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Political science researchers typically conduct an idiosyncratic search of possible model

configurations and then present a single specification to readers. This approach

systematically understates the uncertainty of our results, generates fragile model

specifications, and leads to the estimation of bloated models with too many control

variables. Bayesian model averaging (BMA) offers a systematic method for analyzing

specification uncertainty and checking the robustness of one’s results to alternative model

specifications, but it has not come into wide usage within the discipline. In this paper, we

introduce important recent developments in BMA and show how they enable a different

approach to using the technique in applied social science research. We illustrate the

methodology by reanalyzing data from three recent studies using BMA software we have

modified to respect statistical conventions within political science.

1 Introduction

Uncertainty about the ‘‘correct’’ model specification can be high in political science re-
search. Classical methods offer researchers little guidance and few useful tools for dealing
with this uncertainty. As a result, scholars often engage in haphazard searches of possible
model configurations, a practice that can lead to incorrect inferences, fragile reported find-
ings, and publication bias.

A better approach is Bayesian model averaging (BMA), which was introduced to po-
litical scientists by Bartels (1997) but has not come into wide use in the discipline. As
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a result, ‘‘a remarkable evolution’’ in BMA methodology has been completely overlooked
(Clyde and George 2004). In this paper, we explain how BMA can help applied researchers
to ensure that their estimates of the effects of key independent variables are robust to a wide
range of possible model specifications.

Our presentation follows in four stages. First, we review existing approaches to address-
ing model uncertainty and discuss their limitations. Next, we summarize recent develop-
ments in BMA methodology and advocate an approach to the technique that differs
substantially from Bartels (1997). To facilitate usage of BMA, we have developed modified
software code that addresses several obstacles to its use in applied social science research.
We then illustrate our approach by reanalyzing data from three recent articles: the Adams,
Bishin, and Dow (2004) study of proximity and directional voting in U.S. Senate elections,
the Canes-Wrone, Brady, and Cogan (2002) study of the electoral consequences of extrem-
ist roll call voting in the U.S. House, and the Fearon and Laitin (2003b) analysis of civil war
onset internationally. Finally, we conclude with words of caution about appropriate appli-
cations of the technique.

2 The Problem of Model Uncertainty

Political scientists who analyze observational data frequently encounter uncertainty about
what variables to include in their statistical models. A typical researcher develops theory
about a few key explanatory variables and then must choose from a set of possible control
variables over which she has much weaker prior beliefs. In such cases, the appropriate set of
control variables is often highly uncertain. As a result, researchers frequently estimate a va-
riety of models before selecting one to include in the published version of their research.

This practice leads to a number of pathologies. First, it understates our uncertainty about
the effects of the variables of interest. Basing inferences on a single model implicitly assumes
that the probability that the reported model generated the data is 1, an assumption that is
surely mistaken. Second, some researchers may search the model space until they find a spec-
ification in which a key variable is statistically significant, a practice that has led to indications
of publication bias in top journals (Gerber and Malhotra 2008). As a result, reported results
are often fragile to slight variations in model specification. Finally, the perceived necessity
to control for large numbers of potential confounds has led to bloated specifications that
decrease efficiency without necessarily decreasing omitted variable bias (Clarke 2005).

Addressing this problem is difficult because classical methods offer few tools for han-
dling model uncertainty. Researchers who wish to test the robustness of their findings often
estimate a handful of alternative models to see whether the sign and/or significance level of
key coefficients change. However, these tests are conducted in a haphazard manner. In
addition, frequentist hypothesis testing offers no method for resolving conflicting findings
across alternative specifications. What is one to infer if a variable is significant in some
specifications but fails to pass traditional thresholds in others?

Analysts may also try more formal methods to substantiate the models they report. Typ-
ically, researchers compare nonnested models using frequentist tests, such as the Cox and
Vuong tests, select models based on a model fit statistic that penalizes complexity, such as
the Bayesian information criterion (BIC), or compare nested models using likelihood-ratio
tests.1 Methodological objections can be raised concerning the limitations of each of these

1Previously, some researchers resorted to stepwise variable selection to find the ‘‘best’’ model when uncertainty
is pervasive, but it is now commonly understood that this technique leads to upward bias in R2 and estimated
coefficients, downward bias in standard errors, and incorrect p values (Harrell 2001, 56–57).
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techniques (Clarke 2001). But at a more philosophical level, we believe that the enterprise
of searching for a ‘‘best’’ model is inappropriate to most political science data, which rarely
yield clear proof that one specification is the ‘‘true model.’’

In addition, both approaches described above share a deeper underlying problem—the
size of the potential model space. A model with p independent variables implies 2p possible
specifications. Uncertainty about even a few control variables thus makes it extremely dif-
ficult to ensure robustness to alternative specifications within a frequentist framework.
Given the relatively large model space associated with even a modest number of variables,
model uncertainty becomes a serious issue. At present, there is no way to combine the
results of multiple hypothesis tests into more general measures of uncertainty over coef-
ficients and/or models using frequentist techniques.2

3 BMA: An Overview

A more comprehensive approach to addressing model uncertainty is BMA, which allows us
to assess the robustness of results to alternative specifications by calculating posterior dis-
tributions over coefficients and models. BMA came to prominence in statistics in the mid-
1990s (Madigan and Raftery 1994; Draper 1995; Raftery 1995) and has expanded into
fields such as economics (Fernandez, Ley, and Steel 2001), biology (Yeung, Bumgarner,
and Raftery 2005), ecology (Wintle et al. 2003), and public health (Morales et al. 2006).
(The state of research in the field is most recently summarized in Hoeting et al. 1999, Clyde
2003, and Clyde and George 2004.)

