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The velocity and shape of Taylor bubbles moving in a vertical channel in a Poiseuille
liquid flow were studied for the inertial regime, characterized by large Reynolds
numbers. Numerical experiments were carried out for positive (upward) and negative
(downward) liquid mean velocity. Previous investigations in tube have reported that
for upward flow the bubble is symmetric and its velocity follows the law of Nicklin,
whereas for certain downward flow conditions the symmetry is broken and the bubble
rises appreciably faster. To study the bubble motion and to identify the existence of a
transition, a two-dimensional numerical code that solves the Navier–Stokes equations
(through a volume of fluid implementation) was used to obtain the bubble shape and
the rise velocity for different liquid mean velocities. A reference frame located at the
bubble tip and an irregular grid were implemented to allow long simulation times
without an excessively large numerical domain. It was observed that whenever the
mean liquid velocity exceeded some critical value, bubbles adopted a symmetric final
shape even though their initial shape was asymmetric. Conversely, if the mean liquid
velocity was smaller than the critical value, a transition to a non-symmetric shape
occurred, along with a correspondingly faster velocity. It was also found that surface
tension has a stabilizing effect on the transition.

Key words: bubble dynamics, gas/liquid flows

1. Introduction
The motion of long, bullet-shaped bubbles in the interior of tubes – also known

as Dumitrescu–Taylor bubbles – is relevant for a wide variety of engineering systems
in the nuclear, oil, petrochemical or aerospace industries and for some natural
phenomena such as volcanic eruptions. Some of the first investigations on this subject
were presumably motivated by submarine-related research during the Second World
War. Among these studies were the pioneering works of Dumitrescu (1943) and
Davies & Taylor (1950), who explained the inertial motion of a long bubble rising in
still liquid with an irrotational solution of the local flow field in the vicinity of its apex.
These two studies were the starting point of a long series of experimental, theoretical
and numerical investigations on the motion of Taylor bubbles in vertical tube. The
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key observation that permitted this development is that these large bubbles move as
if viscous and surface tension forces were small compared to inertial effects. In the
present work, we shall focus on the influence of the flowing liquid on the motion of a
plane bubble in the inertial regime. Because the behaviour of such bubbles is similar
to that of Taylor bubbles in tube, we will recall first some of the major findings in
cylindrical geometry.

Nicklin, Wilkes & Davidson (1962) were the first to present a comprehensive study
of the bubble dynamic in upward flow. From their experiments they found that the
bubble velocity V ∗ is given by

V ∗ = C0U
∗ + V ∗

∞, (1.1)

where U ∗ is the mean liquid velocity and V ∗
∞ is the bubble velocity in still liquid. Note

that the starred quantities are made dimensionless using the radius D/2 as a length
scale and

√
gD as a velocity scale, g being the gravity. The velocity in still liquid

depends slightly on surface tension σ and kinematic viscosity ν. As such it can be
expressed as a weakly varying function V ∗

∞(Σ, N ) of the dimensionless surface tension

and viscosity Σ = 4σ/ρgD2 and N = ν/
√

gD3.
At small viscosity and surface tension, V ∗

∞(0, 0) = 0.35 and C0 is about 2 (resp. 1.2)
for laminar (resp. turbulent) flow. Nicklin et al. (1962) pointed out that V ∗ ≈ U ∗

M + V ∗
∞,

where U ∗
M is the liquid velocity at the axis far upstream. In addition to the influence

of flow regime, C0 is slightly modified by surface tension. As a result, it can be
expressed as a function of the Reynolds number and the dimensionless surface tension
C0(Re, Σ). For more details, see for example Wallis (1969) and Fabre & Liné (1992).

These results were confirmed by analytical (e.g. Collins et al. 1978) and numerical
solutions of either full Navier–Stokes equations (e.g. Mao & Dukler 1990) or Euler
equations using boundary element (BE) method (Ha Ngoc & Fabre 2006). Note that
these studies are two-dimensional (2D) calculations for bubbles with a prescribed
axisymmetric shape.

Although theoretical analysis and numerical simulations have been able to predict
the velocity and shape of symmetric bubbles in tube, some unsolved issues of practical
relevance still remain in downward liquid flow. For some flow conditions, Griffith &
Wallis (1961) observed that the bubble motion is unstable and moves closer to the wall,
adopting an asymmetrical shape. Martin (1976) and later on Polonsky, Shemer &
Barnea (1999) found from specific experiments in downward flow that when the
bubble is asymmetric it rises appreciably faster than expected from an axisymmetric
bubble facing the same liquid velocity profile.

To throw light on this issue, Lu & Prosperetti (2006) performed an analytical
stability analysis of the bubble shape with zero surface tension and demonstrated
that there exists a downward velocity threshold of approximately U ∗

c ≈ −0.13, below
which the bubble loses its symmetry with respect to the axis. According to them,
this happens presumably because the relative velocity between the bubble and the
liquid decreases with increasing downward flow, which is also accompanied by a
flattening of the bubble nose. Both conditions have a destabilizing effect on the
bubble configuration.

The aim of this work is to shed some light on this transition and the effect of
surface tension on the bifurcation. In this numerical study, the problem of a single
Taylor bubble rising in a flowing liquid is undertaken with the aid of a numerical code
called JADIM, developed at the Institute of Fluid Mechanics of Toulouse, France.
The volume of fluid (VOF) version of this code has been used and updated by several
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434 B. Figueroa-Espinoza and J. Fabre

contributors for almost 15 years to solve a great variety of fluid dynamics problems
(see Benkenida & Magnaudet 2000, Bonometti & Magnaudet 2007; Dupont &
Legendre 2010, and references therein).

This paper is organized as follows. In § 2 we justify the numerical experiments
carried out in this work in 2D channels and we recall the previous results obtained
in this particular geometry. Next, we present the code description, its implementation
and the validation tests in § 3. Then, we show the numerical results obtained for
various flow conditions in §§ 4 and 5. Finally, a brief discussion of the results and the
corresponding conclusions are given in § 6.

