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Abstract

Objectives: Apathy is a debilitating symptom of Huntington’s disease (HD) and manifests before motor diagnosis,
making it an excellent therapeutic target in the preclinical phase of Huntington’s disease (prHD). HD is a neurological
genetic disorder characterized by cognitive and motor impairment, and psychiatric abnormalities. Apathy is not well
characterized within the prHD. In previous literature, damage to the caudate and putamen has been correlated with
increased apathy in other neurodegenerative and movement disorders. The objective of this study was to determine
whether apathy severity in individuals with prHD is related to striatum volumes and cognitive control. We hypothesized
that, within prHD individuals, striatum volumes and cognitive control scores would be related to apathy. Methods: We
constructed linear mixed models to analyze striatum volumes and cognitive control, a composite measure that includes
tasks assessing with apathy scores from 797 prHD participants. The outcome variable for each model was apathy, and the
independent variables for the four separate models were caudate volume, putamen volume, cognitive control score, and
motor symptom score. We also included depression as a covariate to ensure that our results were not solely related to
mood. Results: Caudate and putamen volumes, as well as measures of cognitive control, were significantly related to
apathy scores even after controlling for depression. Conclusions: The behavioral apathy expressed by these individuals
was related to regions of the brain commonly associated with isolated apathy, and not a direct result of mood symptoms.
(JINS, 2019, 25, 462–469)
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INTRODUCTION

Huntington’s disease (HD) is a debilitating genetic disorder
characterized by involuntary movements, cognitive decline,
and eventual loss of bodily control. An extended tri-
nucleotide cytosine-adenine-guanine (CAG) repetition cau-
ses the neurological atrophy responsible for these symptoms,
and individuals with more repetitions of CAG will have an
earlier onset of the disease (Chial, 2008). HD currently
affects 12.3 to 17.2 people per 100,000 in the western world
(Evans et al., 2013). Death usually occurs within 15–20 years

after clinical diagnosis, and the disease typically develops
around age 40 (Ross & Tabrizi, 2011).The prodromal HD
population (prodromal HD) consists of anyone who tests
positive for the genetic mutation (CAG repeat length >35)
but has not yet reached a full motor diagnosis (Paulsen et al.,
2006, 2008). Data analyzed for this study were collected as
part of the Neurobiological Predictors of Huntington’s Dis-
ease (PREDICT-HD) study, a national multi-site study with
over 1,400 participants aiming to better specify factors con-
tributing to HD onset in a prodromal (pre-manifest) sample
(Paulsen, 2010; Paulsen, Long, Johnson, & Aylward, 2014).
Neurological and clinical changes are detectable in indi-

viduals in the prodromal phase of HD. Across studies, atro-
phy in the striatum, particularly in the caudate, is the most
consistently reported imaging biomarker of prodromal and
early HD and can be detected up to 15 years before diagnosis
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(Aylward, Liu, et al., 2011; van den Bogaard et al., 2011;
Wolf et al., 2013). Greater CAG repeat length is often cor-
related with smaller caudate volumes (Aylward, Mills, et al.,
2011). Caudate atrophy generates a variety of clinical
symptoms detectable before manifest motor diagnosis (Hal-
liday et al., 1998; Mendez, Adams, & Lewandowski, 1989;
van den Bogaard et al., 2011).
Apathy is one of the most commonly reported prodromal

HD symptoms, with a prevalence rate as high as 62% (Duff
et al., 2007; Epping & Paulsen, 2011; Julien et al., 2007). In
prodromal HD literature, apathy has been characterized as a
distinct mood symptom, separate from depression, and can
exist independent of depressive symptoms (Alexopoulos et al.,
2013; Marin, 1991). Apathy is related to CAG repeat length;
longer CAG repeat lengths correlate with greater reported
apathy (Baudic et al., 2006). Despite its high prevalence in the
prodromal phase of HD, it is difficult to distinguish compo-
nents of apathy from those of fatigue or depression (Bonnelle
et al., 2015; Levy & Czernecki, 2006; Marin, 1991; Naarding,
Janzing, Eling, van der Werf, & Kremer, 2009; Pagona-
barraga, Kulisevsky, Strafella, & Krack, 2015).
Apathy is a multidimensional syndrome that has been

