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Drag reduction in a thermally
modulated channel
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Flow in a horizontal channel exposed to external heating which results in sinusoidal
temperature variations along the upper and lower walls with a phase shift between
them has been studied using a combination of analytical and numerical methods. The
most intense convection is observed when the upper and lower hot spots are located
above each other. It has been demonstrated that the heating results in a significant
reduction of the pressure gradient required to drive the flow when compared to a
similar flow in an isothermal channel. The drag reduction is associated with the
formation of separation bubbles which insulate the stream from direct contact with
the bounding walls. The fluid inside of the bubbles rotates due to horizontal density
gradients, which further reduces the required pressure gradient. The magnitude of
the drag reduction depends on the phase shift between the heating patterns and can
increase by up to threefold when compared to the drag reduction which can be
achieved by heating only one wall. A detailed analysis of the associated heat fluxes
has been presented.

Key words: convection, drag reduction, flow control

1. Introduction

The search for drag reduction has been one of the main interests of fluid mechanics
for at least the last hundred years. The overall drag may consist of pressure form
drag, pressure interaction drag and shear drag (Mohammadi & Floryan 2012). The
first type of drag results from the pressure field asymmetry between the upstream
and downstream sides of a moving object and techniques for its reduction are well
understood. The second type of drag results from the projection of the pressure
field onto the surface topography and its understanding is limited. The third type of
drag results from the friction between the fluid and the bounding solid wall and the
development of techniques for its reduction have attracted a lot of interest in recent
years. The present analysis contributes to these efforts.

The magnitude of the frictional drag depends on the fluid viscosity and velocity
gradients at the wall. Assuming that the fluid type cannot be altered, one needs to
develop techniques for altering the character of the fluid motion in the vicinity of the
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bounding solid surface. The most explored route involves the control of the laminar–
turbulent transition as the laminar shear stress is much smaller than the turbulent shear
stress. Assuming that the type of flow cannot be changed, one can seek methods for
the rearrangement of the velocity field in the vicinity of the solid wall, i.e. generating
new forms of either laminar or turbulent flows with the hope that they will produce
less friction. The desired changes can be created using either passive or active means.
The wall topography, application of suction/blowing and/or use of plasma-, sound-
or piezo-driven actuators represent commonly used techniques. New ideas are sought
from biological systems as natural evolution must have led to the optimization of their
performance (Martin & Bhushan 2014).

Reduction of the laminar shear drag is the focus of the present work. One way
to achieve this goal is through the development of the proper surface topography. If
one takes the smooth surface as the reference case, all its alterations will increase the
wetted area and thus the reduction of the wall shear stress must be large enough to
overcome the potential drag increase due to the increase of surface area exposed to
the shear stress. It is known that longitudinal grooves (grooves parallel to the flow
direction) can lead to a significant drag reduction through changes in the distribution
of the bulk flow (Mohammadi & Floryan 2013a, 2014, 2015; Moradi & Floryan 2013).
The groove shapes can be optimized (Mohammadi & Floryan 2013b) with the optimal
shape having a universal form which depends on the constraints used. In the case of
grooves with equal height and depth, the universal form has a trapezoidal shape, while
in the case of grooves with different depth and height it has a Gaussian shape. The
grooves are effective if the flow remains laminar and the required estimates of the
stability limits are available (Moradi & Floryan 2014).

The second group of techniques relies on the superhydrophobic effect (Rothstein
2010). The surface topography traps gas bubbles in micropores, replacing the shear
stress between the liquid and the solid with a shear stress between the liquid and
the gas. This effect is active in two-phase systems and its effectiveness depends on
the hydrophobicity of the liquid–solid system and details of the surface topography.
Laminar drag reduction has been demonstrated by Ou, Perot & Rothstein (2004), Ou
& Rothstein (2005), Joseph et al. (2006) and Truesdell et al. (2006), among others.
The effectiveness of this method can be increased by correctly shaping the surface
pores (Samaha, Tafreshi & Gad-el-Hak 2011) and by increasing hydrophobicity
through changes in the surface chemistry (Quéré 2008; Reyssat, Yeomans & Quéré
2008; Zhou et al. 2011). While the reduction of the shear stress is obvious, the
pressure drag must counteract it but nevertheless, the system exhibits an overall drag
reduction as demonstrated experimentally. The stability characteristics of flows over
such rough surfaces are yet to be established, including conditions which guarantee
the existence of a laminar flow.

The third group of methods relies on the use of spatial heating patterns which
create a buoyancy field leading to the formation of a system of separation bubbles.
The fluid trapped inside of the bubbles rotates due to the actions of horizontal
density gradients and thus provides a propulsive force which contributes to the
fluid pumping. The bubbles also isolate the stream from direct contact with the
bounding walls and thus reduce the friction acting on the stream. This effect,
sometimes referred to as the superthermohydrophobic effect (Floryan 2012), operates
in single-phase fluids and is independent of the surface topography and thus
offers advantages over the superhydrophobic effect. Its heat transfer consequences
have been discussed in Hossain & Floryan (2013a). The strength is increased by
combining the spatially distributed heating and the uniform heating of the lower wall
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(Floryan & Floryan 2015). The effect is resilient as it can be generated by heating
applied either at the lower or at the upper wall (Hossain & Floryan 2014). The
flow must remain laminar for the method to work but stability characteristics, which
can be inferred from the analysis of channel flow exposed to a spatially distributed
heating at the lower wall (Hossain & Floryan 2015a), suggest that stability limits do
not prevent applications of this effect. Its weakness is associated with the fact that it
remains effective for very small Reynolds numbers (Hossain, Floryan & Floryan 2012)
since stronger flows wash the separation bubbles away. This justifies the search for
heating patterns which could increase the range of Reynolds numbers where the effect
remains of practical value, as well as methods for increasing its strength. Yamamoto,
Hasegawa & Kasagi (2013) achieved simultaneous drag reduction and heat transfer
enhancement in turbulent flow using wall waves of suction/blowing travelling in the
downstream direction and this demonstrates the drag reducing potential associated
with non-isothermal walls. The effect subject to the present investigation is simpler
due to its passive character as the heating does not depend on time.

The main objective of this analysis is to study the system response when both
walls of a horizontal channel are heated and to determine the positioning of the
heating patterns which lead to the largest drag reduction. A model problem and the
relevant formulation are discussed in § 2. The solution method is described in § 3.
The long heating wavelength solution is presented in § 4. Results for arbitrary heating
wavenumbers are discussed in § 5. Section 6 provides a short summary of the main
conclusions. All results presented in the discussion have been obtained for the Prandtl
number Pr= 0.71.

2. Problem formulation
Consider the steady, two-dimensional flow of a fluid confined in a channel bounded

by two parallel walls extending to ±∞ in the x-direction and placed a distance 2h
apart from each other with the gravitational acceleration g acting in the negative
y-direction, as shown in figure 1. The flow is driven in the positive x-direction
by a pressure gradient. The fluid is incompressible and Newtonian with thermal
conductivity k, specific heat c, thermal diffusivity κ = k/ρc, kinematic viscosity ν,
dynamic viscosity µ, thermal expansion coefficient Γ and variations of the density
ρ that follow the Boussinesq approximation. All material properties are evaluated
at the mean wall temperature TR which plays the role of the reference temperature.
The lower and upper walls are subjected to periodic heating patterns with a phase
difference Ω between them. The resulting wall temperatures have the form

θL(x)= cos(αx)/2, θU(x)= cos(αx+Ω)/2, (2.1a,b)

where subscripts L and U refer to the lower and upper walls, respectively, θL denotes
the relative temperature of the lower wall scaled with the amplitude of its peak-to-
peak variations Tp,L, i.e. θL = (T − TR)/Tp,L, θU denotes the relative temperature of
the upper wall scaled with the amplitude of its peak-to-peak variations Tp,U, i.e. θU =
(T − TR)/Tp,U, T denotes the absolute temperature, λ= 2π/α is the wavelength of the
heating and the half channel height h has been used as the length scale.

The velocity and pressure fields in the absence of heating have the form

v0(x, y)= [u0(y), 0] = [1− y2, 0], p0(x, y)=−2x/Re, (2.2a,b)

where v0 = (u0, v0) denotes the velocity vector scaled with the maximum of the
x-velocity Umax, p0 stands for the pressure scaled with ρU2

max and the Reynolds
number is defined as Re=Umaxh/ν.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.42


Drag reduction in a thermally modulated channel 125

g
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FIGURE 1. Sketch of the system configuration.

Introduction of the heating modifies the above fields, which can be represented as
a superposition of the pressure-gradient-driven and the buoyancy-driven motions. The
temperature field is represented as a sum of the conductive field θ0 associated with
the external heating and modifications associated with the movement of the fluid. The
complete flow quantities have the form

uT(x, y)= Re u0(y)+ u1(x, y), vT(x, y)= v1(x, y),
θT(x, y)= Rap,Lθ0,L(x, y)+ Rap,Uθ0,U(x, y)+ θ1(x, y), pT(x, y)= Re2p0(x)+ p1(x, y),

}
(2.3)

where (uT, vT) denote the complete velocity vector with (x, y)-components, pT and
θT denote the complete pressure and temperature fields, respectively, (u1, v1) stands
for the modification velocity vector with components in the (x, y) directions, p1 and
θ1 denote the pressure and temperature modifications, respectively, θ0,L stands for the
conductive temperature field associated with the lower wall heating and θ0,U stands for
the conductive temperature field associated with the upper-wall heating. The complete
velocity vector and the velocity modifications have been scaled using the convective
velocity scale Uv = ν/h where Umax/Uv = Re, the pressure modifications have been
scaled using ρU2

v and the complete and modification temperature fields have been
scaled using νκ/(gΓ h3) as the temperature scale. Rap,L = gΓ h3Tp,L/(νκ) and Rap,U =
gΓ h3Tp,U/(νκ) are the lower and upper periodic Rayleigh numbers expressing the
intensity of the heating applied at the respective walls.

