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Abstract. Let β > 1 be an integer or, generally, a Pisot number. Put T (x)= {βx} on [0, 1]
and let S : [0, 1] → [0, 1] be a piecewise linear transformation whose slopes have the form
±βm with positive integers m. We give a sufficient condition for T and S to have the same
generic points. We also give an uncountable family of maps which share the same set of
generic points.
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1. Introduction
Let b ≥ 2 be an integer and T : [0, 1] → [0, 1] be the map given by T (x)= {bx}, where
{x} denotes the fractional part of x . A real number x ∈ [0, 1] is said to be normal in
base b if in the base-b expansion of x any pattern of length L appears with relative
frequency tending to b−L . Wall [27] showed that x is normal in base b if and only if x
is a T -generic point, that is, its orbital points x, T (x), T 2(x), . . . distribute uniformly.
We recall that non-zero integers m and n are multiplicatively dependent if there exists
(i, j) ∈ Z2

\{(0, 0)} satisfying mi n j
= 1. Maxfield [16] proved that if two positive integers

b1, b2 are multiplicatively dependent, then base-b1 normality is equivalent to base-b2

normality. Schweiger [23] and Vandehey [25] showed that if two transformations T and
S satisfy some mild conditions and T m

= Sn for some positive integers n, m, then T -
normality is equivalent to S-normality. Kraaikamp and Nakada [14] gave counterexamples
to show that the other direction does not hold. They used the jump transformation to show
the equivalence of normality: normality equivalence, in short.

In this paper we relax a sufficient condition for normality equivalence and obtain infinite
families of examples (see Examples 4.1 and 4.3). Moreover, we generalize the concept of
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normality equivalence to include systems whose invariant measures may be different. Let
(X, B, µ, T ) and (X, B, ν, S) be two ergodic measure-preserving systems with a common
underlying space X . We assume that X is a compact metric space, B is the sigma-algebra
of Borel sets in X , and µ, ν are probability measures. A point x ∈ X is called T -generic if
limN→∞ (1/N )

∑N−1
n=0 f (T n x)=

∫
X f dµ for any continuous function f on X . We say

that S and T are generic point equivalent if the set of S-generic points coincides with the
set of T -generic points. The main purpose of this paper is to give sufficient conditions for
generic point equivalence for X = [0, 1], using the Pyatetskii–Shapiro criterion.

Let β be a Pisot number: a real algebraic integer greater than 1 whose Galois conjugates
(except itself) have modulus less than 1. Note that any integer greater than 1 is a
Pisot number. Put T (x)= {βx} on [0, 1]. Let S : [0, 1] → [0, 1] be a piecewise linear
transformation. In § 3 we give a sufficient condition for generic point equivalence of S and
T in the case where the slopes of S have the form ±βm with positive integers m. More
precisely, we show that if S admits an absolutely continuous invariant measure and the
invariant density is bounded above and away from 0 and all intercepts are in Q(β), then
T and S are generic point equivalent. In §2 we give Proposition 2.2, which can be used to
prove generic point equivalence. Using this proposition, we shall prove our main result.

The Pisot slope condition is essential: our proof depends on the structure of the point
set generated by Pisot numbers. The proof becomes simpler than those in the literature and
applicable to a wide class of piecewise linear maps. In fact, we require no condition on the
position of discontinuities. In particular, we provide a one-parameter family of maps (the
cardinality of the maps is uncountable) by continuously shifting the discontinuity so that
all the maps in the family are generic point equivalent (see Example 4.4). This appears to
be the first result on generic point equivalence among generically non-Markov piecewise
linear maps.

2. Criteria for generic point equivalence
We now review the Pyatetskii–Shapiro criterion. Let (X, B, µ, T ) be an ergodic measure-
preserving system. Denote the characteristic function of V ∈ B by χV and the set of
continuous functions on X by C(X). Let C ⊂ B be a semi-algebra generating B in the sense
that the minimal sigma-algebra including C is B. Then the Pyatetskii–Shapiro criterion
reads as follows (see also [17]).

THEOREM 2.1. [21, Theorem 6] Let (X, B, µ, T ) be an ergodic measure-preserving
system. Let x0 ∈ X and C ⊂ B be a semi-algebra generating B. We assume that any
function f ∈ C(X) is a limit point of the set of the (finite) linear combinations of the
characteristic functions of V ∈ C with respect to the sup norm. Suppose that there exists a
positive constant C satisfying

lim sup
N→∞

1
N

N−1∑
n=0

χI (T n x0)≤ Cµ(I ) (2.1)

for any I ∈ C. Then x0 is a T -generic point.