variously defined for over 2 decades (Bonnelle et al., 2015;
Marin, 1991; Naarding et al., 2009). Advances in our
understanding of apathy and its neural mechanisms have
emanated from preclinical models as well as neurodegen-
erative and neuropsychiatric diseases. Clinical assessment
tools used to characterize the apathy phenotype have used
descriptors such as indifference, avolition, lethargy, and
diminished drive (e.g., in grooming/hygiene, impersistence
in work or school, and physical anergia) (Grace, 2011). Levy
and Czernecki (2006) define apathy as a reduction of volun-
tary, goal-directed behaviors.
It is well established in the literature that processes that

precede goal-directed behavior are dependent upon several
executive and cognitive control functions. The regions of the
brain associated with these functions are the prefrontal cor-
tex, the caudate, and the putamen, such that individuals with
lesions or atrophy in these regions often experience impair-
ment in planning and cognitive control (Bhatia & Marsden,
1994; Mendez et al., 1989; Monchi, Petrides, Strafella,
Worsley, & Doyon, 2006; Pauli, O’Reilly, Yarkoni, &
Wager, 2016; Robertson, Hiebert, Seergobin, Owen, &
MacDonald, 2015). In a variety of neurodegenerative dis-
eases and states of neuronal injury, such as Parkinson’s dis-
ease, stroke, and traumatic brain injuries, caudate and
putamen atrophy correlate with apathy such that as striatum
volume decreases, apathy increases (Carriere et al., 2014;
Kos, van Tol, Marsman, Knegtering, & Aleman, 2016;
Pagonabarraga et al., 2015; Worthington & Wood, 2018).
In the diagnosed HD population, apathy has been corre-

lated with cognitive performance (Baudic et al., 2006;
Naarding et al., 2009). Prodromal HD individuals exhibit
impairment on cognitive control tasks and tasks that measure
cognitive flexibility, on average, but this has not been linked
to apathy measures (Papp et al., 2013; Snowden, Craufurd,
Thompson, & Neary, 2002). We previously determined that

striatum atrophy is related to more deficient cognitive per-
formance in the prodromal HD population, but this analysis
did not investigate apathy in conjunction with cognitive per-
formance (Misiura et al., 2017). The cognitive control score is
a composite measure that includes tasks assessing inhibition.
Our test of cognitive control is a composite score taken from a
variety of measurements that include Stroop tasks, Trail
Making tests, and the Symbol-digit Modalities test (Misiura
et al., 2017). Understanding the relationship between apathy,
atrophy, and cognition can provide valuable clinical insight
into the prodromal phase of HD.
The purpose of this study was to determine whether apathy

severity in a prodromal HD population is related to striatum
volumes and cognitive control. We hypothesized that apathy
would be related to striatum volumes and cognitive control
scores. We anticipated that higher apathy would be asso-
ciated with reduced volumes and lower cognitive scores,
reflective of atrophy in the striatum and related cognitive
impairment (Jang &Kwon, 2017; Pagonabarraga et al., 2015;
Paulsen, 2010; Paulsen et al., 2006; Worthington & Wood,
2018). To ensure that the relationships that we identified
could not purely be explained by mood symptoms, we
included depression as a covariate in our analyses.

METHODS

Participants

We extracted this legacy data from the PREDICT-HD study-
wide dataset (Paulsen et al., 2008), which includes data col-
lected across 32 sites in the United States, Canada, Europe
and Australia. Data were collected from over 1400 prodromal
HD and healthy control participants, and included demo-
graphic information such as sex, age, and years of education,
HD specific genetic information, and data for approximately
30 different signs and symptoms of HD (i.e., measures of
motor, cognitive, and psychiatric functioning). All partici-
pants were 18 years of age or older and not diagnosed with
manifest HD at study entry.
Exclusion criteria included unstable medical or psychiatric

illness, active substance abuse, history of a significant
developmental cognitive disorder, head trauma or other CNS
disease, presence of a pacemaker or other metallic implant,
use of antipsychotic medication in the 6 months before
enrollment, or use of phenothiazine antiemetic medication in
the 3 months before enrollment (Paulsen et al., 2008).
All participants provided informed consent as approved by

their individual sites’ Institutional Review Boards. Partici-
pants provided their consent for their de-identified data to be
shared and analyzed for further HD research. This study was
approved at each data collection site, and all data were shared
in accordance with the University of Iowa and Georgia State
University Institutional Review Boards.
Consistent with the genetic definition of HD, individuals