2. Numerical experiments in 2D channels
If the symmetry of a bubble in a tube is broken, the flow field becomes necessarily

3D, while an asymmetric plane bubble remains 2D. However, 2D plane bubbles are
not physical since it is not always possible to reproduce 2D bubbles moving in a 2D
flow by means of an experiment in a rectangular channel of large enough depth-to-
width aspect ratio (see figure 6 in Collins 1965). Indeed, while the flow is controlled by
the channel width, the bubble would be a slave of its largest curvature radius which
would be of the order of magnitude of the channel depth (see Clanet, Héraud &
Searby 2004). It is worth noting one exception. In a Hele-Shaw cell the aspect ratio has
to be as small as possible for the flow to be irrotational. Then it is possible to mimic
a 2D bubble moving in still liquid as Collins (1965) and Maneri & Zuber (1974) did.

Even if 2D plane bubbles are not physical, many arguments are in favour of their
study. The first argument is obviously related to computational resources: the time
ratio between 3D and 2D calculations is at least equal to the number (32, 64 and may
be more) of azimuthal planes; it can be even much greater considering the fact that
a plane bubble that loses its symmetry is likely to reach a steady asymmetric shape
whereas an asymmetric bubble in tube may also rotate without reaching a steady
shape. The second argument is that, as far as we are aware, numerical simulations
of inertial 2D deformable Taylor bubbles mounting in downward flow, taking into
account viscosity and surface tension, remain hitherto unexplored. The third argument
is related to the physical pertinence of 2D calculations: two-dimensional versions of
real problems are usually seen as oversimplifications but whenever the difference
between the real and the simplified cases remains only quantitative, the 2D game
deserves to be played. Last but not least, we consider the 2D case as a reasonable
starting point for a systematic and original investigation. Most of the results discussed
in this section are listed in table 1.

Plane bubbles have already been considered in the past by several authors. Let us
mention first the seminal work of Layzer (1955), whose motivation was rather an
astrophysics problem: a first-order approximation of the velocity potential around a
Taylor bubble allowed the estimation of both its velocity and the growing rate of a
perturbation at the tip due to Rayleigh–Taylor instability. Using again

√
gD as the

velocity scale where D is now the channel width, the theoretical rise velocity is

V ∗
∞0 = 1/

√
6π ≈ 0.23, (2.1)

where V ∗
∞0 is used for V ∗

∞(0, 0). Recent investigations, for example by Kull (1983) and
Clanet, Héraud & Searby (2004), are based on or inspired from this work.

Garabedian (1957), Birkhoff & Carter (1957) and Collins (1965) used complex
variable representations of the flow field to study plane Taylor bubbles. Garabedian’s
results showed that the solution is not unique, and suggested that the bubble shape
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Authors Type of result V ∗
∞ C0 R∗

c

Layzer (1955) Inviscid theory 0.23 – –
Garabedian (1957) Inviscid theory 0.24 – –
Birkhoff & Carter (1957) Inviscid theory 0.23 – –
Watson (in Birkhoff & Carter) Experiments 0.22–0.23 – –
Griffith (in Maneri & Zuber) Experiments 0.23 – –
Collins (1965) Inviscid theory 0.23 – 0.96

Experiments 0.22–0.23 – 0.62
Maneri & Zuber (1974) Experiments 0.25 – 0.63–0.66
Vanden-Broëck (1984) Inviscid theory 0.23 – –
Couët & Strumolo (1987) Inviscid numerical solution 0.23 – –
Mao & Dukler (1990) N-S numerical simulation 0.22 0.65
Ha Ngoc & Fabre (2004a,b) Inviscid numerical solution 0.22 1.4 0.64

Table 1. Plane Taylor bubble in vertical channels: results at small Σ .

minimizes potential energy, so the only stable configuration is the one that maximizes
the bubble rise velocity. Interestingly, Birkhoff & Carter (1657) cast doubt on
the Garabedian maximum velocity principle, arguing that if it was true, then the
symmetric bubble would be unstable because a bubble that mounts touching one of
the walls is equivalent to a bubble rising in a channel of twice the width, mounting
faster than the centred one.

The effect of surface tension was investigated later on, experimentally by Maneri &
Zuber (1974), theoretically by Vanden-Broëck (1984), numerically by Couët &
Strumolo (1987) then by Ha Ngoc & Fabre (2004a). The numerical results showed
good agreement with previous experimental and theoretical investigations. (The
numerical results of Ha Ngoc & Fabre and Couët & Strumolo (1987) disagree
with increasing surface tension (Σ > 0.3).) Vanden-Broëck (1984), also motivated by
the application of these concepts on descending jets falling from vertical nozzles,
used the method of Birkhoff & Carter (1957) to obtain more precise estimations
of the shape and velocity. It was shown that the omission of surface tension leads
to an erroneous prediction of the velocity. Correct values for zero surface tension
were later obtained by solving the problem with surface tension approaching zero
asymptotically. It was also shown that there exists a countable infinite number of
solutions, each one corresponding to a different value of the velocity. The expected
physical solution was calculated as V ∗

∞0 = 0.226. This scenario suggests a competition
between inertial and surface tension effects for the selection of the largest velocity.

Some of the above investigations give the curvature radius R∗
c at the bubble

tip (table 1). From their experiments, Collins (1965) and Maneri & Zuber (1974)
found 0.62 and 0.63–0.66, respectively. These results were confirmed by the numerical
simulations of Mao & Dukler (1990) and Ha Ngoc & Fabre (2004a). The theory of
Collins (1965), in contrast, overestimates the curvature radius with a value of 0.96.

All the previous 2D studies are related to the motion in still liquid, but what
about bubbles rising in flowing liquid? As stated before, a 2D experiment is probably
unrealistic and it has not been carried out, contrary to numerical simulation. Ha
Ngoc & Fabre (2004b) have recently studied the motion of a 2D plane bubble in
upward or downward Poiseuille flow in the framework of the inviscid assumption.
Their results for |U ∗| < 1 showed that the bubble velocity

V ∗ = 0.23 − 0.09 Σ + (1.38 − 2.57 Σ) U ∗ (2.2)
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has the form of (1.1) (note that if V ∗ ≈ U ∗
M +V ∗

∞ for axisymmetric laminar or turbulent
flow in tube, this is far to be the case for laminar plane flow since V ∗ ≈ 0.92 U ∗

M +V ∗
∞

from (2.2)) and that the curvature radius R∗
c can be expressed by a correlation that

fits at best their numerical results:

R∗
c =

0.64 (1 − 0.05Σ)√
(1 − 4.9Σ) w + 1.02

, (2.3)

where w = U ∗/(V ∗ − 1.5 U ∗).