The conductive temperature fields have the following forms

θ0,L(x, y)= θ (1)0,L(y)e
iαx + θ (−1)

0,L (y)e−iαx,

θ
(1)
0,L(y)= [−sinh(αy)/sinh(α)+ cosh(αy)/cosh(α)]/8, (2.4a)

θ0,U(x, y)= θ (1)0,U(y)e
iαx + θ (−1)

0,U (y)e−iαx,

θ
(1)
0,U(y)= eiΩ[sinh(αy)/sinh(α)+ cosh(αy)/cosh(α)]/8, (2.4b)

where complex notation has been used, θ (−1)
0,L = θ (1)∗0,L , θ (−1)

0,U = θ (1)∗0,U are the additional
conditions which guarantee that θ0,L and θ0,U are real and stars denote the complex
conjugates. The field equations for the flow and temperature modifications are of the
form

(Reu0 + u1)
∂u1

∂x
+ Rev1

du0

dy
+ v1

∂u1

∂y
=−∂p1

∂x
+∇2u1, (2.5a)

(Re u0 + u1)
∂v1

∂x
+ v1

∂v1

∂y
=−∂p1

∂y
+∇2v1 + Pr−1θ1 + Rap,LPr−1θ0,L + Rap,UPr−1θ0,U,

(2.5b)
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(Re u0 + u1)

(
Rap,L

∂θ0,L

∂x
+ Rap,U

∂θ0,U

∂x
+ ∂θ1

∂x

)
+ v1

(
Rap,L

∂θ0,L

∂y
+ Rap,U

∂θ0,U

∂y
+ ∂θ1

∂y

)
= Pr−1∇2θ1, (2.5c)

∂u1

∂x
+ ∂v1

∂y
= 0, (2.5d)

where ∇2 denotes the Laplace operator. The effects of the heating on the pressure
losses are sought. The problem is posed as the question of finding the additional
pressure gradient which is required in order to maintain the same flow rate in the
heated and isothermal channels. This requirement is imposed in the form of the flow
rate constraint, i.e.

Q=
∫ 1

−1
uT dy=

∫ 1

−1
(Re u0 + u1) dy= 4Re/3. (2.6)

The problem formulation is closed by specifying no slip, no penetration and the
thermal boundary conditions in the form

u1(±1)= 0, v1(±1)= 0, θ1(±1)= 0. (2.7a−c)

One may consider flow in a channel heated by heat fluxes imposed at the walls
which is easier to achieve experimentally. The overall system response is expected
to be qualitatively similar to that achieved using the fixed wall temperatures while
quantitative differences require detailed analysis.

3. Method of solution

The solution method is explained in detail in Hossain et al. (2012) and thus the
following presentation is limited to a short outline. We define the stream function
ψ(x, y) in the usual manner, i.e. u1 = ∂ψ/∂y, v1 = −∂ψ/∂x and eliminate pressure
bringing the governing equations to the form

Re u0
∂

∂x

(∇2ψ
)− Re

d2u0

dy2

∂ψ

∂x
+Nψ

=∇4ψ − Pr−1 ∂θ1

∂x
− Rap,LPr−1 ∂θ0,L

∂x
− Rap,UPr−1 ∂θ0,U

∂x
, (3.1a)

Re u0

(
Rap,L

∂θ0,L

∂x
+ Rap,U

∂θ0,U

∂x
+ ∂θ1

∂x

)
+ Rap,LNθ0,L + Rap,UNθ0,U +Nθ1 = Pr−1∇2θ1,

(3.1b)

where ∇4 denotes the biharmonic operator, the nonlinear terms are written in the
conservative form, i.e.,

Nψ = ∂

∂y

(
∂

∂x
〈u1u1〉 + ∂

∂y
〈u1v1〉

)
− ∂

∂x

(
∂

∂x
〈u1v1〉 + ∂

∂y
〈v1v1〉

)
, (3.2)
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Nθ1 = ∂

∂x
〈u1θ1〉 + ∂

∂y
〈v1θ1〉 ,

Nθ0,L = ∂

∂x

〈
u1θ0,L

〉+ ∂

∂y

〈
v1θ0,L

〉
,

Nθ0,U = ∂

∂x

〈
u1θ0,U

〉+ ∂

∂y

〈
v1θ0,U

〉


(3.3)

and 〈 · · · 〉 denotes products. The solution is assumed to be in the form of Fourier
expansions

ψ(x, y)=
n=+∞∑
n=−∞

ϕ(n)(y)einαx, θ1 (x, y)=
n=+∞∑
n=−∞

φ(n)(y)einαx, (3.4a,b)

u1 (x, y)=
n=+∞∑
n=−∞

u(n)1 (y)e
inαx, v1 (x, y)=

n=+∞∑
n=−∞

v
(n)
1 (y)e

inαx,

p1 (x, y)= Ax+
n=+∞∑
n=−∞

p(n)1 (y)e
inαx,

 (3.5)

where D= d/dy, u(n)1 =Dϕ(n), v(n)1 =−inαϕ(n), ϕ(n) = ϕ(−n)∗, φ(n) = φ(−n)∗, u(n)1 = u(−n)∗
1 ,

v
(n)
1 = v(−n)∗

1 , p(n)1 = p(−n)∗
1 and A stands for the streamwise pressure gradient correction

induced by the heating. Positive values of A correspond to drag reduction. The
products are expressed using Fourier expansions of the form

〈FG〉 =
n=+∞∑
n=−∞
〈FG〉(n) (y)einαx, (3.6)

where 〈FG〉 stands for any of the following quantities: 〈u1u1〉, 〈u1v1〉, 〈v1v1〉, 〈u1θ1〉,
〈v1θ1〉,

〈
u1θ0,L

〉
,
〈
v1θ0,L

〉
,
〈
u1θ0,U

〉
,
〈
v1θ0,U

〉
. Substitution of (3.4)–(3.6) into (3.1) and

separation of Fourier components result in a system of ordinary differential equations
for the modal functions of the form

D2
nϕ

(n) − inα Re(u0Dn −D2u0)ϕ
(n) − inα Pr−1φ(n)

= inα Rap,L Pr−1θ
(n)
0,L + inα Rap,U Pr−1θ

(n)
0,U +N(n)

ψ , (3.7)

Dnφ
(n) − inα Pr Re u0φ

(n) = inα PrRe u0 (Rap,Lθ
(n)
0,L + Rap,Uθ

(n)
0,U)

+PrRap,LN(n)
θ0,L + PrRap,UN(n)

θ0,U + Pr N(n)
θ1 , (3.8)

where

D2 = d2/dy2, Dn =D2 − n2α2, N(n)
θ0,L = inα〈u1θ0,L〉(n) +D〈v1θ0,L〉(n),

N(n)
θ1 = inα〈u1θ1〉(n) +D〈v1θ1〉(n),

N(n)
ψ = inαD〈u1u1〉(n) +D2〈u1v1〉(n) + n2α2〈u1v1〉(n) − inαD〈v1v1〉(n),

−∞< n<∞.

 (3.9)

The reader may note that θ (n)0,L = 0 and θ
(n)
0,U = 0 for n 6= ±1. The required boundary

conditions for the modal functions have the form

Dϕ(n)(±1)= 0, ϕ(n)(±1)= 0, φ(n)(±1)= 0. (3.10a−c)

The system (3.7), (3.8) and (3.10) needs to be solved numerically.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.42
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For the purpose of numerical solution, expansions (3.4)–(3.6) have been truncated
after NM terms. The y-discretization uses the Chebyshev collocation technique
based on NT collocation points (Canuto et al. 2006). The resulting nonlinear
algebraic system of equations is solved using an iterative technique combined with
under-relaxation of the form Φj+1 = Φj + $(Φcomp −Φj) where Φ = {ϕ(n), φ(n)} is
the vector of unknowns, Φcomp denotes the current solution, Φj denotes the previous
solution, Φj+1 stands for the accepted value of the next iteration and $ denotes
the relaxation factor. The solution process starts with solving (3.7), (3.8) with the
nonlinear terms on the right-hand side assumed to be zero, the first approximation
of the nonlinear terms is computed on the basis of the available approximation of
the velocity and temperature fields and the system (3.7), (3.8) is solved with the new
approximation of the nonlinear terms used on the right-hand side, resulting in the
first-order fixed point method. The iteration process is continued until the convergence
criterion max(|Φcomp −Φj|) < TOL is satisfied where TOL denotes the specified error.
The number of iterations is varied by several orders of magnitude depending on
the flow parameters; there was no attempt to optimize the relaxation factor $ . The
number of collocation points and the number of Fourier modes used in the solution
were selected through systematic numerical tests so that the quantities of interest were
determined with at least six digits accuracy. Typically NT = 50 provided sufficient
accuracy. The required value of NM strongly depends on α, Re, Rap,U and Rap,L, and
can be as large as NM = 50.

