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We introduce the full expression of the curvature tensor of a real hypersurface M in
complex two-plane Grassmannians G2(Cm+2) from the Gauss equation. We then
derive a new formula for the Ricci tensor of M in G2(Cm+2). Finally, we prove that
there does not exist any Hopf real hypersurface in complex two-plane Grassmannians
G2(Cm+2) with parallel Ricci tensor.

1. Introduction

In the geometry of real hypersurfaces in complex space forms or in quaternionic
space forms, it can be easily checked that there does not exist any real hypersurface
with parallel shape operator A by virtue of the Codazzi equation.

From this point of a view, many differential geometers have considered a weaker
notion than the parallel second fundamental form, i.e. ∇A = 0. In particular,
Kimura and Maeda [6] have proved that a real hypersurface M in a complex pro-
jective space CPm satisfying ∇ξA = 0 is locally congruent to a real hypersurface
of type A1, A2, that is, a tube over a totally geodesic complex submanifold CP k

with radius 0 < r < 1
2π. The structure vector field ξ mentioned above is defined by

ξ = −JN , where J denotes a Kähler structure of CPm and N denotes a local unit
normal field of M in CPm. Moreover, in a class of Hopf hypersurfaces, Kimura [5]
asserted that there do not exist any real hypersurfaces with parallel Ricci ten-
sor, i.e. ∇S = 0, where S denotes the Ricci tensor of a real hypersurface M in
CPm.

On the other hand, in a quaternionic projective space HPm, Pérez [8] considered
the notion of ∇ξiA = 0, i = 1, 2, 3, for real hypersurfaces in HPm and classified
M as locally congruent to a real hypersurface of A1, A2 type, i.e. a tube over HP k

with radius 0 < r < 1
4π. The almost contact structure vector fields {ξ1, ξ2, ξ3} are

defined by ξi = −JiN , i = 1, 2, 3, where Ji denotes a quaternionic Kähler structure
of HPm and N denotes a unit normal field of M in HPm. Moreover, Pérez and
Suh [9] considered the notion of ∇ξiR = 0, i = 1, 2, 3, where R denotes the curvature
tensor of a real hypersurface M in HPm, and proved that M is locally congruent
to a tube of radius 1

4π over HP k.
Now let us denote by G2(Cm+2) the set of all complex two-dimensional linear

subspaces in C
m+2. Then the above situation is not so simple if we consider a real

hypersurface in complex two-plane Grassmannians G2(Cm+2) [3,4,11–14]. Suh [11]
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showed that there does not exist any hypersurface in G2(Cm+2) with parallel shape
operator A, i.e. ∇A = 0.

We study the problem related to the parallel Ricci tensor S for real hypersurfaces
M in complex two-plane Grassmannians G2(Cm+2), that is, ∇XS = 0 for any
vector field X tangent to M . The ambient space G2(Cm+2) is known to be the
unique compact irreducible Riemannian symmetric space equipped with both a
Kähler structure J and a quaternionic Kähler structure J not including J [2].

In other words, G2(Cm+2) is the unique compact, irreducible, Kähler, quater-
nionic Kähler manifold that is not a hyper-Kähler manifold. So, we have considered
the two natural geometric conditions for real hypersurfaces in G2(Cm+2), that the
one-dimensional distribution [ξ] = span{ξ} is invariant under the shape opera-
tor and that the three-dimensional distribution D⊥ = span{ξ1, ξ2, ξ3} is invariant
under the shape operator. By using such two geometric conditions and the results
of Alekseevskii [1], Berndt and Suh [3] proved the following.

Theorem 1.1. Let M be a connected real hypersurface in G2(Cm+2), m � 3. Then
both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(i) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or

(ii) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

When the structure vector ξ of M in G2(Cm+2) is invariant under the shape
operator, M is said to be a Hopf real hypersurface. In such cases, the integral curves
of the structure vector field ξ are geodesics [4]. Moreover, the flow generated by the
integral curves of the structure vector field ξ for Hopf hypersurfaces in G2(Cm+2)
is said to be a geodesic Reeb flow.

