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Abstract

We examine necessary and sufficient conditions for recurrence and positive recurrence
of a class of irreducible, level-dependent quasi-birth-and-death (LDQBD) processes
with a block tridiagonal structure that exhibits asymptotic convergence in the rows
as the level tends to infinity. These conditions are obtained by exploiting a multi-
dimensional Lyapunov drift approach, along with the theory of generalized Markov
group inverses. Additionally, we highlight analogies to well-known average drift results
for level-independent quasi-birth-and-death (QBD) processes.
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1. Introduction

In this paper we examine necessary and sufficient conditions for recurrence and positive
recurrence of a class of multi-dimensional Markov processes, namely level-dependent quasi-
birth-and-death processes. These conditions are established by way of Lyapunov (potential)
functions and variants of Foster’s criterion [17]. Additionally, we demonstrate a correspon-
dence between these conditions and similar results for related Markov processes.

The quasi-birth-and-death (QBD) process is a bivariate, continuous-time Markov process
{(Xt, Yt) : t ≥ 0} with countable state space S = {(i, j) : i ≥ 0, j = 1, . . . , Ki}, where i is called
the level of the process, j is the phase, and Ki is the number of phases in level i. Generally
speaking, Ki can be either a finite, positive integer or infinity for each i. The process is restricted
in level jumps only to its nearest neighbors but is unrestricted in the phase dimension. That
is, from state (i, j) ∈ S the process may transition to the states (i, k), (i − 1, k), or (i + 1, k),
but not to states of the form (i ± n, k) where n ≥ 2. It extends the standard birth-and-death
process, whose state space consists only of the level i. If the transition rates of a QBD process
are independent of i, it is termed a homogeneous or level-independent QBD process; if the
rates change with i, it is termed a non-homogeneous or level-dependent QBD (LDQBD)
process. The broad class of LDQBD processes is widely applicable to stochastic models
arising in queueing theory, computer and communications systems, reliability theory, inventory
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1110 J. D. CORDEIRO ET AL.

theory, and many other areas. The level-independent version has been studied extensively in
the applied probability literature and is given a comprehensive treatment by Latouche and
Ramaswami [24]; the level-dependent version has received comparatively less attention.

For the class of LDQBD models examined here, it is assumed that Ki = K for all i, where
K is a finite, positive integer. Since important attributes (e.g. recurrence and transience) of
an irreducible continuous-time Markov chain can be ascertained via its embedded discrete-
time Markov chain (DTMC) at jump epochs, we analyze this chain and denote it by
� := {(Xn, Yn) : n ∈Z+}. This process has state space S = {(i, j) : i ≥ 0, j = 1, . . . , K}, and its
one-step transition probability matrix (P) possesses the classical block tridiagonal form of a
QBD process:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
1 A(0)

0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 · · ·
0 A(2)

2 A(2)
1 A(2)

0 0 · · ·
0 0 A(3)

2 A(3)
1 A(3)

0 · · ·
0 0 0 A(4)

2 A(4)
1 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The structure of P indicates that the process is skip-free in the level in both directions. For
general LDQBD processes, the blocks along the main diagonal of P (A(i)

1 for i ≥ 0) are square

matrices, while those on the secondary diagonals (A(i)
0 and A(i)

2 for i ≥ 0) can be rectangular.
The model we examine here assumes that all rows of P contain only square matrices of order K.
Therefore, for each i ≥ 0 and m = 0, 1, 2, A(i)

m is a non-negative square matrix of order K, and
the row sums of A(i) := A(i)

2 + A(i)
1 + A(i)

0 for i ≥ 1 are equal to 1, as are those of A(0)
1 + A(0)

0 .
When it exists, denote the limiting distribution of � by a positive row vector x that uniquely
solves the linear system xP = x and xe = 1, where e is a column vector of ones. The vector x is
partitioned by levels into subvectors so that x = (x0, x1, x2, . . . ), and xi contains the limiting
probabilities for states in level i, namely those in the set Li := {(i, 1), (i, 2), . . . , (i, K)}. If �

is irreducible, aperiodic, and positive recurrent, then there exist matrices {Ri : i ≥ 1} such that
xi = xi−1Ri, where {Ri : i ≥ 1} is the minimal non-negative solution of the set of equations