with more than 35 CAG repeats who had not met motor cri-
teria for clinical diagnosis were considered to be in the
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prodromal phase of HD. For this study, we included any
participant who had corresponding clinical and neuroimaging
data, for a total of 797 participants. A healthy control sample
(N= 208) was used, consisting of individuals previously
considered at-risk for HD due to family history but subse-
quently found to lack the causal mutation. With the exception
of a calculated CAG Age Product (CAP) score, data from the
same variables measured in prodromal participants were also
collected from members of the control group. Please see
Paulsen et al. (2014) for more detailed data collection
information.
At the baseline visit, participants: provided a blood sam-

ple; underwent motor, cognitive, psychiatric, and functional
assessments; and had a brain MRI scan. Information was
obtained from participants regarding past medical and psy-
chiatric histories, current medication use, and time since HD
genetic testing. Motor exams were completed by certified
motor raters using the Unified Huntington Disease Rating
Scale (UHDRS), and all other assessments were obtained by
trained research technicians (Huntington’s Disease Study
Group, 1996). The CAP score is used as a measure of disease
burden, to capture the growing toxicity of mutant huntingtin
protein as an individual ages. Created by the PREDICT-HD
team, CAP score reflects the interaction between age and
CAG repeat length (Zhang et al., 2011). Table 1 provides
demographic information for our sample.

Apathy Scores

The apathy scores used for this study were from a modified
24-item form of the UHDRS) apathy subscale, which asks
questions about recent behavior (Grace, 2011). This apathy
subscale score is calculated as a summation of eight apathy-
related items (Duff et al., 2010). Example apathy items
include “Has difficulty starting an activity, lacks initiative,
motivation” and “Does things without being requested to do
so”. We used companion-reported apathy scores for this
analysis because previous research suggests that companion
ratings are more consistently associated with disease pro-
gression. We used previously-developed Z-scores standar-
dized across the entire PREDICT-HD sample (Paulsen et al.,
2008).

Depression Scores

Depression scores for this study were taken from the Symp-
tom Checklist 90 (SCL90) (Derogatis & Unger, 2010)
depression subscale. Companion reported scores were used
to maintain consistency with apathy items.

HD Phenotype Cluster Scores

We used aggregated clinical and cognitive scores from a
previous study designed to capture cognitive control and
motor symptoms from clustering analyses (Misiura et al.,
2017). Following clustering analyses, phenotype scores are

averaged within a cluster to obtain a measure for each cog-
nitive domain (Misiura et al., 2017). The cognitive control
cluster scores are composed of measures that test executive
function and inhibitory control: Stroop, Trail Making, and
Symbol Digit Modalities tests. All assessments were re-
coded such that a higher score indicates better performance.
Motor symptom cluster scores are comprised of a variety

of scales that each measure motor abnormality; a higher score
indicates greater motor abnormality. Scores were created by
Z-scoring assessments in each cluster, adding them together,
and then dividing by the number of assessments to create an
average Z-score for each cluster. Z-scores of the cluster scores
were used in our analyses. For a full description, see Misiura
et al. (2017). A full table describing the measures included in
the cognitive control cluster, as well as other cluster scores, is
included in the Supplementary Material. To ensure that the
relationships that we identify are specific to apathy and not
generalized cognitive impairment, we included a language
and memory cluster score as a control measure (Stout et al.,
2011). We did not anticipate a significant relationship
between apathy and the language and memory cluster score.

Brain Volumes

Individuals considered for this analysis had high-quality T1
weighted images that were compatible with the BRAIN-
STools algorithm (Ghayoor, Vaidya, & Johnson, 2013; Kim,
Magnotta, Liu, & Johnson, 2014). Because these regions are
the most commonly associated with apathy, we used struc-
tural bilateral caudate and putamen volumes extracted using
the BRAINSTools algorithm (Kim et al., 2014; Young Kim
& Johnson, 2013). Thalamus volume was included as a
control volume, as we did not anticipate any relationships
between the thalamus and apathy. All brain volumes were
calculated as a percentage of intra-cranial volumes and were
then converted to standardized Z-scores. To ensure that the

Table 1. Participant characteristics

prHD
(N = 797)
Mean (SD)

Controls
(N = 208)
Mean (SD)

prHD - controls
t score (df)

Sex (M/F) 271/526 75/133
Age 41.87 (11.08) 45.56 (12.02)
Years of education 14.46 (2.6) 14.88 (2.50)
CAG repeat length 42.49 (2.06) 20.28 (3.48)
Low/medium/high 28.5/35.5/36.1 –

