

Smart devices for manufacturing equipment
M. Bayart
LAIL UPRESA CNRS 8021, Bât EUDIL, Cité scientifique, 59655 Villeneuve d’Ascq Cedex (France)
e-mail: bayart@univ-lille1.fr

(Received in Final Form: November 9, 2002)

SUMMARY
Smart devices used in continuous system, benefit from the
addition of microelectronics and software that runs inside
the device to perform control and diagnostic functions. Very
small components, such as inputs/outputs blocks and
overload relays, are too small to integrate data processing
for technical-economic reason. However, it’s possible to
develop embedded intelligence and control for the smallest
factory floor devices. In the paper, a generic model of smart
equipment with reconfiguration functions is proposed. The
interest of this functional model is that it can be used for
smart devices but it can also be developed in modules for
the nearest possible of the inputs and outputs in manufactur-
ing equipment. This solution is economic for a great number
of applications because it allows one to realise modular
design and to standardise part of system in order to re-use
it.

KEYWORDS: External model smart devices; Reconfiguration;
Functional architecture; Cost effective automation.

1. INTRODUCTION
The convergence of microelectronic evolution and the
increasing needs for productivity, quality and security of
process for humans and environment leads to the parallel
emergence of intelligent field devices, connected to field-
buses or local area networks in real distributed automation
system which insure information exchanges.

Today, such architectures are mainly implemented in
continuous industrial process. The smart sensors supply is
essentially relative to pressure, flow, level, . . . measure, and
the currently smart actuators are valves, pumps, motor
drives, . . .

However, for manufacturing installations, the sensors and
actuators are, generally, less sophisticated (detector, meter,
jack, . . .) than in continuous processes. A great number of
automated processes (95%) require a Programmable Logic
Controller equipped with logic or analogue inputs and
outputs. Consequently, it’s not possible to implement data
storage or processing on each sensor or actuator. The
alternative solution is obtained by implementing data
processing units connected to some sensors or actuators and
connected together by communication links in order to
obtain remote inputs/outputs.

Among the manufacturing system we consider robots. We
have an example of system integrated various sensors and
actuators (vision system, external sensors such force,

torque, . . .), in order to achieve position as well as force
control. The architecture is distributed among the axes and
the miniaturisation requirements prevent the integration of
micro-electronic into all the sensors and actuators.

Naturally, the implementation of smart sensors and
actuators in robots (or other manufacturing equipment) will
allow a better reliability of information collected about the
behaviour of the robot and to achieve its necessary
processing information.

Moreover, it’s important to the robot to have reconfigura-
tion possibilities, especially for a reaction to disturbances
that perturb the nominal functioning. One way to improve
the performances of the robots is to increase the autonomy
of the decisional levels in order to make quickly appropriate
decisions when a disturbance occurs.

A possibility induced by the reactivity concept is to
provide autonomy to low level decisional systems in order
to make them more reactive to environmental fluctuations.

The actual trends are the development of smart equip-
ment, associated to the one of fieldbuses, lead to a
distributed architecture. The automation systems have been
evolving from a centralised architecture to distributed one,
and we obtain now automation system with intelligent
distributed architecture. Robots follow this evolution, and
become more and more decomposed into divided sub-
systems, where each of them realises an elementary
function. The distributed automation systems bring several
advantages, such as greatest flexibility, simplicity of the
operation, best commissioning and maintenance.

Today’s smart field device consists of two essential parts:
A sensor or actuator module and an electronics module. The
microcomputer was firstly responsible for sensor linearity,
damping, p.i.d. regulation, communication, etc. Then diag-
nosis functions have been locally introduced, e.g. advanced
diagnosis address fault detection, fault isolation1, 2 and root
analysis. The early detection of anomaly, either process-
related or device-related, is the key to improving plant
availability and then reducing costs of production.

However, this situation can be improved by using the
possibilities of local data processing to introduce reconfigu-
ration functions.

The fault detection and diagnosis are interesting for
maintenance operators. But local data processing allows one
to improve the global behaviour by taking adequate decision
according to the failures. The situation can generally be
analysed under three major headings3:

• continue the system operation without a (unbearable)
loss of performance;

Robotica (2003) volume 21, pp. 325–333. © 2003 Cambridge University Press
DOI: 10.1017/S0263574702004836 Printed in the United Kingdom

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

• continue the system operation with reduced specifica-
tions;

• abandon the mission while avoiding disaster.