Ri = A(i−1)
0 + Ri A(i)

1 + Ri Ri+1 A(i+1)
2 , i ≥ 1 (1)

(see Theorem 12.1.1 of [24]). Solving the system of equations (1) is typically relegated to
numerical techniques, such as those described in [8]. The LDQBD process is positive recurrent
if and only if there exists a positive solution to the system of equations [24, Theorem 12.1.4]

x0 = x0(A(0)
1 + A(0)

0 G1)

subject to the normalization condition

x0

( ∞∑
n=0

n∏
i=1

Ri

)
e = 1,

where G1 contains the probabilities of reaching level 0 in finite time starting from level 1,
and the empty product (when n = 0) results in the identity matrix. Although the matrices G1
and {Ri : i ≥ 1} can be obtained to any desired accuracy using, for example, the algorithms of
Bright and Taylor [8], our primary aim here is to determine analytical necessary and sufficient
conditions for a special class of LDQBD processes.
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Level-independent QBD processes arise frequently in the context of queueing models with
non-standard arrival and/or service mechanisms (e.g. randomly varying arrival and/or service
rates). One such example is the M/M/1 queue in a two-state environment [14, 50] in which
the level i corresponds to the number of customers in the system, and the phase j is the
state of an exogenous environment process that modulates the arrival and/or service rates.
These early models were later extended by Neuts [34, 35, 36] and Purdue [40] to consider
environment transitions not restricted to service completion epochs. Neuts [38] formally cat-
egorized Markov-modulated queueing systems as homogeneous QBD processes and provided
an average drift condition for this class of stochastic processes. Latouche and Taylor [25]
provided a general proof for drift conditions of homogeneous QBD processes, which are
also applicable to general matrix-analytic models. The emergence of retrial queueing models
spawned variants of the homogeneous QBD process, including the LDQBD process in which
the block tridiagonal structure varies over an infinite number of levels. Some representative
examples of such models include [1], [2], [3], [5], [7], [23], [26], [33], and [46]. Bright
and Taylor [8] developed an efficient row-truncation algorithm to approximate the limiting
distribution of an LDQBD process when it exists; however, the method does not readily yield
information about the recurrence characteristics of the LDQBD process. Some models possess
special properties to facilitate analysis of stability criterion, as in [4], whereas improvements in
numerical algorithms such as ETAQA [9] for computing the stationary distribution of LDQBD
processes have made the numerical approach more tenable for queueing applications (see [6],
[10], and [32]).

For one-dimensional Markov chains with infinitely denumerable state spaces, it is well
known that Lyapunov functions, along with Foster’s criterion [17], can be used to establish
sufficient conditions for the ergodicity of irreducible chains. As a special case of Foster’s
criterion, Pakes’ lemma [39, Theorem 2] is perhaps most useful in that it generalizes to
conditions on the subsequential upper bound of drift terms, and it uses the identity function
as the Lyapunov (potential) function. Other extensions considering broader classes of Markov
processes, including continuous-time Markov chains (CTMCs), appear in [29], [30], [43],
[48], and [49]. Non-ergodicity was first studied first by Kaplan [19] and subsequently by
Sennott, Humblet, and Tweedie [44, 45]. However, the analysis of LDQBD processes falls
more appropriately within the realm of multi-dimensional Markov processes, which have been
studied extensively over the past several decades. Tweedie [49] approached the problem from
the vantage point of general state spaces, followed by Szpankowsky [47], Rosberg [42], and
Sennott [44]. To the best of our knowledge, the first appearance of a necessary and sufficient
Foster–Lyapunov recurrence criterion appears in Mertens, Samuel-Cahn, and Zamir [30].
A corresponding necessary and sufficient criterion for the positive recurrence of Markov
chains over countable state spaces is proved in [27]. This result, along with those of Mertens,
Samuel-Cahn, and Zamir [30], are incorporated in the monograph by Fayolle, Malyshev, and
Menshikov [16] on the constructive theory of countable Markov chains.

