar dsy.
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Now inserting expansions (4.8) and (4.12)—(4.14) in (4.4) and matching the same powers
of , we obtain the following variational equations, which hold for all o/l in H' (I' x I)
such that ot1(,0) = v (,,0),

afd (o) + a2 (2,02 =0, (4.16)
2
/ aim@nuim,mpv[l] (m,—1) dI' + Z [agﬂz] (u([)ﬁ],v[m> —I—a([)/fz] (u%ﬂ],v[ﬁ])]
r =
_ / Gex@nttexop v (m, 1) dI =0, (4.17)
r

/ Tint [—2P1# Onttineor + Onlhing1jr — P10gttincor | v (m,—1) dI’
r

37 [l (o) (a8 o)) () o) (8, o)

B=1
Oext [2D2 Dnliex o/ + Onllext 11 +p2aﬁ”ext,0\1"} vl (m, 1) dI =0, (4.18)

|
—

/ Gint [P1A Onttineor — 291 A (Outing1ir — P1O0aUingor ) -+ Onthing 21
i
2 P2 3 al
— P10y Uing 1|1 +216n“int,0F] Ym,—1) dI' + E { /] ( ﬁ)

+ a ( i ﬁ]) <a£52] +a([f1 +b([)ﬁ> (ulﬁ ,vﬁ]) + (aglf1 —i—blﬁ) (u([)m,u[m>]

—/ Gext [P3H nttexoir + 202 (Onttexe 1 + P20gtiextor ) + Ontlextair
r

2
+ P20ftexr + ’;Zaf,umw} v (m,1) ar =0, (4.19)

/Gim [Onttineur + -] v (m,—1) dr +Z[ ( ul? v ﬂ]) +al) (ul?), 1)
r =

]+ BT (0 (4 ) () ()40 (1,00

n
+ Z a[[[_ﬂl,l (”E,ﬂ_][a U[I}])‘| - /1“ Oext [anuext,nlf + - ] U[Z] (m1) dI' =0, n> 4. (420)
1=4
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4.2 Computation of the first two terms

In this paragraph, we compute explicitly the first two terms in order to present a recursive
method to define successively the asymptotic expansions. We need the following theorem
whose proof can be found in [36].

Theorem 4.1 Let h e H'/>(I') and { € H='/>(I"). Then, the following problem

div (intVUint) + k2, Uing = 0 in Qin,

div (0extVUext) + k2 Uext = 0 in Qeyx,

Uinir — Uexyr = h onl, (4.21)
GintOnUin(r — OextOnUexyr = ¢ onl,

limy 4o [ X] (GM — ikext) Uext =0,

oc

HW=12(r), ¢ € H32(I') and T U 0Q %*-continuous, let (Ui, Ueyt) € H' (Qing) X
H}, (Qext) be the solution of (4.21). For any positive integer k < ko, there exists a constant
¢ such that

admits a unique solution (Ui, Uext) in H' (Qine) X HJ, (Qext). Moreover, for kg € N, h €

I Uintll g + | UextHHk(f)m) < ck (Il greragry + 18 gresngry) -

We also need the following technical result to determine terms of asymptotic expansions
whose proof is obtained in a straightforward way.

Lemma 4.1 For f = 1,2, let g1 be a given function in L*(I') and let kP! be a vectorial
function in L>(QF, C3) such that the partial application sp— k1., sg) is valued in the space
of vectorial fields tangent to I' and also divpkP! € L2(QF). Then, the solution h'¥! of the
variational equation

P = A (m, sp) asﬁv[ﬁ] (m,sp) dIdsg
o

+ [ kP (m,sp) Vrol? (mysg) + 0P (mysp) o (m,s5) dI dsg
o

+/ g (myp (m,(—1)%) dr =0
r

for all v¥1 € H' (QF) ; vlF1(,0) = 0 is explicitly given by

(—1f
WP (m,sp) = (=1 qP(m) + / (divr k1 — 011) (m, 2) d..

Sp
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Moreover, for all olfl € H! (Qﬁ) we have

PWIIB — (_pyp+ / W (m, 0yo')(m, 0) dr
r

(=1
= / lqm](m)—(—l)ﬂ / (divrk¥1 — 0V (m,sg) dsp| v/ (m,0) dr.
r 0

4.2.1 Term of order 0
Equation (4.16) implies that d,,u{’ = 0. Using (4.9)~(4.11), we obtain

i >
Uintor = u([) lm, s1) = u([) l(m, s7) = Uextor, mE€ I (4.22)

The choice of v!'l =0 in (4.17) gives

2 2 2 2
a3, o) + a3 @, o) — ooy, / Onttexcoyr v (m, 1)dI" = 0.
r

We apply Lemma 4.1 with h2 = p;150,ul™, @ (m) = —GextOnlieor, k' =0 and 0P =0,
to obtain

P3G O, ul? = GexOnticxiopr - (4.23)

Similarly, choosing vl = 0 in (4.17) gives
ai (g, o) + agl !, o) + g / Onttinior 0" (m,—1) dI' = 0.
r

We apply Lemma 4.1 with hlll = pl_lgaslugl],q[”(m) = GintOnlinto;r> k' =0 and 01 = 0,
to find

Py 505! = Ginuttinoyr- (4.24)
From the second part of Lemma 4.1, one gets

/ GinOuttngoyr o1 (m, 0)dI" = / GexBnttexcop o1 (m, 0)d,
I r

then
Uinlan“int,ou" = Uextanuext,OU“- (4.25)

Let us define a9, u, and ko by

( ) Oext if X e Qexta kz( ) gxt if X € Qexta
oo(Xx) = . 5 KolXx) = .
Oint  if X € Qi k2. if x € Qing,

nt

and

Uext,n 11 Qexts
u, = .
Uint,n 1M Qint~
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Therefore, with (4.7), (4.22), (4.25) and Theorem 4.1, uq satisfies the following problem:

div (ooVug) + kéuo =0 in R3,
| ‘hm |X| (a\x\ - ikext) (MO - uinz?) =0.
X|—+00

The zeroth-order term is then determined. Note that uy is nothing but the solution to the
scattering problem where there is no thin layer.

4.2.2 Term of order 1

Integrating Relations (4.23) and (4.24) in sz and identifying terms of order 1 in (4.9) and
(4.11), yields

ull(m, s1) = ting1yr + pi [(s1 + Doind " — 1] Dnthingoyr, V(m, s1) € Q'

and
ulP (m, $2) = ttexir + P2 [(52 — 0@ ! 4 1] nttexors ¥(m, s2) € Q%
The identification of first-order terms of (4.10) gives a first transmission condition on I’

Uint,1|r — Uext Il = P1(1 - O'inta'_l)anuint,O\F + pl(l - O'exta'_l)anuext,O\F~ (426)

The second one follows the same lines as for order 0. Indeed, we apply Lemma 4.1 to
equation (4.18) once for § = 2 and another for f = 1, and using the identity [27, p. 75]

Au = Apu+ 2 0nu + Oqu,
we obtain
GintOnUing 1|1 — OextOnllext1ir = P1(0 — Gint)Ar tinoir + P2(G — Gext) Ar exioir
+ p1 (K2 = k) thimor + P2 (2 = k) oo (427)

It follows from (4.7), (4.26), (4.27) and Theorem 4.1 that u; is the unique solution to the
following problem:

. 2 .

div (inViting1) + ki ttingt =0 in Qiny,
. 5 _ )

div (Uextvuexl,l) + kext”exl,l =0 n Qeyt,

lim \x\ (am — ikext) Uext,1 = 0,
|x|—>+00

with the following transmission conditions on I’

~_1 ~—1
Uint1|1r — Uext 1|l = pl(1 — Oint0 )anuint,O\F + p2(1 — Oext0 )anuext,()\[“a

Uintanuinl,l\l‘ - O'extanuexl,l\l‘ = D1 (G - Uint)AF Uintor + p2(o — O'ext)AI'uext,Olf

+p1 (%2 - kiznt) Uint,0|r + D2 (%2 - kezxt) Uext, 0T 5
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or
_ D10ext0 + P20int0 — OintOext 3 3
Uing1|r — Uext 1|l = 3 = (Uint nUint 0 + Text nuext,0|F)a
OintOext0
1
GintOnUing 1| — TextOnlext, |7 = E( — P1Gint — P20ext) (Arttingoir + Ar tiexorr)
L~ i k2 i
+§ DiKint — D2Kext (umt,O\F +uext,0\l")~

5 Optimal error estimates

The process described in the previous section can be continued up to any order provided
that the data are smooth enough. Here, the source term is given by a plane wave which
is €. We can also estimate the error made by truncating the series after a finite number
of terms. Let n be in IN, we set Qexl 5 = ext\QM,

udh Z 51ud1, m Qal

. (n ._
1n15 = Zé Uint,j» exlé = Zé Uext,j and ud& = )
j=0 Ug 5 = Z dug, j in Qs,,
j=0
where uy, j(x) = U, j(m,dsp) = u_E-ﬁ](m, 5p); Vx = ®p(m, sp) € Q5.