In the proof of theorem 1.1 it was proved that the one-dimensional distribution
[ξ] is contained in either the three-dimensional distribution D⊥ or in the orthogonal
complement D such that TxM = D ⊕ D⊥. Case (i) of theorem 1.1 is just the case
that the one- dimensional distribution [ξ] belongs to the distribution D⊥. Of course,
it is not difficult to check that the Ricci tensor of any real hypersurface mentioned
in theorem 1.1 is not parallel. Then it is natural to ask if real hypersurfaces in
G2(Cm+2) with parallel Ricci tensor can exist.

Accordingly, the main result of this paper is to prove the non-existence of all
Hopf real hypersurfaces in G2(Cm+2) with parallel Ricci tensor, that is, ∇S = 0,
as follows.

Theorem 1.2. There does not exist any Hopf real hypersurface with parallel Ricci
tensor in G2(Cm+2), m � 3.

On the other hand, a real hypersurface M in G2(Cm+2) is said to be Einstein if
the Ricci tensor S is given by g(SX, Y ) = ag(X, Y ) for a smooth function a and
any vector fields X and Y on M . Naturally the Ricci tensor is parallel on M . So
we also add the following corollary.

Corollary 1.3. There does not exist any Einstein Hopf real hypersurface in
G2(Cm+2), m � 3.
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In § 2 we recall the Riemannian geometry of complex two-plane Grassmannians
G2(Cm+2), and we will show some fundamental properties of real hypersurfaces in
G2(Cm+2) in § 3. The formula for the Ricci tensor S and its covariant derivative
∇S will be shown explicitly in this section. In §§ 4 and 5 we shall give a complete
proof of the main theorem according to the geodesic Reeb flow satisfying ξ ∈ D or
vanishing geodesic Reeb flow satisfying ξ ∈ D⊥.

2. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2) (for details we refer the
interested reader to [2–4,14,15]). By G2(Cm+2) we denote the set of all complex two-
dimensional linear subspaces in C

m+2. The special unitary group G = SU(m + 2)
acts transitively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂
G. Then G2(Cm+2) can be identified with the homogeneous space G/K, which
we equip with the unique analytic structure for which the natural action of G
on G2(Cm+2) becomes analytic. Denote by g and k the Lie algebra of G and K,
respectively, and by m the orthogonal complement of k in g with respect to the
Cartan–Killing form B of g. Then g = k ⊕ m is an Ad(K)-invariant reductive
decomposition of g. We set o = eK and identify ToG2(Cm+2) with m in the usual
manner. Since B is negative definite on g, its negative restricted to m × m yields a
positive definite inner product on m. By Ad(K)-invariance of B, this inner product
can be extended to a G-invariant Riemannian metric g on G2(Cm+2). In this way
G2(Cm+2) becomes a Riemannian homogeneous space, even a Riemannian sym-
metric space. For computational reasons we normalize g such that the maximal
sectional curvature of (G2(Cm+2), g) is 8.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature 8.

When m = 2, we note that the isomorphism spin(6) � SU(4) yields an isome-
try between G2(C4) and the real Grassmann manifold G+

2 (R6) of orientated two-
dimensional linear subspaces in R

6. In the remainder of this paper, we shall assume
m � 3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R,
where R is the centre of k. Viewing k as the holonomy algebra of G2(Cm+2), the
centre R induces a Kähler structure J and the su(2) part induces a quaternionic
Kähler structure J on G2(Cm+2). If J1 is any almost-Hermitian structure in J,
then JJ1 = J1J , and JJ1 is a symmetric endomorphism with (JJ1)2 = I and
tr(JJ1) = 0. This fact will be used in the next sections.

A canonical local basis J1, J2, J3 of J consists of three local almost-Hermitian
structures Jν in J such that

JνJν+1 = Jν+2 = −Jν+1Jν ,

where the index is taken modulo 3. Since J is parallel with respect to the Rieman-
nian connection ∇̄ of (G2(Cm+2), g), for any canonical local basis J1, J2 and J3 of
J, there exist three local 1-forms q1, q2, q3 such that

∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (2.1)

for all vector fields X on G2(Cm+2).
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Let p ∈ G2(Cm+2) and W be a subspace of TpG2(Cm+2). We say that W is a
quaternionic subspace of TpG2(Cm+2) if JW ⊂ W for all J ∈ Jp. Furthermore,
we say that W is a totally complex subspace of TpG2(Cm+2) if there exists a one-
dimensional subspace V of Jp such that JW ⊂ W for all J ∈ V and JW ⊥ W for
all J ∈ V⊥ ⊂ Jp. Here, the orthogonal complement of V in Jp is taken with respect
to the bundle metric and orientation on J for which any local oriented orthonormal
frame field of J is a canonical local basis of J. A quaternionic (respectively, totally
complex) submanifold of G2(Cm+2) is a submanifold all of whose tangent spaces are
quaternionic (respectively, totally complex) subspaces of the corresponding tangent
spaces of G2(Cm+2).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY, Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ}

+
3∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX, Z)JνJY }, (2.2)

where {J1, J2, J3} denotes any canonical local basis of J.

3. Some fundamental formulae for real hypersurfaces in G2(Cm+2)

In this section we derive some fundamental formulae which will be used in the
proof of our main theorem. Let M be a real hypersurface in G2(Cm+2), that is,
a submanifold in G2(Cm+2) with real codimension 1. The induced Riemannian
metric on M will also be denoted by g, and ∇ denotes the Riemannian connection
of (M, g).

Now let us set

JX = φX + η(X)N, JνX = φνX + ην(X)N (3.1)

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes
a unit normal vector field of M in G2(Cm+2).

From the Kähler structure J of G2(Cm+2), there exists an almost contact metric
structure (φ, ξ, η, g) induced on M so that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (3.2)

for any vector field X on M .
On the other hand, from the quaternionic Kähler structure {J1, J2, J3} of J and

(3.1) we have an almost contact metric 3-structure (φν , ξν , ην , g), ν = 1, 2, 3, on
M . Moreover, from the commuting property of JνJ = JJν , ν = 1, 2, 3, in § 2
and (3.1), the relation between these two contact metric structures (φ, ξ, η, g) and
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(φν , ξν , ην , g), ν = 1, 2, 3, can be expressed by

φν+1ξν = −ξν+2,

φνξν+1 = ξν+2,

φξν = φνξ,

ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

for any vector field X on M .
Using expressions (2.2) and (3.1) for the curvature tensor R̄, the Gauss and

Codazzi equations are respectively given by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+
3∑

ν=1

{g(φνY, Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φνZ}

+
3∑

ν=1

{g(φνφY, Z)φνφX − g(φνφX, Z)φνφY }

−
3∑

ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
3∑

ν=1

{η(X)g(φνφY, Z) − η(Y )g(φνφX, Z)}ξν

+ g(AY, Z)AX − g(AX, Z)AY

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

+
3∑

ν=1

{ην(φX)φνφY − ην(φY )φνφX}

+
3∑

ν=1

{η(X)ην(φY ) − η(Y )ην(φX)}ξν ,

where R denotes the curvature tensor and A denotes the shape operator of a real
hypersurface M in G2(Cm+2).
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Then, from formulae (2.1) and (3.1), together with (3.2) and (3.3), the Kähler
structure and the quaternionic Kähler structure of G2(Cm+2) give

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX, (3.4)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (3.5)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (3.6)

Summing up these formulae, we find the following:

∇X(φνξ) = ∇X(φξν)
= (∇Xφ)ξν + φ(∇Xξν)
= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX − g(AX, ξ)ξν + η(ξν)AX.

(3.7)

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (3.8)

4. Proof of the main theorem

Now let us contract Y and Z in the Gauss equation in § 3. Then the Ricci tensor S
of a real hypersurface M in G2(Cm+2) is given by

SX =
4m−1∑
i=1

R(X, ei)ei

= (4m + 10)X − 3η(X)ξ − 3
3∑

ν=1

ην(X)ξν

+
3∑

ν=1

{(Tr φνφ)φνφX − (φνφ)2X} −
3∑

ν=1

{ην(ξ)φνφX − η(X)φνφξν}

−
3∑

ν=1

{(Tr φνφ)η(X) − η(φνφX)}ξν + hAX − A2X, (4.1)

where h denotes the trace of the shape operator A of M in G2(Cm+2). From the
formula JJν = JνJ , Tr JJν = 0, ν = 1, 2, 3, for any basis {e1, . . . , e4m−1, N} of the
tangent space of G2(Cm+2), we calculate

0 = TrJJν

=
4m−1∑
k=1

g(JJνek, ek) + g(JJνN, N)