In this paper, we propose a functional model of intelligent
equipment for distributed architectures. The advantages of
this model are that it can be implemented in any hardware
architecture. One possibility is to implement it in a micro-
controller associated to a device (sensor or actuator) in order
to obtain smart equipment. Another possibility is to
integrate it in a microcomputer associated to several low
cost sensors and actuators. The model rests on the notions of
services and user operating modes. It can be applied to
describe a system at any hierarchical level, since it allows
the building of a model of aggregated components from the
models of the low level ones they contain. Missions in user
mode are introduced into the global system to offer
reconfiguration functions.

In the first section, the concept of external model is
presented; notion of services and user operating modes are
introduced. In the second section, the system availability is
presented according to the states of resources. As a system
is a set of elementary components, which are intercon-
nected, in order to achieve the objectives that it has been
specified, in the third section notions of services and user
modes of architecture of components are detailed. Then, the
notion of mission is introduced to offer reconfiguration
possibilities to improve the global functioning. Before
conclusion, a small example illustrates the main concepts;
hardware architecture to implement intelligence for small
sensors and actuators used in manufacturing equipment is
proposed.

2. SMART EQUIPMENT
Much work has been carried out to provide functional,
behavioural, object-based, and internal or external models
of smart equipment.4, 5 The external model, using the
concept of service offered to users and an organisation
based on operating modes, has led to a generic model
description in a formal language that allows to specify and
to qualify smart instruments and hybrid systems.6

Smart sensors and actuators integrate more and more
computing power and data storage capabilities. The use of
microprocessors and micro-controllers allows not only the
implementation of functions that were in the past realised
using analogue processing, but also the implementation of
quite new ones. Internal and external models can specify
smart equipment. The internal model describes the intelli-
gent device from the point of view of the functions that it
puts at work in order to contribute to the global automation
system. It presents specific functions (to input, to validate,
. . .) and generic ones (to communicate, to manage, . . .).
The specific functions may be considered as generic for
certain application classes (“to act” represents the same
generic function for all the members of the specific class of
electrical on/off valve).

The functional structure of a smart actuator is given on
Figure 1.

The external model describes the device from the point of
view of the services it is able to provide to external entities4

(operators, other field instruments, computers, . . .). It
introduces the notions of services, user-operating modes,
versions of services and missions.

2.1. Notion of service
A service is defined as a procedure whose execution results
in the modification of at least one datum in the device data
base, or/and at least one signal on its output interface. It can
be seen like a whole of functional constraints between
consumed and produced variables.

Services are required by the users who intervene on the
equipment during its whole life cycle, i.e. not only during its
exploitation (supervision, maintenance, technical manage-
ment) but through out its life cycle, from its design to its
dismantling (initialisation, configuration, . . .). Two different
users can be distinguished: the consumers who are the most
important ones in terms of users needs, and the actors who
either give information to the device or constrain it.

In order to define the obtained values, one will have to
describe the computations which are done (algorithmic or
sequential procedures, qualitative or fuzzy inferences, . . .),
its internal configuration (parameters), the variables on
which they are applied (inputs) and the required resources
(hardware, software). Moreover, before it can be executed, a
service must verify some activation conditions that depend
on two elements the Use Condition and the Activation
Request. Thus a service is described by a quintuplet (Figure
2): consumed variables (its set of consumed variables: Csi),
produced variables (its set of produced variables: Psi),
conditions of activation (its conditions of activation: Cai),

Fig. 1. Functional structure of an intelligent actuator.

Fig. 2. Structure of a service.

Smart devices326

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

data processing (dpi), and resources (its set of resources:
Rsi).

si = < Csi, Psi, dpi, Rsi, Cai > (1)

Two types of components can be considered: those that
integrate software and material parts and those that are only
require material elements. As an example, a digital control
system belongs to the first type; the main service can then be
described by:

sregulation = <{set point, position value}, Actuator order,
PID algorithm, {energy, data unit}, True>

For a simple valve that belongs to the second one, a service
can be:

sregulation =<�, value opened, �,
{energy, valve}, presence of water>

So, with these examples, in the quintuplet, the set Csi of
consumed variables can be empty and the data processing
can be non-existing. The other elements are obligatory.
The set of services, which are offered by equipment, is
finite. It is called S.