Apathy 12.4 (5.54) 11.0 (4.29) 3.39 (1003)**
Motor score 5.99 (6.32) 2.91 (3.65) 6.74 (1003)**
Depression 53.91 (15.15) 48.67 (9.45) 4.75 (1003)**

Note. Low/Medium/High group were generated from the CAPd scores and
represent the percentage of individuals in our sample in each of the disease
severity groups. Categories denote disease burden as defined by Zhang et al.
2011. Low indicates further from motor diagnosis of HD, and Hid indicates
close to motor diagnosis of HD. Motor score was created based on motor
symptom cluster scores such that a higher score indicates greater symptom
severity (Misiura, et. al, 2017). ** = p< .001.
prHD, prodromal Huntington’s disease.
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relationships between brain volumes and apathy were spe-
cific to the basal ganglia, we included the thalamus as a
control brain volume (Aylward, Nopolous, et al., 2011).

Statistical Analyses

Prodromal HD

We constructed linear mixed models using the lme4 package
in R (Verbeke & Molenberghs, 2000). Consistent with pre-
vious papers published with this dataset, the data collection
site was modeled as a random effect (Paulsen et al., 2013;
Verbeke & Molenberghs, 2000). Sex was dummy coded and
included as a fixed factor. Motor cluster scores, CAP score
and years of education were modeled as continuous covari-
ates, and years of education were included as a covariate in
the cognitive control model. We also included depression as a
covariate to ensure that the relationships we identified were
unique to apathy, independent of general mood. The outcome
variable for each model was either apathy or depression, and
the independent variables for the separate models were cau-
date volume, putamen volume, thalamus volume, executive
function cluster score, and language/memory cluster score. P
values were corrected for multiple comparisons using false
discovery rate (FDR) correction in R. The exclusion of out-
liers greater than 3 standard deviations (SDs) did not sig-
nificantly change the results, such that the nature of the

relationships we identified and the significance of our
regression coefficients did not change. We report the results
with all data points.

Controls

All analyses were conducted in the same manner with con-
trols except that there was no CAP score, which requires an
expanded CAG repeat length and is not possible to calculate
for controls. We did include age and CAG length as a cov-
ariate in this analysis. Controls and cases were analyzed
separately.

RESULTS

Prodromal HD

Apathy was significantly related to both putamen and caudate
volumes. As putamen volumes decreased, apathy scores
increased (β= − 0.13; t[763]= − 3.31; p< .05; model results
in Table 2). A similar relationship was identified for caudate
volumes: as caudate volumes decreased, apathy scores
increased (β= − 0.11; t[763]= − 3.51; p< .05; model results

Table 2. Apathy as a function of putamen volumes

β Estimatea SE t Value Effect size

CAP score − 0.04 0.04 − 1.05 − 1
Sex 0.02 0.06 0.31 0.33
Motor score 0.07 0.03 2.36* 2.33
Depression 0.64 0.03 22.82** 21.33
Putamen volume − 0.13 0.05 − 2.78** − 2.6

Note. Effect size for regression coefficients were calculated as the ratio
between the estimate and the SE. Effect size for the whole model: Cohen’s
f2= .03 (small effect).
*p< .05 after FDR correction.
**p< .001 after FDR correction.
aAll regression estimates are standardized.

Table 3. Apathy as a function of caudate volumes

β Estimatea SE t Value Effect size

CAP score 0.09 0.04 2.03 2.25
Sex 0.01 0.06 0.13 0.17
Motor score 0.07 0.03 2.34* 2.33
Depression 0.63 0.03 22.83** 21
Caudate volume − 0.11 0.04 − 2.56** − 2.75

Note. Effect size for regression coefficients were calculated as the ratio
between the estimate and the SE. Effect size for the whole model: Cohen’s
f2= .04 (small effect).
*p< 0.05 after FDR correction,
**p< 0.001 after FDR correction.
aAll regression estimates are standardized.

Fig. 1. Apathy scores and putamen volumes (β= − 0.13;
t(763)= − 3.31; p< .05). Black line indicates line of best fit, gray
dots indicate data points.