3. The numerical code
The rapid development of interface-capturing methods in the last 10 years allows

a choice between many different methods for multiphase flow research, such as front
tracking (see Esmaeeli & Tryggvason 1998), volume tracking (see Harlow & Welch
1965), or VOF methods with or without interface reconstruction (see Hirt & Nichols
1981). Each method has its advantages and inherent disadvantages. For the case of
choice (VOF without reconstruction), the advantages are velocity and simplicity, and
the most important inconvenience is that under certain flow conditions an unphysical
thickening of the numerical interface may appear (see Benkenida & Magnaudet
2000). For the case of Taylor bubbles, this represents a serious drawback at the rear
of the bubble, where large deformations are combined with small bubble detachment
and coalescence. Nevertheless, there are some successful implementations for low
Reynolds–Taylor bubbles using VOF (see Benkenida 1999; Dupont & Legendre
2010). The subject has also been treated using slightly more elaborated schemes
such as VOF with geometric reconstruction (Taha & Cui 2006), but no successful
implementations for long bubbles rising at Re = O(100) were found in the literature.
In our case, the code has a treatment of the interface that cannot be considered as
a reconstruction even though it improves the front stiffness. The idea is to transport
both sides of the interface with the same normal velocity by reducing its thickening to
a minimum (Bonometti & Magnaudet 2007). Instead of trying to simulate the rear of
the bubble that has no effect at all on its velocity and shape for the inertia-dominated
regime, we considered infinitely long bubbles.

The code we used (referred to as JADIM) is an internal development that solves
the Navier–Stokes equations for multiphase flow using the VOF method. The code is
capable of solving the Navier–Stokes equations while transporting the volume fraction
C, which is a scalar that represents the presence of the liquid or gaseous phase (0
for the liquid phase and 1 for the gas). In this single fluid model (Benkenida &
Magnaudet 2000), the fluid properties vary abruptly across the interface, and the
pressure condition due to surface tension is given by the Young–Laplace equation.
The fluids are assumed to be Newtonian, incompressible and immiscible. The final
precision of the scheme is of order one in time and two in space. Multiple validation
tests for this code in multiphase flow situations can be found in the literature (for a
more detailed discussion on the subject, see Bonometti 2003).

Studying the bubble’s final rise velocity usually requires long simulation times and
large or periodic numerical domains. In our particular case, a periodic domain would
cause the perturbations at the rear of the bubble to interact with the tip, sensibly
disturbing the final state. In addition, a dense numerical mesh in the vicinity of the
bubble tip is needed, which combined with a large domain would result in important
computational cost. In order to deal with these problems, two important tasks were
carried out: first, a change of reference frame was implemented so as to follow the
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D

L

x

y

Figure 1. (Colour online available at journals.cambridge.org/FLM) Section of a vertical
channel of length L and width D (a) and irregular nodes denser at the vicinity of the bubble
tip (b). Shape and streamlines for a bubble in still liquid for Σ =0.01.

bubble tip. Second, an irregular grid was used to comply with the required denser node
length near the tip, since the bubble velocity is very sensitive to the flow conditions
in its vicinity. The distance between the grid points was increased monotonically
following the channel’s longitudinal axis with a growth rate between 0.8 and 1.2 in
both directions, starting from the origin (placed at the apex of the bubble).

The numerical domain consisted of one section of an infinite vertical channel of
width D and length L, as shown in figure 1. The walls are vertically oriented, and the
top and bottom correspond to the inlet and outlet boundary conditions, respectively.
Note that these conditions are often troublesome in the sense that the numerical
domain truncates the physical domain. At the inlet, provided the bubble obstacle is
far enough, the flow may be assumed to be fully developed: the parabolic velocity
profile of Poiseuille flow is thus imposed. At the outlet, the boundary condition
has to be set to allow the liquid phase to leave the domain. However, the domain
truncature may result in unwanted effects such as wave reflections or unbounded
amplification. There exist fairly elaborated schemes to deal with these problems, see
for example Engquist & Majda (1977). In the present case, the outlet boundary
condition is simpler. It is given by vanishing second derivatives of the normal and
tangential velocities in the normal direction, and of the mixed partial derivatives
of the pressure in the normal and tangential directions with respect to the outlet
orientation (Magnaudet, Rivero & Fabre 1995). The streamlines of both phases near
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0.3

0.2

V*

0.1

0
10–3 10–2

Ha Ngoc & Fabre (2004)

Couët & strumolo (1987)

Present work

Σ

10–1 100

Figure 2. (Colour online) Velocity of a plane bubble rising in still liquid versus
dimensionless surface tension.

the exit are almost parallel and reflections are observed in neither of the phases.
For the liquid case, all the perturbations are swept downstream effectively due to the
hydrodynamics of the films adjacent to the walls. Numerical dissipation caused by the
increasing nodal distance at the irregular grid near the outlet also helped the correct
evacuation of the perturbations, so no additional artifice was needed.

The initial conditions at the interior of the domain were as follows: at t =0 the
velocity profile along the whole channel length was parabolic

u∗
∞ = 3

2
U ∗(1 − y∗2), v∗

∞ = 0, (3.1)

where u∗
∞ and v∗

∞ are the components of the dimensionless velocity at the top of the
domain. For the interface initial position, a section of an infinite Taylor bubble of a
given initial shape was placed near the bottom, the tip being at distance l > 3D from
the exit. This distance was sufficient to ensure quasi-parallel flow in the films flowing
on both sides of the bubble, at the end of the simulation. Since the final shape and
velocities proved to be independent of the initial bubble shape, we implemented the
simplest form that resembles a Taylor bubble: a round-tipped infinite bubble with a
diameter between 0.7D and 0.8D. The no-slip condition was imposed on both vertical
walls, y∗ = ±1.

Preliminary tests were run for Taylor bubbles rising in stagnant liquid for 2D
channels. Considering that there is a thin film of liquid that flows between the
channel walls and the bubble, there must be at least five to ten nodes between
the bubble and the wall so as to describe correctly the flow field in this region.
Consequently, the node distance in the y-direction had to be readjusted after some
runs. The grid length-to-width ratio was varied between 5 and 12.5, and the bubble
velocity and shape became independent of this parameter for L/D � 12.5, with a
number of nodes in the x- and y-directions of nx � 88 and ny � 80, respectively.