Due to the difficulties associated with analyzing general, multi-dimensional Markov pro-
cesses with non-homogeneous transition matrices, attention has shifted to classes of structured
chains that become homogeneous at a finite level of the state space. One important example is
the class of LDQBD processes for which there exists a level L above which the process behaves
as a homogeneous QBD process. Such models are termed LDQBDs with a large number of
boundary states (see [8] and [38]) and are relevant to our work here in that their recurrence
properties can be determined by examining the behavior of the process beyond level L. Bright
and Taylor [8] showed how to construct a stochastically dominating LDQBD process whose
recurrence is sufficient to guarantee the recurrence of the process it dominates. Klimenok and
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Dudin [21] defined and analyzed the so-called asymptotically quasi-Toeplitz Markov chain
(AQTMC). The AQTMC is the non-homogeneous, asymptotically row-convergent form of the
multi-dimensional QTMC introduced in [12], which was motivated by their previous work on
a retrial queue whose input is a batch Markovian arrival process (BMAP) [11, 13, 20]. The
QTMC is more widely known as an M/G/1-type Markov chain [37], as its structure mirrors
that of the system size process of an M/G/1 queue embedded at service completion epochs.

It is well known that the LDQBD process is a subclass of non-homogeneous M/G/1-type
Markov chains. Furthermore, if it is assumed that the blocks of the transition probability matrix
converge (as i → ∞), then the LDQBD process can be viewed as a discrete-time AQTMC.
While the AQTMC analyzed in [21] is more general, they provide only sufficient conditions
for ergodicity and non-ergodicity of these types of chains. Koukoutsidis, Altman, and Kelif
[22] devised a non-homogeneous QBD model for admission control of a WCDMA system.
They conjectured an ergodicity condition for the case in which the blocks of the infinitesimal
generator matrix converge asymptotically to those of a homogeneous QBD process. For chains
that satisfy such convergence properties, the LDQBD process is ergodic if the QBD process to
which it converges is ergodic; conversely, if the LDQBD process is non-ergodic, then so too is
the QBD process. The sketch of their proof uses stochastic dominance concepts.

The primary aim of the present paper is to provide necessary and sufficient conditions for
the recurrence and positive recurrence of a class of discrete-time LDQBD processes whose
block matrices converge as i → ∞. More specifically, we consider a continuous-time LDQBD
process whose embedded jump chain satisfies the convergence criteria

lim
i→∞ A(i)

k = A∗
k , k = 0, 1, 2 and lim

i→∞ A(i) = A∗,

where the above limits hold element-wise. This class of processes encompasses the class of
LDQBD processes with a large number of boundary states. It can also be viewed as a special
case of the asymptotically quasi-Toeplitz Markov chains; however, our approach and results
differ in two important ways. First, we employ a Foster–Lyapunov drift approach to derive
positive recurrence (and hence, ergodicity) conditions for this special type of LDQBD without
the use of transforms. Second, we show that this condition is not only sufficient but also
necessary, and demonstrate an analogy between our results and the average drift conditions
for level-independent QBD processes.

The remainder of the paper is organized as follows. Section 2 first reviews LDQBD
processes and some preliminaries related to drift functions and Foster’s criterion for one-
dimensional Markov chains. In Section 3 we derive the generalized drift function for a
specific form of Lyapunov function and employ a modified version of Foster’s criterion
to provide sufficient conditions for recurrence, and necessary and sufficient conditions for
positive recurrence, of the embedded DTMC �. Section 4 establishes the existence of a
limiting average drift and characterizes necessary and sufficient conditions for recurrence, null
recurrence, positive recurrence, and transience using this drift term. Additionally, we highlight
analogies between the homogeneous QBD process and the LDQBD process. A few concluding
remarks are provided in Section 5.

2. Preliminaries

Although the LDQBD process is generally a continuous-time discrete-state stochastic
process, we analyze its discrete-time counterpart (as the continuous-time version can be
analyzed via embedding at transition epochs). Throughout the manuscript, we shall adopt the
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following notation and conventions. Let R be the set of real numbers, R+ = [0, ∞) the set
of non-negative reals, N= {1, 2, . . .} the set of natural numbers and Z+ = {0, 1, . . .} the set
of non-negative integers. The vector e = (1, 1, . . . , 1)′ denotes a column vector of ones, and 0
denotes the zero column vector (or zero matrix), as needed. Finally, for any two column vectors
x, y ∈Rn, we write x ≤ y to indicate that the inequality holds component-wise.