Theorem 5.1 (Convergence of the asymptotic expansion) For all integers n, there exists a
constant ¢ independent of o such that

Proof Let us define the remainders Rp, », Rp, ., Ry, » and Ry,, of Taylor expansions in

(n)

(n)
Uint,s — Uines

n+1
Uext,s — Uexts < o'

+ 6172 Hudo — ud”g

_|._

H'(Qines) HY(Qs5) H'(Qexis)

the normal variable with respect to § up to order n of ulgz Sl uei)t 5 réz,am_,ug;ﬁ sir,, and
Ony ug()l 55 respectively by
+
L (n ( 1) 0/ I l
Rp = Wint6|1s, ZZ 10 nMint,jir
j=0 1=0
n n_n-j 15j+
.~ (—1)loit
= 0 thinj(m,—0) = > > 0y i (m, 0), (5.1)
j=0 j=0 1=0
n_n—j
5]+I
Rp,p = ugtéllﬂn - Z — P, Uext jir
n—j Sit .
= Zé Uext j(m, 8) — Z O Tlext (m, 0), (52)
j=0 1=0
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n n—j 15}

— (n) } :} : +1 )
RNI," T a“olumté\ﬂ;l Uing,j|ir
=0 1=0

1=0

Z - Zj (- 1) 57t
5]p1 asl umtj(m —0) — o 65T1~1ntj(m 0),
j=0

and

o) "2’15"“/11

— n +

RNz,n = ané-Zuext,élﬂs,z - [T Pzan uext,le
j=01=0

noo B j +1 N
= 8/py Vg tlext j(m. 8) = D > pyt =0 ey j(m, 0).

j=0 j=0 1=0

283

(5.3)

(5.4)

We shall rely on the following proposition to show the estimates of the remainders Rp,

and Ry, . The steps of its proof are very similar to those given in [37, Section 5].

Proposition 5.1 There exists a constant ¢ > 0, independent of o, such as

n+1/2
[ RN L2y S €0 )
() +1/2 .
HVFJ Rp, s < cd"™V2 for j=0,1.

Moreover, there exists an extension R of Rp,, into Q5 with

G,WWR (m, np) =0and |2R||yq, < cd".

Ing=(=1)Ppso

Continuation of the proof of Theorem 5.1 Let rij,;, rj; and rg s be the remainders got

by truncating Series (4.5), (4.6) and (4.8)

(n) n

nooa_ - ._ )] _
Tints = Uint,s — Uipg 5o Text,s = Uext,d — Uexy 5o Fis = Udo Uyso

and %5 be the linear form defined on H'(Q)
PLsv = /Q GintVings-Voint — kizmri"m,éﬁim dQints
+ /Q GV(r s—PR).Vo, — kX1 s—PR)5g dQs
s
+ /Ez Text Vieyy - Vlext — kezxtrgxt’éﬁexl d?)exl,g
ext,d

+o I<TV" . 5ag>
ex ext,8/0Q> V| H,l/z(ag)xHuz(aQ)’

(5.5)

in which #R is the extension function of Rp,, into Qs and vy, vq and vex, are the

restrictions of v respectively to the domains Qiys, s and éext,5~ Using Green’s formula
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in Qjps and in ém’& with the help of (4.7), we obtain

n _
Lsv = _/ Oint (angvluint,O\Fﬁ,] +-+0 anm uint,nlfa‘,i) Uint|Ts, dré,l
Is,1

2
=3 [oawlf 4+ "l o) + 660 (ulf! 4+ mulf 00T
f=1

, ,
+ / Text (OnyaUext 01y, +*** = 0" Oy s Uextnirs, ) Vextirs, d162
sy

- / VPRV, — K*PRvy dQ;s.
Qs
It follows, from (5.1)—(5.4), that

Lsv = —/ Gint RN ningrs, dls +/ Oext RNy nVextirs, dls2
Is4

Isp
2 T —_—
-y {5ag/f](u([)/3] + 4 5mulP T 4 5hY (ulf! _,_..._,_5”“’[1[;]’0[,,])}
=1

n nfk

1 sk+1 _
/ amt< Z 1)5 ‘uim,”> vl (m, —1)det (1 — 20p1 #+*piA) dT
k=0 [=0

n ok sk _ )
+ / Gext ( l,p’lai.“um,k.p) vP(m, 1) det (1+20p, #+5°p3.A°) dT
r — _ .

— / GVPRVT, — k*PRo, dQ;,
Q5

where Ry, , and Ry, , are respectively the remainders of Taylor expansions in the normal
variable with respect to 6 up to order n of Op,,u 1n:5|F and 6.,02 ext()\F ; 2 and A are
respectively the mean and the Gaussian curvatures of the surface I'. Now, we use that

ul',...,ulfl,, (B =1,2) are solutions of equations (4.16)~(4.20), and obtain

2
PLsv = 6" Z {5_161([)"82] (uiﬂl,m) — ( +a +b ) ( (] ,UW>

f=1

— (4 ) (a4 G005 — (a0 (), + 50, + 5240,

S (ugm T 5n71u}1/§1,m) — (ugm I 5nu£ﬁ]’ﬁ) }
+/ O'intRNl,nﬁint\I"g_l dF5,1 _/ GextRNz,nEext\l"gyz dr§,2
1"5'1 Lo

— / GVPRVT, — K*PRv, dQs.
Q5
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By the estimates based on the explicit expressions of the bilinear forms al[fl](., .) and those
from Propositions 5.1, we have

2
Ls0] < 8™y (HVrv”” 2 + 07" [[05,0"
=1

r2on T HU[B] HLZ(Qﬂ))

2

+¢" | intll @) + D 198 a1y + N0ext @i
p=1

This implies,

2
+1 i (8] -1 (8] 31,81
| L 0] < o™ Z (52 HVFU ||L2(Qﬁ) +o72 HaS/fU ||L2(Qﬁ) +9° HU ‘ Lz(m))
p=1
2
+co" HvintHHl(Qim_d) + Z Hvﬁ HHI(QM) + HvextHHl(fzmé)
p=1
Therefore,
| L 5] < 8" [[v]l gy - Yo € H'(Q). (5.6)

We set in (5.5) vint = iy 5, 0a = rjjs—?R and vex = 1y 5- Then, v is continuous over the
interfaces I's; and I's». Hence, v € H'(Q). Using (5.6) and the stability theorem 2.2, we
obtain

|H1(szim,o~) +ris=2R| o, + HVQXWHHI(@W,&) < ¢

Thanks to Proposition 5.1, we find

n
Hrint,é

HrinntﬁHHl(g.,,l_é) + H"trll,éHHl(Q,ﬁ) + ||Vgxt,5HH1(fzcxl_o~) < co”. (5.7)

Finally, since ||uex,;

— . — _ —1/2
|11 @) = O, Mtintjll g, = O(1) and ||“d/f’fHH1<Q‘s,m = 0(57'7),

one gets
n n+l1 n+1
r = 10"y ¥
(5.7)
< 65n+1 +(35n+1 < Cén-H,
n n+1 n+1
T ~ = 10" Uextny1 + T ‘ N
H ext,éHHl(Qexw) ext,n+ ext,d H (@eris)
(5.7)
< 65n+1 + C5n+1 < CénH,
n n+1 n+1
r = ||r 0" u
H d,0 HHI(QH d,o + d,n+1 HH1(Q(5)
(57) 1 1/2 1/2
< o™ +05n+/ <C§"+/,
which completes the proof. O
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6 The first-order approximate transmission conditions

In this section, we model the effect of the thin layer by a problem with appropriate
transmission conditions and prove that the modelling error is of order two in . We begin
to truncate the series defining the asymptotic expansions, keeping only the first two terms.
This yields