The evaluation of the nonlinear terms requires the evaluation of products of two
Fourier series. The required quantities were computed in the physical space on a
suitable grid based on the collocation points in the y-direction and a uniformly
distributed set of points in the x-direction, the relevant products were evaluated on
this grid and the fast Fourier transform (FFT) algorithm was used to express these
products in terms of Fourier expansions (3.6). The aliasing error was controlled using
the discrete FFT transform with NE rather than NM points, where NE > 3NM/2 (Canuto
et al. 2006).

The pressure field has been computed a posteriori from the x-momentum equation.
Insertion of (3.4)–(3.6) into (2.5a) and separation of Fourier modes lead to

p(n)1 =
1

inα

[
(D2 − n2α2 − inα Re u0)Dϕ(n)

+ inα Re
du0

dy
ϕ(n) − inα 〈u1u1〉(n) −D〈u1v1〉(n)

]
for n 6= 0, (3.11)

A=D3ϕ(0) −D 〈u1v1〉(0) for n= 0. (3.12)

Equation (3.12) provides a means for the evaluation of the additional pressure
gradient A required to maintain the same flow rates in the heated and unheated
channels. Equation (3.11) has been used to compute p(n)1 , n 6= 0. One needs to use
the y-momentum (2.5b) for the determination of p(0)1 . Substitution of (3.4)–(3.6) into
(2.5b), extraction of mode zero and integration result in

p(0)1 = Pr−1
∫ y

−1
ϕ(0)dy− 〈v1v1〉(0) + Rap,LPr−1

∫ y

−1
θ
(0)
0,L dy+Rap,UPr−1

∫ y

−1
θ
(0)
0,U dy. (3.13)

The wall shear stresses acting on the fluid at the upper (τU) and lower (τL) walls are
of interest as they are responsible for the drag generation. They can be expressed as
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τU = ∂u1

∂y

∣∣∣∣
y=1

− 2Re, τL =− ∂u1

∂y

∣∣∣∣
y=−1

− 2Re (3.14a,b)

and their average values can be evaluated as

τU,ave = d2ϕ(0)

dy2

∣∣∣∣
y=1

− 2Re= τU,mod − 2Re, τL,ave =− d2ϕ(0)

dy2

∣∣∣∣
y=−1

− 2Re= τL,mod − 2Re,

(3.15a,b)
where τU,mod and τL,mod stand for upper and lower wall shear stress modifications
due to the heating, respectively. Changes in the shear stress result in changes in the
pressure gradient, e.g.

∂pT

∂x

∣∣∣∣
mean

= Re(−2+ A/Re), τU,mod + τL,mod = 2A, (3.16a,b)

with the effectiveness of the heating judged by comparing A with the isothermal
pressure gradient −2Re (or by comparing A/Re with −2). Relation (3.16b) can be
easily derived by looking at the force balance on a convenient control volume. The
heat fluxes leaving the walls are expressed in terms of the Nusselt numbers defined
as

NuU = Rap,L
dθ 0,L

dy

∣∣∣∣
y=1

+ Rap,U
dθ 0,U

dy

∣∣∣∣
y=1

+ dθ 1

dy

∣∣∣∣
y=1

,

NuL =−Rap,L
dθ 0,L

dy

∣∣∣∣
y=−1

− Rap,L
dθ 0,U

dy

∣∣∣∣
y=−1

− dθ 1

dy

∣∣∣∣
y=−1

.

 (3.17)

The net heat flux between the walls is expressed in term of the average Nusselt
number of the form

Nuav =Nuav,L =Nuav,U = 1
λ

∫ λ
0

(
− dθT

dy

∣∣∣∣
y=−1

)
dx=− dφ(0)

dy

∣∣∣∣
y=−1

(3.18)

and the horizontal heat fluxes along each wall can be measured in terms of the
periodic part of the heat flux leaving the heated segment of each wall. These fluxes
can be expressed in terms of the horizontal Nusselt numbers for the lower (Nuh,L)

and upper (Nuh,U) walls defined as

Nuh,L = 2
λ

∫ λ/4
−λ/4

(
−∂θT

∂y
+ dφ(0)

dy

)∣∣∣∣
y=−1

dx,

Nuh,U = 2
λ

∫ λ/4−Ω/α
−λ/4−Ω/α

(
∂θ T

∂y
− dφ(0)

dy

)∣∣∣∣
y=1

dx.

 (3.19)

Alternative methods to determine horizontal fluxes can be found in Maxworthy (1997),
Siggers, Kerswell & Balmforth (2004), Hughes & Griffiths (2008) and Winters &
Young (2009).

We shall start the analysis with the long wavelength heating as this case can be
solved analytically and thus provides useful insight into the flow dynamics.
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4. Long wavelength heating

The conductive temperature field (2.4) can be approximated as

θ0,L(x, y)= [θL0(y)+ α2θL2(y)+ α4θL4(y)+O(α6)] cos X, (4.1a)
θ0,U(x, y)= [θU0(y)+ α2θU2(y)+ α4θU4(y)+O(α6)] cos(X +Ω), (4.1b)

where definitions of the expansion coefficients are given in appendix A and X = αx
denotes the slow scale. The field equations with x replaced by the slow scale assume
the form

α (Re u0 + u1)
∂u1

∂X
+ Re v1

du0

dy
+ v1

∂u1

∂y
=−α∂p1

∂X
+ α2 ∂

2u1

∂X2
+ ∂

2u1

∂y2
, (4.2a)

α(Re u0 + u1)
∂v1

∂X
+ v1

∂v1

∂y
= −∂p1

∂y
+ α2 ∂

2v1

∂X2
+ ∂

2v1

∂y2

+Pr−1θ1 + Rap,LPr−1θ0,L + Rap,UPr−1θ0,U, (4.2b)

α(Re u0 + u1)

(
Rap,L

∂θ0,L

∂X
+ Rap,U

∂θ0,U

∂X
+ ∂θ1

∂X

)
+ v1

(
Rap,L

∂θ0,L

∂y
+ Rap,U

∂θ0,U

∂y
+ ∂θ1

∂y

)
= Pr−1

(
α2 ∂

2θ1

∂X2
+ ∂

2θ1

∂y2

)
, (4.2c)

α
∂u1

∂X
+ ∂v1

∂y
= 0. (4.2d)

Their solution can be represented as

[u1(X, y), v1(X, y), θ1(X, y)] =
4∑

n=1

αn[Un(X, y), Vn(X, y), Θn(X, y)] +O(α5),

p1(X, y)=
3∑

n=0

αnPn(X, y)+O(α4).


(4.3)

Expansions (4.1) and (4.3) are substituted into (4.2) and terms of the same order of
magnitude are separated. System O(α) has the form

∂P0

∂y
= Rap,LPr−1θL0 cos X + Rap,UPr−1θU0 cos(X +Ω),

∂2Θ1

∂y2
=−Reu0Pr

[
Rap,LθL0 sin X + Rap,UθU0 sin (X +Ω)] , ∂2U1

∂y2
= ∂P0

∂X
,

∂U1

∂X
+ ∂V2

∂y
= 0, U1 (±1)= V1 (±1)=Θ1 (±1)= 0,

∫ 1

−1
U1 dy= 0


(4.4)

and its solution can be expressed as

U1(X, y)= Pr−1[Rap,LFU11(y) sin X + Rap,UFU12(y) sin(X +Ω)], (4.5a)
V2(X, y)= Pr−1[Rap,LFV21(y) cos X + Rap,UFv22(y) cos(X +Ω)], (4.5b)
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Drag reduction in a thermally modulated channel 131

P0(X, y)= Pr−1[Rap,LFP01(y) cos X + Rap,UFP02(y) cos(X +Ω)], (4.5c)
Θ1(X, y)= Re Pr[Rap,LFΘ11(y) sin X + Rap,UFΘ12(y) sin(X +Ω)], (4.5d)

with definitions of FU11, FU12, FV21, FV22, FP01, FP02, FΘ11, FΘ12 given in appendix A.
U1, V2 and P0 represent the natural convection which is unaffected by the forced
convection at this level of approximation, and Θ1 represents modifications of the
temperature field generated by the forced convection. The heating is unable to affect
the mean streamwise pressure gradient and, since the temperature field defined
by (4.5d) is purely periodic, there is no net heat transfer between the walls. The
next-order system has the form

∂2U2

∂y2
= ∂P1

∂X
+ Re

(
u0
∂U1

∂X
+ du0

dy
V2

)
,

∂P1

∂y
= Pr−1Θ1,

∂U2

∂X
+ ∂V3

∂y
= 0 (4.6a−c)

∂2Θ2

∂y2
= Re u0Pr

∂Θ1

∂X
− PrU1[Rap,LθL0sin X + Rap,UθU0 sin (X +Ω)]

+Pr V2

[
Rap,L

∂θL0

∂y
cos X + Rap,U

∂θU0

∂y
cos (X +Ω)

]
. (4.6d)

A similar solution procedure leads to

U2(X, y) = Re [Rap,L{FU21(y)+ Pr−1FU22(y)} cos X

+Rap,U{FU23(y)+ Pr−1FU24(y)} cos(X +Ω)], (4.7a)

V3(X, y) = Re [Rap,L{FV31(y)+ Pr−1FV32(y)} sin X

+Rap,U{FV33(y)+ Pr−1FV34(y)} sin(X +Ω)], (4.7b)

P1(X, y) = Re [Rap,L{FP11(y)− 1
1050 Pr−1} sin X

+Rap,U{FP12(y)+ 1
1050 Pr−1} sin(X +Ω)], (4.7c)