Let � := {(Xn, Yn) : n ≥ 0} be a time-homogeneous, irreducible and aperiodic discrete-time
Markov chain (DTMC) on the countable state space

S := {(i, j) : i ∈Z+ , j ∈P},

where P := {1, . . . , K} for some K ∈N. The components i and j of the state are termed the
level and phase of the process, respectively. The DTMC � is a discrete-time quasi-birth-and-
death (QBD) process because its one-step transition probability matrix (P) exhibits the block
tridiagonal form

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
1 A(0)

0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 · · ·
0 A(2)

2 A(2)
1 A(2)

0 0 · · ·
0 0 A(3)

2 A(3)
1 A(3)

0 · · ·
0 0 0 A(4)

2 A(4)
1 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The time-homogeneity of � implies that P is independent of time n. For each i ∈Z+ , the entries

A(i)
0 , A(i)

1 , and A(i)
2 are non-negative K × K matrices comprising transition probabilities between

phase states and levels. As P is a one-step transition probability matrix, we note that

A(i) :=
{

A(i)
1 + A(i)

0 i = 0

A(i)
2 + A(i)

1 + A(i)
0 i ≥ 1

is a stochastic matrix. The structure of P shows that the process is skip-free in the level in both
directions. More precisely, for i ∈N and any j, j′ ∈P ,

[A(i)
0 ]jj′ = P(Xn+1 = i + 1, Yn+1 = j′|Xn = i, Yn = j),

[A(i)
1 ]jj′ = P(Xn+1 = i, Yn+1 = j′|Xn = i, Yn = j),

[A(i)
2 ]jj′ = P(Xn+1 = i − 1, Yn+1 = j′|Xn = i, Yn = j).

If A(i)
k = A(i′)

k for every i, i′ ∈Z+ (except possibly for the boundary level i = 0) and for each
k ∈ {0, 1, 2}, then � is called a level-independent QBD (or simply QBD) process. However,

if A(i)
k 	= A(i′)

k for two or more non-zero levels i 	= i′, then � is called a level-dependent QBD
(LDQBD) process.

Our aim is to establish necessary and sufficient conditions for the positive recurrence (and
thus ergodicity) of the LDQBD � by analyzing the drift of the process. To that end, we first
review drift functions, as well as an extension of Foster’s criterion [17] for a one-dimensional
irreducible, aperiodic DTMC ξ := {Xn : n ≥ 0} on a countable state space S. We begin with the
following definition.

https://doi.org/10.1017/apr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.43


1114 J. D. CORDEIRO ET AL.

Definition 1. Let ν : S → (0, ∞) be a positive function, and for each x ∈ S let

δν (x) :=E(ν(Xn+1) − ν(Xn)|Xn = x).

The function ν is called a Lyapunov (or potential) function, and δν (x) is the generalized drift
of ξ in state x. Furthermore, if v(Xn) = Xn for each n, then δν (x) is simply the drift in state x.

Foster [17] provided a sufficient condition for the positive recurrence of a one-dimensional,
irreducible DTMC on the state space Z+ . Fayolle, Malyshev, and Menshikov [16] extended
Foster’s result by proving necessity of the drift condition and expanding its applicability to
DTMCs with general countable state spaces. For convenience, we restate Theorem 2.2.3 of
[16] here as Theorem 1.

Theorem 1. (Fayolle, Malyshev, and Menshikov [16].) An irreducible, aperiodic DTMC
{Xn : n ≥ 0} on a countable state space S is positive recurrent if and only if there exist a function
ν : S → (0, ∞), a number ε > 0, and a finite set B ⊂ S such that

δν (x) ≤ −ε, x /∈ B and E(ν(Xn+1)|Xn = x) < ∞, x ∈ B. (3)

If we take S =Z+ , condition (3) can be equivalently restated as follows: for some number
ε > 0, there exists an Nε ∈N such that

δν (i) ≤ −ε, i ≥ Nε and E(ν(Xn+1)|Xn = i) < ∞, i < Nε.

