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Abstract

The vertices of the kth power of a directed path with n vertices are exposed one by one to
a selector in some random order. At any time the selector can see the graph induced by the
vertices that have already appeared. The selector’s aim is to choose online the maximal
vertex (i.e. the vertex with no outgoing edges). We give upper and lower bounds for the
asymptotic behaviour of pn,kn1/(k+1), where pn,k is the probability of success under the
optimal algorithm. In order to derive the upper bound, we consider a model in which the
selector obtains some extra information about the edges that have already appeared. We
give the exact asymptotics of the probability of success under the optimal algorithm in
this case. In order to derive the lower bound, we analyse a site percolation process on a
sequence of the kth powers of a directed path with n vertices.
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1. Introduction

We consider the following online decision problem. The vertices of an acyclic directed
graph G of known structure appear one by one in some random order. They are observed by a
selector. At time t the selector can see the structure induced by the vertices that have already
appeared. The selector can accept only one vertex and this choice can occur only at the time
that the vertex appears. The aim is to maximize the probability of choosing a vertex from some
previously defined set (e.g. the set of vertices with out-degree equal to 0).

The above formulation is a generalization of the so-called secretary problem, which is
a classical problem in the field of optimal stopping. In the secretary problem, the selector
sequentially observes n candidates for a job, who appear in a random order. There exists a
linear ordering (i.e. candidates can be ranked from 1 to n) and the goal of the selector is to
choose the absolutely best candidate (there is only one here). The selector observes the ranks of
candidates relative to those examined so far, he/she knows the value of n and nothing else about
the future candidates, and can hire only the presently examined candidate. The solution to this
problem (published by Lindley in 1961, see [19]) is to reject a certain proportion of candidates
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(asymptotically n/e), regardless of their ranks, and after this, hire the first candidate who is the
best seen so far (if such a candidate appears). Its asymptotic probability of success equals 1/e.

Many variants of the secretary problem have been considered (see Ferguson’s survey [4]).
The work of Stadje [24] was followed by a series of papers in which such a linear ordering was
replaced by a partial one, including papers by several Russian authors who considered threshold
strategies. This research was reviewed in Gnedin [9]. Optimal strategies for regular or simple
posets can be found in [7], [13]–[15], [20], and [26]. The case where the selector knows in
advance the total number of candidates but not the form of the ordering was considered by
Preater [21]. Surprisingly, it turned out that there exists a stopping rule whose probability of
success is bounded away from 0 by a constant for any poset. Preater’s bound ( 1

8 ) was later
improved by Georgiou et al. ( 1

4 , see [8]), Kozik ( 1
4 + ε, ε > 0, see [16]), as well as Freij and

Wästlund (1/e, see [5]). Problems with richer, but still partial, information were considered by
Garrod and Morris [6], as well as Kumar et al. [18].

A graph-theoretic generalization of the secretary problem was considered by Kubicki and
Morayne in [17]. This generalization was based on the realization that orderings correspond to
very rich directed graphs. The first and the most natural approach was to investigate a directed
path instead of the linear ordering with the goal of choosing the top element, i.e. the sink.
Some further graph-theoretic versions of the secretary problem were considered by Przykucki
and Sulkowska [23]. The graph-theoretical analogue of Preater’s problem was investigated by
Goddard et al. [10], as well as Sulkowska [25]. Some further generalization to random graphs
was considered by Przykucki in [22].

Throughout this paper we concentrate on a special family of graphs, the family of kth powers
of a directed path with n vertices, denoted by {P kn }1≤k≤n−1 (see Figure 1 or Section 2 for a
strict definition of the power of a directed path). One can interpret one end (k = 1) as a directed
path and the other end (k = n− 1) as a linear order that corresponds to the (n− 1)th, i.e. full,
power of a directed path. As mentioned above, the best-choice problems for these two cases
have been solved (see [17] and [19]). One natural question is what happens in the intermediate
cases. Grzesik et al. showed in [12] that the probability of success, pn,k , under the optimal
algorithm for choosing the sink from P kn is of the order n−1/(k+1). In this paper we give quite
tight upper and lower bounds for the asymptotic behaviour of pn,kn1/(k+1), even when k is a
function of n as n goes to∞. Nevertheless, the optimal algorithm itself is still not known.

In order to derive these upper bounds, we consider a model in which the selector obtains
some extra information: while the vertices are being revealed, each edge of the graph induced
by the observed vertices is labelled with the distance in P kn between its endpoints, and the
selector sees those labels. In [12], the optimal stopping algorithm for choosing the sink from
P kn in this case was derived and it was shown that its probability of success, p̃n,k , is also of
order n−1/(k+1). In this paper we also derive the exact values of limn→∞ p̃n,kn−1/(k+1) for the
whole range of k, k = 1, 2, . . . , n− 1.

In order to obtain lower bounds for the asymptotic behaviour of pn,kn1/(k+1), we analyse
the process of site (i.e. vertex) percolation for a sequence of kth powers of a directed path. An
intensive study of percolation processes followed the work of Broadbent and Hammersley [2],
who gave a probabilistic model for the flow of a liquid through some porous material. In this
paper we will be interested in the probability of whether there exists an open passageway (flow)
through Pn,k when one declares each site (i.e. vertex) to be open with some probability p and
closed otherwise, independently of all other sites. For some general results on percolations, we
refer the reader to Grimmett [11].
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This paper is organized as follows. In Section 2 we introduce some basic definitions and
notation. In Section 3 we present two formal models: one for an optimal stopping problem on
the kth power of a directed path P kn and the other for the site percolation on P kn . In Section 4
we consider the process of site percolation on the kth power of a directed path. In Section 5
we use the results from Section 4 to find the exact asymptotic behaviour of the probability of
success, p̃n,k , under the optimal algorithm for choosing the sink from P kn when the selector
knows the distance between vertices in P kn that are connected by an edge in the induced graph.
We use this result in Section 6 to derive an upper bound for the asymptotics of pn,kn1/(k+1).
In Section 6 we also analyse a special randomized algorithm to obtain lower bounds for the
asymptotic behaviour of pn,kn1/(k+1). In Section 7 we state a few open questions.