Fig. 2. Apathy scores and caudate volumes (β= − 0.11;
t(763)= − 3.51; p< .05). Black line indicates line of best fit, gray
dots indicate data points.
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in Table 3). These relationships are shown in Figures 1 and 2.
Apathy was not significantly related to thalamus volumes.
We found a significant relationship between apathy scores

and both the cognitive control and motor cluster scores.
Apathy scores were significantly negatively related to cog-
nitive control cluster scores (β= − 0.13; t[763]= − 1.96;
p< .01), as shown in Figure 3 and Table 4. As anticipated,
apathy was not significantly related to language and memory
cluster scores.
In all of our models, motor scores and depression were

significantly related to apathy (see specific model results for
estimates after FDR correction).

Controls

Within the control group, we did not identify significant
relationships between cognitive control cluster scores and
apathy, or between brain volumes and apathy. Depression
was related to apathy scores (β= − 0.45; t[235]= −20.17;
p< .001).

DISCUSSION

Apathy is associated with caudate and putamen volume in
prodromal HD, after accounting for age, CAG repeat length,

motor scores, and depression. As anticipated, greater severity
of apathy was related to smaller striatum volumes.
In the prodromal HD population, increased apathy appears

to be related to reduced cognitive control. Findings of
reduced cognitive control that correlates with increased apa-
thy are consistent with previous literature regarding pro-
dromal HD and related dysexecutive syndromes (Levy &
Dubois, 2006; Martinez-Horta et al., 2016). The inability to
plan for the participation in goal-directed behavior can be
characterized as apathy, not exclusively because of an
inability to recognize and respond to rewards. The inability to
engage in the necessary cognitive preparation required to
engage in goal-directed behavior may be a reason for apa-
thetic behavior in this population.
Psychomotor retardation is a common symptom of HD,

and the argument could be made that the apathy experienced
by this population is really just motor slowing (Epping &
Paulsen, 2011; Fritz et al., 2018). Indeed cognitive control
scores do capture motor retardation as well as executive
processes, and was related to apathy (Misiura et al., 2017).
However, apathy was also related to caudate volumes, and
in a previous paper, caudate volumes were not related to
cognitive control. If apathy was merely capturing psycho-
motor slowing, we would not expect it to be related to
caudate volumes. Apathy has many facets, and unfortu-
nately for this study, we could not measure them individu-
ally. It is possible that the type of apathy exhibited by
individuals with prodromal HD is more behavioral, gen-
erating a lack of motivation that leads to lack of effort and
poorer performance on cognitive tests. It could also be that
the apathy exhibited is more cognitive, directly related to
impairment in the cognitive abilities required to plan and
execute goal directed behavior and thus to poorer perfor-
mance on cognitive tests. However, the results of this study
do indicate the need for better characterization of apathy
within this population.
A plausible explanation for the relationships that we have

identified is that as striatal degeneration occurs, impairment
emerges in cognitive control processes that are essential to
the “initiation” phase of goal-directed behavior. This
impairment may lead to a decline in goal-directed behavior,
which can be outwardly observed and defined as apathetic.
While the relationships identified were significant, the
strengths of the associations were not robust; the effect sizes
for the relationships that we identified were not large, indi-
cating that striatum atrophy and cognitive performance may
only account for some of the apathy present in this
population.
Other factors, such as mental health issues or temporary

neurochemical imbalances, likely also contribute to apathy.
In models of apathy, striatum volumes and cognitive perfor-
mance are related to early processes of goal directed beha-
vior. There are other regions of the brain involved in later
phases of goal-directed behavior, such as behavioral output
and reward evaluation mechanisms, that may also be
impaired. Future studies concerning apathy should include
specific scales that probe apathy subtypes.

Table 4. Apathy as a function of cognitive control

β Estimatea SE t Value Effect size

CAP score − 0.26 0.24 − 1.12 − 1.08
Sex − 0.26 0.42 0.63 − 0.62
Years of Education − 0.02 0.04 − 0.45 − 0.5
Motor Score 0.16 0.24 1.97* 0.67
Depression 0.64 0.03 13.33** 21.33
Cog. Control − 0.13 0.25 − 1.96* − 0.52

Note. aAll regression estimates are standardized. Effect size for regression
coefficients were calculated as the ratio between the estimate and the standard
error. Effect size for the whole model Cohen’s f2= .05 (small effect).
*p< .05 after FDR correction,
**p< .001 after FDR correction