S = {si | i � I} (2)

I is a set of indices.
The services executions can be either dependent (prece-

dence, mutual exclusion, . . .) or independent and
concurrent. Likewise, the service can have a limited
duration or can end by the occurrence of simple or complex
events (operator request, emergency alarm, . . .).

The activation of a service is obtained in response to a
specific request. A request is defined by:

• its name which allows to identify it;
• its execution parameters, which allow to modulate the

results. The set of all the parameterised requests the
intelligent instrument recognises and defines its supervi-
sory language;

• its origin, which identifies the entity which produces it
(control or maintenance operator, supervision device,
control computer . . .);

• the communication link through which it is transmitted.

We define the external explicit services of equipment like
services, the activation of which depends on an external
event of the equipment. This type of service is obtained
when the user demands its activity by a specific request.

On the other hand, we define the external implicit
services like services, the activation of which depends on
internal event of the equipment.

The following information for each service can be
added:

– the set of resources may be distinguished by two
criteria: vital/non-vital and shared/non-shared,

– the procedure in the following areas:
• the used method,
• priority of the service,
• the computation time,

• the periodicity of the service and its period if it is
periodic,

• the pre-emptability of the service.

2.2. Notion of user operating mode
A User Operating Mode (USOM) is a coherent sub-set of
services. It contains at least one service, and each service
belongs at least to one USOM. Moreover, in each USOM,
there exists a notion of context, which allows to define the
subset of services (implicit or explicit) that can be executed
(implicit request), as long as the system remains in this
USOM. As an example, the configuration USOM includes
services of writing the various parameters, and these
services are not in automatic USOM.

The union of all USOM forms a covering of the set of
services of one equipment. We obtain classically the graphic
representation given Figure 3.

Let MU be the set of the user operating modes.

MU={muj ; j � J} (3)

Each time the system is in a current USOM. The only
services it will accept to run are those which belong to that
USOM and, consequently, those which are coherent with
the USOM objectives. In other words, any request for
another service will be automatically rejected. Obviously
the list of the services of each USOM has to contain a
“Change USOM” request, otherwise it would be impossible
to leave the current USOM. The state transition graph
G(MU, T) completely specifies the nominal behaviour of a
component.

Let Scm be the set of change USOM services.
Let T be the set of transitions.

T = {(mui, tij, muj)/mui � MU, mj � MU, tij � Scm} (4)

tij indicates the logical condition required by the change
from mui to muj.

Let S be the set of all the services that the equipment can
perform.

S = S �Scm (5)
S = {si | i � I}

Let Ls be the application, which associates to a USOM, the
set of services, which are offered to users in this mode. P(S)
is the set of subsets of S.

Ls: MU→P(S), (6)

muj →Ls (muj). (7)

We note: Sj = {si, i � Ij} with Ij � I the set of the services
which belong to the USOM muj.

Fig. 3. USOM organisation.

Smart devices 327

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

The following properties previously stated can be
written:

• � j � J, sj ≠ �, a USOM contains at least one service,
• � si � S, � j � J/si�Sj, each service belongs at least to

one USOM (if not, the USOM would not be justified for
the given application),

• �
j�1

Sj = S, this property results from the two previous

ones. The USOM set is a covering of the service set.

2.3. Version of services
The execution of a service requires consumed variables Csi

and a set of hardware resources: Rsi. Its running is then
nominal if the consumed variables, which are data from
the environment, are present and valid (for example: the
freshness status of a transmitter is acceptable), and if
the hardware resources are in good running. Unfortunately,
this is not always the case, and it may happen that some
of the required resources are faulty or some of the required
data are not usable.

In certain cases of failure, a fault tolerant approach leads
one to define specific data processing in order to use the
service: its running is then degraded. In the other cases, if
the service can’t be achieved according to the state of
hardware resources or to the characteristic of consumed
variables, the service becomes unavailable.