2. Definitions and notation

A directed graph, or simply digraph, is a pair (V ,E), where V is a set whose elements
are called vertices (or, in percolation theory language, sites) and E is a set of ordered pairs of
vertices, which are called edges (or, in percolation theory language, bonds). We call a vertex
v ∈ V a maximal element or a sink if it has no outgoing edges. LetG = (V ,E) be a digraph. The
set of maximal elements ofGwill be denoted by max(G). We say thatG is (weakly) connected
if it is possible to reach any vertex starting from any other by traversing edges in some direction
(i.e. not necessarily in the direction they point). An induced subdigraph G′ = (W,E ∩W 2)

of G, where W ⊆ V , is called a component if it is a maximal (weakly) connected induced
subdigraph. A directed path is a graph Pn = (Vn,En) such that Vn = {v1, v2, . . . , vn} and
En = {(vi+1, vi) : i ∈ {1, 2, . . . , n− 1}}. The length of Pn is n− 1. The only maximal vertex
of Pn will be denoted by 1 (i.e. v1 = 1).

The kth power of a graph G = (V ,E) is the graph with the set of vertices V and an
edge between two vertices if and only if there is a path of length at most k between them inG.
Throughout this paper we consider the structures of kth powers of a directed pathPn. We denote
them by P kn . All the edges of P kn will be always drawn in an ‘upward directed’. We call Pn−1

n

a full power of a directed path. The kth powers of P4, k = 1, 2, 3, are presented in Figure 1.
Note that, for k ≥ n, we have P kn = Pn−1

n .
Let N be the set of natural numbers, N = {0, 1, 2, . . .}. For a power of a directed path we

define a gap function d : E→ N as follows: d((vi, vj )) = i−j−1, e.g. d((vn, v1)) = n−2 in
Pn−1
n , and always d((vi+1, vi)) = 0; note that d(e) stands for the number of vertices between

the endpoints of e and these are the values that we will use as labels to the edges (in one of our
models).

v1 v1 v1

v2 v2 v2

v3 v3 v3

v4 v4v4

k = 1 k = 2 k = 3

Figure 1: The kth powers of a directed path with four vertices.
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3. Formal models

3.1. Optimal stopping model

Here, we describe two (very similar) models. The first is the unlabelled one, where the
selector sees only the (unlabelled) subdigraph induced by the vertices that he/she has observed
so far. Let P kn = (V ,E) be a kth power of a directed path Pn (where |V | = n) and
let Sn denote the family of all permutations of the set V . Let π = (π1, π2, . . . , πn) ∈ Sn.
By P(m) = P(m)(π) = (V(m), E(m)),m ≤ n, we denote the subdigraph of P kn induced by
{π1, . . . , πm}, i.e.

V(m) = {π1, π2, . . . , πm},
E(m) = {(vi, vj ) : {vi, vj } ⊆ {π1, π2, . . . , πm} ∧ (vi, vj ) ∈ E}.

By c(P(m)) we denote the number of components in P(m). Let us define the probability space
(�,F ,P) : � = Sn,F = P (�), the probability measure P : F → [0, 1] is defined by
P[{π}] = 1/n! for each π ∈ Sn. Let R ⊆ N

2. We write (π1, π2, . . . , πm) ∼= R if, for all i,
j ≤ m, i = j, (πi, πj ) ∈ E if and only if (i, j) ∈ R. Let

Ft = σ {{π ∈ � : (π1, π2, . . . , πt ) ∼= R} : R ⊆ N
2}, 1 ≤ t ≤ n,

be our filtration (a sequence ofσ -algebras such that F1 ⊆ F2 ⊆ · · ·Fn ⊆ F ). Here, Ft contains
all the events that can happen in our model till time t . A random variable τ : �→ {1, 2, . . . , n}
is a stopping time with respect to the filtration (Ft )nt=1 if τ−1({t}) ∈ Ft for each t ≤ n. This
means that the decision to stop is based only on past and present events. Let D be a subset of
vertices of P kn (i.e. D ⊆ V ). An optimal stopping time for choosing an element from D is any
stopping time τ ∗ for which

P[πτ∗ ∈ D] = max
τ∈S P[πτ ∈ D],

where S denotes the set of all stopping times and [πτ ∈ D] is the set {π ∈ � : πτ(π) ∈ D}.
Throughout this paper D = {1}.

Finally, for the labelled model, i.e. when the selector also knows the value d(e) of each
edge e that appears in the induced subdigraph, only the filtration changes. In this case, for
ϕ : R → N and Rϕ = {(i, j, ϕ(i, j)) : (i, j) ∈ R}, we write (π1, π2, . . . , πm) ∼= Rϕ if, for
all i, j ≤ m, i = j, (πi, πj ) ∈ E if and only if (i, j) ∈ R and ϕ(i, j) = d((πi, πj )), and the
filtration is

F̃t = σ {{π ∈ � : (π1, π2, . . . , πt ) ∼= Rϕ} : R ⊆ N
2, ϕ : R→ N}, 1 ≤ t ≤ n.

The optimal strategy τ̃n,k for choosing a sink 1 from P kn in the labelled model is known [12].
It can be stated as follows. Stop when there is a positive conditional (given history) probability
that the presently examined candidate is the sink and the probability that the sink can be among
the future candidates is equal to 0. In other words, τ̃n,k tells the selector to play till the last
moment where there is still a chance of success. It tells him/her to stop at time m if πm is a
sink in P(m) (recall that P(m) = (V(m), E(m)) is the graph induced by {π1, π2, . . . , πm}) and all
the remaining vertices are necessary either to connect the components of P(m) or to join the
components ofP(m) as their ‘inner’vertices. Thus, the strategy τ̃n may be also stated as follows:

τ̃n,k(π) = min{t ≤ n : n− t = k(c(P(t))− 1)+ bt , πt ∈ max(P(t))},
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wherebt =∑
e∈E(m) d(e). (An example of a situation when τ̃9,2 stops the search atπ6 playing on

P 2
9 is presented in Figure 2.) The optimality of this strategy for k = 1 was proved by Kubicki and

Morayne [17]. They proved also that its probability of success satisfies limn→∞
√
nP[πτ̃n,1 =

1] = √π/2. The optimality of τ̃n,k for the whole range of k (1 ≤ k ≤ n − 1) was proved
by Grzesik et al. [12]. The authors proved also that its probability of success is of the order
n−1/(k+1). In this paper, among other things, we refine this result giving the exact value of the
limit limn→∞ n1/(k+1)

P[πτ̃n,k = 1] for the whole range of k.