To validate the first simulations, a comparison was made with some previous
results for Taylor bubbles rising in channels through stagnant liquid. Figure 2 shows
a comparison of the present VOF computations with the inviscid solutions of Couët &
Strumolo (1987) and Ha Ngoc & Fabre (2004a). In the range Σ < 0.025, the bubble
velocity is weakly sensitive to surface tension and the present results agree with the
previous ones. Finally, a more detailed comparison is presented in figure 3, where
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0

–1

–2
0 1

x*

y*

Ha Ngoc & Fabre (2004)

Couët & strumolo (1987)

Maneri & Zuber (1974)

Mao & Dukler (1990)

Present work

Figure 3. (Colour online) Shape of a plane bubble rising in still liquid: comparison between
2D simulations and experiments in thin channels.

the normalized shape of the bubble is plotted at Σ = 0.01: this shape is in close
agreement with those obtained from another numerical solution of the Navier–Stokes
equations (Mao & Dukler 1990) from experimental results (Maneri & Zuber 1974)
and numerical solutions of inviscid flow (Couët & Strumolo 1987; Ha Ngoc & Fabre
2004a). Even though viscosity is taken into account in our simulations, the agreement
between our results and those of Couët & Strumolo or Ha Ngoc & Fabre is very
good, probing the adequacy of the inviscid assumptions for the inertial regime.

Simulations with moving liquid were also implemented for both upward and
downward flows: the agreement is also satisfactory, as shown in the following sections.

Note that it is also possible to do simulations in an axisymmetric geometry. These
are directly comparable with experiments in tubes. Even though these simulations
were also used successfully to validate the code, they are out of the scope of the
present article.

Two types of numerical simulations were run: time-varying and constant U. The
first type whose results are discussed in § 4 was an exploration of the bubble behaviour
in a wide range of liquid velocity: U is varied slowly with time. With the second type
of simulations at constant U, discussed in § 5, we intended to consolidate the previous
results by ensuring that the final steady state was reached.
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Σ N |dU ∗/dt∗|

0.018 5.6 × 10−4 0.001
0.040 8.3 × 10−4 0.002
0.070 8.3 × 10−4 0.001

Table 2. Flow conditions for time-varying U ∗.

4. Exploratory results at time-varying U

In the present numerical experiments, the liquid velocity is varied with time. The
experiment starts from a steady position either in still liquid or in upward flow. At
this initial condition, the bubble shape is always symmetrical. After the steadiness is
reached, the mean velocity U slowly decreases down to an arbitrary negative value.
Note that U is an algebraic quantity, positive (resp. negative) for upward (resp.
downward) flow. Then U is increased again at the same rate. For the flow around
the bubble to be quasi-steady at each time step, the time rate dU/dt of the inlet flow
must be as small as possible: to comply with this condition, the absolute value of the
dimensionless time rate, dU ∗/dt∗ = (2g)−1dU/dt, was assigned smaller than 2 × 10−3

(see table 2). As mentioned earlier, the flow solution depends on the dimensionless
surface tension and viscosity. To remain in the inertial regime, Nν was chosen as
small as possible for the viscous effects to be negligible. Three numerical experiments
at Σ = 0.018, 0.04 and 0.07 have been performed for capturing the surface tension
effects.

Two global quantities were selected for characterizing the bubble behaviour: the
velocity V ∗ and the asymmetry y∗

a defined as the distance of the stagnation point to
the axis of symmetry. These are plotted in figure 4. It is clear from these figures that
the lines follow a different path depending on whether U ∗ increases or decreases.

When U ∗ decreases (see the movie available at journals.cambridge.org/flm), the
path consists of three steps. In the first step, the bubble remains almost symmetric
and its velocity decreases linearly: we will refer to it as the ‘symmetric regime’ (S-
regime for short). The second step is a transition regime. The symmetry breaks as
the bubble tip moves closer to one of the walls and its velocity increases. The third
step corresponds to an ‘asymmetric regime’ (A-regime for short). The distance of the
bubble tip to the nearer wall seems to reach an asymptotic value. At the same time,
V ∗ decreases almost linearly with U ∗.

When U ∗ increases, the path consists of two steps corresponding to A-regime
followed by S-regime. A-regime is different from that observed with decreasing U ∗

while S-regime is the same. The trajectories in the (U ∗, V ∗) plane look like hysteresis
cycles but, since these simulations represent transient phenomena, there is no certainty
that the history forces remain negligible. Although these simulations are limited
because of transient effect, they point out some original qualitative features.

(i) There exist two different regimes of motion: S- and A-regimes.
(ii) S-regime is observed in upward liquid flow, whereas in the present numerical

simulations, A-regime was observed only in downward flow.
(iii) For a given range of downward liquid flow, either regime can be observed

depending on whether U ∗ decreases or increases.
(iv) The bubble moves faster when it is in A-regime than in S-regime.
(v) The bubble motion depends on Σ in A-regime whereas it is much less sensitive

to it in S-regime.
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Figure 4. (Colour online) (a, b) Exploration of the bubble velocity by varying the liquid
velocity with time. Σ =0.018 (�), 0.04 (�) and 0.07 (�).

5. Results at constant U

The time-varying U experiments state nothing about the co-existence of S- and
A-regimes for a given liquid velocity. Furthermore, they remain essentially qualitative.
This is why we looked for steady solutions.

As we start each simulation from an arbitrary shape, the final solution must satisfy
two conditions: (i) it must be stationary and (ii) it must not depend on the initial
conditions. Starting with various initial shapes showed no significant influence on
the final solution, provided the transient time was large enough for the steady state
to be reached. Depending on the liquid velocity, this transient time could be more
or less large. Examples are given in figure 5, where we plotted the time evolution
of the bubble dimensionless velocity V ∗ for two liquid velocities, 0 and −0.26. Note
that the time t∗ =2(g/D)1/2t is normalized by the time to travel over a half-diameter,
in agreement with the length and velocity scales, D/2 and

√
gD, already defined. A

simulation of a bubble with axisymmetric initial shape was considered. For the first
case (U ∗ = 0), it can be observed that the final velocity attains a quasi-stationary state
and that the shape remains symmetric after t∗ ≈ 2. Even if the simulation lasts for
long time, this ‘stable’ state persists. For the second case (U ∗ = −0.26), a different
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Figure 5. (Colour online) From initial to steady state at Σ = 0.018 for two liquid velocities:
�, U ∗ = 0; �, U ∗ = −0.26.