. :
Uint,s = U = Uinto + 5uint,l n Qeyt,

int,d °
1 .
Uexts = ugx)l,(s = Uextp T+ 5uext,1 n Qey,
1 1 1
Uayo(x) 2= ull) s (m,s1) o= ug(m, s1) + oullm, 1), Vx = &1(m,s1) € Q51

1 2 2
Uy (%) = 1) 5(m, 52) o= u (m, 52) + Sul (m, 52), ¥x = Da(m, 52) € 2,

where

1
U((sl) — {uext,é n Qeyi,

(O
uint,& n Qinta

is the solution to

div (amtVulm 5) + klmumt ;=0 in Qi

div (e Vil ) + Kty = 0 in Qe

“ﬁza\r _“Sms\r = 5%( Uint5> extb) — 0% onl, (6.1)
Glntanumtélf GeXtan”exto\r = 5'@( Uint.5> U exto) —d%p; onT,

N ‘llm x| (O — ikext) (“g()t,a - ”in0> =0,

with

P10ext0 + P20int0 — OintOext

o (u,0) : (aintanuU" + GextanU\F) >

20in0ext0
% (u,v) = % (6 — P1Gint — P20ext) (Aru\r + ArU|r)
(k2 — pikd, — p2k§Xt> (wr +or),
&y = P1%exid + ngima: Tint Text (GintOnthing 1)1 + TextOnllext i) »

20int0ext0

(6 — P1Gint — P20ext) (Arthingur + Artiexeir)

N =

1
+§ (k2 plkmt pzkét) (uint,ur +uext,1\1") .

The first-order approximation is defined by

U Ugps 10 Qexi,
5 =
Ui s 10 Qing,
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where U;” is the solution of (6.1) with p; = 0 and &; = 0. The approximate problem
(93” ) is then defined by equation (6.1) with the following transmission conditions:

ap _
Wintsir

ap __ § P10extT+P20intT—TintText X ap ap
Ugy o0 = 0 20inOeni® (‘Tmtan”im,o‘\r + aextan”ext,é\r) ’

O—intanuianp[’(j‘r - O_extanugit,éu" = 5% (5 — D10int — p2aext) (Al“uﬁft,(;‘r + AF“:ELMF) (62)
1 (72 2 2
+03 (k — pikip — pzkext) (“ﬁi,mr + ”gft,&\r) .

Before proving that Uj’ is indeed an approximation of the field us far from the thin
layer with error O(6%), we study the well-posedness of (Q’gp ) However, the bilinear
form associated to (9’3” ) is neither positive nor negative. To show the existence and
uniqueness of the solution Uj’, we reformulate Problem (#") into a non-local equation
on the interface I" (cf. e.g., [6,9] for different problems). We introduce the DtN operators

(Dirichlet-to-Neumann) Siy; and Sey defined from HY?(I') onto H='/(I') by Sinp =
GintOnlingr» Where uiy is the solution to the boundary value problem

div (Gintvuint) + kizmuint =0 in Qi
Uintir = @ onl,
and by Sexp = OextO—nlexr, Where uey is the solution to the boundary value problem
div (Gext Vitext) + kezxt“exl =0 in Qey,

Uexyir = ¥ on I,

lim |X| (a‘x‘ — ikext) Uext = 0.

[x]—=+o0

Remark 6.1 The function uiy is defined only in the case where the constant kizm/aim does
not belong to the spectrum of the closed operator (—A,Hé(Qim)). Fortunately, its spectrum
is discrete since this operator has a compact resolvent and is composed only of real numbers
50 we can always assume that uiy is well defined.

The following theorem gives the uniqueness of the solution U;” to Problem (25).

Theorem 6.1 Assume that the following hypotheses hold

3 (Ez - plkfm) >0, (6.3)
1 260,50
PP ¢ 0 (Sin). (6.4)
0 P10ext0 + P20int0 — OTintOext

problem (25" admits at most one solution.

Remark 6.2 Note that we can always choose py and p, in such a manner that the condition
on Js1 is fulfilled.
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Proof Let us consider the homogeneous problem associated to (g”gp ):

div (almVulm (>> + klnlumtb =0 in Qint, (6.5)

div (e Vil s ) +Kaillis =0 in Qex, (6.6)
lim ‘X| (GM — lkext) ext,é = 0,

x| —+a0

with transmission conditions on the interface I’

ap  _ap a1 ap ap
Uinesir — Uextsir = s (“mtaﬂ”im,a\r + Gextaﬂ”ext,mr> >

sl o ap ap
GintOn umt()\]" OextOn uextb\l" = 5§ (0 — P10int — P20ext) (Al"uim’g‘r + AFuext,()“r) (6.7)

+5% (k2 ik — P2k§xt> (“ﬁfm,&\r + ”th,mr) .

Standard regularity results for elliptic problems (see e.g. [1]) show that (uf”’ S, Ul ) €

int,0° “ext,0
%* (Qint) X € (Qext). Let Bg denote the ball with centre O and radius R large enough
to contain Qj, and Qg be the domain of R? defined by Qr := Br N Q.. Multiplying

equations (6.5) and (6.6) respectively by ui;, ; and ugy, 5, integrating in Bg and using Green
formula, we obtain
ap 2
Oint ‘Vumt ) dQine — kmt Uings dQin + oext exté d‘QR
mL Qint Q
—k2 @ g0 o e ) ar
ext 0 uext,é Rt 71 r uint,é\]" + uext,ri\l"
R
0 L i Viu® Vru® ’ ar
+ 4 (0 — p1Gint — P20ext) . r'nesir + Iexesir
ap ap _ ap ap
+2y2 /r R (”im,mr ”exm,mr) dI' = ext /s aRuext,é\Sk Uext,61Sx dSk, (6.8)
R
where
P o= — CintText0 B 5]( plkmt p2kext
0 (plaextbv' + pZO'intb: - aintaext) 4 ’
2 = Gintgexta: - 5k k12m Zkext
0 (pl Oext0 + P20int0 — aintaext) 4 ’

and Sk denotes the sphere with centre O and radius R. Hence, taking the imaginary part
of (6.8) and using (6.3), we have

N </S aRuexto\SR esté\SR dSR) <0. (6.9)
R

It follows from Rellich’s lemma and radiation condition (2.1k) that

Ugys =0 on Qey. (6.10)
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Problems (6.6) and (6.7) are reduced to

div (almvumto> + kmtuml 5 =0 in Qip,
ap _ 1
Uineoir = 43, 1an”mta\r on I,

— 51 . ap
Gmtanulmo‘r - 5§ (0 — P10int — pZO—ext) Al"uim’&u"

+5§ (kZ lklnt pzkext) mtz)\l" on I.
The equation
ap _
Uineoir = /s, 6 ”mm\r’

implies

(Sint — 45,11 ) @ine = 0,
where @iy is the trace of uf 5 on the surface I'. By virtue of (6.4), we get uif s =
and therefore umt,6 =0 in Q.

289

(6.11)

(6.12)

(6.13)

=0on Tl

O

The existence of Uj" is based on properties of Laplace-Beltrami and Dtn operators.
The latter are given in the next lemma whose proof can be found, for example, in [40].

Lemma 6.1

(1) The Laplace—Beltrami operator —Ap on I' is a pseudo-differential operator of real sym-

bol of order 2. It is Fredholm of index 0.

(2) The Dirichlet-to-Neumann operators Sin, and Sex are elliptic pseudo-differential operators

of real symbol of order 1.

Using the definition of Sj and Sy, Problem (9’:’;” ) is equivalent to the boundary

equations
( int — 4o 11> (Sext - /15,11) =g
Sint® + Sext” — 51 (6 — p16int — P20ext) (Arw + Ar %)
o5 (R piky —pkd) (0 + 20 = 2.

where

g = _Gextanuinc\l" - Sexl“inc\]" S (F) 5

o and » are the traces of u s and u’

mt ext

(6.14)

(6.15)

(6.16)

s on the surface I' respectively. From (6.4),

—2s,1 € 0 (Sint) thus the next pseudo-differential operator of order —1 is well defined

Ks = (Sint— 2040) "

Equation (6.14) then reduces to

® = Ks (Sext — 4s.11 ) % + Ksg,
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and Problems (6.14) and (6.15) are equivalent to the boundary equation

Asn .= Bsx — /LmArKg (Sexl + Sint — 2/15’11) =20, (6.19)
where
1
}«5,2 = 55 (6 — p1Gint — P20ext) » (6.20)
0 :=—g— SinKsg + 4524rKsg + 153Ksg,

B 1 = SiniKsSext — 46,18intKs + Sext — A5 3K 5 Sext + 263451K5 — As 31,

) 1/~
As3 L= 55 (kz - Plkizm - p2ke2xt) .
Some properties of the operator As are given in the next proposition.