3.2. Percolation model

Let p ∈ [0, 1]. Given a graphG, each of its sites (i.e. vertices), independently of the others,
is declared open with probability p and closed otherwise. A path in G is called open if all its
sites are open. When G = P kn we say that it percolates if there exists an open path joining v1
and vn. More generally, we write vi

p←→ vj if there exists an open path joining vi and vj (in
particular, vi and vj must be open). By ψn,k(p) we denote the probability that P kn percolates,
i.e. ψn,k(p) = P[v1

p←→ vn]. For any k and n, we give general lower and upper bounds for
ψn,k(p). Then, for a sequence (P k(n)n )∞n=1, where k = k(n) can be any function of n, we use the
previous bounds to find the asymptotic behaviour of the probability of success of the optimal
stopping algorithm τ̃n for choosing a sink from P kn in the labelled model.

4. Site percolation probability for P k
n

In this section we consider the site percolation process on (P kn )n. Recall that ψn,k(p)
denotes the probability that P kn percolates. Whenever the context is clear we write ψn,k instead
of ψn,k(p).

Lemma 4.1. For any positive integers k and n, the probability that P kn percolates, ψn,k =
ψn,k(p), satisfies

ψ1,k = p, ψn,k = p2 for 2 ≤ n ≤ k + 1,

ψn,k = pψn−1,k + p(1− p)ψn−2,k + · · · + p(1− p)k−1ψn−k,k for n ≥ k + 1 (4.1)

(note that the n = k + 1 case is covered twice).

Proof. It is obvious that ψ1,k = p. Whenever 2 ≤ n ≤ k + 1 then there exists an edge
joining v1 and vn. Thus, P kn percolates if and only if v1 and vn are open (which happens with
probability p2). From this, we can also easily check that (4.1) holds when n = k + 1.

In the remaining case (n > k+1), ψn,k is expressed as a sum of terms that are the probabilities
of some disjoint events. For 0 ≤ j ≤ n− 2, let

Aj = [(v1 is open) ∩ (v2, . . . , vj+1 are not open) ∩ (vj+2
p←→ vn)].

Note that
P[Aj ] = p(1− p)jψn−(j+1),k.

Note also that there is an edge joining v1 and vj+2 if and only if j ≤ k − 1. Moreover, the
events Aj are disjoint. Taking the union of the Aj over j = 0, 1, . . . , k − 1, we obtain the
event that P kn percolates. �
Lemma 4.2. For n > k + 1, we have

ψn,k = ψn−1,k − p(1− p)kψn−k−1,k.
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Proof. By Lemma 4.1, for n > k + 1, we have

ψn,k = pψn−1,k + p(1− p)ψn−2,k + · · · + p(1− p)k−1ψn−k,k
= pψn−1,k + (1− p)(p ψn−2,k + · · · + p(1− p)k−2ψn−k,k)
= pψn−1,k + (1− p)(ψn−1,k − p(1− p)k−1ψn−k−1,k)

= ψn−1,k − p(1− p)kψn−k−1,k. �

Lemma 4.3. For n > k + 1, we have

p2(1− (1− p)k)n−k ≤ ψn,k ≤ p2(1− p(1− p)k)n−k−1.

Proof. Since ψn,k is weakly decreasing in n, by Lemma 4.1, for n > k, we have

ψn,k = pψn−1,k + p(1− p)ψn−2,k + · · · + p(1− p)k−1ψn−k,k
≥ pψn−1,k + p(1− p)ψn−1,k + · · · + p(1− p)k−1ψn−1,k

= pψn−1,k(1+ (1− p)+ · · · + (1− p)k−1)

= ψn−1,k(1− (1− p)k).
Thus,

ψn,k ≥ ψn−1,k(1− (1− p)k)
≥ ψn−2,k(1− (1− p)k)2
...

≥ ψk,k(1− (1− p)k)n−k
= p2(1− (1− p)k)n−k.

On the other hand, since ψn,k is weakly decreasing in n, we have, for n > k + 1,

ψn,k = ψn−1,k − p(1− p)kψn−k−1,k

≤ ψn−1,k − p(1− p)kψn−1,k

= ψn−1,k(1− p(1− p)k),
where the first equality follows from Lemma 4.2. Thus,

ψn,k ≤ ψn−1,k(1− p(1− p)k)
≤ ψn−2,k(1− p(1− p)k)2
...

≤ ψk+1,k(1− p(1− p)k)n−k−1

= p2(1− p(1− p)k)n−k−1. �

5. The probability of success of τ̃n,k (labelled model)

Throughout this section we always assume that π is a random permutation of vertices
of P kn . We give the exact values of the limit limn→∞ n1/(k+1)

P[πτ̃n,k = 1] for the whole range
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of k = k(n), with 1 ≤ k ≤ n − 1. Recall that τ̃n,k is the optimal algorithm for choosing the
sink from P kn in the labelled model.

Instead of selecting directly π uniformly among all permutations of V (P kn ), we will do this
with the following technique which was introduced by Freij and Wästlund [5] and also used
in [12]. Let us associate with each vertex vi a random variableAi from the uniform distribution
on the interval [0, 1]. We may think of Ai as of the arrival time of vi . By ordering V (P kn )
according to the values of the Ai (in a nondecreasing way), we obtain a uniform random order
of V (P kn ). Though we consider now a different probability space, our problem of optimal
stopping and its probability of success are equivalent to those of our original model (as all the
permutations of vertices are still equiprobable). We omit formal details. The arrival time of
the sink will be denoted by p, i.e. p = A1. Note that, since all the Ai are independent, given
A1 = p, the probability that a particular vertex appears before the sink is equal to p. Also,
the vertices appear before the sink (with probability p) independently. In an analogy to the
percolation model, given p, for 2 ≤ i ≤ n, we will say that vi is open if Ai ≤ p, and it is
closed otherwise.

Since p is uniformly chosen from [0, 1], the following equality holds (see [3, Equation
(10.1)]):

P[πτ̃n,k = 1] =
∫ 1

0
P[πτ̃n,k = 1 | A1 = p] dp. (5.1)

(Here, we define P[πτ̃n,k = 1 | A1 = p] = limh→0+ P[πτ̃n,k = 1 | A1 ∈ (p, p + h)].)
In the following two lemmas we give two different formulas for P[πτ̃n,k = 1]. We will use

the first one to obtain the lower bound and the second one to obtain the upper bound for the
desired limit limn→∞ n1/(k+1)

P[πτ̃n,k = 1].
Remark 5.1. (The k = n− 1 case.) When we deal with the (n− 1)th (i.e. full) power of P kn ,
the vertices 1 and vn are easily identified when they both show up in the induced graph, because
it is the only pair of vertices connected by an edge whose label is equal to n− 2. Therefore, if
only 1 appears after vn in a random permutation π , τ̃n,n−1 stops at 1. Note also that τ̃n,n−1 loses
if 1 precedes vn in π . Thus, P[πτ̃n,n−1 = 1] = 1

2 (and also limn→∞ n1/n
P[πτ̃n,n−1 = 1] = 1

2 ).
Throughout the rest of this section we always assume that k < n− 1.