The capacities of reconfiguration are obviously linked to
the results of fault detection and isolation algorithms. For
each fault on hardware component or on consumed variable
that the algorithm can detect, it is necessary to analyse:

• is the service that continues to be available according to
this fault in a nominal version?

• If no, is it possible to implement a degraded version that
allows ensuring the service with perhaps degraded
performances?

• Has the fault some effects in some degraded versions? In
this case, the service can always be realised but the
robustness is decreased because these versions disappear.

• The consequence of the fault is the permanent state of the
device, which can be considered as the activation of a
version of a service. The problem in this case is that at the
time of the integration of this component in a system, it
will take into account this state.

So, according to the capacities of the fault detection and
isolation algorithm, the designer can envisage several
versions of the same service according to the fault. In that
sense, a service can be an ordered list of versions, each of
them associated to a set of resources. The various versions
are interchangeable; they are activated with the same
request, under the same activation condition, and produce,
naturally the same outputs, even if some characteristics may
be different like the response time for an actuator, accuracy
for a sensor. According to the state of the resources, each
version of a service integrates a specific data computation.

Each version of a service is characterised by the
quintuple:

vk(si) = < Cksi, Psi, dpk
i , R

ksi, Cai > (8)

The following properties, i.e. determinism, consistent
ordered list, have been defined in reference [9].

In order to manage the change of version, a coefficient of
availability of the software and hardware resources can be
introduced.

Let drik be a function of the availability of a consumed
variable or supervising resource; drik can be defined by:

dri: {Ci, Ri}→ [0, 1] (9)

rik → drik = 1 if the resource or the consumed variable is
valid,
drik = 0 if the resource or the consumed variable is not
available,
drik = x if the resource is in a degraded state, or if
characteristic of consumed variable is not optimal.

In fact, an infinity of versions can be defined according to
the infinity of states of resources, so generally, the drik is a
discontinuous function.

Following the state drik of every supervising resource and
consumed variable of the device, services could be charac-
terised by an indication d(si) defined by:

d (si) = f(dri1, dri2, . . ., drik, . . ., driK) (10)

The whole of drik forms a relative word to the service si. The
availability of service is function of the resources that it
uses. At a precise instant the service could be nominal,
degraded, or out of order. The execution of a service
depends on its availability, and therefore the formal
specification of any service necessitates the description of
all behaviours following its availability.

If necessary, it is possible to introduce an analogue
function of availability. Then, limits have to be fixed for the
selection of an adequate version, and an automaton gives
the executed version of one service. For example, three
thresholds d(si) can be distinguished in order to detect the
change of a version following the current version:

If d(si) > lim1 the service is nominal,
d(si) < lim1 the service is degraded,
d(si) < lim2 the service is out of order.

Such an automaton is easy to present. Nevertheless, in most
of cases, resources can be directly used to express a logical
condition according to their availability of designer has just
to establish a table of conditions of change of version on the
set of service resources.

In example, let a service si be with its set of resources
(Ri1, Ri2, Ri3), according to their availability: the designer
can then describe a table (Table I).

Thresholds values of d(si) correspond to logical asserts:

Nominal: ((Ri1 = 1) and (Ri2 = 1) and (Ri3 = 1))↔
d(si) > lim1

Degraded: ((Ri1 = 1) and ((Ri2 = 1) or (Ri3 = 1)))↔
lim2 < d(si) < lim1

Out Of Order: ((Ri1 = 0) or (Ri1 = 1) and (Rij/(j≠1) = 0))↔
d(si) < lim2

We apply this external model with services, versions of
services and user operating modes to equipment. In case of
field instruments like a valve, flow sensor, . . . it’s easy to
implement the functional model in a micro-controller

Smart devices328

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

integrated with the device. In case of a small actuator or
sensor, such those which are used in manufacturing and
robotics, it’s too expensive to associate micro-electronics to
each device. In this case, embedded intelligence is asso-
ciated to several actuators and sensors. The model must be
extended to the system.

3. EXTERNAL MODEL OF DISTRIBUTED
ARCHITECTURE
The generic model developed for smart equipment can be
used for a global application. The generic model provides us
with an external model, which is the user’s point of view. If
we consider the external services of the distributed archi-
tecture, they can be described as a reactive sequence of
smart equipment and communication components, and
these sequences are composed themselves by services of
each equipment.7 The knowledge of elementary equipment,
their services, the versions of each service, and the global
architecture allow then to define various versions of each
service according to the failure of each item of equipment.