Θ2(X, y) = Ra2
p,LFΘ21(y)+ Rap,LRap,UFΘ22(y) cosΩ + Ra2

p,UFΘ23(y)

+Re2Pr2[Rap,LFΘ24(y) cos X + Rap,UFΘ25(y) cos(X +Ω)]
+Ra2

p,LFΘ26(y) cos(2X)+ Rap,LRap,UFΘ27(y) cos(2X +Ω)
+Ra2

p,UFΘ28(y) cos(2X + 2Ω), (4.7d)

with definitions of FU21–FU24, FV31–FV34, FP11–FP12, FΘ21–FΘ28 given in appendix A.
The temperature field defined by (4.7d) contains an aperiodic part (the first three
terms) which describes the net heat transfer between the walls and the corresponding
average Nusselt number has the form

Nuav =
[

1
1400(Ra2

p,L + Ra2
p,U)+ 17

12 600 Rap,LRap,U cosΩ
]
α2 +O(α4). (4.8)

The pressure field contains only x-periodic terms and thus the heating is unable to
generate any change in the pressure gradient. The next-order system has the form

∂2U3

∂y2
= ∂P2

∂X
+ Re

(
u0
∂U2

∂X
+ du0

dy
V3

)
+U1

∂U1

∂X
+ V2

∂U1

∂y
− ∂

2U1

∂X2
, (4.9a)

∂P2

∂y
= ∂

2V2

∂y2
+ Pr−1Θ2 + Pr−1

[
Rap,LθL2 cos X + Rap,UθU2 cos(X +Ω)] , (4.9b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.42


132 M. Z. Hossain and J. M. Floryan

∂U3

∂X
+ ∂V4

∂y
= 0, (4.9c)

∂2Θ3

∂y2
= Re u0Pr

∂Θ2

∂X
− Reu0Pr

[
Rap,LθL2 sin X + Rap,UθU2 sin (X +Ω)]+ PrU1

∂Θ1

∂X

−PrU2
[
Rap,LθL0sin X + Rap,UθU0sin (X +Ω)]+ PrV2

∂Θ1

∂y

+Pr V3

[
Rap,L

∂θL0

∂y
cos X + Rap,U

∂θU0

∂y
cos (X +Ω)

]
− ∂

2Θ1

∂X2
. (4.9d)

All forcing terms are purely periodic and thus there are no contributions to the net
heat flux as well as to the pressure gradient correction.

It is sufficient to consider only the x-momentum equation at the next level of
approximation in order to determine the pressure gradient correction, i.e.

∂2U4

∂y2
= ∂P3

∂X
+ Re

(
u0
∂U3

∂X
+ du0

dy
V4

)
− ∂

2U2

∂X2
+U1

∂U2

∂X
+U2

∂U1

∂X
+ V2

∂U2

∂y
+ V3

∂U1

∂y
.

(4.10)
It can be shown that only the last two terms on the right-hand side of (4.10) contribute
to the aperiodic forcing, and this forcing has the form

FF(y) = 1
2 Re Pr−1

{[Rap,LFV21(y)+ Rap,UFV22(y) cosΩ]
× [Rap,L(DFU21(y)+Pr−1DFU22(y))+Rap,U(DFU23(y)+Pr−1DFU24(y))cosΩ]
+ [Rap,LDFU11(y)+ Rap,UDFU12(y) cosΩ]
× [Rap,L(FV31(y)+ Pr−1FV32(y))+ Rap,U(FV33(y)+ Pr−1FV34(y)) cosΩ]
+Ra2

p,U [FV22(y)(DFU23(y)+ Pr−1DFU24(y))

+ (FV33(y)+ Pr−1FV34(y))DFU12] sin2 Ω
}

(4.11)

and is responsible for the pressure gradient changes. Solution of (4.11) with
the appropriate boundary conditions and the flow rate constraint results in the
simultaneous determination of the aperiodic part of U4 and the pressure gradient
correction of the form

U4(y)|mean = 1
2
∂p3

∂X

∣∣∣∣
mean

(y2 − 1)− 1
2
(y+ 1)

∫ 1

−1

∫ y

−1
FF(η) dη dy+

∫ y

−1

∫ ζ

−1
FF(η) dη dζ ,

(4.12)

∂p3

∂X

∣∣∣∣
mean

=−3
2

∫ 1

−1

∫ y

−1
FF(η) dη dy+ 3

2

∫ 1

−1

∫ y

−1

∫ ζ

−1
FF(η) dη dζ dy. (4.13)

Evaluations of the integrals result in

A = α4 Re Pr−2

8513 505 000
[ (1929+ 3130 Pr)(Ra2

p,L + Ra2
p,U)

+ 2(1896+ 3095 Pr)Rap,LRap,U cosΩ]. (4.14)
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Drag reduction in a thermally modulated channel 133

Equation (4.14) demonstrates that the heating always reduces the pressure losses
as A is always positive. Use of either the lower heating only or the upper heating
only results in the same drag reduction as predicted by Hossain et al. (2012). The
maximum drag reduction for the dual heating corresponds to Ω = 0 and is much
larger than the drag reduction achieved with one-wall heating. It consists of separate
contributions from each heating (the first term in the square bracket on the right-hand
side) plus an effect resulting from the interactions between both heatings (the second
term in the square bracket). The interaction term can change sign depending on Ω
and it reduces the pressure gradient correction for π/2 < Ω < 3π/2. The minimum
of A corresponds to Ω = π and is smaller than what can be achieved with one-wall
heating. Regardless of the phase shift between the upper and the lower heating
patterns, the drag reduction decreases as α4 when α→ 0.

Contributions to the net heat transfer between the walls are described by the energy
equation which, at this level of approximation, assumes the form

∂2Θ4

∂y2
= Re u0Pr

∂Θ3

∂X
− PrU1[Rap,LθL2 sin X + Rap,UθU2 sin (X +Ω)]

−PrU3[Rap,LθL0 sin X + Rap,UθU0 sin (X +Ω)]
+Pr

[
U1
∂Θ2

∂X
+U2

∂Θ1

∂X
+ V2

∂Θ2

∂y
+ V3

∂Θ1

∂y

]
+Pr V2

[
Rap,L

∂θL2

∂y
cos X + Rap,U

∂θU2

∂y
cos (X +Ω)

]
+Pr V4

[
Rap,L

∂θL0

∂y
cos X + Rap,U

∂θU0

∂y
cos (X +Ω)

]
− ∂

2Θ2

∂X2
. (4.15)

Extraction of the aperiodic part of the forcing on the right-hand side of (4.15) and
determination of the aperiodic part of the solution lead to the final approximation of
the average Nusselt number of the form

Nuav = α2

[
1

1400
(Ra2

p,L + Ra2
p,U)+

17
12 600

Rap,LRap,U cosΩ
]

−α4

{
1

283 500
[208(Ra2

p,L + Ra2
p,U)+ 409 Rap,LRap,UcosΩ]

+ Re2

12 770 257 500
[ (12 315+ 3130 Pr+ 1104 762 Pr2) (Ra2

p,L + Ra2
p,U)

+ 2(11 835+ 3095 Pr+ 1102 113 Pr2)Rap,LRap,U cosΩ]
}

+O(α6). (4.16)

The heat always flows from the lower wall to the upper wall regardless where the
heating is applied. Heating of one of the walls, regardless which wall is heated, results
in the same heat flux. The heat flux consists of separate contributions associated with
the upper and lower wall heating (terms proportional to Ra2

p,L and Ra2
p,U), and of

interactions between these heatings (terms proportional to the product Rap,LRap,U). The
interaction terms increase the heat flow for 0 < Ω < π/2 and 3π/2 < Ω < 2π and
decrease it for π/2<Ω<3π/2. The maximum heat flux is achieved with Ω=0 and it
is much larger than can be achieved with one-wall heating. The minimum corresponds

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.42


134 M. Z. Hossain and J. M. Floryan

to Ω=π and is smaller than can be achieved with one-wall heating. The net heat flow
decreases as α2 when α→ 0 regardless of Ω .

The structure of the above solution suggests different mechanics governing the heat
transfer and the drag reduction. The external heating creates periodic modulations
of the flow and temperature field (see (4.5)). Interactions between the conductive
and convective modulations create the net heat flow across the channel at O(α2)

and further periodic modulations of the velocity and temperature fields (see (4.7)).
Additional periodic modulations are added at the O(α3) approximation. Finally, the
nonlinear interactions between the velocity field modulations create the pressure
gradient correction which occurs at O(α4) (see (4.10)). This suggests that the largest
heat flow will occur for α producing the most effective interactions between the
conductive temperature modulations and the primary flow field modulations. The
largest drag reduction will occur for α leading to the most effective nonlinear
interactions between the flow field modulations. These two α are not the same as
will be demonstrated in the next section.

5. Heating with an arbitrary wavenumber

It has been shown (Hossain et al. 2012; Floryan & Floryan 2015) that periodic
heating applied at the lower wall reduces the pressure loss proportionally to α−7 when
α→∞. Because of the length of the relevant solution, we shall rely on the numerical
demonstration to show that the same law applies to two-wall heating.

5.1. Drag reduction
We begin the discussion with the demonstration that the same periodic heating applied
either at the lower or at the upper wall results in identical drag reduction regardless
of the heating wavenumber.