In Section 3 we derive the generalized drift function for a specific form of the Lyapunov
function ν and employ a modified version of Theorem 1 to establish sufficient conditions for
recurrence, and necessary and sufficient conditions for positive recurrence, of the LDQBD
process �.

3. Component and average drift conditions

For the results that follow, we consider a specific class of Lyapunov functions for the
LDQBD process � and its associated drift function. For each (i, j) ∈ S, define ν : S → (0, ∞)
as follows:

ν(i, j) =
{

k0j i = 0, j ∈P,

i + kij i ≥ 1, j ∈P,
(4)

where the constant k0j > 0 for any j ∈P and kij is a non-negative constant for each i ∈N

and j ∈P . We let k = [kij] denote the matrix composed of these constants, and let k(i) =
(ki1, ki2, . . . , kiK)′ denote the transpose of the ith row of k with the requirement that k(0) > 0.
Let

δν (i, j) :=E(ν(Xn+1, Yn+1) − ν(Xn, Yn)|(Xn, Yn) = (i, j)) (5)

be the generalized drift in state (i, j) and define the column vector

�(i) = (δν (i, 1), . . . , δν (i, K))′

as the level-i drift vector. The following proposition shows how to obtain �(i) for each i ∈Z+ .

Proposition 1. Let � be the discrete-time LDQBD process with state space S and one-step
transition probability matrix given by (2). For the Lyapunov function of equation (4), the
generalized level-i drift vector is

�(i) =
{

A(0)
0 e + A(0)

0 k(1) + A(0)
1 k(0) − k(0) i = 0,

(A(i)
0 − A(i)

2 )e + (A(i)
0 k(i+1) + A(i)

1 k(i) + A(i)
2 k(i−1)) − k(i) i ≥ 1.
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Proof. For notational brevity, let x = (i, j) and x′ = (i′, j′) be two states in S, and let pxx′
denote the one-step transition probability from x to x′. First we consider the case when i ≥ 1.
Applying equations (4) and (5), the generalized drift in state x = (i, j) is

δν (x) =
∑
x′∈S

pxx′[ν(x′) − ν(x)] =
∑
x′∈S

pxx′[(i′ + ki′j′ ) − (i + kij)]. (6)

For each i ∈N, consider the ith-level partition (S−
i , S◦

i , S+
i ) of S, where

S−
i = {(i − 1, j) : j ∈P}, S◦

i = {(i, j) : j ∈P}, S+
i = {(i + 1, j) : j ∈P},

which allows us to decompose the summation in (6) as follows:

δν (x) =
∑
x′∈S

pxx′[(i′ + ki′j′ ) − (i + kij)]

=
∑

x′∈S−
i

pxx′(ki−1,j′ − kij − 1) +
∑
x′∈S◦

i

pxx′(kij′ − kij) +
∑

x′∈S+
i

pxx′ (ki+1,j′ − kij + 1). (7)

Equation (7) can be equivalently expressed as

δν (x) =
∑
j′∈P

[A(i)
2 ]jj′(ki−1,j′ − kij − 1) +

∑
j′∈P

[A(i)
1 ]jj′(kij′ − kij)

+
∑
j′∈P

[A(i)
0 ]jj′(ki+1,j′ − kij + 1)

=
∑
j′∈P

([A(i)
0 ]jj′ − [A(i)

2 ]jj′) − kij

∑
j′∈P

[A(i)]jj′

+
∑
j′∈P

ki−1,j′ [A
(i)
2 ]ij′ + kij′ [A

(i)
1 ]jj′ + ki+1,j′ [A

(i)
0 ]jj′,

which in matrix–vector form gives

�(i) = (A(i)
0 − A(i)

2 )e + (A(i)
0 k(i+1) + A(i)

1 k(i) + A(i)
2 k(i−1)) − k(i).

Second, for the boundary case i = 0, noting that there are no downward jumps from level 0,
we can repeat the derivation for the case i ≥ 1 and exclude all terms containing A(i)

2 . Doing so
yields

�(0) = A(0)
0 e + A(0)

0 k(1) + A(0)
1 k(0) − k(0),

and the proof is complete. �
We now consider the generalized drift vector �(i) restricted to the class of Lyapunov

functions (4) for which k has identical rows, that is, k(i) = c ≥ 0 for all i ∈N. In this case,
we obtain a simplified (homogeneous) version of the drift vector given by

�
(i)
h = (A(i)

0 − A(i)
2 )e + A(i)c − c, i ∈N.