behaviour is observed. Starting from rest there exists a strong initial transient that
causes the bubble to move backwards (the velocity at t∗ =0 is not zero). Next,
an equilibrium state appears to be quickly reached, in a time comparable to the
previous case, for a bubble velocity of about V ∗ = −0.10. The bubble shape remains
axisymmetric as indicated in the bubble picture. Later on, a transition takes place
and the bubble migrates to an asymmetric position along with a sensible velocity
augmentation. The bubble velocity and shape stop evolving in time, notwithstanding
the fact that oscillations coming from small surface waves are still present: these are
later swept away to the bottom through two liquid films located between the bubble
interface and the channel walls. No additional transitions are observed afterwards,
even if long simulation times are attained. In this particular case, the lifetime of the
symmetric configuration was long: the transition usually takes place before t∗ = 20
and the transient time is one order of magnitude greater than for the previous case:
t∗ ≈ 30. The existence of an unstable equilibrium state could be the signature of the
multiplicity of solutions described by Garabedian (1957) and later on by Ha Ngoc
(2003). Note that there are no artificial perturbations introduced in the flow field,
with the exception of numerical noise due to truncation errors, which combined with
the aforementioned oscillations are capable of triggering the transition.

The numerical simulations at constant-U were performed at various surface
tensions: Σ = 0.01, 0.018, 0.04 and 0.07. The global results are provided in the
Appendix for each flow condition. They include the bubble velocity, V ∗, the curvature
radius at the bubble tip, R∗

c , and three other important quantities that are discussed
below: y∗

∞, y∗
a and k. (The curvature radius at the bubble tip was determined as follows.

A smoother shape was calculated from an exponential moving average for x ∈ [–0.1,
0]. Then it is approximated by a cubic that gives R∗

c .) The streamline passing at the
stagnation point plays a special role, such as for axisymmetric bubbles: it will be
referred to as the leading streamline. Two points of that streamline are important: the
stagnation point whose coordinate y∗

a is used to quantify the bubble asymmetry and
the point at infinity of coordinate y∗

∞ that allows determination of the fluid velocity at
infinity. The leading streamline divides the field into two regions, each one connected
with one of the liquid films flowing around the bubble. The percentage of the total
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Figure 6. (Colour online) (a–c) Velocity (�), splitting coefficient (�), asymmetry (�) and
curvature radius (�) for Σ = 0.01. Solid curves are drawn from (2.2) and (2.3).

liquid rate that flows through the thicker film is defined as the splitting coefficient k.
For a Poiseuille velocity distribution, it is connected to y∗

∞ by

k = (1 + y∗
∞)

2V ∗ − U ∗(2 − y∗
∞)(1 + y∗

∞)

4(V ∗ − U ∗)
. (5.1)

For a symmetric bubble y∗
a = y∗

∞ =0 and k = 0.5.

5.1. Influence of liquid velocity

An example of results is presented in the three graphs of figure 6 for the weakest
surface tension Σ = 0.01. For comparison, we added the numerical results for a
symmetric bubble in an inviscid fluid obtained by Ha Ngoc & Fabre (2004b). These
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graphs clearly demonstrate the existence of a transition between symmetric and
asymmetric bubbles for a critical velocity U ∗

c . This transition is discussed in § 5.5.
When U ∗ >U ∗

c , the bubble is in S-regime as indicated by the asymmetry (y∗
a = 0)

and the splitting coefficient (k = 0.5). Its velocity V ∗ is a linear function of the
liquid velocity U ∗. The agreement with the results obtained in inviscid flow is quite
remarkable: they prove that the viscosity has little influence on the bubble dynamics,
at least for the present dimensionless viscosity.

Concerning the curvature radius at the bubble tip, the results confirm the trend
of the inviscid assumption: R∗

c increases when U ∗ decreases. Thus, the bubble tip is
flatter in downward flow than in upward flow: while the curvature radius is about
0.5 in still liquid it is only equal to 0.3 for U ∗ = 0.4 and reaches a value of about 0.6
in downward flow near the critical condition. This is in qualitative agreement with
(2.3), which shows that R∗

c is a decreasing function of U ∗. However, contrary to the
bubble velocity for which the inviscid and viscous results agree, the present curvature
radii are smaller than those found by Ha Ngoc & Fabre (2004b) in their inviscid
flow simulations. The discrepancy observed here between inviscid and viscous flows
could be related to the interface condition. For a viscous flow, the shear stress at the
gas–liquid interface vanishes and the condition reads

ωs = −2
us

Rc

, (5.2)

where ω is the vorticity. The above condition states that vorticity must be created
along the curved interface to keep the velocity gradient equal to zero while the fluid
rotates at the rate us/Rc. On the contrary, ω is constant on each streamline for an
inviscid plane flow and, as such, must be zero at the surface of a symmetric bubble:

ωs,inv = 0. (5.3)

Equations (5.2) and (5.3) are equivalent only at the stagnation point where both
ωs and ωs,inv are zero. Since ω = ψyyy +ψxxy and R∗

c = ψxy/ψxxx where ψ is the
streamfunction, the ratio of the curvature radii in viscous and inviscid flows at the
stagnation point is given by

R∗
c

R∗
c,inv

=
3

5

(
ψxxy

ψxxy,inv

ψxy,inv

ψxy

)
0

, (5.4)

suggesting that R∗
c <R∗

c,inv . The present results show that this ratio is close to 0.8 so
that (2.3) has to be replaced by

R∗
c =

0.51 (1 − 0.05Σ)√
(1 − 4.9Σ) w + 1.02

. (5.5)

It is surprising that the inviscid numerical simulations fail to predict the curvature
radius whereas they do a good job for the velocity.

When U ∗ <U ∗
c , the bubble is in A-regime. The symmetry breaking occurs in a

narrow range of liquid velocity as y∗
a shows. When U ∗ continues to decrease, y∗

a

seems to reach an asymptotic value: then the bubble tip moves close to one of the
walls. Concurrently to y∗

a , the splitting coefficient k increases from 0.5 to 1, indicating
that most of the liquid flows through the thicker film. The curvature radius becomes
smaller compared to that observed with symmetric bubble: the bubble is more slender
so as to reduce its pressure drag against increasing downward flow. As for the bubble
velocity V ∗, it is much greater than that it would be in S-regime and changes little
when U ∗ decreases below the critical condition.
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Figure 7. (Colour online) Bubble shape for various liquid velocities at Σ = 0.01
(U ∗

C = −0.09).