Lemma 5.1. For ψn,k+1(p) being the probability that P k+1
n percolates, π being a random

permutation of vertices of P kn , and τ̃n,k being an optimal stopping time for P kn when looking
for the sink in the labelled model, we have

P[πτ̃n,k = 1] =
∫ 1

0

ψn,k+1(p)

p
dp.

Proof. For a given t ∈ [0, 1], assume that τ̃n,k stops at time t , i.e. the algorithm stops while
observing some vertex whose arrival time is t . Consider the subdigraph Gt of P kn induced on
the vertices vi for which Ai < t . Compare it to the subdigraph G∗t of P k+1

n induced by the
same set of vertices ofGt . Recall that τ̃n,k stops at the vertex that is maximal so far only if there
is no chance that the sink is among the vertices that are still to come. Note that this means that
there is a path from v1 to vn in G∗t . Conversely, for any value of t for which there is a vertex
vi whose arrival time is t such that G∗t has a path joining v1 and vn, and vi is a sink in Gt , the
algorithm τ̃n,k will stop at time t and select vi (see Figure 2). Now, we conclude that: if we are
given A1 = p, then the probability that τ̃n,k stops at the sink, i.e. it stops at time p, is equal to
the probability that P k+1

n percolates, given that v1 is assumed to be open and each other site is
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(a) (b)

1 1

2

1

0

2

1

0

0

0

0

0

Figure 2: (a) We have the observed graph at step 6 for the optimal stopping algorithm on labelled P 2
9 ,

using the permutation π = {v7, v6, v9, v2, v3, v1, v5, v4, v8} as input. Note that τ̃9,2(π) = 6. The label of
an edge e represents d(e). (b) The graph induced by the same vertices in P 3

9 : even if we did not know π ,
since there is a labelled path from π3 to π6, it follows that π6 = 1. In fact, the remaining three vertices

(that were not observed until step 6) have to be used to ‘close the gaps’ in this path.

open with probability p, independently. Hence, we obtain

P[πτ̃n,k = 1 | A1 = p] = P[v1
p←→ vn | v1is open]

= P[v1
p←→ vn and v1 is open]
P[v1 is open]

= ψn,k+1(p)

p
, (5.2)

which together with (5.1) gives P[πτ̃n,k = 1] = ∫ 1
0 (ψn,k+1(p)/p) dp. Note that although we

consider the optimal stopping on P kn , the notation v1
p←→ vn refers here to the percolation on

P k+1
n . �

Now, let us recall the formula for P[πτ̃n,k = 1] introduced in [12]. Consider the following
sequence of indicator random variables that depend only on v2, . . . , vn−1:

X
(p)
i =

{
1 if each of vi+1, vi+2, . . . , vi+k+1 is closed,

0 otherwise,
for 1 ≤ i ≤ n− k − 2. (5.3)

Let also X(p) =∑n−k−2
i=1 X

(p)
i .

Lemma 5.2. (See [12, Lemma 4.5].) ForX(p) defined as above,π being a random permutation
of vertices of P kn and τ̃n,k being an optimal stopping time for P kn when looking for the sink in
the labelled model, we have

P[πτ̃n,k = 1] =
∫ 1

0
pP[X(p) = 0] dp.
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Proof. Given p, consider an induced graph, sayGp, at the time p, i.e. the subdigraph of P kn
induced by the vertices vi for which Ai < p. Note that we may order the components of Gp
in a natural way: a component C will appear before a component C′ in such order if and only
if, for every vi ∈ C and vj ∈ C′, we have i < j (note that this is possible due to the structure
of P kn . Then the equality X(p) = 0 means that there are no two consecutive components for
which their distance in the original graph (P kn ) is greater than k (by the distance between two
components we mean the length of the shortest path in Pn that joins vertices from the different
components). Thus, whenever [X(p) = 0], v1 is open and vn is open then P k+1

n percolates
(i.e. in the subdigraph of P k+1

n induced by the same vertices of Gp there is a path from v1
to vn). Conversely, if v1 is closed, or vn is closed, or [X(p) > 0], then P k+1

n does not percolate.
Therefore,

P[v1
p←→ vn | v1is open] = P[vn is open ∧X(p) = 0].

Now, this lemma follows from (5.1) and (5.2). �

Recall the definitions of the gamma and beta functions.

	(x) =
∫ ∞

0
tx−1e−t dt, B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt, x > 0, a > 0, b > 0.

The following three lemmas will be helpful later on.

Lemma 5.3. (See [1].) For every real a > 0, b > 0 we have B(a, b) = 	(a)	(b)/	(a + b).
Lemma 5.4. (See [1].) Let α ∈ R. We have limn→∞ 	(n) nα/	(n+ α) = 1.

Lemma 5.5. Let α(n)→ 0 as n→∞. We have limn→∞ 	(n)nα(n)/	(n+ α(n)) = 1.

Proof. To prove this lemma it is enough to apply Stirling’s formula for the gamma function
	(x + 1) = √2πx(x/e)x(1+O(1/x)). �

Theorem 5.1. For π being a random permutation of vertices of P kn and τ̃n,k being an optimal
stopping time for P kn when looking for the sink in the labelled model, we have

lim inf
n→∞ n1/(k+1)

P[πτ̃n,k = 1]

≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	

(
1+ 1

k + 1

)
if k is a constant,

1 if k = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n).

Proof. By Lemma 5.1, we know that P[πτ̃n,k = 1] = ∫ 1
0 (ψn,k+1(p)/p) dp. By Lemma 4.3,

ψn,k+1(p) ≥ p2(1− (1− p)k+1)n−k−1 for n > k + 2;
hence, we can write P[πτ̃n,k = 1] ≥ ∫ 1

0 p(1− (1− p)k+1)n−k−1 dp. Letting q = 1 − p, we
obtain

P[πτn,k = 1] ≥
∫ 1

0
(1− q)(1− qk+1)n−k−1 dq
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which yields

P[πτ̃n,k = 1] ≥
∫ 1

0
(1− qk+1)n dq −

∫ 1

0
q(1− qk+1)n dq. (5.4)

Substituting x = qk+1 in the first integral, integrating by parts, and using Lemma 5.3, we obtain

∫ 1

0
(1− qk+1)n dq =

∫ 1

0

1

k + 1
x−k/(k+1)(1− x)n dx

= [x1/(k+1)(1− x)n]10 +
∫ 1

0
x1/(k+1)n(1− x)n−1 dx

= n
∫ 1

0
x1/(k+1)(1− x)n−1 dx

= nB
(

1+ 1

k + 1
, n

)

= n	(1+ 1/(k + 1))	(n)

	(n+ 1+ 1/(k + 1))

= 	
(

1+ 1

k + 1

)
	(n+ 1)

	(n+ 1+ 1/(k + 1))
.