The relationship between �
(i)
h and �(i) is critical to our analysis. We will establish the fact

that, under suitable conditions, the existence of solutions c that satisfy �
(i)
h ≤ −ε imply the

existence of solutions {k(i−1), k(i), k(i+1)} that satisfy �(i) ≤ −ε, where ε = (ε, ε, . . . , ε)′ for
some ε > 0.
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Our first result, Theorem 2, follows immediately by applying Foster’s criterion to the
homogeneous drift vector �

(i)
h . Before stating this result, we impose a partial ordering (≤s)

on the state space S. For any two states (i, j) and (i′, j′) in S, let

(i, j) ≤s (i′, j′) if and only if i ≤ i′, (8)

for any j, j′ ∈P (i.e. S is ordered according to the level of each state). This ordering allows us
to apply results suited for processes whose state space is Z+ .

Theorem 2. Suppose that � is an irreducible, aperiodic discrete-time LDQBD process.

(i) � is recurrent if there exists a constant vector ĉ ∈RK
+ such that, for some N ∈N,

(A(i)
0 − A(i)

2 )e ≤ (I − A(i))ĉ for all i ≥ N.

(ii) � is positive recurrent if there exists a constant vector ĉ ∈RK
+ such that, for some ε > 0,

there exists an Nε ∈N such that

(A(i)
0 − A(i)

2 )e ≤ (I − A(i))ĉ − ε for all i ≥ Nε.

where ε = (ε, ε, . . . , ε)′.

Proof. For recurrence, we first note that ν(i, j) = i + ĉj → ∞ as i → ∞ for all j ∈P due to
the partial ordering (8) and non-negativity of ĉj. By supposition, there exists ĉ ∈RK

+ and some
N ∈N such that the level-i drift vector

�
(i)
h = (A(i)

0 − A(i)
2 )e + A(i)ĉ − ĉ ≤ 0 for all i ≥ N,

or equivalently
(A(i)

0 − A(i)
2 )e ≤ (I − A(i))ĉ for all i ≥ N.

This condition holds for all (i, j) /∈ B := {0, 1, . . . , N − 1} ×P , where |B| < ∞. Therefore, by
Theorem 2.1 of [15], the process is recurrent.

For positive recurrence, suppose there exists a constant vector ĉ ∈RK
+ , a number ε > 0, and

a positive integer Nε such that

�
(i)
h = (A(i)

0 − A(i)
2 )e + A(i)ĉ − ĉ ≤ −ε for all i ≥ Nε,

or equivalently
(A(i)

0 − A(i)
2 )e ≤ (I − A(i))ĉ − ε for all i ≥ Nε.

Thus, we let Bε := {0, 1, . . . , Nε − 1} ×P be a finite subset of S and see that δν (i, j) ≤ −ε for
all (i, j) /∈ Bε. It remains to show that

μij :=E(ν(Xn+1, Yn+1)|(Xn, Yn) = (i, j)) < ∞
for all (i, j) ∈ Bε. In fact, we will show that μij is finite for all (i, j) ∈ S, since level jumps are
bounded in a LDQBD. Fixing x = (i, j) and letting x′ = (i′, j′), we observe that

μij ≤ |μij| =
∣∣∣∣∑

x′∈S

pxx′(i′ + ki′j′ )

∣∣∣∣≤∑
x′∈S

|pxx′ | · |i′ + ki′j′ |. (9)
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To see that the rightmost term of inequality (9) is finite, we note that pxx′ = 0 for any state
x′ ∈ Sc

ij, where for each (i, j) ∈ S,

Sij :=
{

{(i′, j′) ∈ S : i′ ∈ {i, i + 1}, j′ ∈P} i = 0,

{(i′, j′) ∈ S : i′ ∈ {i − 1, i, i + 1}, j′ ∈P} i ≥ 1.