The proposed model can be applied to global archi-
tecture. A system is a definite set of interconnected discrete
components. It can be built like an architecture of hardware
or/and software components. An external model of applica-
tion is then obtained with the aggregation of each external
model of its components.

Each external service is created according to the purpose
of the application. It is built from external services of its
components, which, from an application point of view,

become internal services. An example of an external service
is given in Figure 4.

The services and the USOM can be described according
to the services and USOM of each component of the global
architecture.8 A structure of internal service si describes
constraints between consumed and produced variables.
Nevertheless, functional redundancy in such a description
has to be taken into account at the same time. In the example
of Figure 4, s1 and s2 can produce the same variables that s3

requires in order to give an average.
Fault tolerance uses redundancy to make systems more

robust; such functional considerations can help designer to
increase the availability of any system.

The design of the services of a global application can be
realised among a bottom up approach or a top down. Let us
describe quickly these two approaches.

Bottom up approach: Following a bottom up approach,
we dispose of external patterns of each intelligent equip-
ment. We are able to build global services with the services
of every type of equipment. We will assume an inter-
operability property between every instrument on the
network.

The difficulties are to build external global services by
assigning services that belong to every equipment. For
success, it’s necessary to consider, in the quintuplet defining
the concept of service, the consummate variables, and the
produced variables.

A global service is built when the architect is capable to
identify a reactive chain of services belonging to equipment.
In practice, all reactive sequences are obtained by joining
every explicit service, with the request is coming from
the environment of global system, to every service, with the
effect constituting the aim expected by the user (the final
result of global service).

In seeking all these reactive sequences, the architect
obtains some unwanted services; it doesn’t constitute a
problem. Indeed, the creation of global service needs to
declare the implied ties of communication of each equip-
ment towards the other equipment in the distributed
architecture.

The realisation of all distributed systems necessitates
the declaration of all the flows of information between the
connected instruments on the network. The ties of commu-
nication must specify also their protocols of data exchange.

Table I. Versions of service from the availability of the
resources.

Binary availability Version according to
Ri1 Ri2 Ri3 the d(si) value

0 0 0 HS
0 0 1 HS
0 1 0 HS
0 1 1 HS
1 0 0 HS
1 1 0 DEGRADED
1 0 1 DEGRADED
1 1 1 NOMINAL

Fig. 4. Implementation of external service in the architecture of components.

Smart devices 329

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

The declarations of the reactive chains with USOM allow
one to describe a distributed architecture.

Top down approach: It’s the most employed approach in
the domain of designing. If we apply the opposite reasoning
to the ascending approach, we dispose of specifications. We
are starting with the external pattern of the distributed
application. Therefore we need to know a list of instruments
that inter-operate on a network in order to realise global
services of our application.

The creation of reactive chains composed by services
coming from different intelligent equipment is more
desirable. It consists of collecting models in a library of
intelligent instruments specified according to the formalism
of an external model. Starting from this library, the architect
seeks some connection of the services of instruments, which
permit one to find global services of the application. This
research must be oriented according to different criteria:

• The respect of the operational constraints (performances
of the global services, clutters problems, distances
between the instruments, to take into account existing
facilities),

• The number of necessary instruments,
• The cost of equipment,
• The number of access to the network for the services

which risk to be executed often.

We don’t observe too many subjective criteria like the name
of the constructor or . . . the beauty of the designing.

3.1. Extension of version of services
A service of global architecture is built from services of
components of this architecture. To define a version
of services we have to determine software and hardware
resources. In fact, requirements of global service include
availability of other services (Figure 5) because they can
present degraded versions.

In case of failure of one of resources of a component in
a global architecture, several cases have to be considered.

• Using a degraded version can for all ensure an internal
service of this component,

• If internal service can’t be ensured, it is then necessary to
define a degraded version of external service.