BMA is particularly useful in three specific contexts that we illustrate in our empirical
examples below. First, BMA can be helpful when a researcher wishes to assess the evi-
dence in favor of two or more competing measures of the same theoretical concept, par-
ticularly when there is also significant uncertainty over control variables. Second, when
there is uncertainty over control variables, researchers can use BMA to test the robustness
of their estimates more systematically than is possible under a frequentist approach.
Finally, BMA may also be valuable for researchers who wish to estimate the effects of
large numbers of possible predictors of a substantively important dependent variable
(though there are important reasons to be cautious about the conclusions one can draw
from such an approach). As we discuss below, recent methodological innovations have
increased the usefulness of BMA in all these contexts.

3.1 A Brief Review of BMA

We first briefly review the basic theory of BMA in a linear regression context (following
Clyde 2003), which provides the necessary vocabulary for the discussion of innovations
in BMA methodology in the next section.3 Let X denote the n � p matrix of all the

2The problems with idiosyncratic model specifications described above are related to the problem that King and
Zeng (2006) call ‘‘model dependence,’’ which Ho et al. (2007) recommend addressing by estimating the treat-
ment effect of a single-binary variable. Under this approach, researchers should drop observations for which
appropriate counterfactuals are missing and use nonparametric matching to improve covariate balance. Although
there are many good reasons to recommend this approach, it may not always be appropriate. For instance, some
researchers are interested in continuous treatment variables or more than one independent variable. Others may
have substantive reasons to prefer to estimate the most robust possible model for a full sample rather than drop-
ping observations. Finally, some researchers will lack the sample size necessary to get good matches on relevant
covariates. In all these cases, BMA is a potentially useful tool for improving the robustness of reported results.

3The approach described here extends naturally to generalized linear models. For the purposes of this article, we
will assume that the functional form is known and that the standard linear regression assumptions are satisfied.
Researchers who are concerned about serious violations of model assumptions should resolve these issues before
employing BMA (or not using BMA at all).
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independent variables theorized to be predictors of outcome Y.4 Standard analyses would
assume that Y 5 Xb 1 e, where e � N(0, r2I). However, we might have uncertainty about
which of the q 5 2p model configurations from the model space M5 [M1, M2, . . ., Mq]
is the correct model.

The purpose of BMA is to explicitly incorporate this uncertainty into our model and
therefore our inferences. The standard BMA approach represents the data as coming from
a hierarchical mixture model. We begin by assigning a prior probability distribution to the
model parameters b and r2 and the models Mk. The model, Mk, is assumed to come from
the prior probability distribution Mk � p(Mk), and the vector of model parameters is
generated from the conditional distributions r2jMk � p(r2jMk) and bxjr2,Mk �
p(bxjMk,r

2), where X 5 x1, . . ., xp represents a vector of zeroes and ones indicating
the inclusion (or exclusion) of variables in model Mk.

Using this notation allows us parameterize the data-generating process using the fol-
lowing conditional model: Yjbx,r2,Mk � N(Xxbx,r2I). The marginal distribution of the
data under model Mk can therefore be written as follows:

p

�
Y

����Mk

�
5

Z Z
p
�
Y
��bx; r2;Mk

�
p
�
bx

��r2;Mk

�
p
�
r2
��Mk

�
dbx dr2: ð1Þ

The posterior probability of model Mk
5 is

pðMkjYÞ5
pðYjMkÞpðMkÞPq

k5 0

pðYjMkÞpðMkÞ
: ð2Þ

Equation (2) provides a coherent way of summarizing model uncertainty after observing
the data. For instance, we can easily derive the expected value for a given coefficient b after
averaging across the model space M:

EðbjYÞ5
Xq
k5 0

pðMkjYÞEðbkjMk; YÞ: ð3Þ

E(bjY) represents the coefficient’s weighted expected value across every possible model
configuration (with the weights determined by our priors and the performance of the
models).

4For the purposes of exposition, the constant is ignored in this discussion, which is equivalent to assuming that all
variables in X have been centered at their means.

5In practice, the calculations of these quantities use Bayes’s factors (Jeffreys 1935, 1961), a method for assessing
the evidence in favor of two competing models, to compare each model with either the null model or the full
specification (see, e.g., Kass and Raftery 1995). The reason for doing so is the appealing simplicity of calculating
the Bayes’s factor for each possible model against some base model, Mj, rather than directly calculating the
posterior probability for each model. Using Bayes’s rule, we can show that the posterior odds of some model Mk

to Mj can be calculated as pðMk jYÞ
pðMjjYÞ5

pðY j MkÞ
pðYjMjÞ

pðMkÞ
pðMjÞ, which is the Bayes’s factor. As Clyde and George (2004, 82)

point out, the posterior model probabilities in equation (2) above can then be expressed using only Bayes’s factors

B[k:j] and prior odds O[k:j]: pðMk jYÞ5 B½k : j�O½k : j�ÞP
k
B½k : j�O½k : j�.
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3.2 Publicly Available BMA Software

The difficulties associated with implementing the BMA approach are primarily computa-
tional. Calculating any statistic of interest involves solving or approximating p(MkjY),
which is often an intractable high-dimensional integral, for all q 5 2p models under con-
sideration. Given modest numbers of plausible covariates, even standard Markov chain
Monte Carlo (MCMC) approaches become increasingly impractical as the model space
expands. These computational difficulties led many early researchers to adopt simplifying
assumptions and techniques that made BMA analyses more tractable but required signif-
icant trade-offs.

Since then, BMA computation has been radically improved. The combination of
increased computing power, the development of more analytically tractable prior spec-
ifications, and the distribution of the BMA and Bayesian adaptive sampling (BAS)
packages for R have made these techniques far more accessible. Nonetheless, both
packages still have important limitations. We have therefore modified them for use
in applied social science research (as discussed below) and will release our code
for public use.6

4 A New Approach to BMA in Political Science

Since Bartels (1997) first introduced BMA to political science, applications of the tech-
nique within the discipline have been surprisingly rare. Gill (2004) provides a more recent
overview of the approach, but the only published applications we have been able to locate
are Bartels and Zaller (2001), Erikson, Bafumi, and Wilson (2001), Zaller (2004), Imai and
King (2004), and Geer and Lau (2006). However, the BMA literature has developed sub-
stantially since 1997 and new software programs have become available. In this section, we
discuss limitations of previous research (including the analysis in Bartels 1997, the most
prominent presentation of the technique in the field) and propose a revised approach to
using BMA in applied research.