Thus, by Lemmas 5.4 and 5.5, we obtain

lim
n→∞ n

1/(k+1)
∫ 1

0
(1− qk+1)n dq = lim

n→∞	
(

1+ 1

k + 1

)
	(n+ 1)n1/(k+1)

	(n+ 1+ 1/(k + 1))

=
⎧⎨
⎩	

(
1+ 1

k + 1

)
if k is a constant,

1 if k(n)→∞ as n→∞.
(5.5)

Substituting x = qk+1 in the second integral of (5.4), integrating by parts and using Lemma 5.3
in a similar way, we obtain

∫ 1

0
q(1− qk+1)n dq =

∫ 1

0

1

k + 1
x−k/(k+1)x1/(k+1)(1− x)n dx

= 1

2

([
x2/(k+1)(1− x)n

]1

0
−

∫ 1

0
−x2/(k+1)n(1− x)n−1 dx

)

= n

2

∫ 1

0
x2/(k+1)(1− x)n−1 dx

= n

2
B

(
1+ 2

k + 1
, n

)

= n

2

	(1+ 2/(k + 1))	(n)

	(n+ 1+ 2/(k + 1))

= 1

2
	

(
1+ 2

k + 1

)
	(n+ 1)

	(n+ 1+ 2/(k + 1))
.
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Again, by Lemmas 5.4 and 5.5, we have

lim
n→∞ n

1/(k+1)
∫ 1

0
q(1− qk+1)ndq = lim

n→∞
1

2

	(1+ 2/(k + 1))

n1/(k+1)

	(n+ 1)n2/(k+1)

	(n+ 1+ 2/(k + 1))

=

⎧⎪⎪⎨
⎪⎪⎩

0 if k(n) = o(log n),
1

2e1/c if k(n) = c log n,

1
2 if k(n) = ω(log n).

(5.6)

Thus, by (5.4)–(5.6), we obtain

lim inf
n→∞ n1/(k+1)

P[πτ̃n,k = 1]

≥ lim
n→∞

(
n1/(k+1)

∫ 1

0
(1− qk+1)n dq − n1/(k+1)

∫ 1

0
q(1− qk+1)n

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	

(
1+ 1

k + 1

)
if k is a constant,

1 if k(n) = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n).

This completes the proof. �

Theorem 5.2. For π being a random permutation of vertices of P kn and τ̃n,k being an optimal
stopping time for P kn when looking for the sink in the labelled model, we have

lim sup
n→∞

n1/(k+1)
P[πτ̃n,k = 1] ≤

⎧⎪⎪⎨
⎪⎪⎩

1 if k = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n).

Remark 5.2. The case for k being a constant will be considered separately later on.

Proof. By Lemma 5.2, we know that P[πτ̃n,k = 1] = ∫ 1
0 pP[X(p) = 0] dp, where X(p) =∑n−k−2

i=1 X
(p)
i and the X(p)i are given by (5.3). Let m = �(n− 2)/(k + 1)�. Since

X
(p)
1 , X

(p)

(k+1)+1, X
(p)

2(k+1)+1, . . . , X
(p)

(m−1)(k+1)+1

are independent and P[X(p)i = 0] = 1− (1− p)k+1 for i = 1, 2, . . . , n− k − 2, we have

P[X(p) = 0] ≤ P[X(p)1 = 0 ∧X(p)(k+1)+1 = 0 ∧ . . . ∧X(p)(m−1)(k+1)+1 = 0]
= (1− (1− p)k+1)m.
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Thus, P[πτ̃n,k = 1] ≤ ∫ 1
0 p(1− (1− p)k+1)m dp. Letting q = 1 − p, integrating as in Theo-

rem 5.1, and applying again Lemmas 5.4 and 5.5, we obtain

n1/(k+1)
P[πτ̃n,k = 1]

≤ n1/(k+1)
∫ 1

0
(1− qk+1)m dq − n1/(k+1)

∫ 1

0
q(1− qk+1)m dq

= 	
(

1+ 1

k + 1

)
	(m+ 1)n1/(k+1)

	(m+ 1+ 1/(k + 1))
− 1

2

	(1+ 2/(k + 1))

n1/(k+1)

	(m+ 1)n2/(k+1)

	(m+ 1+ 2/(k + 1))

→

⎧⎪⎪⎨
⎪⎪⎩

1 if k(n) = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n),

as n→∞.

This completes the proof. �

Now, let us prove the two technical lemmas that will be helpful in finding the tight upper
bound for lim supn→∞ n1/(k+1)

P[πτ̃n,k = 1] when k is a constant.

Lemma 5.6. Let k ≥ 1 be a constant and let δn = (1/n)(k+3/2)/(k+1)(k+2). Then

lim
n→∞ n

1/(k+1)
∫ 1

δn

(1− qk+1 + qk+2)n−k−2 dq = 0

(which also implies limn→∞ n1/(k+1)
∫ 1
δn
(1− qk+1)n dq = 0).

Proof. Note that if n > ((k + 2)/(k + 1))(k+1)(k+2)/(k+3/2) then δn < (k + 1)/(k + 2) and
we can split the above integral into two parts

∫ 1

δn

(1− qk+1 + qk+2)n−k−2 dq =
∫ (k+1)/(k+2)

δn

(1− qk+1 + qk+2)n−k−2 dq

+
∫ 1

(k+1)/(k+2)
(1− qk+1 + qk+2)n−k−2 dq (5.7)

and consider each of them separately. Therefore, throughout the rest of the proof we always
assume that n > ((k + 2)/(k + 1))(k+1)(k+2)/(k+3/2).