The drag reduction is associated with the formation of separation bubbles which
(i) insulate the stream from direct contact with the bounding walls and (ii) provide
propulsion due to the fluid rotation inside of the bubbles which is driven by the
horizontal density gradients. Figure 2(a) illustrates a typical flow pattern when the
heating is applied at the lower wall while figure 2(b) illustrates the symmetric pattern
when the same heating is applied to the upper wall. Both patterns are topologically
identical and produce the same drag reduction. They display the up–down symmetry
when combined with the horizontal phase shift of λ/2.

The flow topologies resulting from the simultaneous application of the same heating
at both walls are illustrated in figure 3. It can be seen that the size of the separation
bubbles, as well as the intensity of the motion inside of the bubble, depend on the
phase shift between both heating patterns; they are largest for Ω = 0 (figure 3a)
and larger than those found in the case of the single-wall heating, and smallest for
Ω = π (figure 3e) and smaller than in the case of the single-wall heating. This
result demonstrates the potential for increase of the drag reduction through judicious
selection of Ω . The flow topologies display the up–down symmetries combined with
the horizontal phase shifts. Ω = π (figure 3e) produces a simple symmetry without
any phase shifts, Ω = 3π/4 (figure 3d) has up–down symmetry with Ω = 5π/4
(figure 3f ) when combined to the phase shift of λ/8, Ω = π/2 (figure 3c) has
the up–down symmetry with Ω = 3π/2 (figure 3g) when combined with the phase
shift of λ/4 and Ω = π/4 (figure 3b) has the up–down symmetry with Ω = 7π/4
(figure 3h) when combined with the phase shift of λ/8. Topologies with the up–down
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FIGURE 2. The flow topologies resulting from the heating applied either at the lower wall
(a) with Rap,L= 1000, Rap,U = 0 or at the upper wall (b) with Rap,L= 0, Rap,U = 1000 for
Re= 5, α= 2.5, Pr= 0.71. Values of the stream function are normalized with its maxima;
ψmax= 6.67 for each case. The pressure gradient corrections are A= 0.8316 in each case.

symmetries and the proper phase shifts have the same global characteristics, e.g. the
same drag reduction.

Figure 4 illustrates variations of the wall shear stress for different relative positions
of the upper and lower heatings. In all cases, the magnitude of the shear stress is
much higher than that found in the isothermal channel. The shear stress distributions
have symmetries similar to the flow symmetries discussed above. While magnitudes
of the lower wall shear stress in the two-wall heating case are not too dissimilar
from those obtained by applying heating to the lower wall only, there is an order of
magnitude increase in the shear stress acting at the upper wall. Figure 5(a) displays
variations of the modifications of the mean shear stress as functions of the phase shift
Ω . Shear stress at the lower wall contributes to drag reduction for Ω ∈ [0, 0.27] and
Ω ∈[3.11,2π], and to drag increase for Ω ∈[0.27,3.11]. Shear stress at the upper wall
contributes to drag reduction for Ω ∈ [0,3.17] and Ω ∈ [6.02,2π], and to drag increase
for Ω ∈ [3.17, 6.02]. Both mean shear stresses exhibit large variations as a function
of Ω , including changes in direction, but their sum, which captures the total effect,
is much smaller than the individual shear stresses. This sum demonstrates that the
heating always reduces drag. Figure 5(b) illustrates variations of the pressure gradient
correction A which is equal to half of the sum of the mean shear stresses displayed
in figure 5(a) (see (3.16)). The largest A corresponds to Ω = 0 and is approximately
2.5 times larger than reduction achieved with only one-wall heating. The smallest A
corresponds to Ω = π and is approximately half of that achieved with the one-wall
heating. The largest drag reduction is achieved in a small range of Ω centred around
Ω = 0 as A is fairly insensitive to small changes of Ω in this zone. Larger phase
shifts between the heating patterns away from their most effective position (Ω = 0)
result in a rapid reduction of A. The symmetries of A in the Ω direction are similar
to those of the mean wall shear stresses discussed above.

Figure 6 illustrates the distribution of the shear stress along the walls for different
α values for the most effective Ω , i.e. Ω = 0. The shear stress changes from negative
to positive over one heating wavelength and its amplitude is significantly larger than
the magnitude of the isothermal shear stress. This amplitude reaches a maximum for
α≈ 1 and its distribution attains a nearly trapezoidal form with the shear stress rapidly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.42


136 M. Z. Hossain and J. M. Floryan

(a) (b) (c)1

0

–1

1

0

–1

1

0

–1

y

y

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

1

0

–1

y

(e) 1

0

–1

1

0

–1

1

0

–1
0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

(d)

(g) 1

0

–1

(h)

( f )

0.8

0.85
0.70
0.50

0.30

0.10 0.1
0.3

0.4
0.5

0.6
0.7

0.70

0.50

0.30

0.10

0.85

0.8 0.8

0.6 0.6

0.3 0.3

0.1 0.1

0.9

0.6

0.3
0.1

0 0
00

0 0 00
0 0

0.8

0.6

0.3

0.1

0.8

0.6

0.3

0.1

0 0 0 0
00

FIGURE 3. Flow topologies resulting from the same heating patterns applied at both walls
with Rap,L=Rap,U = 1000, Re= 5, α= 2.5, Pr= 0.71. (a–h) Display results for the phase
shifts Ω = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, respectively. The corresponding
maxima of the stream function ψmax are 7.69, 7.49, 7.21, 7.10, 7.14, 7.27, 7.45, 7.64,
respectively, and the corresponding pressure gradient corrections A are 2.6297, 2.3401,
1.6090, 0.8476, 0.5289, 0.8476, 1.6090, 2.3401, respectively. (a) Ω = 0, ψmax = 7.69,
A= 2.6297; (b) Ω =π/4, ψmax= 7.49, A= 2.3401; (c) Ω =π/2, ψmax= 7.21, A= 1.6090;
(d) Ω = 3π/4, ψmax = 7.10, A = 0.8476; (e) Ω = π, ψmax = 7.14, A = 0.5289; ( f )
Ω= 5π/4, ψmax= 7.27, A= 0.8476; (g) Ω= 3π/2, ψmax= 7.45, A= 1.6090; (h) Ω= 7π/4,
ψmax = 7.64, A= 2.3401.

changing directions around x= 0 and x= λ/2. Reduction of α causes a rapid decrease
of the amplitude with the distribution evolving towards a sinusoidal form. Increase of
α also causes a reduction of the amplitude, but at a much slower rate, and evolution
of the distribution towards a sinusoidal form. The reader may note that such evolution
of shear stress is related to the shape of the bubbles. In the case of long and short
bubbles, the finite height of the channel does not affect their shape directly; in the
former case the bubbles attain asymptotic form described by the solution given in § 4
while in the latter cases they begin to be dominated by phenomena taking place in
the boundary layers developing near the walls (see Floryan & Floryan 2015) with the
channel height being less important. When α≈ 1, the shape of the bubbles is directly
affected by the channel height.
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FIGURE 4. Shear stress distributions at the lower (a) and upper (b) walls for the two-wall
heating with Rap,L = Rap,U = 1000 for α = 2.5, Re = 1, Pr = 0.71. The dashed-dotted
line gives the shear stress distributions for the lower-wall heating only. The dashed
lines illustrate the shear stress for the isothermal channel (τU = τL = −2Re = −2).
The average stresses for the two-wall heating for Ω = 0, π/2, π, 3π/2 are τL,ave =
−1.12, −5.5, −1.86, 2.88, τU,ave = −1.12, 2.88, −1.86, −5.5, respectively. The average
stresses for the lower-wall heating are τL,ave =−1.05, τU,ave =−2.25.
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FIGURE 5. Variations of the heating-induced modification of the average shear stresses
at the lower (τL,mod/Re) and upper (τU,mod/Re) walls (see (3.15)) as well as their sum
(a) and the pressure gradient correction A/Re (b) as a function of the phase shift Ω for
Rap,L = Rap,U = 1000, α = 2.5, Re= 1, Pr = 0.71. The solid lines correspond to the two-
wall heating and the dashed-dotted lines correspond to the lower-wall heating. The thick
lines correspond to the combined effect of heating of both walls. The dotted line in (a)
identifies the reference point τmod = 0. The reader may note that (τL,mod + τU,mod)/Re from
(a) is equal to 2A/Re from (b).

The magnitude of the shear stress acting at the lower wall is similar to that found
for the lower-wall heating only, while the magnitude of the shear stress acting at
the upper wall is significantly larger than in the lower-wall heating case. Figure 7
illustrates cumulative effects, i.e. variations of the modifications of the mean shear
stress τmod (see (3.15)) as a function of α. It can be seen that the modifications peak
around α ≈ 2.5 and decrease rapidly for both large and small α. The decrease for
small α has been explained in § 4. The decrease for large α is associated with the
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FIGURE 6. Shear stress distributions at the lower (a) and upper (b) walls for different
heating wavenumbers α for Ω = 0, Re = 1, Pr = 0.71, Rap,L = Rap,U = 1000. The solid,
dashed-dotted and dashed lines correspond to the two-wall heating, the lower-wall heating
and the isothermal channel, respectively. The average stresses for the two-wall heating for
α= 0.1, 0.5, 1, 3, 6 are τL,ave = τU,ave =−1.99,−1.93,−1.83,−1.12,−1.98, respectively;
the average stresses for the lower-wall heating for α = 0.1, 0.5, 1, 3, 6 are τL,ave =
−1.99, −1.81, −1.40, −1.39, −1.98 and τU,ave = −2.00, −2.13, −2.36, −2.09, −1.99,
respectively. Lines for τL,ave for α = 6 for the lower-wall heating and two-wall heating
overlap in (a).

formation of boundary layers adjacent to the heated walls (Hossain & Floryan 2015a).
The character of the variations of τmod for α = O(1) is however very complex and
depends on Ω . Both mean shear stresses contribute to the drag reduction for Ω = 0,
their variations as a function of α are fairly smooth and the maxima are similar on
both walls (see figure 7a). When Ω =π/4 variations of both shear stresses are vastly
different, the lower-wall shear stress contributes to the drag increase, the upper-wall
shear stress contributes to the drag decrease and the overall effect is drag reduction
as the upper-wall shear stress brings in a larger contribution (see figure 7a). At Ω =
π the process is similar to Ω = 0, i.e. both mean shear stresses contribute to the
drag reduction, but they are so small that the net effect is less than what can be
achieved with the one-wall heating (see figure 7b). The cumulative effects exhibit
smooth variations as a function of α for all Ω in spite of huge differences in the
shear stresses acting at both walls (see figure 7).