We now introduce a criterion for generic point equivalence deduced from Theorem 2.1.
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PROPOSITION 2.2. Let ([0, 1], B, µ, T ) and ([0, 1], B, ν, S) be two ergodic measure-
preserving systems. Let C be a semi-algebra generating B.

Let x0 ∈ [0, 1] be a T -generic point. Suppose that there exist a positive integer M, a
positive real number C, and a sequence (k(n))∞n=0 of non-negative integers satisfying the
following assertions.
(1) Let I ∈ C. Then there exists Ĩ =

⋃r
i=1 Ĩi , where Ĩ1, . . . , Ĩr are subintervals of [0, 1],

such that
µ( Ĩ )≤ Cν(I )

and that, for any n ≥ 0,

if Sn x0 ∈ I then T k(n)x0 ∈ Ĩ .

(2) For any non-negative integer m, we have

Card{n ≥ 0 | k(n)= m} ≤ M,

where Card denotes the cardinality.
(3) For any n ≥ 0, we have

k(n)≤ M ·max{1, n}.

Then x0 is an S-generic point.

Proof. Let I ∈ C and N be an integer greater than 1. Put

ρ(N ) :=max{k(n) | 0≤ n ≤ N − 1} ≤ M(N − 1)≤ M N − 1.

Then we see that

1
N

N−1∑
n=0

χI (Sn x0)=
1
N

ρ(N )∑
m=0

∑
k(n)=m

0≤n≤N−1

χI (Sn x0)

≤
1
N

ρ(N )∑
m=0

∑
k(n)=m

0≤n≤N−1

χ Ĩ (T
m x0)

≤
M
N

ρ(N )∑
m=0

χ Ĩ (T
m x0)≤ M2

·
1

M N

M N−1∑
m=0

χ Ĩ (T
m x0).

Since x0 is T -generic, we get

lim sup
N→∞

1
N

N−1∑
n=0

χI (Sn x0)≤ M2µ( Ĩ )≤ M2Cν(I ),

which implies by Theorem 2.1 that x0 is S-generic. �

Remark 2.3. Proposition 2.2 can be generalized for two ergodic measure-preserving
systems ([0, 1]d , B, µ, T ) and ([0, 1]d , B, ν, S).
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3. Pisot slope condition
Let N be the set of positive integers. Given β > 1, let T (x)= {βx} be a map on [0, 1].
Then T is ergodic with respect to a unique absolutely continuous invariant measure µβ
whose density is bounded and away from 0 (see [18]). Let [0, 1] =

⋃`
i=1 Ji be a finite

partition of [0, 1] into subintervals†. Let S : [0, 1] → [0, 1] be a transformation given by

S(x)= εiβ
mi x + bi for x ∈ Ji ,

where εi ∈ {−1, 1}, mi ∈ N and bi ∈Q(β) for 1≤ i ≤ `.
For any x ∈ [0, 1] and h ≥ 0, let i(h)= i(x; h) be defined by Sh(x) ∈ Ji(h). Then we

have, for any n ≥ 0,

Sn(x)=
(n−1∏

h=0

εi(h)

)
β
∑n−1

h=0 mi(h)x +
n−1∑
j=0

(n−1∏
h> j

εi(h)

)
β
∑n−1

h> j mi(h)bi( j). (3.1)

Put

θn(x) :=
n−1∑
h=0

mi(h), (3.2)

where βθn(x) gives the absolute value of the slope of Sn at x . Henceforth, unless explicitly
stated otherwise, we assume that β is a Pisot number.

A subset Y of R is uniformly discrete if there exists a positive constant R such that for
any two distinct points y, y′ ∈ Y , we have |y − y′|> R.

LEMMA 3.1. Let E be a finite subset of Q(β) and put

FE :=

{ r∑
j=0

d jβ
j
∣∣∣∣ d j ∈ E, r = 0, 1, 2, . . .

}
.

Then FE is uniformly discrete.

This follows from a standard discussion (e.g. Garsia [3]), but we show it for
completeness.