The function f (q) = 1− qk+1 + qk+2 is decreasing on [δn, (k + 1)/(k + 2)]; thus,

∫ (k+1)/(k+2)

δn

(1− qk+1 + qk+2)n−k−2dq

≤
∫ (k+1)/(k+2)

δn

(1− δk+1
n + δk+2

n )n−k−2 dq

=
∫ (k+1)/(k+2)

δn

(1− (1− δn)δk+1
n )n−k−2 dq

≤ (1− δn)
(

1− (1− δn)
(

1

n

)(k+3/2)/(k+2))n−k−2

.
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Therefore, we obtain

lim
n→∞n

1/(k+1)
∫ (k+1)/(k+2)

δn

(1− qk+1 + qk+2)n−k−2 dq

≤ lim
n→∞ n

1/(k+1)(1− δn)
(

1− (1− δn)
(

1

n

)(k+3/2)/(k+2))n−k−2

= lim
n→∞ n

1/(k+1)
[(

1− 1− δn
n(k+3/2)/(k+2)

)n(k+3/2)/(k+2)/(1−δn)](n−k−2)(1−δn)/n(k+3/2)/(k+2)

= lim
n→∞ n

1/(k+1) exp

{
− (n− k − 2)(1− δn)

n(k+3/2)/(k+2)

}
= 0. (5.8)

Now, let us consider the second part of (5.7). Note that the function f (q) = 1−qk+1+qk+2

is increasing and convex on [(k + 1)/(k + 2), 1], thus, can be bounded on [(k+ 1)/(k + 2), 1]
from above by the linear function h(q) going through the points ((k + 1)/(k + 2), f ((k +
1)/(k + 2))) and (1, 1). Let ak = (k + 2)(1 − f ((k + 1)/(k + 2))). We have h(q) = akq +
(1− ak) and∫ 1

(k+1)/(k+2)
(1− qk+1 + qk+2)n−k−2 dq ≤

∫ 1

(k+1)/(k+2)
(akq + (1− ak))n−k−2 dq.

Letting x = akq + (1− ak), we obtain∫ 1

(k+1)/(k+2)
(1− qk+1 + qk+2)n−k−2 dq ≤ 1

ak

∫ 1

f ((k+1)/(k+2))
xn−k−2 dx

= 1

ak(n− k − 1)

(
1−

(
f

(
k + 1

k + 2

))n−k−1)
.

Since k ≥ 1 and f ((k + 1)/(k + 2)) < 1, we obtain

lim
n→∞ n

1/(k+1)
∫ 1

(k+1)/(k+2)
(1− qk+1 + qk+2)n−k−2 dq

≤ lim
n→∞

n1/(k+1)

ak(n− k − 1)

(
1−

(
f

(
k + 1

k + 2

))n−k−1)
= 0,

which with (5.7) and (5.8) yields limn→∞ n1/(k+1)
∫ 1
δn
(1− qk+1 + qk+2)n−k−2 dq = 0. �

Lemma 5.7. Let k ≥ 1 be a constant and δn = (1/n)(k+3/2)/(k+1)(k+2). Let q ∈ [0, δn]. Then

lim
n→∞

(1− qk+1 + qk+2)n−k−2

(1− qk+1)n
= 1.

Proof. Of course, we have

(1− qk+1 + qk+2)n−k−2

(1− qk+1)n
≥ 1.
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The function h(q) = qk+2/(1− qk+1) is increasing on [0, 1). Moreover, for n ≥ ((k +
2)/(k + 1))(k+1)(k+2)/(k+3/2), the function f (q) = (1 − qk+1 + qk+2)k+1 is decreasing on
[0, δn]. Therefore, throughout the rest of the proof we always assume that n ≥ ((k + 2)/(k +
1))(k+1)(k+2)/(k+3/2). We obtain

(1− qk+1 + qk+2)n−k−2

(1− qk+1)n
=

(
1+ qk+2

1− qk+1

)n 1

(1− qk+1 + qk+2)k+2

≤
(

1+ (1/n)
(k+3/2)/(k+1)

1− δk+1
n

)n 1

(1− δk+1
n + δk+2

n )k+2

=: αn.
Since limn→∞ 1/(1− δk+1

n + δk+2
n )k+2 = 1 and

lim
n→∞

(
1+ (1/n)

(k+3/2)/(k+1)

1− δk+1
n

)n

= lim
n→∞

[(
1+ 1

nn1/(2(k+1))(1− δk+1
n )

)nn1/(2(k+1))(1−δk+1
n )]n/nn1/(2(k+1))(1−δk+1

n )

= e0

= 1,

we obtain limn→∞ αn = 1. �
Theorem 5.3. For k being a constant, π being a random permutation of vertices of P kn , and
τ̃n,k being an optimal stopping time for P kn when looking for the sink in the labelled model, we
have

lim sup
n→∞

n1/(k+1)
P[πτ̃n,k = 1] ≤ 	

(
1+ 1

k + 1

)
.

Proof. By Lemma 5.1, we know that P[πτ̃n,k = 1] = ∫ 1
0 ψn,k+1(p)/p dp. By Lemma 4.3,

ψn,k+1(p) ≤ p2(1 − p(1 − p)k+1)n−k−2 for n > k + 2, hence, we can write P[πτ̃n,k =
1] ≤ ∫ 1

0 p(1− p(1− p)k+1)n−k−2 dp. Letting q = 1 − p, we obtain P[πτ̃n,k = 1] ≤∫ 1
0 (1− q)(1− (1− q)qk+1)n−k−2 dq, which yields

P[πτ̃n,k = 1] ≤
∫ 1

0
(1− qk+1 + qk+2)n−k−2 dq. (5.9)

By (5.9) and Lemma 5.6, we know that, for δn = (1/n)(k+3/2)/(k+1)(k+2),

lim sup
n→∞

n1/(k+1)
P[πτ̃n,k = 1] ≤ lim

n→∞ n
1/(k+1)

∫ 1

0
(1− qk+1 + qk+2)n−k−2 dq

= lim
n→∞ n

1/(k+1)
∫ δn

0
(1− qk+1 + qk+2)n−k−2 dq. (5.10)

By Lemma 5.6 and (5.5), we obtain also

lim
n→∞ n

1/(k+1)
∫ 1

0
(1− qk+1)n dq = lim

n→∞ n
1/(k+1)

∫ δn

0
(1− qk+1)n dq = 	

(
1+ 1

k + 1

)
.