Let SI be the set of internal service required by si. In Figure
5, the service s3 is in a nominal version when the required
services are nominal and the consumed variables and
resources are available. In the other cases, the service is in

a degraded version or unavailable. The function drik has to
be modified. drik can be defined by:

dri: {d(si)/si � SI}∪{Csi, Rsi}→ [0, 1] (11)

rik →drik = 1 if the resources or the consumed variable is
valid and if {d(si) = 1�si � SI}.

rik →drik = 0 if the resources or the consumed variable is
unavailable, or if {d(si) = 0 �si� SI}.

rik →drik = � in the other cases.

When drik = �, an analysis of S must be realised in order to
determine versions of all external services (nominal,
degraded or unavailable).

A success diagram can be built from the causal links
between consumed and produced variables. This diagram
gives the fault propagation phenomenon9 and permits to
deduce effects (Figure 6).

The robustness of services (si), providing by versions of
the services, allows a naturally improving robustness
of global services that influence system availability. In
Figure 6, the global service availability depends directly on
d(s5). The internal service s3 is required by s2 or s1. Any
failure on s2 doesn’t make the external service unavailable
because s3 remains if s1 is right. On the other hand, any
default on s4 makes S� unavailable.

d(s5) = ƒ(d(s4, d(s3), dr5I, . . ., dr5K) (12)
with d(s3) = ƒ(d(s2 ∨d(s1)), dr3I, . . ., dr3L)

Following the availability of each internal service, an
analysis must be made on several versions of the global
service. Table II illustrates it.

Fig. 5. Example of requirements of service.

Fig. 6. Success diagram of external service.

Table II. Availability study of S�.

d(s1) d(s2) d(s3) d(s4) d(s5) d(global service)

1 1 1 1 1 1
1 1 1 1 0 0
1 1 1 0 1 0
1 1 0 1 0 0
� 1 � 1 � �

. d(s5)
0 0 0 1 0 0

Smart devices330

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

The changes of version constitute the most delicate part
because they have to indicate the version source and the
version destination of the described transition, and they
have to express clearly the whole of logical conditions
permitting the change of version. The conditions of change
of version are generally explained with assertions, as it has
been explained for a component.

At the system level, the user operating mode can be
applied in the same manner as in the component. However,
it can be interesting to introduce another level: the missions
(ME), as introduced in reference [10]. The missions allow
distinguishing various situations at different times that
correspond to different objectives to perform in a same user
mode, for example, to reach the defined set point, to
maintain this fixed position, etc.

The various missions correspond to various aggregations
of elementary services. One feature of them is to take into
account the unavailability of elementary services, and to
consider the behaviour of the system in case of failure. In
that sense, different possibilities have to be defined to
ensure external service in spite of faults in certain
components by finding various ways inside this structure to
elaborate produced variables.

3.2. Notion of missions
Robust external services can be defined as a structure, which
presents more than one manner to accomplish a mission of
this service. In that way, one can demonstrate divers
possibilities inside such structure with a functional diagram
of transformations (values and type of values).

The various ways inside a structure provide external
service (Figure 7). However, what’s the executed way in
nominal cases? A preference has to be specified for one way.
Criteria to choose this way can be indicated:

• the number of components to produce the service,
• the time to execute the service, (can the longest service

be considered as the degraded version of the same
entity? (If a fault occurs, and if the external service
changes, a hypothesis has to be made. Nevertheless, the
new service with a different configuration has a nominal
version. The quality of the service is the same, and yet
performances are different.),

• the number of connections across the network equip-
ment.

Finally, a graph can be used to represent resources which
are required in the various ways to accomplish the mission
of an external service.

At the system level, versions of services depend on the
availability of the hardware resources, which is evaluated by
fault detection and isolation algorithms, like for elementary
equipment. However, global vision allows one to take into
account the appearance of a fault of one elementary
component which produces the activation permanently in
time of a specific service, for example, if a relay has
jammed in an open position, the closed position service
becomes unavailable while the opening service is always
active. In this case, it’s necessary to adapt the service of the
other components to achieve a global service of the
subsystem.

It’s at that level, that the notion of missions assumes its
importance. When a fault occurs, several cases have to be
considered.

It’s possible to ensure the wished services, because there
exists at least one version that allows its execution, and the
external service is realised with another version.

It is not possible to find a degraded version to realise the
service; it has to be stopped. The service becomes
unavailable and the mission that requires this service
becomes unavailable.