= Tr φφν − ην(ξ) − g(JνN, JN)
= Tr φφν − 2ην(ξ) (4.2)
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and

(φνφ)2X = φνφ(φφνX − ην(X)ξ + η(X)ξν)

= φν(−φνX + η(φνX)ξ) + η(X)φ2
νξ

= X − ην(X)ξν + η(φνX)φνξ + η(X){−ξ + ην(ξ)ξ}. (4.3)

Substituting (4.2) and (4.3) into (4.1), we have

SX = (4m + 10)X − 3η(X)ξ − 3
3∑

ν=1

ην(X)ξν

+
3∑

ν=1

{ην(ξ)φνφX − X − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X

= (4m + 7)X − 3η(X)ξ − 3
3∑

ν=1

ην(X)ξν

+
3∑

ν=1

{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν} + hAX − A2X. (4.4)

Now the covariant derivative of (4.4) becomes

(∇Y S)X = −3((∇Y η)X)ξ − 3η(X)∇Y ξ

− 3
3∑

ν=1

(∇Y ην)(X)ξν − 3
3∑

ν=1

ην(X)∇Y ξν

+
3∑

ν=1

{Y (ην(ξ))φνφX + ην(ξ)(∇Y φν)φX

+ ην(ξ)φν(∇Y φ)X − (∇Y η)(φνX)φνξ

− η((∇Y φν)X)φνξ − η(φνX)∇Y (φνξ)

− (∇Y η)(X)ην(ξ)ξν − η(X)∇Y (ην(ξ))ξν − η(X)ην(ξ)∇Y ξν}

+ (Y h)AX + h(∇Y A)X − (∇Y A2)X = 0 (4.5)

for any vector fields X and Y tangent to M in G2(Cm+2). Then, from (4.5), together
with the formulae in § 3, we have

(∇Y S)X = −3g(φAY, X)ξ − 3η(X)φAY

− 3
3∑

ν=1

{qν+2(Y )ην+1(X) − qν+1(Y )ην+2(X) + g(φνAY, X)}ξν

− 3
3∑

ν=1

ην(X){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAY }
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+
3∑

ν=1

[Y (ην(ξ))φνφX + ην(ξ){−qν+1(Y )φν+2φX + qν+2(Y )φν+1φX

+ ην(φX)AY − g(AY, φX)ξν}
+ ην(ξ){η(X)φνAY − g(AY, X)φνξ} − g(φAY, φνX)φνξ

+ {qν+1(Y )η(φν+2X) − qν+2(Y )η(φν+1X) − ην(X)η(AY )

+ η(ξν)g(AY, X)}φνξ

− η(φνX){qν+2(Y )φν+1ξ − qν+1(Y )φν+2ξ

+ φνφAY − η(AY )ξν + η(ξν)AY }
− g(φAY, X)ην(ξ)ξν − η(X)Y (ην(ξ))ξν − η(X)ην(ξ)∇Y ξν ]

+ (Y h)AX + h(∇Y A)X − (∇Y A2)X

= 0. (4.6)

Setting X = ξ in (4.6), we have

0 = −3φAY − 3
3∑

ν=1

{qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ) + g(φνAY, ξ)}ξν

− 3
3∑

ν=1

ην(ξ){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAY }

+
3∑

ν=1

[ην(ξ){φνAY − η(AY )φνξ} − g(φAY, φνξ)φνξ

− Y (ην(ξ))ξν − ην(ξ){qν+2(Y )ξν+1 − qν+1(Y )ξν+2 + φνAY }]

+ (Y h)Aξ + h(∇Y A)ξ − (∇Y A2)ξ (4.7)

for any vector field Y tangent to M in G2(Cm+2).
On the other hand, we know that

Y (ην(ξ)) = (∇Y ην)ξ + ην(∇Y ξ)
= qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ) + g(φνAY, ξ) + ην(φAY )
= qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ) + 2ην(φAY ).