4.1 Interpreting Posterior Distributions Using Coefficient Plots

Previous presentations of BMA in political science have placed a disproportionate empha-
sis on posterior summary statistics that can be reductive or misleading. For instance, Bar-
tels relies almost exclusively on simple hypothesis tests using posterior means and standard
deviations. But as Erikson, Wright, and McIver (1997) point out, Bartels computes t sta-
tistics for model-averaged coefficients that are invalid given the often irregular shapes of
BMA posterior distributions. Bartels (1997), who initially described the t statistics as for
‘‘descriptive purposes only’’ (654), later conceded this point (Bartels 1998), noting that

6Both packages are freely modifiable under the GNU General Public License. The better known of the two is the
BMA package (Raftery, Painter, and Volinsky 2005; Raftery et al. 2009), which covers linear regression, gen-
eralized linear models, and survival models. Although the package is very useful, it has several important lim-
itations, including an ad hoc model selection criterion that may bias posterior estimates and an exclusive reliance
on the BIC prior (Clyde 1999). Clyde’s BAS package (Clyde 2009) improves on the BMA package in several
important respects—it uses a stochastic model search algorithm that outperforms naı̈ve sampling without replace-
ment and MCMC model averaging algorithms in a variety of contexts (Clyde, Ghosh, and Littman 2009); it can
search very large model spaces; and it offers a variety of prior specification options. However, BAS can only
estimate ordinary least squares (OLS) models at the present time. We therefore recommend that applied analysts
use the BAS package for OLS and the BMA package for generalized linear models and survival models.
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‘‘the posterior distribution of each parameter under the assumptions in my article is a mix-
ture of normal distributions . . . and this mixture of normal distributions will not, in general,
be a normal distribution’’ (18).

Rather than relying on summary statistics, the best way to understand the properties of
posterior distributions is to plot them for each parameter, which is now trivial with publicly
available software. Figure 1 illustrates what a coefficient posterior plot looks like. These
plots allow us to answer two distinct questions:

1. Does the variable contribute to the model’s explanatory power? (i.e., what is the pos-
terior probability of all models that include this variable?)

2. Is it correlated with unexplained variance when it is included? (i.e., what is the con-
ditional posterior distribution assuming that the variable is included?)

The vertical line located at 0 on the x axis represents the cumulative posterior probability of
all models that exclude the relevant variable. One minus this value is the posterior prob-
ability of inclusion, p(b 6¼ 0jY), which can be used to answer question 1 above. The con-
ditional posterior distribution, which is also included in the plot, represents the estimated
value of the coefficient in the models in which it is included weighted by the likelihood of
those models, p(bjb 6¼ 0, Y). The location and density of this distribution allow us to answer
question 2 above.

A related point is that BMA encourages researchers to be more clear about their sta-
tistical hypotheses. In practice, many scholars may wish to distinguish between the con-
ditional posterior distribution and the posterior probability of inclusion depending on their
goals and the nature of the data. For instance, some scholars are primarily interested in
whether an independent variable is strongly correlated with a dependent variable across
a range of potential model configurations. In such cases, BMA allows researchers to cal-
culate p(b > 0jb 6¼ 0, Y) or p(b < 0jb 6¼ 0, Y) for the conditional posterior distribution, an
option that we have added to the BMA and BAS packages. Alternatively, a scholar who is
more interested in prediction (say, a scholar of interstate war) may want to know whether
a predictor adds to the explanatory power of statistical models for a given dependent vari-
able (or whether it offers more explanatory power than some alternate concept). In this
context, it might be appropriate to focus on the posterior probability of inclusion. Finally,

Fig. 1 Sample BMA posterior coefficient plot. The vertical line located at 0 on the x axis represents
the posterior probability of models that exclude the variable (p(b 5 0 | Y)). The density represents
the conditional posterior probability for the parameter in those models in which it is included (p(b |
b 6¼ 0, Y)).
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other researchers may wish to consider both metrics and use the combined posterior dis-
tribution p(bjY).7

4.2 Searching the Full Model Space

A second major difference in our approach is that we advise researchers to consider the full
set of 2p possible models when conducting model averaging (excluding those that are the-
oretically or statistically inappropriate as described below). Some early presentations of
BMA focused on averaging across very small subsets of the model space. For instance, in
the two examples he presents, Bartels limits his model averaging to a handful of model
specifications reported in published work, which implicitly places a zero prior on all other
possible models. He concedes that his approach ‘‘can provide only a rough reflection of real
specification uncertainty’’ but argues that it reflects the ‘‘substantive insight’’ of research-
ers (1997, 667–670).

However, putting a nonzero prior probability on only a handful of models when using
BMA is almost always a mistake. Substantively, it typically will overstate our certainty that
the included models are the only possible choices. In addition, such restrictions cripple the
greatest strength of BMA—its ability to systematically search a model space and present
posterior estimates that incorporate uncertainty in the model specification. Even Erikson,
Wright, and McIver (1997)—the authors of one of the articles whose models were
reanalyzed—dissent, noting that ‘‘the original model averaging literature is unambigu-
ously clear in its rule that all models involving plausible variables must be considered.’’8

Previously, researchers might have been forced to restrict the model space due to compu-
tational limitations, but the innovations in BMA software discussed above have made it
possible to analyze large numbers of covariates.

4.3 Alternative Prior Specifications to BIC

In addition, most early BMA research, including Bartels (1997), approximated Bayes’s
factors using the BIC (Raftery 1995, 129–133).9 Although this approach was computation-
ally convenient, its consequences were not always desirable. For instance, BIC tends to
place a relatively high posterior probability on sparse models (Kass and Raftery 1995;
Erikson, Wright, and McIver 1997; Kuha 2004), a model prior that is not always substan-
tively appropriate. In addition, though advocates of BIC argue that it is a reasonable ap-
proximation of the Bayes’s factor under a unit information prior (Raftery 1995, 129–133),
Gelman and Rubin (1995) note that BIC does not correspond to a proper Bayesian prior
distribution (see also Weakliem 1999).