Proof. Without loss of generality, we may assume that 0 ∈ E . We claim that 0 is not an
accumulation point of FE . In fact, let β( j) be the Galois conjugates of β for j = 1, . . . , d
with β(1) = β. Take a positive integer L such that E ⊂ (1/L)Z[β]. Suppose that 0 6=∑r

j=0 d jβ
j
∈ FE . Considering the image of the Galois conjugate map φi which sends

β to β(i), we obtain ∣∣∣∣Ld
d∏

i=1

r∑
j=0

φi (d j )(β
(i)) j

∣∣∣∣≥ 1

because the product must be an integer. Since β is a Pisot number, we obtain∣∣∣∣ r∑
j=0

d jβ
j
∣∣∣∣≥ 1

Ld

d∏
i=2

(
Ai

1− |β(i)|

)−1

,

† Subinterval Ji can be closed, open or semi-open, even a singleton.
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where Ai =max{|φi (d)| | d ∈ E} is a positive constant because E is a finite set. This
shows the claim. Note that the condition 0 ∈ E implies FE − FE = FE−E . By the same
proof replacing E by E − E , we obtain the assertion. �

If S and T are generic point equivalent, then the set of non-generic points of T and that
of S are identical. Thus we may expect that eventually periodic orbits of T and those of S
coincide. The next theorem confirms this expectation that T and S share the same set of
eventually periodic orbits.

THEOREM 3.2. The orbit Sn(x) for n = 0, 1, . . . is eventually periodic if and only if
x ∈Q(β).

Proof. Because bi ∈Q(β), every eventually periodic point of S belongs to Q(β). Assume
that x ∈Q(β). Take a positive integer L such that Lx and Lb j are in Z[β]. Then for all
n ≥ 0 we have L Sn(x) ∈ Z[β] by (3.1). Since β is a Pisot number, for each i = 2, . . . , d
there is a constant Ci > 0 such that |φi (L Sn(x))| ≤ Ci for all n ≥ 0. We also have
|φ1(L Sn(x))| ≤ L . Since the image of the Minkowski embedding of Z[β] forms a lattice
in Rd , the orbit is eventually periodic. �

We are now in a position to state our main theorem.

THEOREM 3.3. Let T , S be the maps defined above. Suppose that S preserves a probability
measure ν, which is ergodic and absolutely continuous with respect to the Lebesgue
measure λ. Moreover, assume that there exists a positive constant c satisfying

c−1λ(E)≤ ν(E)≤ cλ(E) (3.3)

for any Borel set E ⊂ [0, 1]. Then T and S are generic point equivalent.

Condition (3.3) implies that ν and λ are equivalent. Kowalski [13] showed under
ergodicity of S that the converse holds as well in this setting.

Proof. If necessary, changing the constant c, we may assume that

c−1λ(E)≤ µβ(E)≤ cλ(E)

for any Borel set E ⊂ [0, 1] (Parry [18], Ito and Takahashi [7]). Let

E = {±b1,±b2, . . . ,±bk} ∪ {0, 1, 2, . . . , bβc}.

Putting F := FE−E = FE − FE , we get by Lemma 3.1 that F is uniformly discrete.
First we assume that x0 ∈ [0, 1] is a T -generic point. For each n ≥ 0, let k(n) := θn(x0)

be defined by (3.2). Then we see that

Sn(x0)= ε(β
k(n)x0 − b), T k(n)(x0)= β

k(n)x0 − b′,

for some ε ∈ {1,−1} and b, b′ ∈ FE . We now verify that (k(n))∞n=0 and M :=
max{m1, . . . , m`} satisfy the assumptions of Proposition 2.2, where C is the set of
subintervals of [0, 1]. The first and the second assumptions are clear by 1≤ k(n + 1)−
k(n)≤ M for any n ≥ 0. For any interval I , put

Ĩ =
( ⋃

t∈F∩[−1,2]

((I + t) ∪ (−I + t))
)
∩ [0, 1].
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Then we have

µβ( Ĩ )≤ 2c Card(F ∩ [−1, 2])λ(I )≤ 2c2 Card(F ∩ [−1, 2])ν(I ).

We now assume for n ≥ 0 that Sn(x0) ∈ I . Noting that

b − b′ = T k(n)(x0)− εSn(x0) ∈ [−1, 2] ∩ F,

we obtain
T k(n)(x0)= εSn(x0)+ (b − b′) ∈ Ĩ .

Hence, x0 is S-generic by Proposition 2.2.
We prove the other direction. Let x0 ∈ [0, 1] be an S-generic point. For each n ≥ 0, we

define k(n) by
k(n) :=max{k | θk(x0)≤ β

n
}.