Now, if we suppose that M is a Hopf hypersurface in G2(Cm+2), then (4.7)
together with Aξ = αξ implies

0 = (hα − α2 − 3)φAY + Y (αh)ξ − hAφAY − Y (α2)ξ + A2φAY

− 4
3∑

ν=1

{qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ)}ν

− 5
3∑

ν=1

g(φνAY, ξ)ξν − 4
3∑

ν=1

ην(ξ)qν+2(Y )ξν+1

https://doi.org/10.1017/S0308210510001472 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001472


Hypersurfaces in complex two-plane Grassmannians 1317

+ 4
3∑

ν=1

ην(ξ)qν+1(Y )ξν+2 − 3
3∑

ν=1

ην(ξ)φνAY

−
3∑

ν=1

{ην(ξ)η(AY ) + g(φAY, φνξ)}φνξ, (4.8)

where we have used

3∑
ν=1

Y (ην(ξ))ξν =
3∑

ν=1

{qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ) − g(φνAY, ξ)}ξν .

On the other hand, by differentiating Aξ = αξ and using the Codazzi equation
in § 3, we have the following:

− 2g(φX, Y ) + 2
3∑

ν=1

{ην(X)ην(φY ) − ην(Y )ην(φX) − g(φνX, Y )ην(ξ)}

= g((∇XA)Y − (∇Y A)X, ξ)
= g((∇XA)ξ, Y ) − g((∇Y A)ξ, X)
= (Xα)η(Y ) − (Y α)η(X) + αg((Aφ + φA)X, Y ) − 2g(AφAX, Y ). (4.9)

Setting X = ξ gives

Y α = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY ).

From this, substituting into the above equation, we have the following:

hAφAY = 1
2αh(Aφ + φA)Y + hφY

+ h

3∑
ν=1

{ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY

− 2η(Y )ην(ξ)φξν − 2ην(ξ)ην(φY )ξ}. (4.10)

Then, substituting (4.10) into (4.9), we have

0 = {hα − α2 − 3}φAY + Y (hα)ξ − hAφAY

− (Y α2)ξ + 1
2αA2φY + AφY

+
3∑

ν=1

{ην(Y )Aφξν + ην(φY )Aξν + ην(ξ)AφνY

− 2η(Y )ην(ξ)Aφξν − 2αην(ξ)ην(φY )ξ}

+ 1
4α2(Aφ + φA)Y + 1

2αφY

− 1
2α

3∑
ν=1

{ην(Y )φξν + ην(φY )ξν

+ ην(ξ)φνY − 2η(Y )ην(ξ)φξν − 2ην(ξ)ην(φY )ξ}
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− 4
3∑

ν=1

{qν+2(Y )ην+1(ξ) − qν+1(Y )ην+2(ξ)}ξν

− 5
3∑

ν=1

g(φνAY, ξ)ξν − 4
3∑

ν=1

ην(ξ)qν+2(Y )ξν+1

+ 4
3∑

ν=1

ην(ξ)qν+1(Y )ξν+2 − 3
3∑

ν=1

ην(ξ)φνAY

−
3∑

ν=1

{ην(ξ)η(AY ) + g(φAY, φνξ)}φνξ. (4.11)

From this, let us verify that g(AD,D⊥) = 0. In order to do this we suppose that
ξ = X1 +X2 for some X1 ∈ D and X2 ∈ D⊥. Now, setting Y = ξ in (4.11), we have

− (ξα2)ξ + ξ(hα)ξ − 4
3∑

ν=1

{qν+2(ξ)ην+1(X2) − qν+1(ξ)ην+2(X2)}ξν

− 4
3∑

ν=1

ην(ξ)qν+2(ξ)ξν+1 + 4
3∑

ν=1

ην(ξ)qν+1(ξ)ξν+2 − 4α

3∑
ν=1

ην(ξ)φνξ = 0.

(4.12)

By comparing the D and D⊥ components in the above equation we have, respec-
tively,

{−ξ(α2) + ξ(hα)}X1 − 4α

3∑
ν=1

ην(ξ)φνX1 = 0 (4.13)

and

{−ξ(α2) + ξ(hα)}X2 − 4
3∑

ν=1

{qν+2(ξ)ην+1(X2) − qν+1(ξ)ην+2(X2)}ξν

− 4
3∑

ν=1

ην(X2)qν+2(ξ)ξν+1 + 4
3∑

ν=1

ην(X2)qν+1(ξ)ξν+2

− 4α

3∑
ν=1

ην(X2)φνX2 = 0. (4.14)

Now, taking the inner product of (4.13) with X1, we have

−ξ(α2) + ξ(hα) = 0,

which gives

4α

3∑
ν=1

ην(X2)φνX1 = 0.