Figure 7 illustrates the effect of the liquid velocity on the bubble shape for Σ = 0.01.
To fix the idea, the critical velocity U ∗

c is equal to −0.09. When the bubble rises in
still liquid or in upward flow, U ∗ � 0, the shape is perfectly symmetric. When U ∗ < U ∗

c

the symmetry is broken and the bubble moves close to one of the walls with a typical
elongated tip. Nevertheless, when U ∗ = −0.04, a small dissymmetry is observed: on
one side the bubble keeps the shape it has in still liquid whereas on the other side it
departs from this shape. Even though the bubble is not symmetric, it behaves as if
it is: y∗

a ≈ 0, V ∗ follows (2.2) and R∗
c , (5.5). This behaviour has also been observed in

the range [U ∗
c , 0] for the other Σ values.

5.2. Influence of surface tension

As our simulations were performed at small surface tension in the range [0.01–0.07]
we expected a marginal effect of Σ . Nevertheless, even a small change of surface
tension can induce drastic change on both the dynamics and the shape of the bubble.
The results are indeed quite surprising as figure 8 shows.

Whenever the bubble is symmetric we do not observe a significant influence of
Σ on either the bubble velocity or the curvature radius as (2.2) and (5.5) predict.
However, when the bubble is asymmetric, even a small difference of Σ may induce
significant differences. The velocity and nose curvature increase as Σ decreases. To
fix the idea, V ∗ and R∗

c experience a decrease of about 0.2 and 0.3 respectively, as
Σ increases from 0.01 to 0.07. This is also the case for the asymmetry but the ratio
R∗

c /(1 − y∗
a ) depends little on Σ . Figure 9 illustrates the effect of surface tension for

three bubbles at the same liquid velocity. The bubble shape is mainly affected on the
side of the thicker film: the smaller Σ , the more slender the bubble.

5.3. Flow structure and symmetry breaking

Inviscid theoretical results can be applied to Taylor bubbles moving in upward flow,
since they are always symmetric. Unfortunately, there are no practical results for
non-symmetric bubbles. In general, the simulations proved that the flow field behaves
as inviscid almost everywhere. If it were so, the vorticity would be constant on each
streamline and it would be also the case for the Bernoulli constant. In real flow, this
is the case with the exception of thin boundary layers located at the walls and very
near the bubble surface. In these layers the vorticity and the Bernoulli constant depart
from their values in inviscid flow. Therefore, the effects of viscosity on the flow field
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Figure 8. (Colour online) (a–c) Influence of Σ =0.01 (�), 0.018 (�), 0.04 (�) and 0.07 (�).
Solid curves are drawn from (2.2) and (5.5) for Σ = 0.01.

may be quantified through the additional value that either takes on each streamline
with respect to their value at infinity. Here we have chosen the additional vorticity
∆ω = |ω − ωinv | to identify the region impacted by viscosity. For a Poiseuille flow
with a velocity distribution given by (3.1), ωinv = f (ψ) is a root of the third-degree
polynomials: ω3

inv + U ∗(18 V ∗ − 27 U ∗)ωinv + 54 U ∗2(U ∗ − V ∗ − ψ). As such, it can be
calculated analytically and compared to the actual value.

Figure 10 illustrates the flow structure of bubbles that move in upward flow,
still liquid and downward flow, at small surface tension (Σ = 0.01). The pictures
show the shape of the bubble, the additional vorticity, the leading streamline and
the upstream velocity distribution. Because the ∆ω-thresholds that were chosen are
somewhat arbitrary (0, 1, 2), the layer thickness remains qualitative. As anticipated, the
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Figure 9. (Colour online) Bubble shape for various values of Σ at U ∗ ≈ −0.37.

U * = 0.3 (Re = 173) U * = –0.3 (Re = 208)U * = 0 (Re = 516)

(a) (b) (c)

Figure 10. (a–c) Bubble shape and flow structure at Σ =0.01. Solid line shows leading
streamline. White arrows show velocity distribution. Additional vorticity: red area (�ω � 2),
green area (1 <�ω < 2), blue area (�ω � 1).

additional vorticity is concentrated on four viscous layers: on each wall and on either
side of the stagnation point at the interface. It appears that the bubble layers are much
thinner than the wall layers. Indeed, in the absence of shear stress at the interface,
the only source of vorticity comes from (5.2). The analytical inviscid solutions (e.g.
Dumitrescu 1943; Davies & Taylor 1950) show that the bubble dynamics is controlled
by the flow in the vicinity of the stagnation point. However, because the only source
of additional vorticity at the bubble surface is weak, the viscosity has only a marginal
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influence upon the bubble velocity. It explains why the inviscid fluid assumption was
successful in predicting the bubble motion.

Was the viscosity small enough to be neglected in the present experiments?
According to Wallis (1969), the viscous force can be neglected whenever the
dimensionless viscosity N, which can be viewed as an inverse Reynolds number,
is smaller than 1/300. This condition is fulfilled in the present numerical experiments
(see table 2).

For symmetric bubbles moving in still liquid and in upward flow, the wall layers look
the same: both start developing at a small distance from the bubble tip and begin to
fill the liquid films at several unit lengths from it. It might be surprising that still liquid
and upward flow look similar since the former is irrotational and the latter rotational.
Nevertheless, the viscous forces remain negligible apart from the wall vicinity.

The asymmetric bubble corresponding to downward flow looks different. The
boundary layer that grows at the wall wetted by the thicker film starts at about
half a diameter upstream the bubble tip, whereas it starts near it at the other wall.
Nonetheless, if the thicker film starts developing before the other, its developing
length is much greater.

The flow picture in figure 10 suggests the mechanism of the bubble asymmetry.
Even if the symmetric solution does exist theoretically, it may be unstable in some
circumstances. Indeed, for the inertial regime, the driving force that tends to move
the bubble upwards is balanced by momentum. One expects that the bubble find its
path where the momentum opposed to it is the smaller. Thus, one may infer from
figure 10(b) that a bubble moving in still liquid does not see any preferential path. This
is also the case of upward liquid flow as shown in figure 10(a) but, because the bubble
is facing less momentum at the corresponding position where the adverse liquid
velocity is minimal, there is a preferential path that forces the symmetry. In contrast,
when the bubble moves in downward liquid flow, the bubble would normally move at
the wall, as the velocity distribution of figure 10(c) suggests. However, surface tension
comes into play to restore the symmetry (U ∗

c < U ∗ < 0) or to prevent the bubble to
stick the wall (U ∗ < U ∗

c ). Indeed figure 8(c) shows that the curvature radius at the tip
cannot exceed a fraction of the distance of the stagnation point to the nearer wall:
R∗

c < 3
4
(1 − y∗

a ). Because surface tension tends to make the curvature radius as large
as possible, it keeps the bubble at a certain distance from the wall.