However, other prior specifications are now available to applied researchers. In con-
junction with advances in techniques for sampling large model spaces, these new priors

7Current practices in the discipline rely heavily on p values, which awkwardly conflate these two concepts (Gill
1999). Separating them allows for useful distinctions in variable performance. For instance, it is possible to have
variables that are ‘‘statistically significant’’ (i.e., their credible intervals do not overlap with zero) but have low
posterior probabilities of inclusion. Likewise, it is possible for a variable with a high posterior probability
of inclusion to have a model-averaged credible interval that overlaps with zero due to variation in sign and
significance across models.

8Searching such a limited model space may also lead to an unwarranted emphasis on the selection of the ‘‘best’’
model, which is generally of limited substantive interest.

9The BIC for model Mk compared with the null model M0 is BICk 522 log(Lk 2 L0) 1 p log n, where Lk is the
maximized likelihood for Mk and p is the number of parameters in the model.
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have allowed researchers to significantly improve the flexibility and power of BMA
techniques while avoiding shortcuts such as BIC and Akaike information criterion
(AIC).10

One option in the BAS package that has appealing properties is Zellner’s g-prior
(Zellner 1986), which is formulated as follows:

p
�
bx

���Mk; r
2
�
� Npx

�
0; gr2

�
X#xXx

�21�
ð4Þ

and

p
�
b0; r

2
��Mk

�
}1

�
r2 ð5Þ

for some positive constant g where px represents the number of predictor variables in the
xth model.11 It yields closed form expressions for p(Y | Mk) that are rapidly calculable and
requires the choice of only one hyperparameter, simplifying the prior specification
process.12

Alternatively, one can place a hyper-prior on g to avoid possible misspecification.
Here, we introduce two such hyperpriors for linear regression, which are analyzed in Liang
et al. (2008) and available for use in the BAS package. The first, the so-called ‘‘hyper-g,’’
puts the following hyperprior on g:

pðgÞ5 a22

2
ð11gÞ

a
2 for5 g> 0: ð6Þ

Liang et al. (2008) use example values of 3 or 4 for a when specifying the hyper-g but state
that values of 2 < a < 4 are ‘‘reasonable’’ (the distribution is proper when a > 2). A related
approach is the Zellner-Siow prior (Zellner and Siow 1980). To create this prior, we put
a Gamma(1/2, n/2) prior on g, which induces a multivariate Cauchy prior on bx:

p

�
bx

����Mx; r
2

�
}

Z
N
�
bx

���0; gr2�X#xXx
�21�

p
�
g
�
dg: ð7Þ

Both priors have desirable asymptotic properties and perform well in simulations (Liang
et al. 2008).

How should one choose among the various prior options that are now available? As
noted above, BIC tends to favor parsimonious models, whereas AIC tends to include more
parameters (Kass and Raftery 1995; Kuha 2004). The hyper-g and Zellner-Siow priors will
tend to fall somewhere in between. In practice, one’s choice should depend on the goals of
the research project, the nature of the data, and the type of model. However, the method we
advocate—and which we use in our examples below—is to analyze data with respect to
multiple priors to assess the sensitivity of one’s results to prior choice.

10Although BIC and AIC are not proper Bayesian priors (Gelman and Rubin 1995), we will sometimes refer to
them as ‘‘priors’’ for expositional clarity.

11All variables are assumed to be centered at zero in this notation.
12For instance, one can often choose a value for g that corresponds to the AIC and BIC approximations, although

this value may not necessarily be known.
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4.4 Specifying Model Priors

A related development in BMA methodology involves specifying more flexible priors over
models. Per Clyde (2003) and Clyde and George (2004), we can think of placing a prior
distribution on models M1, . . ., Mk by treating the indicator variables x as resulting from
independent Bernoulli distributions.

pðx j cÞ5 cpxð12cÞp2px : ð8Þ

This prior is fully specified by the selection of the hyperparameter c e (0, 1), which can be
thought of as the probability that each predictor variable is included in the model.

The vast majority of previous presentations have assumed a uniform distribution over
models.13 This assumption implies that c 5 .5 and that the number of parameters is dis-
tributed binomial (q, .5) over the q 5 2p models, which means that the expected number of
independent variables in a model is p/2 (Clyde 2003).

However, the assumption of a uniform distribution over models is not always appro-
priate (Erikson, Wright, and McIver 1997). The BAS package offers several options for
specifying priors over models that reflect researchers’ understanding of the data-generating
process. First, analysts can select a value for c that corresponds to their prior beliefs about
the appropriate number of predictors in the model. Analysts with prior beliefs about the
inclusion of specific variables can also represent c as a vector c5 (c1, c2, . . ., cp), where ci

represents the prior probability that variable i should be included in the model. Finally,
a third possible approach is to put a beta prior on the hyperparameter c to reflect the range
of complexity we expect in the posterior model space.

4.5 Properly Handling Interaction Terms

Finally, it is necessary to adjust BMA usage to account for the presence of interaction terms,
which are frequently employed in social science data analysis. In his analysis, Bartels averages
over models that vary in whether they include one or more interaction terms derived from
variables of theoretical interest. However, the coefficient for a constitutive term of an inter-
action represents the marginal effect of that variable when the other constitutive term is equal to
zero (Braumoeller 2004; Brambor, Clark, and Golder 2006). Combining coefficient esti-
mates of constitutive terms with estimates of the same coefficients from models that omit
the interaction creates an uninterpretable mixture of estimates of two different quantities.14

We recommend a different approach that is consistent with contemporary statistical
practice. First, if an interaction term is one of the covariates under consideration, we should
avoid averaging over models in which one or more of its constitutive terms are excluded
(Braumoeller 2004; Brambor, Clark, and Golder 2006). To do otherwise assumes that the
marginal effect of the excluded variable is zero. If this assumption is false, the interaction

13Bartels (1997) does so as well in his main analysis (669). (He also introduces ‘‘dummy-resistant’’ and ‘‘search-
resistant’’ priors, but these have not come into wide usage and we therefore do not discuss them further.)