Figure 8 illustrates variations of the pressure gradient correction as a function of
α. The drag reduction is clearly visible but its magnitude rapidly decreases for α
values which are either too large or too small, i.e. this decrease is proportional to α4

when α→ 0 (see § 4) and to α−7 when α→∞ (Floryan & Floryan 2015; Hossain &
Floryan 2015a). A significant increase of the drag reduction, as compared to what can
be achieved using the single-wall heating, is clearly demonstrated but only if one uses
a proper phase difference between both heating patterns. This increase may reach up
to 300 %. Use of the improper phase difference significantly weakens this effect and
can lead to drag reduction smaller than that which can be achieved using the one-wall
heating.

We begin the discussion of the effects of the Reynolds and Rayleigh numbers by
looking at the evolution of the flow patterns as functions of these two parameters
(figures 9 and 10). Increase of Re for a fixed Rap reduces the size of the separation
bubbles as well as the intensity of the motion in their interior; the bubbles are
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FIGURE 7. Variations of the heating-induced modifications of the average shear stresses
at the lower (τL,mod/Re) and upper (τU,mod/Re) walls (see (3.15)) as well as their sum
(τL,mod + τU,mod)/Re as functions of the heating wavenumber α for Rap,L = Rap,U = 1000,
Re= 1, Pr= 0.71. (a) Displays data for Ω = 0 (solid lines) and Ω = π/4 (dashed lines)
while (b) displays data for Ω = 0 (solid lines) and Ω = π (dashed lines). The dashed-
dotted lines in both figures correspond to the lower-wall heating. The thick lines identify
the cumulative effect (τL,mod+ τU,mod)/Re. The dotted lines give the reference point τmod=0.
Lines for τU,mod/Re and τL,mod/Re overlap when Ω = 0, π.

A

FIGURE 8. Variation of the pressure gradient correction A as a function of the heating
wavenumber α for Rap,L = Rap,U = 1000, Re = 5, Pr = 0.71 and selected phase angles
Ω . The dashed-dotted lines correspond to the single-wall heating. Asymptotes are marked
using dotted lines.

washed away for Re > 20 when Rap,L = Rap,U = 1000 as illustrated in figure 9. The
bubbles can survive a stronger flow if one increases the heating intensity. Figure 10
provides information about the minimum Rayleigh number required in order to create
various flow topologies. This particular figure displays data for both walls exposed
to the same heating intensity with the phase shift Ω = 0. The reader may note that
bubbles at the upper wall persist to much higher α when both walls are exposed to
the heating compared with the single-wall heating. The structure of the bubbles at
the lower wall is similar for both types of heating. The same data plotted using the
Richardson numbers Rip,L = Rap,L/(Pr∗Re2) and Rip,U = Rap,U/(Pr∗Re2) rather than
Rayleigh numbers do not provide better insights and thus are not shown.
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FIGURE 9. Flow topologies resulting from identical heatings applied at both walls with
Rap,L = Rap,U = 1000, Ω = 0, α = 2.5, Pr = 0.71. (a–e) Display results for Re= 0, 1, 5,
10, 20, respectively. The corresponding maxima of the stream function are ψmax = 4.28,
4.94, 7.69, 13.4, 26.67, respectively, and the corresponding pressure gradient corrections
are A= 0, 0.8835, 2.6297, 1.4271, 0.4119, respectively. The corresponding quantities for
the single-wall heating are (ψmax, A) = (2.5793, 0), (2.9386, 0.3491), (6.6667, 0.8316),
(13.3333, 0.4971), (26.6667, 0.1716). (a) Re= 0, ψmax = 4.28, A= 0; (b) Re= 1, ψmax =
4.94, A=0.8835; (c) Re=5, ψmax=7.69, A=2.6297; (d) Re=10, ψmax=13.4, A=1.4271;
(e) Re= 20, ψmax = 26.67, A= 0.4119.
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FIGURE 10. The minimum Rayleigh number Rap = Rap,L = Rap,U required for the
formation of the separation bubbles at the lower (a) and upper (b) walls for Ω = 0,
Pr = 0.71. The solid lines correspond to the two-wall heating while the dashed-dotted
lines correspond to the lower-wall heating.

Figure 11 displays distributions of the wall shear stress over one heating wavelength
for different Re’s starting with Re = 0. The amplitude of the shear stress variations
along the walls decreases as Re increases and its reduction correlates well with the
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FIGURE 11. Shear stress distributions at the lower (a) and upper (b) walls for different
Reynolds numbers Re for Ω = 0, α = 2.5, Pr = 0.71, Rap,L = Rap,U = 1000. The
solid and dashed-dotted lines correspond to the two-wall heating and the lower-wall
heating, respectively. The average stresses for Re = 0, 1, 5, 10, 15, 20 in the
former case are τL,ave = τU,ave = 0, −1.12, −7.37, −18.57, −29.28, −39.59 and in the
latter case are τL,ave = 0, −1.0487, −8.0239, −19.01, −29.4973, −39.71 and τU,ave =
0, −2.25, −10.31, −20.0, −29.94, −39.95. The average shear stress for the isothermal
channel is −2Re. The dashed lines provide the reference points τL = 0 and τU = 0.

washing away of the separation bubbles illustrated in figure 9. The amplitudes of the
shear stress at the lower wall are nearly similar for the one-wall and the two-wall
heatings but the amplitudes at the upper wall are vastly different. Figure 12 illustrates
changes in the heating-induced shear stress modification at the lower and upper
walls as well as the cumulative effect. The modifications have the same magnitude
but opposite directions in the limit of Re→ 0 and result in the thermally induced
drift (Hossain & Floryan 2015b). They evolve differently at the upper and lower
walls as Re increases, providing the net force which assists the fluid movement.
The maximum effect occurs for Re ≈ 6 for the particular conditions used in this
figure. Further increase of Re reduces the drag reducing effect and the shear stress
modifications practically vanish at Re≈ 50. The resulting pressure gradient corrections
are illustrated in figure 13. The correction increases linearly for small Re, as predicted
in § 4, the growth saturates at Re≈ 6 and is followed by a rapid decrease. Since the
magnitude of the pressure gradient for the isothermal flow increases proportionally
to Re (3.16), the pressure gradient correction represents a constant fraction of the
isothermal pressure gradient for small enough Re. Variations of A are similar for
the whole range of Rayleigh numbers considered in this analysis with the higher
magnitudes achieved for higher Rap’s. Data displayed in figure 14 demonstrate that
the most effective heating wavenumber, as far as the drag reduction is concerned, is
α≈ 2.7 for the most effective phase shifts (Ω = 0). The drag reduction is up to three
times larger than the reduction which can be achieved with one-wall heating.

The effectiveness of the heating intensity can be judged using data displayed in
figure 15. The pressure gradient correction initially increases proportionally to Ra2

p,
which conforms to the analytical prediction given by (4.14). The growth eventually
saturates and a further increase of Rap results in a reduction rather than any further
increase of the pressure gradient correction. The reader may note that it is possible
to create a pressure gradient correction which is larger than the isothermal pressure
gradient, i.e. it is possible to use wall heating to pump the fluid without the use of
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FIGURE 12. Variations of the heating-induced modifications of the average shear stresses
at the lower wall τL,mod (see (3.15)), the upper wall τU,mod (see (3.15)) as well as their sum
τL,mod + τU,mod as functions of the Reynolds number Re for Ω = 0 (solid lines) and π/4
(dashed lines), Rap,L=Rap,U = 1000, α= 2.5, Pr= 0.71. Dashed-dotted lines correspond to
the lower-wall heating. Thick lines identify the cumulative effect, i.e. τL,mod + τU,mod. The
dotted line provides the reference point τmod = 0.

Re

A

500

1000

FIGURE 13. Variation of the pressure gradient correction A as a function of the Reynolds
number Re for selected heating intensities Rap = Rap,L = Rap,U for α = 2.5, Pr = 0.71
and Ω = 0. The solid and dashed-dotted lines correspond to the two-wall heating and the
single-wall heating, respectively. Asymptotes are marked using dotted lines.

any externally applied pressure gradient. The magnitude of the required Rap is such
that the temperature differences that the fluid is exposed to would prevent the use of
the Boussinesq model and the variations of the fluid thermal properties would have to
be accounted for. The most effective heating wavenumber as far as the drag reduction
is concerned shifts from α≈ 1.6 for Rap≈ 100 to α≈ 2.7 for Rap≈ 1000 as illustrated
in figure 16 for Ω = 0.
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FIGURE 14. Variation of the pressure gradient correction A/Re as a function of the
heating wavenumber α and the flow Reynolds number Re for Rap,L = Rap,U = 1000, Pr=
0.71, and phase angles Ω = 0 (a) and Ω = π/4 (b). The dashed-dotted lines correspond
to the single-wall heating.