For any h ≥ 0, we see that k(n)= h if and only if

θh(x0)≤ n < θh+1(x0)= θh(x0)+ mi(h). (3.4)

Moreover, we see for any n ≥ 0 that

θk(n)(x0)= β
n− j , (3.5)

for some 0≤ j < M =max{m1, . . . , m`}. In what follows, we show that (k(n))∞n=0 and
M satisfy the assumptions of Proposition 2.2. The first and second assumptions are clear
by (3.4) and 0≤ k(n + 1)− k(n)≤ 1 for any n ≥ 0. For any interval I ⊂ [0, 1], put

Ĩ =
(M−1⋃

j=0

⋃
t∈F∩[−1,2]

((T− j (I )+ t) ∪ (−T− j (I )+ t))
)
∩ [0, 1].

Then we get

ν( Ĩ )≤ 2c Card(F ∩ [−1, 2])M max
0≤ j≤M−1

λ(T− j (I ))

≤ 2c2 Card(F ∩ [−1, 2])Mµβ(I ).

Suppose for n ≥ 0 that T n(x0) ∈ I . Let j be defined by (3.5). In the same way as the former
part of the proof of Theorem 3.3, we get

εT n− j (x0)+ Sk(n)(x0) ∈ F ∩ [−1, 2],

for some ε ∈ {1,−1}. Therefore, we deduce that

Sk(n)(x0)=−εT n− j (x0)+ (εT n− j (x0)+ Sk(n)(x0)) ∈ Ĩ .

Now we apply Proposition 2.2 to complete the proof. �

Remark 3.4. It is natural to assume that all slopes in modulus are certain powers of
a fixed number, since we cannot expect generic point equivalence for multiplicatively
independent slopes. Indeed, if a and b are multiplicatively independent positive integers,
then Schmidt [22] showed that there are uncountably many a-normal numbers which
are not b-normal. Moreover, Pollington [20] calculated the Hausdorff dimension of
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such numbers. Consider a partition of the set {2, 3, . . .} into A and B so that all
multiplicatively dependent integers fall into the same class. Then the set of real numbers
normal in any base from A and in no base from B has Hausdorff dimension 1. Explicit
construction of numbers which are a-normal but not b-normal is exploited when a divides
b (e.g. [9, 10, 26]). However, we do not yet know a concrete example of a 2-normal number
which is not 3-normal.

Remark 3.5. Theorem 3.3 does not extend to an infinite partition, due to an example by
Jäger [8] for the case of β = 10. Let T = {10x} on [0, 1] and x = (0.x1x2 . . .) be the
coding of x by T , that is, the decimal expansion of x . Let m be the first occurrence of
a fixed digit r ∈ {0, 1, . . . , 9} where xm = r ; then we define a jump transform Sr (x) :=
(0.xm+1xm+2 . . .). If there is no occurrence of r , put Sr (x) := 0. Then every T -generic
point is Sr -generic, but the converse does not hold.

Remark 3.6. We show that condition (3.3) is not preserved after taking flips. Let β > 1 be
a real number, and 0= t0 < t1 < · · ·< tk = 1 is a finite partition of [0, 1]. Suppose that
T is a map on [0, 1] which has slope ±βmi on [ti−1, ti ) and has an invariant measure
which is equivalent to the Lebesgue measure. If S is a locally flipped map of T on [0, 1],
that is, on one interval [ti−1, ti ), S has the opposite slope ∓βmi and T ((ti−1 + ti )/2)=
S((ti−1 + ti )/2), then one might expect that S also has an invariant measure equivalent
to the Lebesgue measure. Unfortunately, this is not true. Here is a counterexample. Let
1< β <

√
2 and put

S(x)=

{
−βx + 1, x ∈ [0, 1/β),

βx − 1, x ∈ [1/β, 1].

The map S is a locally flipped map of the beta transformation T having density away from
zero. Since the dynamics of S on [β − 1,−β2

+ β + 1] is dissipative, the density of S on
[β − 1,−β2

+ β + 1] is zero. The explicit densities of flipped beta expansions are given
in Gora [4].

4. Examples
We apply Theorem 3.3 to certain families of piecewise linear maps on [0, 1].

Example 4.1. Let r be an integer greater than 1. For s= (s0, s1, . . . , sr−1) ∈ {0, 1}r , let
T (r, s; x) : [0, 1] → [0, 1] be a map defined by

T (r, s; x) :=

{
si + (−1)si {r x} if x ∈ [i/r, (i + 1)/r),

0 if x = 1.