5.4. About the motion of asymmetric bubbles

The velocity of symmetric bubbles may be viewed as the additive and nearly uncoupled
contributions of the fluid motion on the leading streamline and buoyancy (Nicklin
et al. 1962; Collins et al. 1978). Is a similar conjecture valid for asymmetric bubbles?
If this is true, the velocity of asymmetric bubbles should be given by the sum of two
contributions.

(i) That of buoyancy which is the velocity V ∗
∞ that the bubble would have in still

liquid with its asymmetric shape: this is of course a fictitious case since a real bubble
in still liquid would be symmetrical. This contribution has to match two limiting cases.
If the bubble is symmetric, i.e. when y∗

a = 0, (2.2) shows that V ∗
∞ = 0.23 regardless of

the weak surface tension effects. If the bubble wets the wall, i.e. when y∗
a = 1, it may

be viewed as the half-part of a symmetric bubble moving in a channel two times
wider than the actual channel, V ∗

∞ = 0.23
√

2 (Birkhoff & Carter 1957; Vanden-Broëck

1984). A simple relation that matches these two limiting cases is V ∗
∞ = 0.23

√
1 + y∗

a .
(ii) The contribution of the liquid flow can be extended from the symmetrical case.

Equation (2.2) shows that the contribution of the liquid flow is 0.92 U ∗
M , where U ∗

M is
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Figure 11. (Colour online) Velocity of symmetric and asymmetric bubbles, Σ = 0.01 (�),
0.018 (�), 0.04 (�) and 0.07 (�).

the velocity far upstream on the leading streamline. By extension to the asymmetric
case, U ∗

M should be replaced by the velocity on the leading streamline U ∗(y∗
∞).

With the above conjectures, the bubble velocity is given by

V ∗
cor = 0.92 U ∗(y∗

∞) + 0.23
√

1 + y∗
a . (5.6)

The estimated and actual velocities are compared in figure 11, where symmetric
and asymmetric cases are included. The agreement between numerical experiments
and (5.6) is only qualitative. Moreover, because y∗

∞ and y∗
a have to be specified, it is

not predictive. However, since y∗
∞ and y∗

a are close to each other the velocity of the

asymmetric bubble is almost equal to 0.92 U ∗(y∗
a ) + 0.23

√
1 + y∗

a , i.e. the velocity that
a symmetric bubble would have in a channel (1 + y∗

a ) times wider and in a Poiseuille
flow specified by the maximum velocity U ∗(y∗

a ).
Why does the bubble tip stop at a given distance from the wall? As previously

mentioned, there seems to be a competition between surface tension and inertia:
apparently the decrease of the curvature radius in asymmetric bubbles causes a
corresponding bubble velocity reduction. As a result, the bubble remains at a given
position far from the wall, without touching it. It has been observed that viscosity
effects are important in the falling film near the wall. This situation could create a
lubrication effect, impeding the contact between the bubble and the channel wall.

5.5. Transition from symmetric to asymmetric flow

The most important issue to be discussed is certainly the transition from symmetric to
asymmetric bubbles. The present results show the existence of a critical liquid velocity
U ∗

c below which the symmetry is broken. The bifurcation occurs only in downward
liquid flow, i.e. for a negative value of U ∗

c ; it depends on surface tension and, possibly,
viscosity.

To determine the transition between symmetric and asymmetric bubbles, several
methods can be used. The first method that comes to mind is to determine directly
the symmetry breaking, i.e. the liquid velocity below which y∗

a �= 0. The other methods
consist in observing the effect induced by symmetry breaking on either the dynamics,
V ∗, or the shape, R∗

c . Therefore, the critical velocity is that below which the behaviour
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Σ U ∗
c R∗

c,c

0.010 −0.09 0.55
0.018 −0.08 0.59
0.040 −0.12 0.58
0.070 −0.19 0.60

Table 3. Critical velocity and curvature radius for various surface tensions.
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Figure 12. (Colour online) Critical velocity (�) and curvature radius (�) versus
dimensionless surface tension.

departs from that of symmetric bubbles predicted by (2.2) for V ∗ and (5.5) for R∗
c . The

methods based on induced effects almost agree with related results given in table 3.
In contrast, the method based on the direct determination of asymmetry gives greater
critical velocity of about −0.055, almost insensitive to surface tension. This suggests
the existence of a range of liquid velocities for which slightly asymmetric bubbles
behave as symmetric ones. This is a surprising result, which deserves to be verified in
additional experiments.

In the present study, we have chosen the critical velocity obtained from induced
effects (table 3). The corresponding results plotted in figure 12 show that when Σ

increases, U ∗
c decreases almost linearly:

U ∗
c ≈ − (2.2 Σ + 0.04) . (5.7)

However, it would be risky to extrapolate the results to zero surface tension because
(5.7) remains questionable at the smallest values of Σ . Indeed, a careful observation
of the bubble velocity in the vicinity of the transition shows singular behaviour for
Σ = 0.01 (see figure 8).

Let us now focus on the curvature radius at the bubble tip. At critical condition it
is remarkable that it is nearly equal to a maximum value of 0.6. In fact, the numerical
experiments summarized in figure 12 show that the curvature radius increases slightly
with surface tension as

R∗
c,c ≈ 0.22 Σ + 0.58. (5.8)

This is a rather strong conclusion of the present study that a symmetric bubble
having a curvature radius greater than 60 % of the channel half-width cannot exist.
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6. Conclusions and perspectives
The case of a single Taylor bubble rising through moving liquid in a vertical

channel was studied through a series of numerical experiments. Up to now, the
literature mentions only a few results on this particular situation, e.g. the numerical
investigation of Ha Ngoc & Fabre (2004b). Actual bubbles rising in tubes present
many of the features described in the aforementioned investigation, evidencing the
adequacy of the simplified inviscid assumption, and its applicability even in the
2D case. However, real bubbles present an additional feature which was not fully
described by previous investigations in channel flow: if the liquid velocity decreases
below some critical negative value, i.e. if the downward flow rate increases above
some critical value, the flow symmetry breaks up, as shown experimentally in the past
by Martin (1976) for pipe flow, and the bubble rises appreciably faster than it would
do if symmetry was preserved.