14For instance, the coefficients for state opinion and Democratic legislative strength in the Erikson, Wright, and
McIver (1993) data that Bartels reanalyzes represent the marginal effect of those variables in ‘‘individualistic’’
states when interactions with state political culture indicators from Elazar (1972) are included (i.e., individu-
alistic is the reference category and is therefore excluded). By contrast, when the interaction terms are omitted
from the model, the coefficients for state opinion and Democratic legislative strength represent their uncondi-
tional marginal effects. A similar critique applies to Bartels’s other example, which reanalyzes models of eco-
nomic growth in Organisation for Economic Co-operation and Development countries by Lange and Garrett
(1985) and Jackman (1987).
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term will be incorrectly estimated. In addition, if an interaction term and its constitutive
terms are quantities of theoretical interest (rather than control variables), it is desirable to
average within the subset of models that include the constitutive terms and the interaction
term. The resulting posterior distributions for the interaction and the constitutive terms will
then have consistent conceptual definitions and can be interpreted properly.

Previously, it was impossible for the applied analyst to restrict the set of analyzed mod-
els in this way without writing new code. For instance, Erikson, Wright, and McIver (1997)
express concern that BMA ‘‘does not seem adaptable to models containing mutually ex-
clusive dummy variables or complicated interaction terms.’’ To address this concern, we
have modified the BMA and BAS packages to allow analysts to easily exclude theoretically
inappropriate models from the averaging process. Using these software options, analysts
can drop models that violate important theoretical or statistical assumptions. For instance,
it is possible to drop all models that include an interaction term but omit one or more of its
constitutive variables as described above.

5 Applying BMA: Three Illustrative Examples

In this section, we present three examples of how BMA can be applied in contemporary
political science research using the methodological approach described above. Our first
example examines the Adams, Bishin, and Dow (2004) study of voting in U.S. Senate
elections, illustrating how BMA can be used to arbitrate between two possible measures
of the same concept (voter utility from candidate positioning in one dimension). Second,
we reanalyze the Canes-Wrone, Brady, and Cogan (2002) study of the effect of roll call
extremity on incumbent support in the U.S. House of Representatives, which illustrates
how BMA can be used to test the robustness of a single predictor against a wide array
of alternative specifications including interactions. Our final example illustrates how
BMA can help validate the robustness of one’s statistical results in a vast model space
using data from the analysis of Fearon and Laitin (2003b) of the onset of civil war.

5.1 U.S. Senate Voting

We begin with an example that demonstrates how the BMA approach can help arbitrate
between competing predictors. Adams, Bishin, and Dow (henceforth ABD) use data from
the 1988–1990–1992 Pooled Senate Election Study to ‘‘evaluate the discounting/direc-
tional hypothesis versus the alternative proximity hypothesis’’ (348). Using both an indi-
vidual-level model of vote choice and an aggregate-level model of vote share, they ‘‘find
a consistent role’’ for their directional variables, whereas results for their proximity var-
iables are weaker and less consistent (368). We focus here only on their aggregate-level
results (see Montgomery and Nyhan 2008 for a reanalysis of their individual-level results).

ABD follow the common approach of putting alternative measures into the same model
and basing their inferences on the resulting coefficients—a practice that Achen (2005)
refers to as a ‘‘pseudotheorem’’ of political science. Unfortunately, as Achen shows, this
practice is likely to lead to incorrect inferences. A better approach is to use BMA, which
allows us to test competing measures in a more coherent fashion.15

15Some studies have argued for combining directional and spatial approaches (e.g., Iversen 1994; Adams and
Merrill 1999; Merrill and Grofman 1999). However, we interpret the ABD paper as an attempt to arbitrate
between directional/discounting and proximity models.
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ABD conduct an ordinary least squares analysis in which they predict the percentage of
the two-party vote received by the Democrat in each election. They focus on two inde-
pendent variables of interest, which they call Democratic directional advantage and Dem-
ocratic proximity advantage, and estimate two types of models—one in which these
variables are calculated using the average ideological placement of that candidate by
all respondents in the relevant state and year (which we will refer to as ‘‘mean candidate
placement’’) and one in which the variables are calculated using respondents’ own place-
ments of the two candidates (which we will refer to as ‘‘voter-specific placement’’).16

These four different measures are then aggregated at the campaign level. In addition,
ABD express some uncertainty about the correct set of control variables to include in
the analysis, resulting in the reporting of two models for each variable of interest.

Columns 1–4 in Table 1 present our replication of ABD’s table 2, which incorporates
corrections of several errors in the published results (see the Appendix for a more extensive
discussion of our replication). The corrected results, which serve as the basis for the BMA
analysis below, show that the directional variable is consistently positive and statistically
significant but that the proximity variable is consistently negative and significant.17 This
result contradicts spatial voting theory, which suggests that a party’s ideological proximity
to voters should be positively associated with its share of the vote. Moreover, the magnitude
of the directional coefficients raises concerns about misspecification. For instance, the
results in the first column of Table 1 indicate that a 1-unit increase in the Democratic
directional advantage (a variable with a range that exceeds 4 in the data) results in
a 11% increase in the Democratic share of the two-party vote.

As stated earlier, it is inappropriate to include two competing (and highly correlated)
measures of a concept in the same model. Our BMA analysis therefore considers the entire
model space implied by the five variables in the original model excluding those models
containing both the directional and the proximity variables.18 Because the dependent vari-
able is continuous, we can use the BAS package. Columns 5–8 report our findings for the
hyper-g prior (a 5 3) with a uniform prior on the model space. Results were substantively
identical under AIC, BIC, and Zellner-Siow, as illustrated by Fig. 2, which presents pos-
terior plots for the variables of theoretical interest under all four priors.