Then ([0, 1], B, λ, T (r, s; x)) is an ergodic measure-preserving system, where λ is the
Lebesgue measure. Let q be integers greater than 1 and t ∈ {0, 1}q . Assume that q and
r are multiplicatively dependent. Then there exist positive integers b, k, and l such that
q = bk and r = bl . Thus, T (q, t; x) and T (r, s; x) are both generic point equivalent to
T (x)= {bx}. As a special case, the tent map

f (x)=

{
2x, 0≤ x < 1/2,

2(1− x), 1/2≤ x ≤ 1,
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FIGURE 1. The maps T1 and S1 in Example 4.2.

and the binary expansion map T (x)= {2x} are generic point equivalent. This simple case
already seems new. Indeed, this serves an alternative [1, proof of Corollary 19] which
solves several conjectures posed in [24], as the set of 2-normal numbers lies exactly in the
third Borel hierarchy by [11].

The following examples were shown by Kraaikamp and Nakada in [14].

Example 4.2. Consider the maps T1 : [0, 1] → [0, 1] and S1 : [0, 1] → [0, 1] defined by
T1(x)= {2x} and

S1(x) :=

{
2x, x ∈ [0, 1/2),

{4x}, x ∈ [1/2, 1].

Let β = (
√

5+ 1)/2. Define T2 : [0, 1] → [0, 1] and S2 : [0, 1] → [0, 1] by T2(x)= {βx}
and

S2(x) :=

{
βx, x ∈ [0, 1/β),

β2x − β, x ∈ [1/β, 1].

Let i ∈ {1, 2} be fixed. Then Theorem 3.3 implies that x ∈ [0, 1] is Ti -generic if and only
if x is Si -generic. The graphs of T1, S1 and graphs of T2, S2 are shown in Figures 1 and 2,
respectively.

Examples 4.1 and 4.2 are generalized as follows.

Example 4.3. Let β be a Perron number: an algebraic integer greater than 1 whose
conjugates have modulus less than β. Handelman [6] showed that β has no other
positive conjugates if and only if there exist an ` ∈ N and a non-negative integer vector
(a1, . . . , a`) satisfying

1=
∑̀
i=1

ai

β i .

If there exists such a vector, then there are infinitely many different expressions for 1 of this
form. Assume further that β is a Pisot number having no other positive conjugate. For such
a vector (a1, . . . , a`) we can partition [0, 1] into a1 + · · · + a` sub-intervals, ai intervals
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FIGURE 2. The maps T2 and S2 in Example 4.2.

of length β−i , arranged in arbitrary order, and construct a piecewise linear transformation
S of slopes ±β i for i = 1, . . . , ` all of whose discontinuities are mapped to {0, 1}. The
invariant measure of S is the Lebesgue measure. All the maps S produced from a fixed
Pisot number β in this manner are normality equivalent, because all of them are generic
point equivalent to T (x)= {βx} by Theorem 3.3 (cf. [2]).

Example 4.4. Take a real number β > 1 and t ∈ [0, dβe/β − 1]. Define a map St :

[0, 1] → [0, 1] by

St (x) :=

{
βx − bβxc, x ∈ [0, bβc/β − t),

β(x − 1)+ 1 x ∈ [bβc/β − t, 1].

See Figure 3 for the graphs of St for some t . As the map St has only one non-trivial
discontinuity at r0 = l0 = bβc/β − t , it is ergodic with respect to a unique absolutely
continuous invariant measure (cf. [15]). Its invariant density is made explicit as

h(x)= C +
∑
x≥rn

1
βn +

∑
x<ln

1
βn ,

where the sums are taken over positive integers n. Here rn = Sn
t (bβc/β − t + 0) and ln =

Sn
t (bβc/β − t − 0). The constant C is computed as

C =
β − 2
β − 1

+

∞∑
n=1

ι+(n)− ι−(n)
βn ,

with

ι+(n)=

{
1, rn ≥ r0,

0, rn < r0,
and ι−(n)=

{
1, ln ≥ l0,

0, ln < l0.

Though C can be negative, we claim for any pair (β, t) that:
(*) There exists a positive c that c−1 < h(x) < c if and only if β ≥ 2.
Its proof is given in the Appendix A. Moreover, we shall show that c depends only on β.