Proposition 6.1 For all integers k in N, the operator As defined from H*t'/2(I') to
H*3/2(T") is Fredholm with index zero.

Proof Let k be an integer in IN. Since Sj,; and Se are pseudo-differential operators of
order 1, they map H¥(I') to H*"1(I'). K5 being a pseudo-differential operator of order
—1, it maps H*(I') to H*'(I'). As a consequence, B; maps HX(I') to H*"'(I"). The
injection H*"! (I') < H*2(I') being compact, the operator As defined from H**1/2(I")
to H*=3/2(I') is a compact perturbation of 25241 Ks (Sext + Sint — 245,11). Since Ar is
Fredholm with index zero, to show that As is Fredholm with index zero, it suffices to
show that Sex( + Sint — 245,11 is invertible.

Let us consider the equation

(Sext + Sint — 225.11) @ =, p € H*V2(I'), ke N. (6.21)

Using the definition of Sex; and Siy, equation (6.21) is equivalent to the following problem:

div (GinVVin) + k12m Vine =0 in Qi
div (GextVVext) + kezxt Vext =0 in Qs
Vinir — Vexyr =0 inl’ (6.22)

O'intanVim\I‘ - O'extanVextlf = 2/15,1 VintlF +vp inI"
lim |X‘ (a\x\ - ikext) Vext = 0’

|x|—400

where ¢ = Viyyr = Vexyr. Standard arguments involving Rellich’s lemma and the Fred-
holm alternative show that, for all k in N, if v € H*'/2(I'), then Problem (6.22)
admits a unique solution (Vin, Vext) in H¥! (Qine) x HH! (Qexi), and hence a unique trace
@ € H*"1/2(I'). As a consequence, the operator Sex; + Sin — 245,11, defined from H*1/2(T)
to H*=1/2(TI"), is invertible. O
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We are now in position to state the existence theorem.

Theorem 6.2 Under the assumptions of Theorem 6.1, Problem (25") admits a unique solution
(uﬁft,()y Z)fté) in Hk+ ( 1nt) X H[O( ( ext)s Vk € N.

Proof It follows from Proposition 6.1 that the uniqueness of Uj5" implies the existence.
From Theorem 6.1, we then infer that, for all k in IN, there exists a unique solution

(uflfl,&’u:)fl,é) in Hk+ ( mt) X H[()L ( CXt)~ O

Let us denote by uy’ the approximate solution defined on Q by

ap .
Uings 10 Qings,
ap ._ ) 0p . . _
Ug = q g5 10 Qsp, (B=1o0r2),
ap :
Mext,é m Qext,éa
ap
such that u, ; are defined on Q54 by
- -ap - . =1 ap
udl 5 (x) = “d 5 (mysy) = 1nt6\F +opy [(51 + Do~ — 1] an”im,a\r’

Vx = ®1(m,s1) € Q51,
and

2 b . ~_
udz()(x) = ulliz]ﬁap (m, 52) = ug)l:t’(;‘r + 5172 [(52 - l)aexta ! + 1] anue::to‘ra
Vx = ¢2(m, 5) € Q(s’z.

Finally, we want to derive an error estimate between us and the approximate solution uj’.

To do so, we need once again a uniform stability result for the approximate problem. Let
H' (Q) be the Hilbert space defined by

H' (2) = {0 = G tex) € H' (@) x H' (2ex) }.

equipped with its natural norm and bs be a bilinear form defined on H! (Q) x H! (Q) by

bs (“»U) = aint/ Vilin.V0ing dQine — kmt/ UintVint dQint
Qin[ Q

int

+Oext 5 Vitexi-Voext dQext — kexl UextVext dQext
QEX[ Qex[

1

- E)V(S,l/ (uint\r _uext\l") (Uint\l" _Uext\F> ar
r

+0Oext <Tuext\aQa Ujp@Q >H’1/Z(GQ)XH1/2(GQ) .
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We have the following lemma:

Lemma 6.2

(1) For all hs in (H' (Q))/, there exists a positive constant ¢ independent of & such that
the solution to the variational problem

Find us € H' (Q), Yo € H (Q),
{b5 (us,v) = hs (v),
satisfies
s |l 1) < c671/? 15 | a1y - (6.23)

(2) Furthermore, if p1Gext0s + P20int0s — GintText < 0, one has

lus gy < € 1B |y - (6.24)

Proof

(1) We need to prove that

bs(us, v
sl < 071 sup Lottt
veH(Q) HUH]H1(Q)

We proceed by contradiction, assuming there exist sequences (d,),o and (ué,,)n>o,
denoted by (u,),>0, such that

K

lim ¢, =0,

n—-+00

@) =1, Vn € N and nEToo sup= |bs, (un, )] = 0.  (6.25)
H(/’H]HI(Q) 1

We can extract a subsequence of (\/gun) v still denoted by (\/514,,) v such that
= nz=

n.

{ \/gun — g In L2 (Q), (6.26)

Jou, — ug in H' (Q).
Furthermore, for all v in ¥*(Qy) ¥ %W(Q), we have

.1
lim 7\/5}%5,1/ (uint,n\F _“ext,n\l") (Uinl\l" _Uext\F) ar
n——+oo 2 r

2
= Gint/ \/gvuint,n-vuint innt - kim/ \Euint,nvint d-Qint
Qint Qim

~ 5 ~
+Gext/N \/gvuext,n-vvext AQexi — kext/N \/Suext,nvexl dQext
Qext Qext
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_\/gbé (una U) + Oext <\/3Tuext,n\a!2a U\@Q>

P
= Oin( / Vug.Voing dQing — ki / UoVint dQin
Qint int

H120Q)xHY2(3Q)

+0ext ~ V. Voext dQext — kext UgUext dQext
Qext Qexe

+Gext < Tuext,()lPQa U‘aQ>H*1/2(BQ)><H1/2(GQ) .

As the right-hand side is independent of ¢, we have

1 o P
5\/37»5,1 / (Uingar — texenr ) (Vingr — Vexyr) dI = 0 (1), Yv € E%(Qint) X €*(Qext),
r
(6.27)

and by density of €*(Q) x fgw(a) in H! (Q), we conclude that the equality is true
for all v in IH! (Q). Setting v = u,, we obtain

||“mtn\1" _”extn\FHLz(p 51/4 (628)

It follows that uin o = texio on I' and, for all v in H 1(Q), one gets

IIIE ‘ \/gbé (u,v) = O-mt/

V“mto Vvine dQin¢ — k / Uint,0Vint AQin
an[

S 2
+6extﬁ V“ext,O-Vl’ext dQext - kexl  Uext,0Vext dQext

ext

+Uext <Tuext,0\aQ> U\@Q >H*1/2(GQ)><H1/Z(GQ) =0 (629)

Theorem 4.1 ensures that the problem: Find uy in H'(Q) satisfying (6.29), Vv €
H'(Q), is well posed. We then infer that uy = 0 and it only remains to show that
limy, 1o H\/Sun Q) = 0. Note that, since ug is uniquely determined, the whole
sequence converges to uy = 0 in IL? (Q). To obtain a contradiction, we have to show
‘@ = 0. One has

2 2
< cd (O'int/ |V“int,n| dQin; + Gext/ |Vuext nl dQext)
Qint Qexi

=cR <5b5 (tn,0) + kmt/ 0 |“1ntn| dant+kext/ 0 ‘uextn| dQex

that limy,_,

oo,

+ 5525,1/ |uint,n\1" _uext,n\l"‘ dr
r

- 5Uext < Tuext,n\aﬂa um’naQ>HI/Z(GQ)le/Z(aQ)) .
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Using Lemma 2.1, we infer

i

2
) < cR |:5bn(una '/Tn)_f—k]znt/ 0 |uint,n|2 d‘Qint+k§Xt/ 0 ‘uext,n|2 d-Qext
L*(Q) Qine Qext

1., 2
+ 55@,1/ [tingnir — texenr |  dT
r

— Oext < \/SK Uext,njoQs \/guexl,lﬂaﬂ >

Hl/z(ag)le/z(ag)] ’

Since K is compact and \/gun — 0 in H' (Q),

< \/gK Uext,n|oQ> \/Suext,n\aQ > — 0.