Then α = 0 or ην(X2) = 0, ν = 1, 2, 3. This gives X2 = 0. From this we conclude
that if a real hypersurface M in G2(Cm+2) has non-vanishing geodesic Reeb flow,
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i.e. α �= 0, then ξ ∈ D. In the case of vanishing geodesic Reeb flow, i.e. α = 0, we
shall show the following.

Lemma 4.1. Let M be a Hopf real hypersurface in G2(Cm+2) with parallel Ricci
tensor. If M has non-vanishing geodesic Reeb flow, then ξ ∈ D. If M has vanishing
geodesic Reeb flow, then ξ ∈ D or ξ ∈ D⊥.

Proof. For the case α �= 0 we have already proved the above result. Now let us
consider the case α = 0. By differentiating Aξ = 0 and using the same method as
in [3], for any tangent vector field Y on M , we have

Y α = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY ).

This gives
3∑

ν=1

ην(ξ)ην(φY ) = 0.

From this, replacing Y by φY for any Y ∈ D, we have

3∑
ν=1

ην(ξ)2η(Y ) = 0.

Using a similar method as in [10], we have two cases. First, in the case where
η(Y ) �= 0 for some Y ∈ D, we have ην(ξ) = 0 for ν = 1, 2, 3. This means ξ ∈ D.
Next, in the case where η(Y ) = 0 for any Y ∈ D, we have ξ ∈ D⊥. This completes
the proof of our lemma.

By virtue of lemma 4.1, in order to give the proof of theorem 1.2, in § 5 we
consider the case where M has a geodesic Reeb flow, including both vanishing and
non-vanishing Reeb flow, with ξ ∈ D. In § 6, completing the proof of theorem 1.2,
we shall discuss the remaining case when M has vanishing geodesic Reeb flow with
ξ ∈ D⊥.

5. Real hypersurfaces with geodesic Reeb flow satisfying ξ ∈ D

In this section, let us show that the distribution D of a Hopf real hypersurface M
in G2(Cm+2) satisfies g(AD,D⊥) = 0.

The Reeb vector ξ is said to be a Hopf vector if it is a principal vector for the
shape operator A of M in G2(Cm+2), that is, the Reeb vector ξ is invariant under
the shape operator A.

On the other hand, it was proved in [3] that the Reeb vector ξ of M belongs to
the distribution D when M is a hypersurface of type (ii) in theorem 1.1. Naturally
we are able to consider a converse problem. It should be an interesting problem to
check whether a real hypersurface of type (ii), that is, a tube over a totally real
totally geodesic HPn, m = 2n, is always a hypersurface with its Reeb vector ξ
belonging to the distribution D.

From such a viewpoint, we affirmatively answer this question in [7] as follows.
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Theorem 5.1. Let M be a connected orientatable Hopf hypersurface in G2(Cm+2),
m � 3. Then the Reeb vector ξ belongs to the distribution D if and only if M
is locally congruent to an open part of a tube around a totally geodesic HPn in
G2(Cm+2), where m = 2n.

Now it remains to check whether or not the Ricci tensor of a real hypersurface
M of type (ii) is parallel. So let us suppose that the Ricci tensor S is parallel. That
is, (∇Y S)X = 0 for any vector fields X and Y tangent to M . In this case ξ ∈ D. If
we set X = ξ in (4.5), the parallel Ricci tensor implies

0 = (∇Y S)ξ

= −3∇Y ξ − 3
3∑

ν=1

(∇Y ην)(ξ)ξν

+
3∑

ν=1

{−(∇Y η)(φνξ)φνξ − η((∇Y φν)ξ)φνξ} + h(∇Y A)ξ − (∇Y A2)ξ.

Since we have assumed that M is a Hopf hypersurface, it follows that

0 = −3φAY + 3
3∑

ν=1

ην(φAY )ξν −
3∑

ν=1

ην(AY )φνξ

+ αhφAY − hAφAY − α2φAY + A2φAY. (5.1)

Now let us apply a proposition from [3] as follows.