However, if the designer could foresee this type of fault
(internal service permanently active), he could define
another mission which leads, for example, to a safety
situation. In other words, the advantages of assembling
several devices allow not only to improve the efficiency but
also to define several missions depending of failures.

The reconfiguration algorithm evaluates the availability
of each internal service from the list of faulty resources
provided by FDI Algorithms; this allows one to calculate the
availability status of the external service. Then according, to
the availability status of this service, the possibility or not to
keep one of the missions is evaluated.

3.3. Example
Let’s consider an example of a system of regulation (Figure
8). There are different options to build such system: the

Fig. 7. Various ways for a service execution.

Smart devices 331

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

actuator is associated with a processor or the data process-
ing unit alone . . . Usually, this system can be used in closed
loop with a sensor for reactivity of the application.

The regulation system will be considered in three
USOMs: Idle, Configuration and Automatic.

With the identified components in the “Automatic” mode,
the external service “to Regulate” (Figure 9) is easily built
for a closed loop configuration. This service uses the
following components:

• Smart sensor,
• Smart actuator (actuator and processor),
• A subset of components of network equipment.

The global communication system is taken into account as
equipment. It offers a service of communication Scom1.

The service “to Regulate”, in a closed loop, can be
identified like the composition of the service “to Measure”,
the service Scom1, the service “to elaborate command”, and
the service “to Act”.

The service “to measure” offers only a nominal version.
The service scom1 can have degraded versions of there is a
redundancy of the fieldbuses. The service “to elaborate
command” has a nominal version and a degraded version
that leads to emit a specific command.

The service “to act” has a nominal version in an
automatic mode, but the service “to act manual” is offered
in a manual mode.
The main problems which can appear are due to:

• a failure of the sensor that leads to the sending of the same
value.

• A failure of the communication system which becomes
out of order.

• A failure of the actuator which stays on a blocked
position.

In the first two cases, the external service “to regulate”
becomes unavailable. Another mission can be implemented
by permitting to have an open loop control. In that sense, in

the design of the system, an interface IHM can be
implemented to give an order to the actuator (Figure 10).

This hardware solution allows one to define several ways
and thus several missions to obtain a regulation of the
physical process.

Also, according to the set of hardware resources, it is
possible to elaborate a management of external services of
the global architecture according to the availability of
internal services.

In case of failure of the actuator, and, in particular, a
blocked position, the two missions become unavailable, and
a maintenance operation is required.

This small example shows that in the data processing unit
it’s possible to implement the external model with some
reconfiguration functions.

Small devices for which it’s not possible to integrate
micro-electronics for techno-economic reasons, it’s possible
to implement the proposed model in a micro-controller
embedded near the sensors and actuators.

4. HARDWARE ARCHITECTURE
The external model defines the functional architecture, but
doesn’t specify the operational architecture. In case of small
sensors or actuators, the proposed hardware architecture to
implement the model is given in Figure 11. It integrates
three parts:

• a communication unit which allows the exchange with the
other data processing units (PLC or PC). (Various
fieldbus, such as Profibus FMS/DP, Can Open and Device
Net can be used.)

• A data processing unit which can be connected to a
human/machine Interface or programming console.

• 1 to n analogue or logic Input/output modules for which
the users can connect sensors and actuators.

The aim of such an architecture is to develop generic
components, which present a lot of advantages, techno-
economically speaking in the various phases of life.

Fig. 8. A regulation system.

Fig. 9. Regulation service composition.

Fig. 10. A regulation system with local control.

Fig. 11. Hardware Architecture for multiple small sensors and
actuators.

Smart devices332

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

At the setting up of the smart sensors or actuators, the use
of generic modules permits one to configure easily the
software according to the needs of application, and
eventually load necessary functions and parameters from
the library. This possibility offers flexibility for the
application and an additional capacity to adapt components
to the needs, even in case of evolution along their life.
Another aim is following on the possibility to easily test
subsets of the application before setting up on a definitive
site; the acceptance trials will then be simplified and
reduced. The decreasing of wiring due to the use of
fieldbuses allows one to save twenty to thirty percent of the
global costs of automation.