H-12(0Q)x H'/2(3Q)

Finally, the assumption lim,_ .o R [b,(u,i,)] = 0 and (6.28) yield

limy,— 4o, H\/EVun o 0 contradicting H\/gu,, o 1.

(2) Similar arguments to those used to prove (6.23) guarantee Inequality (6.24).

We can now prove optimal error estimates.

Theorem 6.3 There exists a constant ¢ independent of o such that

2
. P 1/2 e
Uints — Uing 5 ‘Hl(gm)_}—é E Udys — Uqy s
' P

+|

H(Qs)

< ¢’

ap
Uext,d — Ueyxy s

‘ H! (ﬁcxt,o)

Proof According to the Convergence Theorem, it is enough to estimate the error U;" —
U((Sl). Therefore, as in [41], we perform an asymptotic expansion for U’ which amounts
to postulating the ansatz
U =>"olw, (6.30)
j=0
where wjio, = Wextj and wjjo, = Wiy, satisfy the recurrence relations

. 2 _ .
div (Gint VWintj) + ki Wity = 0 in Qiny,
. 2 _ .
div (O'extVWext,j) + kextWeXt,j =0 in Qext,
Wingjir — Wextjir = < (Wintj—1, Wext,j—1 ) onl,

O-intanwint,ﬂl“ - Gextanwext,ﬂf =% (Wint,jfla Wext,jfl) onl,

lim |x| (a‘x‘ — ikex[) (Wext,j - 50,]‘“1’;1(:) =0,
x| —>-+c0

with the convention that w_; = 0. A simple computation shows that the two first
terms (Wint,0, Wext0) and (Wing1, Wex,1) coincide with the two first terms of (4.5) and (4.6).
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Furthermore, each term of (6.30) is bounded in H!. Let %, be the remainder made by
truncating Series (6.30):

a,

— P e P ) ) 20 3
f%w\Qim = %mt,w = Uipts — Wint0 — 5W1nt,1 —0 Wint,2 — 0 Wint,3

and
—— e 1,9P 2 3
%w\Qm = %ext,w = Uexts — Wext,0 — 5Wext,l -9 Wext,2 — 0 Wext,3-

Then %,, is a solution of the following problem:

div (O’intvgint,w) + kiznt‘%im“” =0 i S
div (Gextv %exw) + k2 Rexiy = 0 in Qcyy,
@int,w\l“ - %ext,w\l‘ =0 (%inl,w,‘%exhw) + 54% (Winl,3» Wexl,3) on F’
Uintan%int,w\l“ - O'extanWSXtJ\r =04 (%int,\w %CXLW)

+6*% (Wint,3> Wextﬁ) onrl,

lim ‘X| (a\x\ - ikext) (%ext,w) = 0,

|x]—>+400

which gives, for all v = (Ving, Veyt) in H' (Q),

2
Gim/ V<%int,w'vvim innt - kim/ '%int,wvint innt
Qint

int
~ 5 ~
+Gexl/N V%ext,\wvvexl dQext — kextﬁ ggext,wvext AdQex
Qext Qext
1
2

1 /~
_51 (kg — pikin, — p2k§xl) / («@im,w\r + %ext,wu") (Uim|r + Uextu") dr
r

;”5,1/1“ (f%int,w\l" _%ext,wlf) (Uint|F _Uextll") ar

1 -
_51 (65 — D10int — pZGext)/ (Al"g?int,wU" + Ar%ext,\ﬂf) (Uint|F + Uextlr) ar
r
+0ext <T'@ext,w\aQ’ U|aQ>H*1/2(GQ)><H1/2(EQ)

1
= 554/ B (Wint,3,Wext,3) (Uim\r + Uext\F) ar
r

1
+§54/ /16,1&/ (Wint,B: Wext,3) (Uint\l" _Uext\l") ar.
r
Putting all terms of order 1 in ¢ on the right-hand side, we get

bs (Zw,v) = hs (v),
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where

hs (v) = 5% (Eﬁ — pikiny _kagxt) /r (Rinwir + Pexiwir ) (Vingr + vexyr) dI’
+5% (05 — P10int _pZGext)/r (Ar Riwir + Ar Rexepir) (Vingr + vexyr ) dI
—1%54 /r B (Win3, Wext3) (Vingr + Vexyr) dI’
+54/r15,1&/ (Wint3s Wext3) (Vingr — vexyr) dI.
From Lemma 6.2, there exists a constant ¢ independent of ¢ such that
1 iy < €672 1hs | gy -
Hence, we obtain

1Zullgi@ < ¢ (672 12w lgng) + 8 IW3lga))

SO

Re
1% |1 () < =) w3l g ) -

Since ¢ is small enough, we have

”'%WH]HI(Q) < cd? HW3H]Hl(Q) 5
which gives the desired result. OJ
Remark 6.3 There is a particularly interesting case when ey, 65 and oiy are strictly pos-

itive constants satisfying oiny < 6 < Gext OF Oexy < 0 < Gint, it corresponds to the case where
the solution U3’ is continuous when crossing I'. Indeed, if we set

OintOext — P10ext05 — P20int0s = 0,

we obtain
__ Oint (Oext — a:)
7 (O'ext - O'int)

Then, the transmission conditions (6.2) become

Oext (a: - O'int)

and p, = = .
0 (Gext — Oint)

ap __,4p —

Uingsir — Yextorr = O

ap -5 (Oext — 0) (Oint — a:)A ap

ext |l P rUings

~7 2 ~ 2 (=

ok (Oext — Uint) - Uintkint (Gext —0)— Gextkext (0 — Uint)uap
~ t,o| "
0 (Gext — Oint) ext.d|

ap
O—intanuim,& r - O_extanu

+4
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Problem (93”) is equivalent to the boundary equation

GCin GOext
0 (Gext — 0) (Gint — 0) 0 (Gext — 0) (Gint — 0)
O'intkizm (Gext - 5) + Gextkgxt (5 - O'int) - 5}; (Uext - Uim)
(Gext — 0) (Ging — 0) (Text — Tint)
OextO

Bsw = —Arw + Sext®

+

Oext0

5 (O-exl - U) (O-lnt - 0)

0 nUine|l +

~ ~ Sextuinc\l" on F,
0 (Gext - 6) (Gim - O-)
where  is the trace of Uit s on the surface I'. As above, the existence and uniqueness are
obtained with a Fredholm alternative, and similar error estimates can be shown.

7 Extension to thin layer with high magnetic permittivity

In this section, we consider the case of a high value of magnetic permittivity of the
domain Q; (cf. e.g. [25,34] for similar problems). More precisely, we consider the case
where 65 := ¢ /0 and k2 = k2 /6 where ¢ is a strictly positive constant and Kisa complex
number with strictly positive real part and positive imaginary part.

The asymptotic analysis can be done in the same way and we are thus going to only
give the approximate transmission conditions without doing all computations. Although
the derivation of these new conditions can be done without additional difficulties, the
uniform stability estimate, which is the basis for optimal error estimates, cannot be proved
as Theorem 2.2. Actually, the singularity of both the contrast and the refractive index of the
thin layer yield a limiting equation that involves Ventcel-like transmission condition. All
the well-posedness and regularity results used below to get such a uniform stability estimate
are postponed to the appendix. The non-standard nature of transmission conditions of
the Ventcel problem lead us to introduce the Sobolev spaces H"!' (Qiy), Hlo(, (Qexl) and
H} (Q) defined by

H" (Qin) : = {v € H' (Qun)), vy € H' (I')},
HI () :={ve H'(Q), vy e H'(I')},
Hype (Qext) : = {v € Hjp (Qext) vy € H' (1)},

loc

where Q is a bounded domain of IR3 containing Qi (cf. Figure 4), equipped with their
natural norms and semi-norm.

This section is then organized as follows, we first prove the uniform stability estimate
and give next the first-order transmission conditions to take into account the effect of the
thin layer.