Noting that |Sij| < ∞, and by inequality (9),

μij ≤
∑
x′∈S

|pxx′ | · |i′ + ki′j′ | ≤
∑
x′∈Sij

1 · |i′ + ki′j′ | =
∑
x′∈Sij

ν(i′, j′) < ∞.

Therefore, by Theorem 2.2.3 of [16], the process is positive recurrent. �

Next we state our main results, namely necessary and sufficient conditions for recurrence
and positive recurrence, respectively, based on an average drift criterion. Before stating the
main results, we first state the following assumption, which describes the specific class of
LDQBD processes under consideration.

Assumption 1. For the discrete-time LDQBD process �, there exist K × K sub-stochastic
matrices, A∗

2, A∗
1, and A∗

0 whose sum

A∗ = A∗
2 + A∗

1 + A∗
0

is stochastic and which are related to the process � via the limit

lim
i→∞ A(i)

k = A∗
k , k = 0, 1, 2,

where the limit holds element-wise.

Assumption 1 asserts that, if the level is sufficiently large, then the LDQBD process evolves
in a manner similar to that of a level-independent QBD process. The class of models satisfying
this condition is quite large, encompassing many models arising in queueing, reliability,
inventory and telecommunications settings.

Theorem 3. Let � be an irreducible, aperiodic discrete-time LDQBD process satisfying
Assumption 1 and define the scalar quantities

D(i) = π (i)(A(i)
0 − A(i)

2 )e,

where π (i) is the invariant row vector of A(i) = A(i)
0 + A(i)

1 + A(i)
2 for each i ∈Z+ .

(i) � is recurrent if and only if there exists an N ∈N such that

D(i) ≤ 0 for all i ≥ N.

(ii) � is positive recurrent if and only if, for some positive number ε, there exists an Nε ∈N

such that

D(i) < −ε for all i ≥ Nε.
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Before proving Theorem 3, let us define an operator �(i) : RK →RK by

�(i)(c) = (A(i)
0 − A(i)

2 )e + A(i)c − c

such that �(i)(c) = �
(i)
h . Additionally, for each i ∈Z+ , define the null sets for �(i) by

N (�(i)) = {c ∈RK : �(i)(c) = 0} and N+(�(i)) =N (�(i)) ∩RK
+ .

The proof of Theorem 3 requires two technical lemmas.

Lemma 1. D(i) = 0 if and only if N+(�(i)) 	=∅.

Proof. ( ⇐ ) Fix the level i and suppose there exists some c ∈N+(�(i)). Then

�(i)(c) = (A(i)
0 − A(i)

2 )e + A(i)c − c = 0,

which implies
(A(i)

0 − A(i)
2 )e = −A(i)c + c. (10)

Left-multiplying both sides of (10) by π (i) yields

D(i) = π (i)(A(i)
0 − A(i)

2 )e = −π (i)A(i)c + π (i)c = −π (i)c + π (i)c = 0.

( ⇒ ) Now suppose D(i) = 0. We seek to show the existence of a c ∈RK
+ such that

�(i)(c) = (A(i)
0 − A(i)

2 )e + (A(i) − I)c = 0. (11)

To this end, we employ two related Theorems of Alternative – one due to Farkas and the
other due to Gordan – both of which are summarized in [28] and restated without proof in the
Appendix. Using (11), we can write the linear system of equalities

(A(i) − I)c = −(A(i)
0 − A(i)

2 )e. (12)

Setting c = e, we note that (A(i) − I)e = 0; hence, e is a non-negative, non-zero solution to the
linear system of equations

(A(i) − I)c = 0.

Therefore Alternative (ii) of Gordan’s theorem [18] cannot be satisfied; hence,

y′(A(i) − I) ≯ 0 for all y ∈RK .

This implies that the system in Alternative (ii) of Farkas’s lemma, namely y′(A(i) − I) ≥ 0,
can only be satisfied in equality. Because A(i) is finite and irreducible, the unique solution at
equality is y′ = π (i) (up to a multiplicative constant), since π (i)(A(i) − I) = 0. However,

−y′(A(i)
0 − A(i)

2 )e = −π (i)(A(i)
0 − A(i)

2 )e = −D(i) = 0.