Fig. 3. Apathy scores and cognitive control scores (β= − 0.20;
t(763)= − 4.95; p< .001). Black line indicates line of best fit, gray
dots indicate data points.
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Apathy is typically divided into three subtypes: cognitive,
behavioral, and affective (Bonnelle et al., 2015; Kos et al.,
2016). Different portions of the frontostriatal circuitry may be
responsible for separate facets of apathy. For example,
damage to the supplementary motor areas produces beha-
vioral apathy, characterized by impairment in the ability to
initiate desired motor programs necessary to engage in goal-
directed behavior, and damage to the caudate is likely to
cause cognitive apathy, defined as an “impairment in the
cognitive functions needed to elaborate the plan of actions”
(Bonnelle et al., 2015; Levy & Dubois, 2006; Levy & Czer-
necki, 2006). Scales that include separate facets of apathy
may allow us to delineate and characterize the apathy
experienced by HD individuals, and can point to better mar-
kers of behavioral changes for caregivers and clinicians to
identify.
Also, it is likely that the prodromal HD sample included

persons who were very far from motor onset as well as those
close to motor onset, and that the overall relationship may
reflect the average of the group. The presence of significance
is notable, however, considering that individuals more than
15 years from estimated diagnosis are included. There are
likely several factors that contribute to the variance in apathy
in prodromal HD, however. our findings suggest that basal
ganglia degeneration may be one of these factors. To shed
more light on the caudate-apathy relationship, future func-
tional MRI studies could include a task paradigm that probes
goal-directed behavior, and striatal involvement in the task
could be studied. The non-significant findings that we iden-
tified using depression as an outcome, thalamus as a brain
region, and language/memory as cognitive impairment, as
well as the analyses using the control group suggest that the
type of apathy manifested in HD may be more specific to
executive function deficits and striatum atrophy rather than
global volume loss, general cognitive impairment, or mood
symptoms.
We identified a significant relationship between depres-

sive symptoms and motor symptoms, and this finding may
be important to further explore in future research. There are
many possible explanations for this finding. It is possible
that conscious awareness of motor abnormalities con-
tributes to increased depressed mood, or that impairment in
mood and motor systems may be related within shared
brain circuitry. The effect sizes of the depression parameter
estimates were very large. On the surface, it may seem that
much of the variability in apathy can be explained simply
as an aspect of depressed mood. However, many of the
questions on the depression inventory overlap with ques-
tions on the apathy scale, such as losing interest in activ-
ities, and “feeling blocked getting things done.”
Conducting research in the future with apathy scales that
include a mood or emotional subscale can help clarify this
overlap.
The results of this study must be taken in the context of

some limitations. Although we can hypothesize about
the nature of the relationships among our variables, it is

important to conduct a longitudinal analysis to establish a
timeline of atrophy, presentation of mood symptoms, and
cognitive decline to further determine whether atrophy pre-
dates apathy and executive dysfunction. In future analyses,
we plan to analyze longitudinal clinical data in concert with
imaging data to determine the progression of striatum atrophy
and apathy. It may be possible to identify factors that make
some individuals more resilient to psychiatric symptoms than
others. CAP score was not significantly related to apathy,
indicating that apathy may not be directly related to HD
progression and onset, but alternatively may be more related
to downstream effects such as striatum atrophy and asso-
ciated cognitive impairment.
Because the apathy scale used in this study was measured

by a reduction in observable behavior, findings offer no
conclusion about internal affect. Because some prodromal
HD individuals exhibit mild motor impairment, the obser-
vable behavior could reflect increased effort to carry out the
behavior rather than increased apathy. In the future, it would
be appropriate to look at apathy from emotional and beha-
vioral perspectives to investigate whether participants
experience apathy or just an outward manifestation of motor
impairment.
Our results suggest that apathy is related to cognitive

control and striatal atrophy. It can be difficult for individuals
who are not trained clinicians to identify changes in general
cognitive domains such as “cognitive flexibility” and “pre-
planning.” However, a decline in goal-directed behavior is
routinely assessed by caretakers and companions and could
signify neurological changes in the absence of an MRI scan.
Although this analysis cannot reveal whether increased apa-
thy is the cause of more unsatisfactory performance, it does
suggest that apathy may be an essential disease-related mar-
ker that could signify other, more widespread changes. As
methods for early HD interventions develop, initial onset of
apathy may be a helpful indicator of necessary treatment
initiation.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit
https://doi.org/10.1017/S1355617719000067
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