5
10

FIGURE 15. Variation of the pressure gradient correction A/Re as a function of the
Rayleigh number Rap = Rap,L = Rap,U for Ω = 0, Pr = 0.71 and α = 2 (thick solid lines)
and α= 3 (thick dashed-dotted lines). Dotted lines identify the small-Rap asymptotes. Thin
solid and dashed-dotted lines correspond to the single-wall heating.

The above discussion demonstrates that the spatially periodic heating represents an
effective mechanism for reduction of the pressure gradient required to maintain the
desired flow rate. One can consider two types of applications of this phenomenon.
In the first type, one is interested in the drag reduction in order to save the energy
required to pump the fluid. The required heating comes with an energy cost but the
question of the net gain, i.e. determination of whether the reduction of the required
pressure gradient overcomes the costs of creation of the required heating/cooling, is
difficult to answer. It is known that the overall viscous dissipation in an isothermal
channel under a constant flow rate reaches a minimum for the laminar parabolic
profile (Bewley 2009; Fukagata, Sugiyama & Kasagi 2009) and thus the overall
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FIGURE 16. Variation of the pressure gradient correction A/Re as a function of the
heating wavenumber α and the periodic Rayleigh numbers Rap,L=Rap,U =Rap for Re= 1,
Pr= 0.71, Ω = 0. The dashed-dotted lines correspond to the single-wall heating.

energy consumption is always higher for the controlled flow than that of the
uncontrolled flow. This statement likely applies to the non-isothermal channels in
spite of the lack of any formal proof. The cost of creation of the heating pattern is
a strong function of the heating technique but could be marginal if the heat supply
is sufficiently inexpensive, e.g. waste heat. In the second type of applications, the
required pressure difference between the channel entrance and the channel exit is
too high to be efficiently created using standard techniques and its magnitude could
be large enough to cause structural deformations of the conduit. In such cases, one
is looking for alternative pumping methods where the propulsive force is distributed
along the channel length. The interdependence between the pumping power and the
drag reduction is well explained by Hœpffner & Fukagata (2009). The peristaltic
pumping provides a good example of a technique with a distributed propulsive force
(Takagi & Balmforth 2011). The heating-induced drag reduction can be viewed as an
alternative. In this case, the energy cost associated with the creation of the temperature
patterns comes as a secondary consideration but nevertheless one is interested in the
relevant heat transfer characteristics. We shall now discuss these characteristics.

5.2. Heat transfer
The average Nusselt number Nuav describes the net heat transfer between the walls
and can be viewed as the direct energy cost of the heating-induced drag reduction. It
changes by 150 % as Ω varies from Ω = π, which produces the lowest Nuav ≈ 100,
to Ω = 0, which produces the largest Nuav ≈ 250, as illustrated in figure 17. Nuav
achieved with the two-wall heating is always larger than Nuav achieved with the one-
wall heating (see figure 17). Data presented in figure 18 demonstrates that α≈ 1 is the
most effective for the maximization of Nuav for the majority of phase shifts Ω except
in the vicinity of Ω ≈ π where α ≈ 2 becomes the most effective. Nuav decreases
proportionally to α2 when α→ 0 (see § 4) and proportionally to α−3 when α→∞
(Floryan & Floryan 2015; Hossain & Floryan 2015a). There is a lack of any relation
between the most effective α values for the drag reduction and for the heat transfer
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FIGURE 17. Variations of the average Nusselt number Nuav as a function of the phase
shift Ω for Rap,L = Rap,U = 1000, α = 2.5, Re= 1, Pr = 0.71. The solid and the dashed-
dotted lines correspond to the two-wall heating and the single-wall heating, respectively.
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FIGURE 18. Variations of the average Nusselt number Nuav as a function of the heating
wavenumber α for selected values of Ω for Rap,L = Rap,U = 1000, Re= 5, Pr= 0.71. The
dashed-dotted line corresponds to the single-wall heating. Asymptotes are marked using
dotted lines.

maximization, with α ≈ 2 being the most effective in the former case while α ≈ 1
being the most effective in the latter case (compare figures 8 and 18). This lack of
correlation should not be surprising in view of the different processes leading to the
generation of the heat flux and the pressure gradient correction discussed in § 4.

Variations of the Reynolds number do not affect the heat transfer as long as Re< 6.
Further increase of Re leads to a rapid decrease of Nuav, as illustrated in figure 19.
This behaviour is similar to variations of A/Re discussed in the previous subsection.
The decrease occurs in a similar manner for all α values (see figure 20) and is
associated with the elimination of the separation bubbles which are responsible for
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FIGURE 19. Variations of the average Nusselt number Nuav as a function of the Reynolds
number Re for Rap,L=Rap,U =Rap= 200, 500, 1000, and Ω = 0, α= 2.5, Pr= 0.71. Solid
and dashed-dotted lines correspond to the two-wall heating and the single-wall heating,
respectively. Asymptotes are marked using dotted lines.
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FIGURE 20. Variation of the average Nusselt number Nuav as a function of the heating
wavenumber α and the flow Reynolds number Re for Rap,L=Rap,U = 1000, Pr= 0.71, and
phase angles Ω=0 (a) and Ω=π/4 (b). Dashed-dotted lines correspond to the single-wall
heating.

the transverse fluid movement. When the bubbles are washed away, the heat can be
transferred between the walls by conduction only and, since the walls are subject
to the periodic heating, the net heat transfer is eliminated. A rather small sensitivity
of Nuav to variations of Ω is well illustrated by comparing results displayed in
figure 20(a,b). Increase of Rap results in an intensification of the convective motion
and thus results in an increase of Nuav (see figure 21). The most effective α for the
heat transfer maximization is independent of Rap as demonstrated in figure 21.

The cost of moving energy within each wall in order to create the local hot and
cold spots is difficult to assess but it obviously contributes to the overall energy cost.
The quantity of energy which has to be moved can be determined by looking at the
horizontal heat fluxes between the hot and cold wall segments and can be quantified
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FIGURE 21. Variation of the average Nusselt number Nuav as a function of the heating
wavenumber α and the periodic Rayleigh numbers Rap,L = Rap,U = Rap for Re= 1, Pr =
0.71, Ω = 0. Dashed-dotted lines correspond to the single-wall heating only.
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FIGURE 22. Variations of the upper (Nuh,U) and lower (Nuh,U) horizontal Nusselt numbers
as functions of the phase shift Ω for Rap,L = Rap,U = 1000, α = 2.5, Re = 1, Pr = 0.71.
The solid lines and the dashed-dotted line correspond to the two-wall heating and the
lower-wall heating only, respectively.

in terms of the heat flux leaving each wall per half heating wavelength and expressed
by the horizontal Nusselt numbers defined in (3.19), i.e. in terms of Nuh,L and Nuh,U.
Results displayed in figure 22 demonstrate that both Nuh,L and Nuh,U change on the
order of 5 % when Ω varies from 0 to 2π with Nuh,L achieving the highest magnitude
for Ω = π/5 and Nuh,U achieving the same value for Ω = 9π/5. These magnitudes
are slightly higher than in the case of the single-wall heating. Results displayed in
figure 23 demonstrate that Nuh,L and Nuh,U remain independent of Re for small Re’s
where separation bubbles exist. Values of Re which lead to the removal of the bubble
result in an increase of Nuh,L and Nuh,U but this zone is of no interest for the drag
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FIGURE 23. Variations of the horizontal Nusselt number Nuh,L at the lower wall (a) and
the horizontal Nusselt number Nuh,U at the upper wall (b) as functions of the heating
wavenumber α and the Reynolds number Re for Rap,L = Rap,U = Rap = 1000, Pr = 0.71,
Ω = 0. Dashed-dotted lines correspond to the lower-wall heating only.
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FIGURE 24. Variations of the horizontal Nusselt number Nuh,L at the lower wall (a) and
the horizontal Nusselt number Nuh,U at the upper wall (b) as functions of the heating
wavenumber α and the Rayleigh number Rap,L=Rap,U =Rap for Re= 1, Pr= 0.71, Ω = 0.
Dashed-dotted lines correspond to the lower-wall heating only.