Proposition 5.2. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and that ξ is tangent to D. Then the quaternionic dimen-
sion m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal
curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, 1
4π). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n − 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Setting Y = ξ1 ∈ Tβ in (5.1), by proposition 5.2, we have

(αh − α2 − 4)β = 0. (5.2)

On the other hand, the trace h of type (ii) is given by

h = α + 6 cot 2r + (4n − 4)(cot r − tan r)
= α + (4n − 1)(cot r − tan r).

Substituting this into (5.2), we have 0 = −16n, which gives a contradiction.
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6. Real hypersurfaces with vanishing geodesic Reeb flow satisfying
ξ ∈ D⊥

Now let us consider a Hopf real hypersurface M in G2(Cm+2) with parallel Ricci
tensor and vanishing geodesic Reeb flow, that is, α = 0, satisfying ξ ∈ D⊥. Since
we assume ξ ∈ D⊥ = span{ξ1, ξ2, ξ3}, there exists a Hermitian structure J1 ∈ J

such that JN = J1N , that is, ξ = ξ1.
Now setting ξ = ξ1 in (4.8), we have

0 = (hα − α2 − 3)φAY + Y (αh)ξ1 − hAφAY − (Y α2)ξ1 + A2φAY

− 4[{q3(Y )η2(ξ) − q2(Y )η3(ξ)}ξ1 + {q1(Y )η3(ξ) − q3(Y )}ξ2

+ {q2(Y ) − q1(Y )η2(ξ)}ξ3]
− 5g(φ2AY, ξ)ξ2 − 5g(φ3AY, ξ)ξ3 − 4q3(Y )ξ2 + 4q2(Y )ξ3 − 3φ1AY

− {η2(ξ)η(AY ) + g(φAY, φ2ξ)}φ2ξ − {η3(ξ)η(AY ) + g(φAY, φ3ξ)}φ3ξ

= (hα − α2 − 3)φAY + Y (αh)ξ1 − hAφAY − (Y α2)ξ

= A2φAY − 3φ1AY + 6η2(Aξ)ξ3 − 6η3(AY )ξ2 − 3φ1AY. (6.1)

Substituting (4.10), this can be rearranged as follows:

0 = {hα − α2 − 3 − 1
2αh}φAY

− 1
2αhAφY + Y (αh)ξ1 − (Y α2)ξ + A2φAY − hφY

− h

3∑
ν=1

{ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY

− 2η(Y )ην(ξ)φξν − 2ην(ξ)ην(φY )ξ}
+ 6η2(AY )ξ3 − η3(AY )ξ2 − 3φ1AY

= {hα − α2 − 3 − 1
2αh}φAY

− 1
2αhAφY + Y (αh)ξ1 − (Y α2)ξ + A2φAY − hφY

− h{φ1Y − 2η2(Y )ξ3 + 2η3(Y )ξ2}
+ 6η2(AY ) − η3(AY )ξ2 − 3φ1AY, (6.2)

where we have used the formulae η2(φY ) = η3(Y ) and η3(φY ) = −η2(Y ).
By taking the inner product of (6.2) with ξ, we know Y (αh − α2) = 0. This,

together with (6.2), gives

A2φAY = 1
2αhAφY − {hα − α2 − 3 − 1

2αh}φAY

+ h{φ1Y − 2η2(Y )ξ3 + 2η3(Y )ξ2}
− 6η2(AY )ξ3 + 6η3(AY )ξ2 + 3φ1AY. (6.3)

On the other hand, we have assumed that the structure vector ξ is principal.
Denote by H the orthogonal complement of the real span [ξ] of the structure vector
ξ in TM . Then if we take the inner product of the Codazzi equation in § 3 with ξ
and use Aξ = αξ, we again obtain formula (4.9).
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Setting X = ξ in (4.9), we have

Y α = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY )

for any tangent vector field Y on M . Substituting this formula into (4.9), it can be
rewritten as follows:

− 2g(φX, Y ) + 2
3∑

ν=1

{ην(X)ην(φY ) − ην(Y )ην(φX) − g(φνX, Y )ην(ξ)}

= 4
3∑

ν=1

{η(X)ην(φY ) − η(Y )ην(φX)}ην(ξ)

+ αg((Aφ + φA)X, Y ) − 2g(AφAX, Y ). (6.4)