We focus on the posterior probability of inclusion as the best metric for arbitrating be-
tween two possible measures of the same concept. In this case, our findings show consid-
erably less support for ABD’s conclusions than our replication of their original tables. The
posterior probability of inclusion for the directional measures is consistently higher than
the proximity variables. However, the Democratic directional advantage variable in the
‘‘mean candidate placement’’ model has a posterior probability of inclusion of only .30,
which suggests that the variable is a relatively weak predictor of electoral outcomes.

16For the voter-specific evaluation, the proximity score is created by using the formula [(xR 2 xi)
2 2 (xD 2 xi)

2],
where xR and xD are the respondent’s placements of the Republican and Democratic candidates (respectively) on
a 7-point Likert scale of ideology and xi is the respondent’s self-placement on that scale. For the voter-specific
evaluation of the directional score, the relevant equation is [(xD 2 4)(xi 2 4) 2 (xD 2 4)(xi 2 4)]. The mean
candidate variables are identical except that the average placements of each candidate from all respondents in
that state and year are used for xR and xD.

17In the published version of the table, the proximity variable is insignificant and changes signs across specifi-
cations (see Appendix).

18In the text, ABD identify variables that were considered but not included in the final analysis. For expositional
purposes, we do not consider them there. We demonstrate the utility of BMA for reanalyzing alternate control
variables in our reanalysis of Fearon and Laitin (2003b) below.
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The results reported in columns 5–8 suggest that the negative coefficient on the proximity
variables and the large coefficients associated with the directional measures were artifacts of
including both measures in the same regressions. When we exclude models that include
both variables and average across the remaining model space, we find that the proximity
variable has a minimal rather than a negative coefficient. Second, the size of the coefficients
for the directional variables is substantially reduced. These findings illustrate the inferential
dangers of including competing measures of a single concept in a statistical model and
demonstrate how BMA can help arbitrate between such measures in a systematic way.

5.2 U.S. House Elections

In their widely cited 2002 article, Canes-Wrone, Brady, and Cogan (henceforth CWBC)
combine summary measures of roll call voting with electoral returns to show that legis-
lative extremity reduces support for members of the U.S. House of Representatives in fu-
ture elections. Their work demonstrates an important linkage between Congressional
behavior and electoral outcomes. It also provides a classic example of a research design
intended to demonstrate the robustness of the relationship between a single predictor and
a dependent variable.

The focus of the CWBC analysis is their measure of roll call ideological extremity,
which is based on ratings of House members provided by Americans for Democratic Ac-
tion (ADA).19 For expositional reasons, we focus here only on the full version of their

Fig. 2 Proximity/directional posteriors for Democratic vote share. These are the main posterior plots
of interest under four different priors (additional posterior plots for each model available upon
request). The vertical line located at 0 on the x axis represents the posterior probability of models that
exclude the variable (p(b5 0 | Y)). The density represents the conditional posterior probability for the
parameter in those models in which it is included (p(b | b 6¼ 0, Y)).

19It is calculated as the ADA score for Democratic members and 100 minus the ADA score for Republican mem-
bers, so that higher values represent greater extremity by party (Canes-Wrone, Brady, and Cogan 2002, 131).
The resulting score is then divided by 100.
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pooled model (column 2 of table 2 in their article), which estimates the effect of extremity
on a member’s share of the total two-party vote for the 1956–96 period.

The pooled model that CWBC present, which is replicated in the first column of Table 2
below, includes a measure of the district presidential vote (which is intended to serve as
a proxy for party strength in the district) and seven other control variables. These controls
are presumably included to help ensure that any relationship they find is not spurious. How-
ever, we can use BMA to assess the robustness of their model across a wider range of
plausible control variables. The literature on US elections suggests a number of other pos-
sible factors that might also be associated with electoral vote share. In this reanalysis, we
consider variables measuring the demographic characteristics of the district (the proportion
of district residents who live in rural settings, the proportion who work in the manufactur-
ing sector, and the proportion who are African Americans, union members, foreign born, or
veterans),20 incumbency (an indicator for members who have served five or more terms),
and a flexible function of years since 1956 (i.e., linear, squared, and cubed terms) to capture
the changing magnitude of the incumbency advantage in this period.

We also use BMA to consider an alternate measure and a possible moderator. CWBC
note (but do not show) that their results hold using an average of first- and second-
dimension DW-NOMINATE scores (Poole and Rosenthal 1997, 2007) instead of
ADA ratings. Since the average score across two dimensions is difficult to interpret,
we instead transform DW-NOMINATE first-dimension scores by party (following the
CWBC ADA measure) to assess how results compare between two possible measures
of roll call extremity.21 Finally, it is plausible that the electoral punishment for extremity
may vary depending on the partisan composition of the district. As such, we separately
interact both measures of roll call extremity with the CWBC measure of district presiden-
tial vote to assess whether the strength of the relationship is conditional on party strength in
the district.

In each case, we also exclude all models that include competing measures of the same
concept (i.e., those that include one or more ADA-based variables and one or more DW-
NOMINATE–based variables), those that do not include a dummy variable for being in the
incumbent president’s party (it implicitly interacts with several other variables of interest),
and all models that include the cubed or squared term for years since 1956 but exclude
a lower order polynomial. Following our recommendations for analyzing interactions (de-
scribed above), we analyze the unconditional effect of roll call extremity and the condi-
tional effect in separate models before pooling terms to assess the posterior probability of
inclusion for the interaction terms.

Table 2 provides model outputs from the BMA analysis using a Zellner-Siow prior on
the coefficients and a Beta(3,2) prior on the model hyperparameter c.22 As noted above, the
table contains three models. The first, which is reported in columns 2–3, considers the
unconditional effect of extremity and therefore excludes all models with interaction terms.
This analysis allows us to estimate the robustness of the CWBC finding across a large
model space. The second model, which is reported in columns 4–5, examines the potential

20These variables are drawn from Adler (n.d.). In each case, the values are multiplied by 21 for Republicans to
allow for differing effects by party.