Hence, we see that if β is a Pisot number not less than 2, then the map S satisfies
the assumptions in Theorem 3.3. Therefore, if β 6∈ Z, then all maps in the one-parameter
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FIGURE 3. The maps S0 and St in Example 4.4 for β = (3+
√

5)/2.

family with cardinality of continuum{
St

∣∣∣∣ t ∈ R, 0≤ t ≤
dβe

β
− 1

}
are generic point equivalent by Theorem 3.3.

A. Appendix. Positivity of invariant density
To study the invariant densities of a piecewise linear map, a general method is established
by Kopf [12] and Gora [5]. It works well for a given map. To deal with the parametrized
family of maps in Example 4.4, we follow an analogy of Parry [18, 19] to calculate the
invariant density and deduce the claim (*). For simplicity, we write S = St . When β < 2,
the map S is dissipative in Y := [0, r1) ∪ [l1, 1) and h(x)= 0 in Y . For an integer β > 1,
the map S is the β-adic transformation and preserves the Lebesgue measure. Therefore we
have to show that h(x) is positive for β > 2 and β 6∈ Z. Putting

d+n (x)=

{
1, x ≥ rn,

0, x < rn,
and d−n (x)=

{
1, x < ln,

0, x ≥ ln,

for n = 1, 2, . . . , we see that h(x)= C +
∑
∞

n=1 dn(x)/βn with dn(x) := d+n (x)+ d−n (x).
Define the digit α(x) := βx − S(x) for x ∈ [0, 1). Then

D = {α(x)| x ∈ [0, 1)} = {0, 1, . . . , bβc − 1} ∪ {β − 1}.

Put

D(x)=


D\{β − 1}, x ∈ [0, r1),

D, x ∈ [r1, l1),

D\{bβc − 1}, x ∈ [l1, 1),

e+n (x)= Card{d ∈D(x) | d > α(rn)} −

{
1 α(rn)= bβc − 1 and x ≥ l1,

0 otherwise,

and

e−n (x)= Card{d ∈D(x) | d < α(ln)} −
{

1 α(ln)= β − 1 and x < r1,

0 otherwise.
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Then we observe the key equality:∑
y∈S−1({x})

dn(y)= en(x)+ dn+1(x)

with en(x) := e+n (x)+ e−n (x). Therefore

1
β

∑
y∈S−1({x})

h(y)=
1
β

∑
y∈S−1({x})

C +
∞∑

n=1

1
β1+n

∑
y∈S−1({x})

dn(y)

=
(bβc − 1+ d1(x))C

β
+

∞∑
n=1

en(x)+ dn+1(x)
βn+1 .

To be an invariant density, we have to show that this is nothing more than h(x). It is
sufficient to confirm that

C
(

1−
bβc − 1
β

−
d1(x)
β

)
=

∞∑
n=1

en(x)
βn+1 −

d1(x)
β

.

We can check that the integration over [0, 1] of both sides vanishes. Moreover, both sides
take only two values, that is, they are constant in [0, r1) ∪ [l1, 1) and in [r1, l1). This shows
the existence of a constant C . Computation of C is therefore done at any point x in [0, 1).
Evaluating at x = 0, we have e+n (0)= bβc − 1− bα(rn)c and e−n (0)= bα(ln)c. Then we
apply

r0 =

∞∑
n=1

α(rn−1)

βn , l0 =
∞∑

n=1

α(ln−1)

βn

to obtain

C = 1−
1

β − 1
+

∞∑
n=1

ι+(n)− ι−(n)
βn

and

h(x)= 1+
∞∑

n=1

ι+(n)− ι−(n)
βn +

∞∑
n=1

dn(x)− 1
βn .

We have ι+(n)− ι−(n) ∈ {−1, 0, 1} and dn(x)− 1 ∈ {−1, 0, 1}. Note that ι+(n)−
ι−(n)=−1 if and only if rn < bβc/β − t ≤ ln , and rn < ln implies dn(x)≥ 1. Moreover,
ι+(n)− ι−(n)= 1 if and only if ln < bβc/β − t ≤ rn , and ln < rn implies dn(x)≤ 1.
Therefore we obtain

ι+(n)− ι−(n)+ dn(x)− 1 ∈ {−1, 0, 1}

and
β − 2
β − 1

≤ h(x)≤
β

β − 1
.

The condition β > 2 asserts that the lower bound is positive.
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