During the exploitation of the equipment, the embedded
data processing reduces the cycle time, and the adaptability
allows quick reconfigurations for the production changes. A
part of the automation can be stopped when another one is
used.

In the maintenance stage, the diagnosis functions that can
be locally integrated allow one to detect quickly and to
locate the origin of a failure. Then, the diagnosis informa-
tion is clearly indicated to the operator on his interface and
the failure can be immediately corrected. In addition, the
diagnosis information can trigger off a stop of an opera-
tion.

The modular design can be disconnected during the
maintenance intervention, or put the connected devices in a
retiring position. We can add that the use of generic modules
for hardware architecture limits the inventory. The last
advantage of this modular architecture is to manage easily
the developments, because they concern essentially the
software.

5. CONCLUSION
In this paper we considered the generic models, which have
been developed to construct smart equipment. It is based on
the notion of services and user modes that are detailed in the
first part. This can be applied for an isolated component
(sensor or actuator) or a global system. The presence of
Fault Detection and Isolation Algorithms allows one to
improve the safety of the equipment we show how Fault
Tolerant Control aspects can be introduced by versions of
services.

The external model can be applied easily for smart
sensors and actuators. However, it isn’t an economical
solution for small devices. In that sense, we propose, in the
second part, to extend the external model to a system by a
composition of services. The aim is to improve the global
functioning of several devices, as well as in terms of
productivity, than in terms of global safety.

The existence of several versions that provide the same
service allows systems reconfiguration and increases the
system fault tolerance, since the unavailability of a given
resource does not systematically imply the unavailability of
the service, which uses it. Thus, the existence of several
missions for the system allows one to implement fault
tolerant control, i.e. to develop a decision system which
allows to continue some actions according to the failures
and the possibility of redundancies.

The external model can be implemented in a centralised
computer, but it can also be implemented in a micro-
controller in order to realise the embedded intelligence for
several devices.

The advantage of such modules is to implement data
processing as near as possible to the inputs and outputs.
This solution is economical for a great number of applica-
tions because it allows one to realise modular design and to
standardise parts of systems in order to re-use them. The
decentralised architecture offers easy commissioning and
maintenance. At last, it gives some intelligence to sensors
and actuators for which integration of data processing is not
justified for technical-economic reasons.

References
1. R.J. Patton, P.M. Frank and R.N. Clark, Fault Diagnosis in

Dynamic systems – Theory and applications (Prentice-Hall,
Englewood Cliff, N.J., 1989).

2. R. Iserman, “Detection based on Modelling and Estimation
methods, A Survey”, Automatica 20, 387–404 (1994).

3. J.M. Maciejowski, “Reconfigurable Control Using Con-
strained Optimisation”, ECC’97, Brussels, Belgium, Plenary
Lectures and Mini-Courses (1997) pp. 107–130.

4. M. Robert, M. Marchandiaux and M. Porte, Capteurs
Intelligents et Méthodologie d’Evaluation (Hermès, Paris,
1993).

5. M. Staroswiecki. and M. Bayart, “Models and Languages for
the Interoperability of Smart Instruments”, Automatica 32,
No. 6, 859–873 (1996).

6. M. Bayart, E. Lemaire, M.A. Peraldi and C. Andre, “External
model and SyncCharts Description of an Automotive Cruise
Control System”, Control Engineering Practice 7(10),
1259–1267 (Oct., 1999).

7. J.J. Kenney “Executable formal models for distributed
transaction systems based on event processing”, PhD thesis
(University of Stanford, June 1996).

8. C. Choukair and M. Bayart, “Application of external model of
intelligent equipment to distributed architectures”, ISAS’99,
5th International Conference on Information Systems Analy-
sis and Synthesis Orlando (1999), Vol. 4, 329–335.

9. J.C. Laprie, “Sûreté de fonctionnement des systèmes informa-
tiques et tolérance aux fautes: concept de base”, TSI 4, No. 5,
419–429 (1985).

10. A.L. Gehin, M. Staroswiecki and M.L. Assas “A Bottom-up
Approach to Analyse Reconfiguration Possibilities”, Work-
shop on Principles of Diagnosis, Loch Awe, Scotland (1999)
pp. 100–108.

Smart devices 333

https://doi.org/10.1017/S0263574702004836 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004836