(5.11)
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From Lemma 5.7, there exists εn→ 0 as n→∞ such that

lim
n→∞

n1/(k+1)
∫ δn

0 (1− qk+1 + qk+2)n−k−2 dq

n1/(k+1)
∫ δn

0 (1− qk+1)n dq
≤ lim
n→∞

∫ δn
0 (1− qk+1)n(1+ εn) dq∫ δn

0 (1− qk+1)n dq

= lim
n→∞(1+ εn)
= 1,

which with (5.10) and (5.11) implies

lim sup
n→∞

n1/(k+1)
P[πτ̃n,k = 1] ≤ 	

(
1+ 1

k + 1

)
. �

Corollary 5.1. For π being a random permutation of vertices of P kn and τ̃n,k being an optimal
stopping time for P kn when looking for the sink in the labelled model, we have

lim
n→∞ n

1/(k+1)
P[πτ̃n,k = 1] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	

(
1+ 1

k + 1

)
if k is a constant,

1 if k = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n).

In particular, for k = 1, we obtain limn→∞
√
n P[πτ̃n,1 = 1] = √π/2, which is a result of

Kubicki and Morayne [17].

Proof. The corollary follows from Theorems 5.1, 5.2, and 5.3. �

6. The probability of success of τn,k (unlabelled model)

In this section we analyse the asymptotic behaviour of the optimal algorithm for choosing
the sink in the unlabelled model (when the selector does not know the length of the edges
that appear in the induced graph). We do not know what the optimal algorithm is (denoted by
τn,k) in this case, however we are able to state quite accurate lower and upper bounds for the
probability of its success.

Remark 6.1. (The k = n− 1 case.) When k = n − 1, we deal with the classical secretary
problem, thus P[πτn,n−1 = 1] → 1/e as n→∞ (see [19]) and also limn→∞ n1/n

P[πτn,n−1 =
1] = 1/e. Throughout the rest of this section we always assume that k < n− 1.

Theorem 6.1. For π being a random permutation of vertices of P kn and τn,k being an optimal
stopping time for P kn when looking for the sink in the unlabelled model, we have

lim sup
n→∞

n1/(k+1)
P[πτn,k = 1]

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	

(
1+ 1

k + 1

)
if k is a constant,

1 if k = o(log n) and k(n)→∞ as n→∞,
1− 1

2e1/c if k(n) = c log n,
1
2 if k(n) = ω(log n).
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Proof. We have P[πτn,k = 1] ≤ P[πτ̃n,k = 1], since when the lengths of the edges are known
in the induced graph, we can take at least as efficient a decision as to when they are not known.
Therefore, the result follows simply from Corollary 5.1. �

Since τn,k is optimal, it performs at least as well as any other stopping time. We will state
the lower bound for the probability of success of τn,k by analysing the effectiveness of the
following randomized algorithm τ ∗p .

• Flip an asymmetric coin, having some probability p of coming down tails, n times.

• If it comes down tails M times, reject the first M elements.

• After this time pick the first element that is maximal in the induced graph. In other words,
τ ∗p is equal to the first j > M such that πj ∈ max(P(j)).

• If no such j is found then define τ ∗p = n.

The randomization used in the above definition was introduced by Preater [21], who used
the fact stated in Lemma 6.1 below. The algorithm itself was already presented in [12]. Here,
we carry out a finer analysis of its probability of success.

Lemma 6.1. Let π ∈ Sn be a random permutation of vertices in V . Suppose that we have a
coin that comes down tails with probability p. Let M denote the number of tails in n tosses.
Then all vertices from V appear in {π1, π2, . . . , πM} with probability p independently.

Throughout the rest of this sectionV ∗p will denote the set {π1, π2, . . . , πM} from Lemma 6.1.
Let us also define the following sequence of the indicator random variables:

X̃
(p)
i =

{
1 if {vi+1, vi+2, . . . , vi+k+1} ⊆ Vn \ V ∗p ,
0 otherwise,

for 1 ≤ i ≤ n− k − 1.

Let X̃(p) =∑n−k−2
i=1 X̃

(p)
i and Ỹ (p) =∑n−k−1

i=2 X̃
(p)
i . (Of course, X̃(p) and Ỹ (p) both have the

same distribution.)

Theorem 6.2. For k being a constant, π being a random permutation of vertices of P kn , and
p = 1− δkn−1/(k+1), where δk = (k + 2)−1/(k+1), we have

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥
(

1

k + 2

)1/(k+1)
k + 1

k + 2
.

Proof. Note that if 1 /∈ V ∗p , v2 ∈ V ∗p , and Ỹ (p) = 0, then 1 is the only element that comes
as a maximal one in an induced graph after timeM . Those three events are independent. Since
E[Ỹ (p)] ≤ n(1 − p)k+1 and, by Markov’s inequality, P[Ỹ (p) = 0] ≥ 1 − n(1 − p)k+1, by
Lemma 6.1 we obtain

P[πτ∗p = 1] ≥ P[1 /∈ V ∗p , v2 ∈ V ∗p , Ỹ (p) = 0]
= P[1 /∈ V ∗p ]P[v2 ∈ V ∗p ]P[Ỹ (p) = 0]
≥ (1− p)p(1− n(1− p)k+1). (6.1)
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Since p = 1− δkn−1/(k+1), where δk = (k + 2)−1/(k+1), we have

n1/(k+1)
P[πτ∗p = 1] ≥ δk(1− δkn−1/(k+1))(1− δk+1

k )

→
(

1

k + 2

)1/(k+1)
k + 1

k + 2
as n→∞. �

Theorem 6.3. For k = k(n)→ ∞ as n→ ∞ such that k(n) = o(log n), π being a random
permutation of vertices of P kn , and p = 1 − δnn−1/(k+1), where δn is a function such that
δn = 1− 1/o(k(n)) and δn→ 1 as n→∞, we have

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥ 1.

Proof. Recall that ψn,k+1(p) is the probability that P k+1
n percolates if each vertex is open

with probability p, independently from all other vertices. We can associate the event of the
vertex being open in the percolation model with the event of the vertex being in V ∗p in optimal
stopping model. Then ψn,k+1(p) = p2

P[X̃(p) = 0], where p2 corresponds to the probability
that 1 and vn both belong to V ∗p (or, equivalently, are both open). Since X̃(p) and Ỹ (p) have the
same distribution, by (6.1) and Lemma 4.3, we obtain

P[πτ∗p = 1] ≥ P[1 /∈ V ∗p ]P[v2 ∈ V ∗p ]P[X̃(p) = 0]
= (1− p)pψn,k+1(p)

p2

≥ (1− p)p(1− (1− p)k+1)n−k−1.