From this formula, setting ξ = ξ1, we are able to assert that

AφAX = 1
2α(Aφ + φA)X + φX + {φ1X − 2η2(X)ξ3 + 2η3(X)ξ2}, (6.5)

where we have used the formula η2(φX) = η3(X) and η3(φX) = −η2(X).
By applying the shape operator A to (6.5) from the left-hand side and using (6.5)

once more, we have

2A2φY = 2{Aφ1Y − 2η2(Y )Aξ3 + 2η3(Y )Aξ2} + αA2φY + 2AφY

+ 1
2α2(Aφ + φA)Y + αφY + α{φ1Y − 2η2(Y )ξ3 + 2η3(Y )ξ2} (6.6)

for any vector field Y on M . Then, by setting Y = ξ2 in both (6.3) and (6.6), the
formula is as follows for α = 0:

3φAξ2 − 2hξ3 − 6η2(Aξ2)ξ3 + 6η3(Aξ2)ξ2 + 3φ1Aξ2 = −2Aξ3.

From this, by taking the inner product with ξ2, we have g(Aξ3, ξ2) = 0, and the
formula becomes

3φAξ2 − 2hξ3 − 6η2(Aξ2)ξ3 + 3φ1Aξ2 = −2Aξ3. (6.7)

Similarly, we also have

3φAξ3 + 6η3(Aξ3)ξ2 + 3φ1Aξ3 + 2hξ2 = 2Aξ2. (6.8)

Then, by applying φ and φ1 to (6.3), we have, respectively,

φAξ3 = 3
2Aξ2 + hξ2 + 3η2(Aξ2)ξ2 − 3

2φφ1Aξ2

and

φ1Aξ3 = − 3
2φ1φAξ2 − hξ2 − 3η2(Aξ2)ξ2 + 3

2Aξ2.

Substituting these two formulae into (6.8) gives

−7Aξ2 = −9φφ1Aξ2 + 6η3(Aξ3)ξ2 + 2hξ2. (6.9)
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Applying φ to (6.9), we have

7φAξ2 = −9φ1Aξ2 + 6η3(Aξ3)ξ3 + 2hξ3. (6.10)

Applying φ1 to (6.9) and substituting (6.10), we have

−7φ1Aξ2 = −9φ2
1φAξ2 + 6η3(Aξ3)φ1ξ2 + 2hφ1ξ2

= 9φAξ2 + 6η3(Aξ3)ξ3 + 2hξ3

= 9(− 9
7φ1Aξ2 + 6

7η3(Aξ3)ξ3 + 2
7hξ3) + 6η3(Aξ3)ξ3 + 2hξ3,

which gives φ1Aξ2 = 3η3(Aξ3)ξ3 + hξ3. Accordingly, we can write

Aξ2 = 3η3(Aξ3)ξ2 + hξ2.

Similarly, we have
Aξ3 = 3η2(Aξ2)ξ3 + hξ3.

These two formulae for a Hopf hypersurface M in G2(Cm+2) give the invariancy
of the shape operator A of M , that is, g(AD,D⊥) = 0. Then, by virtue of theo-
rem 1.1, we deduce that M is locally congruent to a tube of certain radius r over a
totally geodesic G2(Cm+1) in G2(Cm+2) with vanishing geodesic Reeb flow, α = 0.
However, in proposition 5.2 the principal curvature α never vanishes. Consequently,
such a case is not possible. This completes the proof of theorem 1.2.

Remark 6.1. It was proved in [11] that there do not exist any real hypersurfaces M
in G2(Cm+2) with parallel shape operator, i.e. ∇A = 0. Such a geometric condition
is stronger than the parallelism of the Ricci tensor mentioned in this paper.

Remark 6.2. Suh [12] proved the non-existence property of real hypersurfaces in
G2(Cm+2) with commuting shape operator, that is, Aφi = φiA, i = 1, 2, 3, and
in [16] gave a characterization of type (i) in theorem 1.1 in terms of the commuting
Ricci tensor, i.e. Sφ = φS.

Remark 6.3. Corollary 1.3 was also proved in [10]. By giving a classification of
pseudo-Einstein hypersurfaces in G2(Cm+2) we have shown that there does not
exist any Einstein real hypersurface in G2(Cm+2).
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