reducing applications. Increase of α also leads to an increase of Nuh,L and Nuh,U as
temperature gradients imposed along the walls increase. The reader may note that the
high values of α are also of no interest as they lead to the near elimination of the drag
reducing effect. Values of Nuh,L are nearly the same whether single-wall or two-wall
heatings are used while Nuh,U significantly increases when the single-wall heating is
replaced by the two-wall heating. Increases of Nuh,L and Nuh,U as a function of Rap are
documented in figure 24 with Nuh,L being nearly the same for the single-wall and the
two-wall heating while Nuh,U increases by an order of magnitude when the single-wall
heating is replaced with the two-wall heating. These results suggest that the horizontal
heat fluxes are driven by the thermal conditions prevailing at a given wall and are not
affected by what happens at the other wall. A comparison of the conductive part of
the heat flux, which can be determined analytically from (2.4), with the total heat
flux demonstrates that the conductive effects provide the largest contributions to these
fluxes.
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The flow model used in the present analysis relies on the Boussinesq approximation
and thus one needs to check the limits of its validity. The detailed calculations
have been carried out for Pr = 0.71 (air) and most of the presented results were
obtained for Rap,L = Rap,U = 1000. If one assumes atmospheric pressure and a
reference temperature of Tref = 17 ◦C, the relevant material properties are: conductivity
k = 0.0263 W m−1 K−1, specific heat c = 1007 J kg−1 K−1, thermal diffusivity
κ = k/ρc = 22.5 × 10−6 m2 s−1, dynamic viscosity µ = 184.6 × 10−7 N s m−2,
kinematic viscosity ν = 15.89 × 10−6 m2 s−1, density ρ = 1.1614 kg m−3, thermal
expansion coefficient Γ = 1/(17 + 273) = 1/300 K−1 and gravitational acceleration
g= 9.81 m s−2 (Bergman et al. 2011). This leads to Rap,L= gΓ h3Tp,L/νκ = 91.146×
106h3Tp,L and a similar expression for Rap,U. If one assumes a permissible temperature
difference of 1T = 10 ◦C (Tp,L = Tp,U = 10 ◦C), expressions for the Rayleigh numbers
reduce to Rap,L = Rap,U = 911.46 × 106h3. Assuming Rap,L = Rap,U = 200 leads to
h = 0.006 m. The same calculation for Rap,L = Rap,U = 500 leads to h = 0.0082 m,
and for Rap,L = Rap,U = 1000 results in h = 0.0103. Doubling of the permissible
temperature difference to 1T = 20 ◦C leads to h= 0.0048 m for Rap,L = Rap,U = 200,
h= 0.0065 m for Rap,L = Rap,U = 500 and h= 0.0082 for Rap,L = Rap,U = 1000. The
present results are thus applicable to channels with heights of a few millimetres. The
larger values of the Rayleigh numbers used in this analysis probably enter into the
zone where real gas effects begin to play a role but are included in this presentation
in order to illustrate the physical trends.

The system performance can be affected by the appearance of secondary flows,
especially for the more intense heatings, but its stability characteristics remain to
be studied. An analysis of the stability of flows exposed to the one-wall heating
demonstrated the appearance of secondary flows in the form of the longitudinal rolls,
the transverse rolls and the oblique rolls, depending on the heating wavenumber
(Hossain & Floryan 2013b, 2015a). The appearance of such states results in a
significant decrease of the drag reducing effect but the resulting drag can still be
lower than the isothermal drag as shown by Floryan & Floryan (2015) in the case of
a channel exposed to a combination of periodic and uniform heatings.

6. Summary
A pressure-gradient-driven flow in a horizontal channel exposed to thermal

modulations has been studied. The upper and lower walls have sinusoidal temperature
variations with the same mean values but different amplitudes, and with a phase shift
Ω between them. Detailed results have been presented for fluids with the Prandtl
number Pr= 0.71.

It has been shown that the intensity of convective effects strongly depends on the
phase shift between the upper and lower heating patterns. The most intense convection
and the largest drag reduction are achieved when the hot spots are located above
each other, and the weakest convection corresponds to the hot and cold spots located
above each other. If one uses drag reduction achieved using the single-wall heating
as the reference, heating of both walls can increase this drag reduction by a factor
of three but only if the proper positioning of both heating patterns is used. Improper
positioning can reduce this effect by half.

It has been shown that the drag reduction is associated with the formation of
separation bubbles which isolate the main stream from direct contact with the side
walls and provide a propulsive power due to the buoyancy-force-driven convection
inside of these bubbles. The bubbles form only when the proper heating wavenumber
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α is used; the largest drag reduction is achieved for α ≈ 2.5. A sufficient increase
of the Reynolds number Re results in the washing away of the bubbles and this
eliminates the drag reducing effect. Heating of both walls with the proper phase shift
between the heating patterns doubles the range of Re where this effect remains active.
The strength of the drag reducing effect increases proportionally to the second power
of the heating intensity (as expressed by the relevant Rayleigh number) but excessive
heating results in the convection saturation and reduction of this effect. A detailed
analysis of heat fluxes associated with the creation of the heating patterns has been
presented. The maximum net heat flow between the walls occurs for α ≈ 1 and thus
does not overlap with the conditions resulting in the largest drag reduction.
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Appendix A
Definitions of functions used in § 4.

θL0 =− y
4
+ 1

4
, θL2 =− y3

24
+ y2

8
+ y

24
− 1

8
,

θL4 =− y5

480
+ y4

96
+ y3

144
− y2

16
− 7y

1440
+ 5

96
,

 (A 1)

θU0 = y
4
+ 1

4
, θU2 = y3

24
+ y2

8
− y

24
− 1

8
,

θU4 = y5

480
+ y4

96
− y3

144
− y2

16
+ 7y

1440
+ 5

96
,

 (A 2)

FU1(y)= y4

96
− y3

24
− y2

80
+ y

24
+ 1

480
,

FU2(y)=− y4

96
− y3

24
+ y2

80
+ y

24
− 1

480
,

 (A 3)

FV21(y)=− y5

480
+ y4

96
+ y3

240
− y2

48
− y

480
+ 1

96

FV22(y)= y5

480
+ y4

96
− y3

240
− y2

48
+ y

480
+ 1

96
,

 (A 4)

FP01(y)=−y2

8
+ y

4
+ 1

40
,

FP02(y)= y2

8
+ y

4
− 1

40
,

 (A 5)

FΘ11 =− y5

80
+ y4

48
+ y3

24
− y2

8
− 7y

240
+ 5

48
,

FΘ12 = y5

80
+ y4

48
− y3

24
− y2

8
+ 7y

240
+ 5

48
,

 (A 6)
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FU21(y)=− y8

26 880
+ y7

10 080
+ y6

2880
− y5

480
− 7y4

5760
+ 5y3

288
+ 107y2

100 800
− 31y

2016
− 1

6400
,

(A 7)

FU22(y)=− y8

8960
+ y7

2016
+ 7y6

14 400
− y5

480
− y4

1152
+ y3

288
+ 19y2

33 600
− 19y

10 080
− 29

403 200
,

(A 8)

FU23(y)= y8

26 880
+ y7

10 080
− y6

2880
− y5

480
+ 7y4

5760
+ 5y3

288
− 107y2

100 800
− 31y

2016
+ 1

6400
,

(A 9)

FU24(y)= y8

8960
+ y7

2016
− 7y6

14 400
− y5

480
+ y4

1152
+ y3

288
− 19y2

33 600
− 19y

10 080
+ 29

403 200
,

(A 10)

FV31(y) = − y9

241 920
+ y8

80 640
+ y7

20 160
− y6

2880
− 7y5

28 800
+ 5y4

1152

+ 107y3

302 400
− 31y2

4032
− y

6400
+ 33

8960
, (A 11)

FV32(y) = − y9

80 640
+ y8

16 128
+ y7

14 400
− y6

2880
− y5

5760
+ y4

1152

+ 19y3

100 800
− 19y2

20 160
− 29y

403 200
+ 29

80 640
, (A 12)

FV33(y) = y9

241 920
+ y8

80 640
− y7

20 160
− y6

2880
+ 7y5

28 800
+ 5y4

1152

− 107y3

302 400
− 31y2

4032
+ y

6400
+ 33

8960
, (A 13)

FV34(y) = y9

80 640
+ y8

16 128
− y7

14 400
− y6

2880
+ y5

5760
+ y4

1152

− 19y3

100 800
− 19y2

20 160
+ 29y

403 200
+ 29

80 640
, (A 14)

FP11(y)=− y6

480
+ y5

240
+ y4

96
− y3

24
− 7y2

480
+ 5y

48
+ 107

50 400
,

FP12(y)= y6

480
+ y5

240
− y4

96
− y3

24
+ 7y2

480
+ 5y

48
− 107

50 400
,

 (A 15)

FΘ21(y)= y7

26 880
− y6

3840
+ y5

6400
+ y4

1280
− y3

1280
− y2

1280
+ 79y

134 400
+ 1

3840
, (A 16)

FΘ22(y)=− y7

13 440
+ 7y5

9600
− 11y3

5760
+ 253y

201 600
, (A 17)

FΘ23(y)= y7

26 880
+ y6

3840
+ y5

6400
− y4

1280
− y3

1280
+ y2

1280
+ 79y

134 400
− 1

3840
, (A 18)
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FΘ24(y) = y9

5760
− y8

2688
− 13y7

10 080
+ 7y6

1440
+ 17y5

4800
− 11y4

576

− 7y3

1440
+ 5y2

96
+ 491y

201 600
− 1511

40 320
, (A 19)

FΘ25(y) = − y9

5760
− y8

2688
+ 13y7

10 080
+ 7y6

1440
− 17y5

4800
− 11y4

576

+ 7y3

1440
+ 5y2

96
− 491y

201 600
− 1511

40 320
, (A 20)

FΘ26(y)=− y7

40 320
+ y6

5760
− y5

4800
− y4

2880
+ y3

1152
− y2

1920
− y

1575
+ 1

1440
, (A 21)

FΘ27(y)= y7

20 160
− y5

1600
+ y3

576
− 13y

11 200
, (A 22)

FΘ28(y)=− y7

40 320
− y6

5760
− y5

4800
+ y4

2880
+ y3

1152
+ y2

1920
− y

1575
− 1

1440
. (A 23)
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