7.1 Uniform stability estimate
We prove here the uniform stability result for the high-permittivity case.
!

Theorem 7.1 (Uniform stability) If Is € (H'(Q)), then Problem (2.5) admits a unique
solution in H'(Q). Furthermore, there exists a positive constant ¢ independent of & such
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that

s gy < € Vsl gy - (7.1)
Proof We recall below the definition of the bilinear form

as (us,v) == /Q 05 Vs V0 — k}ust dQ + Gex <Tu(;‘ag,E|aQ>H,1/2(aQ)XH1/2(m) , (7.2)
and we need to prove that

as(Us, v
Hub HH'(Q) < C Sup M
veH(Q) HUHHI(Q)

(1.3)

To do so, we proceed by contradiction, assuming there exist sequences (,),>o and (ugn)

n=0
such that
lim 8, =0, Jus,lyqy = 1, ¥n€ Nand lim  sup |as, (s, @) =0.  (74)
n——00

120 gl y1 gy =1

In the following, we assume that there exist two positive constants ¢ et d; such that
5n <e< 51 < 50. (75)

Note that this can be done at least by extracting a subsequence of (6,),>o. We show in
three steps that there exists a subsequence of (ua) such that liIJIrl s, Il 1) = O, which
n——+0o0

will lead to a contradiction.
Step 1: There exists a subsequence (u(;n) 12

such that Hudﬁﬁn < coy”.

n=0 H1(Q§mﬁ)

From (7.4) and Rellich’s theorem, we can extract a subsequence of (u(;”)n>0, still denoted

by (”5n)n>0’ such that

{ Us, — Uo in L2 (Q), (7 6)

us, — up in H' (Q).

Furthermore, for all v in €*°(Q), as(.,.) can be written as

as (us,v) = / ooVus.Vo — ké“éﬁ dQ + Oext <Tu5\agz, E\aQ>H*1/2(aQ)xH1/2(aQ)
Q

S B _ __
- / OintVilg, 5.V0a, dQ51 + / kinua, s0a; dQ2s51 — / Ooxt Vg, 5.V0g, dQs2
Qs.1 Qs.1 Qs
R G %
+ kixita, 504, dQs2 + 5Vud,a-VW Qs — 5 Uasla dQs, (7.7)
Qs Qs Qs

with

(7.8)

{ [ GianQim(x) + anlXQexl(x)s
k(% = kizntXQim (X) + kgxtXQm(x)a
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and uy, s and v,, are respectively the restriction of u; and v to the domain ;5. Applying
the Cauchy—Schwarz and triangular inequalities, we get

<c Hud1,5 HHI(QM) Hvdl HW]-%(Q,;,I) \/ |Q¢3,1‘
sc HUéHHI(Q) HUHWI-OC(Q) \/ 1€25.1-

Using |[lus, HHl(Q) =1 and that |Qs, 1| = ¢d,, we infer

S > i
/ Gint Vi, 5.V0a, — ki g, 50a, dQs 1
Q51

IIIE / OintVig, 5.V0q, — kizmudl,(jﬁ dgén,l =0, Vv e %OC(E) (7.9)

n—-00 Qém

Similarly, we show that
111:1'_1 / O'extvudz’(s.V@ — kgxtudz,ts@ dQ(sn,z =0, Vo € (gw(ﬁ) (7.10)

n—-+o0 Q52

As a consequence, we infer from (7.4)—(7.10)

~ 72

. a _k _
lim —Vud,(;n.Vvd — < Uds,Vd dQ()‘n
n—-+oo Qs, 5;1 5,,
T — 2
= lim |as, (us,,v) — | 60Vus, .V — kgus, v dx
n—+00 Q

— — 2 —
—Oext <T“6,1|6Qa U|aQ>H*1/2(aQ)xH1/2(aQ) + / Gint Vg, 5. VUi, — Kipetta, 504, A5 1
Qs.1

— 2 —
+ / Oext Vld, 5. VUa, — kextha, 60a, d€s,2
Q5,2

= —/ ooVuy.Vo — kéuoﬁ dX — Gext <T”‘O\GQ’5\69>H7'/2(ag)xH'/2(ag) , Yve (6“(5)
Q

As the right-hand side is independent of ¢, one has

J

and by density, we conclude that the equality is true for all v in H' (Q).
Taking now v € *(Q) one has for all x = yg(m,ng) in Qs 4,

7 P .
Vg3, Vo7 — 545,77 42, = 0 (1), Vo € 67(@) (7.11)

on

ng
vay (x) = gy (m,np) = g, (m,0) + ; OpyUay (m, 1) da, (7.12)

SO
2

np
|5d,; (m,ng) |2 <2 fﬁdﬁ (m,0)|2 ) ‘/0 Oy Uay (m, 2) dJ. (7.13)
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By integrating on I', we find

ppo
/ (4, (mong) | dI <2/ 54, (m,0)|* dr +2// 18,80, (m, 2)|* dadr’,  (7.14)
r r rJo

SO
/F|Ed13 (m,r],;)’zdl" <2H0dﬁ‘rH2LZ(F)+2Ha'7ﬁfﬁdﬁ“2L2(Q(;,/;)' (7.15)

Integrating a second time with respect with 7z, we obtain

PO 2 2 ~ 2
L [ s o) P g < 3 (oagr e, + o0y ) 16

SO

loarliaqa,,) < 0™ 1 linia)- (7.17)

Since v € () is arbitrary, we conclude, by density, that the last estimate is true for all
v in H' (Q). Hence, for v = us,, we have

1/2
a0l 2, ) < 00" (7.18)
Using both (7.11) and (7.18), one gets
1/2
1405, 1110y, ) < 00" (7.19)

which proves the first claim.
Step 2: We show that uy =0 in Q.
In view of (7.19) and (3.4), one has

las vy = ppo [ 22| Vru| detdsp drd
5 HI(QM)_pﬁ o op | Yrus etJsp Sp

+py'o! /Q ﬁ Gsﬂugﬁ]’zdet‘]@ﬂ dr dsg + 3py /Q Jul? " detJsy dT dsy,
we then infer the estimates
|vrul! oy <€ (7.20)
‘asﬂu(g{jl ) SO (7.21)
[u ) <° (7.22)

To compute the limiting equation, we introduce X as the Hilbert space defined by

X ={V = (v,o", ™) e HY(Q)x H' (I, H'(I')) x H' (I, H'(I')) ;
U[ﬁ] (mao) =Ur, ﬁ = 1;2} P
It follows from (7.4) and (7.20)—(7.22) that the sequence (U‘;”)n defined by Us, =

(”511’“51]’”5]) is bounded in X. Therefore, there exists a subsequence of (Uén)n>o’ still
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denoted by (Us,)

asﬂwéﬁ] = 0 resulting in

such that Us, — Up = (uo, a)g],wo ) in X . Inequality (7.21) implies

n=0’

o (m, s5) = g, V(m,sg) € QF. (7.23)

Let now v be a smooth function v in H' (Q), as(.,.) becomes
as (“5,0) = / ooVus.Vo — kéubﬁ dQ + Oext <Tu(ﬂaﬂaE\aQ>H71/Z(aQ)XH1/2(aQ)
o

— 2 — —
— / Gint Vg, 5.V0q, dQs1 + / kincta, 504, dQs1 — / Oext Vg, 5.V0g, dQ;s
Q5.1 5 Qs

/ kextudz 5Ud, dQ(sz +Z [p[;a/ J(; ﬁVru Vrv[ﬁ detJ(;,; dFdS/;
B=1 Q

+p/?15_20'/ awu[/} asﬂmdet‘]&[; dFdS[; — pﬁ’kvz /m u([smm det.](s,/g dFdSﬁ .
(7.24)

Now choosing a smooth v in H (2) (see Lemma A.1) leads to
p,ﬁ/ J5, /,Vpu Vyulfl detJs, 5 dI"dsp + pg 15, 6/ Ggﬁué O, v olA1 det Js, g dI dsg
Qf

_pﬂE2/9 u([)ﬁ vlPY detJs, 5 dI dsp

P ﬁa/ prm Volfl drdss — l;kz/ w([)ﬁ]vW dr' dsg; (7.25)
n—-—+00 r
otherwise, as cu([)ﬁ I'is independent of s, we would have
ppo / Vo Vol drdsy = pyo / Vruor Vror dl (7.26)
—pgk? olFT = —psk’ or
ppk cuo I dl'dsg = —ppk= | uoror diI. (7.27)
QF r