21Specifically, we multiply Democrats’ first dimension scores by 21 and then rescale the resulting variable to
range from 0 to 1.

22The posterior probability plots for the main coefficients of interest are not shown for expositional reasons but are
available upon request. In this case, they are regularly shaped and provide no additional information beyond the
posterior summary statistics provided in Table 2.
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moderating effects of district party strength and therefore excludes all models that do not
include a properly specified interaction with both constitutive terms. In this case, we can
interpret the posterior distributions of the extremity constitutive term and interaction as we
would in a normal interaction model.23 Finally, the third model, which is reported in col-
umns 6–7, includes the interaction terms in the averaging process but does not require them
to be included (though we again omit all models with an interaction that omit one or more
constitutive terms). The resulting estimates for the constitutive terms are not necessarily
interpretable, but this model allows us to use the posterior probability of inclusion to assess
the importance of the interaction terms.

Comparing these results with those reported in the original study (column 1) leads us to
three conclusions.24 First, the unconditional effect of extremity on electoral support, as
shown in columns 2–3, is robust to a large set of possible model configurations. The CWBC
hypothesis is supported across a vast space of more than 98,000 models.

Second, we find that measures of roll call extremity constructed using DW-NOMINATE
scores perform substantially better in all circumstances than those created using ADA
scores. The DW-NOMINATE extremity variable dominates the posterior space in all
the analyses with a posterior probability of inclusion approaching one. By contrast, the
ADA extremity variable and its associated interaction term have extremely low posterior
probabilities of inclusion. For instance, the posterior probability of inclusion for the ADA-
based extremity measure in the unconditional model reported in columns 2–3 is 5.930 �
1026.

Third, the effect of roll call extremity on election results is moderated by party strength
in the district (as measured by the CWBC presidential vote variable). The DW-
NOMINATE interaction term is highly statistically significant in columns 4–5 (p(b >
0jb 6¼ 0, Y) > .999) and its posterior probability of inclusion in the pooled model in columns
6–7 is approximately one. Substantively, these results indicate that members from very
marginal districts suffer severe punishment for legislative extremity but the electoral cost
of extremity declines rapidly as party strength in the district increases. In those districts in
which the party is strongest, the marginal effect of roll call extremity is actually either
negligible (i.e., the 95% confidence interval includes zero) or positive.25 In other words,
members are punished to the extent they are out of step with their district.26

5.3 Civil War Onset

In a groundbreaking study, Fearon and Laitin (2003b) seek to determine the most important
predictors of civil war onset (a binary-dependent variable). Their reported logit models

23Note that we cannot interpret the constitutive term for district presidential vote as we would normally would (the
marginal effect when the extremity variable equals zero) since it is interacted with two different measures of roll
call extremity.

24The substantive inferences discussed below are consistent across multiple priors (results available upon request).
The original CWBC analysis used robust standard errors, which are not available in BMA and thus not included
in the analysis below.

25To fully understand this effect, it was necessary to estimate the marginal effect of extremity over the observed
range of district presidential vote in a single model (Brambor, Clark, and Golder 2006). We selected the model
containing the interaction and its constitutive terms with the highest posterior probability (.24). Since the sign
and significance of the interaction and its constitutive terms were consistent with the conditional posterior dis-
tributions in the BMA analysis, the resulting marginal effect estimates should be representative of the set of
models that include the interaction. All results of this analysis are available upon request.

26Griffin and Newman (2009) find a similar result using data from the 2000 and 2004 National Annenberg Election
Study.
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estimate the effects of 13 explanatory variables. However, throughout the text, footnotes,
and additional results posted online (Fearon and Laitin 2003a), Fearon and Laitin (F&L)
are unusually transparent in describing numerous other variables and interactions that were
considered during the modeling process. In short, they acknowledge a great deal of un-
certainty about the final model configuration that cannot be analyzed using traditional
methods. Indeed, the length of their online supplement—which is 30 pages and contains
18 multicolumn tables—indicates the need for a more concise approach to specification
uncertainty.

F&L’s transparency allows us to identify a number of other variables that were consid-
ered to be plausible predictors of civil war onset. We estimate that F&L discuss approx-
imately 74 possible independent variables (excluding various interpolation/missing data
decisions), which implies a potential space of roughly 2 � 1022 potential models. As noted
earlier, the traditional approach does not allow researchers to properly express uncertainty
about their estimates when faced with such vast model spaces. For instance, consider the
following quote (Fearon and Laitin 2003b, 84):

When we add dummy variables for countries that have an ethnic or religious majority and a mi-

nority of at least 8% of the country’s population, both are incorrectly signed and neither comes

close to statistical significance. This finding does not depend on which other variables are included

in the model (emphasis ours).

Fig. 3 Predictors of civil war onset 1945–99 (AIC). The vertical line located at 0 on the x axis represents
the posterior probability of models that exclude the variable (p(b 5 0 | Y)). The density represents
the conditional posterior probability for the parameter in those models in which it is included (p(b |
b 6¼ 0, Y)).
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Obviously, F&L did not test these variables under all 20 sextillion possible specifica-
tions. One suspects that they tried adding relevant variables to their best models and found
that they were insignificant (one such model is reported in table 3 of Fearon and Laitin
2003a).27 BMA makes it possible to systematically justify such statements.

In this analysis, we chose a subset of F&L’s variables to evaluate. One of the limits of
BMA is that the model space q 5 2p can quickly exceed the abilities of even the most
advanced computers to fully explore the posterior model distribution. Clyde (2003) rec-
ommends that any models that use more than approximately 25 variables should be an-
alyzed using stochastic sampling techniques rather than deterministic search algorithms.
However, no publicly available BMA software performs stochastic sampling for GLM
models (but see Pang and Gill 2009). As such, we chose 25 publicly available variables
that had no missing data in the same universe of cases that F&L analyze, which allows us to
explore the entire posterior distribution using the bic.glm function in the BMA package. To
reduce the software limitations described in Clyde (1999), we effectively disable the model
selection criterion, ensuring that the software returns the maximum number of relevant
models, and create an option to use AIC instead of BIC (Akaike 1974).