Since p = 1− δnn−1/(k+1), n−1/(k+1)→ 0 as n→∞ and n/δk+1
n →∞ as n→∞, we have

n1/(k+1)
P[πτ∗p = 1] ≥ δn(1− δnn−1/(k+1))

(
1− δ

k+1
n

n

)n−k−1

→ 1 as n→∞. �

Theorem 6.4. For k = k(n) = ω(log n), π being a random permutation of vertices of P kn ,
and p = 1/e, we have

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥ 1

e
.

Proof. Since P[πτ∗p = 1 | 1 ∈ V ∗p ] = 0, by Lemma 6.1 we have

P[πτ∗p = 1] = P[1 /∈ V ∗p ]P[πτ∗p = 1 | 1 /∈ V ∗p ] = (1− p)P[πτ∗p = 1 | 1 /∈ V ∗p ]. (6.2)

Now, for any events B and C we will write, for short, P1[B] instead of P[B | 1 /∈ V ∗p ] and
P1[B | C] instead of P[B | 1 /∈ V ∗p ∩ C]. For s = 2, . . . , k+2, let Bs denote the event that vs
is the topmost (apart from 1) vertex that belongs to V ∗p , i.e. for all t , 2 ≤ t < s, vt /∈ V ∗p
and vs ∈ V ∗p . Let Z̃s =∑n−k−1

i=s X̃
(p)
i (in particular, Z̃2 = Ỹ (p)). Note that the events 1 /∈

V ∗p , Bs, and Z̃s = 0 are independent. Moreover, P1[πτ∗p = 1 | Bs ∩ Z̃s = 0] = 1/(s − 1)
and P[Z̃s = 0] ≥ P[Z̃2 = 0] for any s = 3, . . . , k + 2. Since X̃(p) and Ỹ (p) have the same
distribution and P[X̃(p) = 0] = ψn,k+1(p)/p

2 (compare proof of Theorem 6.3), by Lemma 4.3
we obtain, for k = k(n) = ω(log n),

P[Z̃2 = 0] = P[Ỹ (p) = 0] ≥ (1− (1− p)k+1)n−k−1 → 1 as n→∞. (6.3)
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Therefore,

P1[πτ∗p = 1] ≥
k+2∑
s=2

P1[πτ∗p = 1 | Bs ∩ Z̃s = 0]P1[Bs ∩ Z̃s = 0]

=
k+2∑
s=2

1

s − 1
P[Bs]P[Z̃s = 0]

≥ P[Z̃2 = 0]
k+2∑
s=2

1

s − 1
(1− p)s−2p

= P[Ỹ (p) = 0] p

1− p
k+1∑
s=1

(1− p)s
s

→− p

1− p logp as n→∞. (6.4)

Finally, for p = 1/e, by (6.2) and (6.4),

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥ lim inf
n→∞ n1/(k+1)

(
−(1− p) p

1− p logp

)
= −p logp = 1

e
,

completing the proof. �
Theorem 6.5. For k = k(n) = c log n, π being a random permutation of vertices of P kn , and
p = 1− δ/n1/(k+1), where δ = e1/c(1− 1/e) for c > (log (e/(e− 1)))−1, and δ is a constant
arbitrarily close to 1 for c ≤ (log (e/(e− 1)))−1, we have

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥
{
(1− e1/c) log (1− e−1/c) if c ≤ (log (e/(e− 1)))−1,

e1/c−1 if c > (log (e/(e− 1)))−1.

Proof. We follow the idea of the proof of Theorem 6.4 and, by (6.2) and (6.4) and the fact
that p tends to 1− δ/e1/c from below, we obtain

P[πτ∗p = 1] ≥ (1− p)P[Ỹ (p) = 0] p

1− p
k+1∑
s=1

(1− p)s
s

≥ pP[Ỹ (p) = 0]
k+1∑
s=1

(δ/e1/c)s

s
.

For p = 1− δ/n1/(k+1), k = k(n) = c log n, and δ ∈ (0, 1), we have (compare (6.3))

P[Ỹ (p) = 0] ≥ (1− (1− p)k+1)n−k−1 =
(

1− δ
k+1

n

)n−k−1

→ 1 as n→∞.

Therefore, for δ ∈ (0, 1), we obtain

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1]

≥ lim inf
n→∞ n1/(k+1)

(
1− δ

n1/(k+1)

)(
1− δ

k+1

n

)n−k−1 k+1∑
s=1

(δ/e1/c)s

s

= e1/c
(

1− δ

e1/c

)(
− log

(
1− δ

e1/c

))
.
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Table 1: Values of the lower bounds for lim infn→∞ n1/(k+1)
P[πτn,k = 1] and the upper bounds for

lim supn→∞ n1/(k+1)
P[πτn,k = 1].

Lower bound Upper bound

k is constant (k + 2)−1/(k+1) k + 1

k + 2
	

(
1+ 1

k + 1

)
k(n)→∞ and k(n) = o(log n) 1 1

k(n) = c log n
c ≤

(
log

e

e− 1

)−1

, (1− e1/c) log (1− e−1/c)
1− 1

2e1/c

c >

(
log

e

e− 1

)−1

, e1/c−1

k(n) = ω(log n)
1

e
1
2

Setting δ = e1/c(1− 1/e) for c > (log (e/(e− 1)))−1, we have

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥ e1/c 1

e

(
− log

(
1

e

))
= e1/c−1.

Now, let c ≤ (log (e(e− 1)))−1. Since we can choose δ to be a constant arbitrarily close to 1,

lim inf
n→∞ n1/(k+1)

P[πτ∗p = 1] ≥ e1/c
(

1− 1

e1/c

)
(− log(1− e−1/c))

= (1− e1/c) log (1− e−1/c). �

Remark 6.2. Since τn,k is optimal, we have P[πτn,k = 1] ≥ P[πτ∗p = 1] and the lower bounds
from Theorems 6.2–6.5 apply also to τn,k .

See Table 1 for values of the lower bounds for lim infn→∞ n1/(k+1)
P[πτn,k = 1] and the

upper bounds for lim infn→∞ n1/(k+1)
P[πτn,k = 1] for the whole range of k.

7. Remarks and open questions

The optimal strategy τ̃n,k has a very simple description. This is an open question if one can
characterize a natural, larger class of directed graphs for which the stopping time defined by
τ̃n,k is optimal.

The possibility of translating an optimal stopping problem into the percolation theory
language was very convenient here. Crucial was the observation that τ̃n,k stops the search
of P kn if and only if P k+1

n percolates and an analysis of site percolation process on P k+1
n leads

to the proof of the asymptotic behaviour of τ̃n,k . It is interesting whether there are other natural
families of graphs for which a similar scheme works.
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