Since w([)/ﬂ is independent of sz and Uy € X, w([)ﬁ](m, sp) = wyq ](m 0) = uor € H'(I'),
which gives meaning to the last two equalities. As a consequence, in view of (7.4) and
(7.25)—(7.27), we obtain

0= lim as, (us,,v)

n—+o0
= / a0 Viug.V — kiugb dQ + oex <Tu0|asz,5|aQ>H71/z(@Q)XH1/z(@Q)
Q

+E/ Vruo‘r.VrW dr _’122/ uo‘rl)‘ir dar. (728)
r r

By density (Lemma A.1), we deduce that (7.28) is true for all v in H} (Q). It follows from
Theorem A.1 that the problem: Find uy in H} (Q) satisfying (7.28), Vv € H} (Q), is well
posed, moreover uy = 0.
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Step 3: Getting the contradiction.
To obtain the contradiction, we show that lirf [lus, | Q) = 0. Since ug is uniquely
n——+00

determined, the whole sequence (Us)s converges to Uy = 0, then the whole sequence (us);
converges to uy = 0 in L?(Q). It only remains to show that lirf IVus, g2, = 0. We
n—-+0o0

have

2 2
1V, 120y < / o5, IVus > dO
Q

CER{ dan(ua‘n,ué,,)vL/ k3 fus,|” dQ
Q

— 0 Tus 50, Us > .
ext < 3,102 Usy 100 H-12(00)x H1/2(0Q) }
Using Lemma 2.1, we infer

2 2
Hvuén H]]_2(Q) < CER{ a()',,(“(i,,; “5,,) + / kﬁ,, ‘“(5,,| aQ
Q

— Oext <K”5n\69> us, |0Q >H*1/2(E§Q)><Hl/2(aﬂ) }

As
/ k3, lus,|> dQ = / k2 |ttings, | dQines, + / k2 lttexts, | dQexts,
Q int,dn cht,1511
2 = 2
+ 5;1 Z/ k2 fud/}’(;n de‘m/;
p=1 Qém/f
=/ ki2m|“im,5,,|2 dQints, +/ kgxt ‘uext,én‘z dQexts,
Qintop ext.n
2 - 2
+3 / kz‘ug’”‘ detJs, 5 dI'ds;
Qﬁ n
p=1
2 - 2
:/k% \u5n|2 d.Q‘f‘Z/ k? ‘u([;ﬂ]‘ detJ(;mﬁ dFdS/f
Q [))=1 Qﬁ n
2 | 2 [ o)
— 5 | K2, ub‘ detJs dlds; — | K2 |ul ‘ detJs » dI ds»,
Ql Qz n
us, — up = 0 in L>(Q) and u)! - ully = wgr = 0 in L2(Ig, H'(I)), it
n 0 n p—4o00 >
follows [, k} |u5”\2 Qe - 0. Since K is compact and us, — 0 in H!(Q),
" n—-+o0
=0

(K s, 100, W5, 00) H-1200) < H12(00) = 0. Finally, the hypothesis nl_i)rfwiR [as, (us,, us,)]

leads to nET% Vus, Iy 2q) =0 contradicting [|us, o) = 1. O
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7.2 Approximate transmission conditions of order 2

Using the same techniques as in the previous section, we derive an asymptotic expansion
of the total field us; and establish a convergence theorem. We now give the first two terms

of the asymptotic expansion, denoted by, (Uintu» textn) e, Satisfy the following problem:

. 2 _ .

div (Gextvuext,n) + kext“ext,n =0 N Qet,

div (GinVitings) + k2 Uing, = 0 in Q;
nt nt,n int“int,n nt»

lim |X| (a\\c\ - ikext) (uext,n - 50,nuin(’) = 0,

|x| =00

where g, indicates the Kronecker symbol. The transmission conditions on I" are described

below:
At order 0.
Uint,0|r = Uext,0|T » (7.29)
~ o)
GintOnUin o)r — TextOnlextor = O Ar ingoir + k- Uingojr - (7.30)
At order 1.
Uint, 1) — Uext 1|l = P1anuim,0|r + Pzanuexl,mr, (7.31)

~ ~ =
GintOnUin, 1) — OextOnllexi1ir = P10Ar Uing (- + P20 Ar texi1jr + p1hk~“Uingiyr

=
+ ka Uext, 1| _pZO'extAFuext,O\F _plo'intAFuinl,O\l"

272 ) 272
— pik“ Huingoir — PikinUinior + ok A uexior
— pak? 2edivy (A1 — R)V

Pakaxitiextoir + paadivy (( ) Vi tiexoir)

2~ 7. 2~

— piodivy (AT — R)Vr) tingor + P36 Ar (Ontiexcor)

+ P%pan”ext,mr - P%EAF (anuim,mr) - I’%Panuim,om (7.32)

Moreover, (u/!

L ) o<nsl is determined by the following expressions:

[2]

1
ud(m,s1) = ul (m,52) = Uine 0l = Uext 0| >

1 2
“E ](m, 51) = UE ](m, $7) = Uext, 11 + pzanuext,O|F

= Uine1r — P1Onllincoir> V(m,sp) € Qr.

We follow the approach used in Section 6 to derive an approximate problem of order 1.
The proof of the uniqueness of the solution is then going to encounter two difficulties. The
first comes from terms Ap (Ontexior) and Ar (Onttingoir) in Condition (7.32). To bypass
this difficulty, we determine constants p; and p, making these terms vanish. From (7.29)
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and (7.30), Condition (7.32) becomes

~ ~ =
CintOnUing, (| — OextOnllext i = P1OArting1jr + P20 Ar Uexyyr + p1k~“uingyr
0
+ pok“uexe jr — P20extAr Uexoir — P1GintAr Uincojr
27, 2 272 2
+ prk Huexior — Pakexiextor — Pk A Uingoir — Pikindincoir

+ psadivr (A1 — R) Vruexor ) — piodivr (H1 — R)Vr) thngor

~ 2
2 2 g 2 2 k
+ (O'intpz —Di O'ext) Ar (anuext,0|F) + (Gintpz - plaext) anuext,O\I"
Oint Tint
k? G K
2~ 2 2 2
— 2p16— Artingor — Pi— (A7 tingor ) — Pi——Uincoir - (7.33)
int Oint Oint

Then, by setting 6inp3 — piext = 0, one obtains

= \/Tint (\/aint - \/Uext> and py = \/Text (\/Uinl - \/Gext) .

Oint — Oext Oint — Oext

p
As a consequence, (7.33) becomes

CintOnling 1| — OextOnlextiir = P1OAr Uing 1 + P20 A exy 11
= =
+ pik“uing1yr + pokUexe (i1 — P20extAr Uextoir — P1GintAr Uincojr
272 2 272 P
+ pok” Huexror — Pakexiextor — P1k” A Uingoir — Pikindincoir

+ p3adivr [(H1 — R) Vrueseor | — piodivy (AT — R) Vil tineor

K 2 0 o , k*
Artingor — pi— (A7 ingoir ) — PT—Uingoir - (7.34)
Oint Oint Oint

— 2p%5

As a result, we assume in what follows that the following constraints hold

o STt (\JfTint — \foext) and py — JOext ([Oint — Q/O'ext).

Oint — Oext Oint — Oext

p

The second difficulty comes from complexity of Condition (7.34) which can be overcome
by rewriting the whole transmission condition. Thus, from (7.29) and (7.34), we deduce a
form, albeit longer but better adapted to treat, still, the uniqueness of the solution of the
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approximate problem.

o o
GintOnlling 1|1 — OextOnUexi1ir = P1K Uing 1 r + P2k Uexi1yr
+ p1odruinr + P20 Ar vexy 10

OextP1

. N T
272 272 2 2 2

S E— k*H — pik= A — pokZ . — piki . — p1— | Uexto

OintP2 + GextP1 P Py P2 ™ P1¥ine = P Tint extoir

74

OintP2 7.2 7.2 k
- k H — P2k A — pok? k? u;
OintP2 + GextP1 Pi P2ex = Ptf¥ine Tint ntOjr

OextP1 _k?

et —P20ext — P10int — 2[’%0' Ar Uext, 0|0
OintP2 + OextP1 Oint

TintP2 k2
—— | —p2Gext — P1Gint — 2P16— | Arincor
TintP2 + OextP1 Oint

OextP1 ~ 7.