Per our earlier discussion, we also place theoretically motivated limitations on the mod-
els we wish to explore. Specifically, we put a zero prior on all models that do not contain the
key explanatory variable indicating the existence of a prior war. We also put a zero prior on
models that contain both the Polity IV measure of democracy and dummy variables for
democracy and anocracy derived from Polity IV or include only one of the anocracy and
democracy dummy variables. In each case, we seek to adhere to standard procedures in the
political science literature.

We replicate their primary models of civil war onset in columns 1 and 2 of Table 3.28

Columns 3–6 of Table 3 provide conditional means, standard deviations, and posterior
probabilities of inclusion under AIC and BIC.29 Posterior plots under AIC are presented
in Fig. 3.30

Although the table and figure contain a great deal of information, we highlight two key
findings. First, conditional posterior distributions for the variables that F&L identify as
statistically significant predictors of civil war onset—prior war, per-capita income, log(-
population), log(% mountainous), oil exporter, new state, instability, and anocracy—are
consistent with their original results. BMA therefore provides a truly systematic demon-
stration of the robustness of F&L’s results (and does not require 30 pages of tables to do
so!). However, most of F&L’s predictors (which are frequently measured imprecisely) have
low posterior probabilities of inclusion under BIC (column 6). Besides the constant and the
prior war variable (which we required to be included in each model), only per-capita in-
come, logged population, and the indicator of a new state have a posterior probability of
inclusion of more than .5—a result that underscores the need to examine the sensitivity of
one’s results to priors.

27This should not be interpreted as a criticism of F&L’s important article. Many studies, including ones we have
participated in, use this approach.

28These models correspond to models 1 and 3 in F&L. We do not address the three other models they report, which
use different dependent variables.

29Before performing our analysis, we dropped a single observation with a miscoded value for the dependent vari-
able from F&L’s data. To assure that enough models were sampled, we set the leaps and bounds algorithm
employed by bic.glm to return the 100,000 best models for each possible rank of X.

30It’s worth noting that the BMA package assumes that the posterior distribution of each coefficient is normal,
while BAS assumes they are distributed Student t. As a result, BMA plots tend to be more smooth than those
generated by BAS.
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6 Cautions and Conclusions

Political science researchers are often confronted with substantial uncertainty about the
robustness of reported results. In many prominent literatures, researchers have proposed
dozens (if not hundreds) of potential explanatory variables. Classical approaches to mod-
eling techniques provide researchers with few tools for dealing with this uncertainty. As
a result, readers are frequently concerned about alternative model configurations that were
tried but not reported—and those that were never tried at all.

BMA offers researchers a comprehensive method for assessing model uncertainty that
can easily be presented to readers. In this paper, we have reviewed recent developments in
prior specifications and posterior computation techniques, presented a contemporary ap-
proach to the use of BMA, and applied this methodology to three prominent studies from
the discipline. Our empirical analyses revealed substantive differences in the effects of the
theoretical variables of interest from Adams, Bishin, and Dow (2004), demonstrated the
conditional nature of the main effect reported in Canes-Wrone, Brady, and Cogan (2002),
and gave a more rigorous foundation to the findings presented in Fearon and Laitin
(2003b). In general, we strongly believe that BMA can strengthen the robustness of re-
ported results in political science.

Despite the usefulness of the technique, we wish to conclude with words of caution about
the appropriate use of BMA. First, we emphasize that it should not be used to conduct theory-
free searches of the model space, particularly if such a step is not reported to readers. BMA also
offers no solutions to the problems of endogeneity or causal inference. Statistical analysis
should begin with the careful development of a model based on theory and previous research
(Gelman and Rubin 1995). BMA is best used as a subsequent robustness check to show that
our inferences are not overly sensitive to plausible variations in model specification.

On a related note, we also caution that BMA—like all statistical methods—cannot de-
feat unscrupulous researchers. Although it should be more difficult to manipulate BMA
analysis than, say, a single-reported model specification, researchers could alter the set of
variables that are averaged to try to support a desired finding. Similarly, one could use
BMA to identify a model specification that maximizes fit to the data and then present that
choice as the result of theory. As in all such cases, we must trust in the good intentions of
the researcher and use theory to guide our judgments about the set of independent variables
that should be considered.

With those caveats in mind, we hope that more analysts make use of BMA, which makes
it possible to systematically test the robustness of our findings to a much wider array of
model specifications than is otherwise possible.

Funding

National Science Foundation Graduate Research Fellowship to J. M. M.

Appendix: Adams, Bishin, and Dow (2004) Replication

Our reanalysis of Adams, Bishin, and Dow (2004) began with a replication of their pub-
lished results. The authors generously provided us with code and data for their individual-
level results, included an unpublished correction of their table 1. In collaboration with
ABD, who provided us with further details on their data, we returned to the original
1988–1990–1992 Pooled Senate Election Study data and located several potential prob-
lems with their reported (and corrected) results.
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ABD’s correction revised the coding of the dependent variable in the individual-level
analysis from their published paper. Numerous nonvoting respondents were inadvertently
coded as having voted for the Republican Senate candidate. In collaboration with ABD, we
uncovered a few other discrepancies. Several of these appeared to be coding errors in the
statistical analysis and in the data itself.31 An additional concern is that the coding of the
proximity advantage variable appears to differ from the one presented in the article (we
used the coding [(xR 2 xi)

2 2 (xD 2 xi)
2], which conforms to equations (3) and (4) and

footnote 17).
The model results reported in Table A1 of this paper incorporate all relevant corrections

for the aggregate-level data. The table below reports the original published aggregate-level
results and our replication of those results. Our replication of their individual-level
results is reported in Montgomery and Nyhan (2008). Details and code are available upon
request.
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