In this work, the flow was simulated using a numerical code that solves the
Navier–Stokes equations, resolving the interface position by the use of the VOF
formulation. Two types of numerical experiments were carried out: when the liquid
velocity varies slowly in such a way as to describe an ‘aller–retour’ path, the transition
to the asymmetric regime is observed and the descending U branch differs from
the ascending one in a hysteresis-like trajectory. However, this is not real hysteresis
since the bubble always tends to a fixed point in the U–V plane when the liquid
velocity variation stops, proving that the apparent hysteresis cycle results from the
flow unsteadiness. These exploratory simulations also provided the first estimates of
the critical velocity. The second type of numerical experiment consisted of keeping
the liquid velocity constant from the beginning, allowing the bubble to evolve freely
until a quasi-steady state was reached. The transition was observed in both cases,
confirming the change to a non-symmetric regime. The reported critical velocity of
the transition and bubble shape, nose position and curvature radii were all calculated
using this type of scheme.

The numerical results for symmetric bubbles in upward liquid flow agree with
previous theoretical and numerical results, confirming the observed ‘decoupling’
between the effect of transport by the liquid flow and that of bubble buoyancy.
On the other hand, the non-symmetric cases provided information about the driving
forces that control the different regimes: while surface tension tends to enforce
symmetry, inertia forces the bubble towards the wall, where it faces a smaller
amount of liquid momentum. Interestingly, the bubble never reaches the wall in these
experiments. The effects of viscosity may be of importance in the liquid film that
forms between the bubble and the wall. Even if the transition to a non-symmetric
regime has been observed experimentally in the past, it is still one of the most
original contributions of this work, since it has been closely studied through the
numerical experiments. Both the velocity evolution of the bubble and the decrease
of the curvature radius at the stagnation point (with increasing liquid speed) were
reported: it was found that non-symmetric bubbles rise much faster than their
symmetric counterparts when facing the same liquid velocity profile far upstream
the bubble nose. The bubble rise velocity is very sensitive to the latter velocity
profile, which in our case was parabolic. The same technique can be applied to
turbulent velocity profiles, as was done by Ha Ngoc & Fabre (2004b). It would
be interesting to study those cases for two reasons: one is completeness, and the
other is that for very large downward liquid velocity the bubble could actually
touch the wall, presenting a second non-symmetric regime that have not yet been
described.
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Appendix
Numerical simulations: flow conditions (symmetry is prescribed for runs 1–3).

Run Σ N U ∗ V ∗ y∗
∞ y∗

a k R∗
c

1 0.010 1.1 × 10−3 −0.039 0.179 0.03 0.01 0.52
2 ′′ ′′ −0.071 0.134 0.04 0.01 0.55
3 ′′ ′′ −0.086 0.117 0.06 0.04 0.56
4 ′′ ′′ 0.300 0.643 0.00 0.00 0.50 0.33
5 ′′ ′′ 0.100 0.365 0.00 0.00 0.50 0.43
6 ′′ ′′ 0.000 0.233 0.03 0.01 0.52 0.49
7 ′′ ′′ −0.039 0.179 0.07 0.04 0.54 0.53
8 ′′ ′′ −0.074 0.140 0.17 0.12 0.60 0.53
9 ′′ ′′ −0.088 0.127 0.27 0.17 0.66 0.55
10 ′′ ′′ −0.100 0.145 0.54 0.37 0.81 0.44
11 ′′ ′′ −0.118 0.151 0.62 0.45 0.85 0.38
12 ′′ ′′ −0.147 0.157 0.70 0.53 0.89 0.30
13 ′′ ′′ −0.300 0.127 0.82 0.68 0.96 0.19
14 0.018 5.6 × 10−4 −0.706 0.011 0.90 0.76 0.99 0.12
15 ′′ ′′ −0.367 0.088 0.82 0.68 0.97 0.19
16 ′′ ′′ −0.282 0.106 0.79 0.63 0.95 0.24
17 ′′ ′′ −0.258 0.120 0.77 0.60 0.94 0.25
18 ′′ ′′ −0.207 0.124 0.73 0.55 0.92 0.30
19 ′′ ′′ −0.169 0.128 0.68 0.50 0.89 0.35
20 ′′ ′′ −0.131 0.131 0.59 0.42 0.84 0.41
21 ′′ ′′ −0.110 0.133 0.52 0.37 0.80 0.46
22 ′′ ′′ −0.092 0.126 0.35 0.24 0.71 0.55
23 ′′ ′′ −0.074 0.130 0.07 0.04 0.54 0.61
24 ′′ ′′ −0.070 0.135 0.12 0.09 0.57 0.59
25 ′′ ′′ −0.055 0.155 0.02 0.01 0.51 0.58
26 ′′ ′′ −0.037 0.180 0.02 0.01 0.51 0.55
27 ′′ ′′ 0.000 0.226 0.01 0.01 0.51 0.53
28 0.040 8.3 × 10−4 −0.531 −0.067 0.78 0.63 0.98 0.16
29 ′′ ′′ −0.384 −0.007 0.73 0.60 0.95 0.21
30 ′′ ′′ −0.219 0.049 0.59 0.45 0.87 0.34
31 ′′ ′′ −0.165 0.067 0.46 0.35 0.80 0.44
32 ′′ ′′ −0.138 0.074 0.35 0.27 0.72 0.51
33 ′′ ′′ −0.110 0.090 0.16 0.12 0.60 0.58
34 ′′ ′′ −0.055 0.153 0.06 0.04 0.53 0.55
35 0.070 8.3 × 10−4 −0.027 0.185 0.01 0.01 0.51 0.52
36 ′′ ′′ −0.055 0.152 0.02 0.01 0.51 0.53
37 ′′ ′′ −0.110 0.087 0.04 0.04 0.53 0.56
38 ′′ ′′ −0.165 0.025 0.10 0.09 0.57 0.60
39 ′′ ′′ −0.200 −0.007 0.21 0.17 0.66 0.57
40 ′′ ′′ −0.219 −0.013 0.33 0.27 0.74 0.50
41 ′′ ′′ −0.274 −0.033 0.48 0.40 0.84 0.39
42 ′′ ′′ −0.329 −0.059 0.54 0.45 0.89 0.33
43 ′′ ′′ −0.384 −0.085 0.59 0.50 0.92 0.29
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