——————— (p2 — p1) adivp [(HT — R)Vr] texior
OintP2 + OextP1
OintP2

———————(p2 — p1) adivy (AT — R)Vr]tineor
OintP2 + OextP1

OextP1 7
ext (_p%> (A%-Mexz,ml")

OintP2 + GextP1 Oint

GintD2 o
= <—P%> (A%“uint,OU“) .

OintP2 + OextP1 Oint

We are now in position to give the first-order model. Once again (see Section 6) we
define the approximate solution s’ on Q by

ap .
uim;’é mn Qint,(%
ap ._ ) ap _
U =4 U5 Qs (f=lor2),
ap .
uext,& m Qext,é:
where “Z?,(s are defined on Qs by
ap
“dﬁé(x) ud,;o "(m, sp) = ”lnm\r Op10nttiy

uext,&\]" + 5pza“uext,6lf’ Vx = ¢ﬁ(m’ S.B) € Qé»ﬁ’

and ( uih o,ugft’é) is the solution to the following problem:
div (aextVuext 5) + kg tiek s = in Qex,
div (ainVuih; ) + kil 5 = 0 in Qi (7.35)
90 ) (8~ ) =0
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with Ventcel-type transmission conditions I’

ap _ ap _ ap ap
Uinesir — Yextor = 5plan”im,5\r + 5p26“uext,5\1"’
o o (7.36)
Gmlan”mta\r Gextan”exm\r =A (uint,élf’uext,é\l")’
where
A (WF:U\F) = s U + o520 +as3Arur
2 2
+ os4dror — o5 747U — asg AT r
+ 0(5,5dl'l)r (AT —R2)Vr] ur
+ Oﬁg,édl’l]r [(]f[ — ﬂ) Vr] ur
and

OintP2
TintP2 + TextP1

a5 = piktFo—N2

nt

K4
p2k2°yf plk H — p2kext plkiznt _p% o > >

s OextP1 2 2 ’l;
a5 = pokt + 00— gk — pikP A — pakl, — ik
5,2 P2 GintD> + TextP1 P P1 P2Kext — P1Kint pl Gint

TintP2
OintP2 + OextP1

_ TextPs K
054 = P60 —0———— ep <p20'ext =+ P10int + 2p10 )

. k2
%53 == P16 — 0 —————— | P2Gext + P1Gint + 2p10

Oint

OintP2 + OextP1 Oint
OintD2 OextP1 ~
Us5 = §—mP2___ U5 6 = s—2xPL__ () —p1)s,
OintP2 + OextP1 OintP2 + OextP1

~2 ~2
— 5 OintP2 2 0 — OextP1 20
057 = O—————— | D] , K58 =0 \P1— |-
GintP2 + OextP1 Oint GintP2 + OextP1 Oint

Similar ideas to those used in Section 6 guarantee the existence and the uniqueness of
the solution to Problems (7.35) and (7.36). Optimal error estimates can also be obtained.
Nevertheless, note that we suppose here that o, and k3 are strictly positive constants.

8 Conclusion

In this work, we determined and justified an asymptotic expansion of the exact solution
to Problem (1.1) for different values of contrast and wavenumber. For each case, we
derive approximate transmission conditions, validated thanks to optimal error estimates
(see Theorem 6.3 and the end of Section 7) to take into account the effect of the thin
layer. Ventcel-type transmission conditions, involving tangential differential operators of
order two, have also been obtained in the case of high values of magnetic permittivity
and wavenumber.

An interesting continuation of this work could be to consider the full Maxwell’s system
describing the scattering of electromagnetic waves by an obstacle.
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Appendix A

This appendix contains some technical results needed in the proof of the uniform stability
estimate in the high-permittivity case (see Section 7). We first give the well-posedness and
regularity results for a Helmholtz equation with Ventcel-type transmission conditions and
provide next a density result.

A.1 Well-posedness and regularity results for a solution to a Ventcel transmission problem

Recalling that Qe = Q\Qin, one has the following result.

Theorem A.1 Let h€ H' (') and { € H'(I"). Then, the following problem

div (Uintv Uint) + kiznt Upn =0 in Qing,
diV (O_extVUext) + kgxt Uext =0 in Qexta
Uinyr — Uexyr = h onT,
_ = (A1)

GintOn Uinyr — OextOnUexyr = p164r Uingr + p1k~Uingr
+p26 47 Ueyyrr + pak> Uexyr +¢ onl,

lim ‘X| (a\.\'l - ikext) Uext =0,
[x[—+00

1,1

admits a unique solution (Uiny, Uex) in HY (Qing) X H,j.

(Qext) satisfying the inequality

[ UintHHH(Q ) + UextHHrl (fzm) < G (”hHHl(r) + HCHH—I(r)) . (A2)

Moreover, for all k € N*, if h € H*(I'), { € H*2(I') and T %"*'-continuous, then
(Uinis Uest) € HEY2 (Qin) X Hpot ' (Qext).

Proof Uniqueness follows by Rellich’s lemma. Existence of a solution can be obtained by
the Fredholm alternative. To show the regularity result, we proceed by induction in k. For
k = 1, we showed above that if h € H' (I') and { € H~!(I'"), then Problem (A 1) admits a
unique solution (Usyg, Ueyy) in HY (Q4n¢) X Hll(;i (Qext) ; hence Ueyr, Uingr € H' (I'). Since

diV (GextVUexl) + kgxt Uexl =0 iIl Qexla
div (JintVUint) + kizm Uint =01in Qint

and I' is 62, we get (cf. [10]) (Uing, Uext) € H? (Qiny) X Hfo/(,z (Qext). Now assume that the
assertion holds up to k — 1. Let h € H*(I') and { € H*2(I'). Since H*(I') =« H*'(I")
and H*2(I') <« H*3(I'), h € H*"'(I') and { € H*3(I"). Then, there exists a unique
solution (U, Uext) of (A1) in H*1/2(Qin) H;ﬁ;l/z (Qext). Applying trace theorem of

functions in H*='/2 (cf. [10]), we obtain 8,UT. € H*=2(I").
Now from

GintOn Uinyr —OextOnUexyr = 1041 Uingr +pik? Uinyr +p20 41 Uexyr +pak? Uexyr +¢, (A3)
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we can write
641 (p1Uingr + P2Uexyr ) = GintOnUinyr — GextOnUexyr —pik? Uingr —pak® Uexyr —¢. (A4)

Thus, Ar (p1 Uingr 4 p2Uexyr) € H* (). As pyUingr + p2Uexyr € H*"U(I), Ar (p1Uingr +
p2Ueyr) € H k=2(I") and the operator Ay is elliptic of order two on a compact manifold
without boundary I' of class €**2, piUigr + p2Uexyr € H*(I') but Uingr — Uexyr €
H*(I'), then Uexr, Uingr € H*(I'). Summarizing, we have

div (O'extv Uext) + kgxt Uext = 0 1n Qcyy,
div (GinlV Uinl) + kam Uini = 0 in Qiy

and Ueyr, Uingr € H*(T'), as a consequence (Ung, Uext) € H*/2 (Qing) X HiH* (Qexe).

A.2 The density lemma

Recall that, in view of the thin shells assumption (cf. [18]), there exists g > 0 such that
Qs, = {erR3 ; X :=m+ nyn(m) where — g <1 < g and m € F} (AS)

defines a bijection between Qs and I' x [—do, dp]. Let now & > 0, satisfying & < dp. We
denote by H (2) the space of functions defined by

H(Q) = {veH} () /3e>0suchas dumn) =0, Vinl <e}. (A6)
We have the following density lemma.

Lemma A.1 H (Q) is dense in H- (Q).

Proof Letv € H} (Q). We construct a sequence (v;), = H (), ¢ > 0, such that limv, — v

in HJ (2). Since C* (Q) is dense in H} (), it is sufficient to construct such a sequence
forve C”® (§) Let ¢ > 0, we introduce the function ¢, defined on [—dy, dy] by

0 if In| <e,
51 (;71:i if e n < 51,
— A7
CIUE PR (A7)
noif | > 01,
where 01 satisfies ¢ < 6; < d¢. Then, we set
v(m () if x=(mn)€Qs,
v, (x) == et . = (A8)
v (x) if x € Qinesy U Lexio-
It is easy to show that v, € H () and v, P in H} (Q). Hence the lemma. O
£
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