Hence, there does not exist y ∈RK satisfying Alternative (ii) of Farkas’s lemma, which implies
that Alternative (i) of Farkas holds. That is, there exists a c ≥ 0 that solves (12), from which
we conclude that N+(�(i)) 	=∅. �
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We next demonstrate the relationship of the average drift D(i) to the solution c of the system
of inequalities �(i)(c) ≤ −ε, where ε = (ε, ε, . . . ε) > 0. For each i ∈Z+ , define the cones

Cε(�(i)) = {c ∈RK : �(i)(c) ≤ −ε} and C+
ε (�(i)) := Cε(�(i)) ∩RK

+ .

Lemma 2. For some positive number ε, D(i) ≤ −ε if and only if C+
ε (�(i)) 	=∅.

Proof. ( ⇐ ) Suppose there exists some c ∈ C+
ε (�(i)). That is, for such a solution,

�(i)(c) = (A(i)
0 − A(i)

2 )e + (A(i) − I)c ≤ −ε.

Left-multiplying by the stochastic vector π (i) yields

π (i)�(i)(c) = π (i)[(A(i)
0 − A(i)

2 )e + (A(i) − I)c] ≤ −π (i)ε = −ε.

However, note that π (i)�(i)(c) = D(i) + 0 = D(i); therefore, we conclude that D(i) ≤ −ε.
( ⇒ ) Conversely, suppose that D(i) ≤ −ε for some ε > 0, which implies that D(i)e ≤ −ε.

Our aim is to show the existence of a non-negative vector ĉ such that

(A(i)
0 − A(i)

2 )e + (A(i) − I)ĉ = D(i)e,

or equivalently
(A(i) − I)ĉ = D(i)e − (A(i)

0 − A(i)
2 )e. (13)

To simplify notation, let M := A(i) − I and b := D(i)e − (A(i)
0 − A(i)

2 )e. As shown in the proof
of Lemma 1, the system y′M ≥ 0 can only be satisfied in equality, and the unique solution is
y′ = π (i) up to a multiplicative constant. Therefore, it remains to show that y′b ≮ 0. We see that

y′b = π (i)b

= π (i)[D(i)e − (A(i)
0 − A(i)

2 )e]

= π (i)D(i)e − π (i)(A(i)
0 − A(i)

2 )e

= D(i) − D(i)

= 0.

Hence, there does not exist a y ≥ 0 satisfying y′b < 0. Therefore, by Farkas’s lemma, there is a
non-negative solution ĉ to the system (13). Noting that D(i)e ≤ −ε, we see that C+

ε (�(i)) 	=∅.
�

Equipped with Lemmas 1 and 2, we are now prepared to prove the main result, Theorem 3.

Proof of Theorem 3. Part (i): recurrence. To prove the first result, we will establish that
the conditions required by Theorem 2.2.1 of [16] are met, that is, ν(i, j) → ∞ as i → ∞ and
�(i) ≤ 0 for sufficiently large i. Under the partial ordering (8), it is clear that, for each j ∈P ,
ν(i, j) = i + kij → ∞ as i → ∞ due to the non-negativity of kij. Hence, it remains to show
that, for sufficiently large i, D(i) ≤ 0 if and only if there exists a sequence of constant vectors
{k(i) : i ∈Z+} such that �(i) ≤ 0. To this end, for each i ∈Z+ , define the operator 	(i) such that

	(i)(k(i)) := (A(i)
0 − A(i)

2 )e + (A(i)
0 k(i+1) + A(i)

1 k(i) + A(i)
2 k(i−1)) − k(i) = �(i).
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(⇒) Suppose there is some N ∈N such that D(i) ≤ 0 for each i ≥ N. Our aim is to show that
there exists a number N∗ ≥ N and a sequence of vectors

K = {k(i) ∈RK
+ : i ∈Z+}

such that 	(i)(k(i)) ≤ 0 whenever i ≥ N∗. To this end, we first show that the component-wise
limits

�g = lim
i→∞ �(i)(k(i)) and �l = lim

i→∞ 	(i)(k(i))

exist for a certain choice of K. Next, we will show that �g and �l are equal, and when it has
been shown that �g ≤ 0, we will have demonstrated the sufficiency of part (i) of Theorem 3.

To establish the existence of K, we first obtain a solution to the inequality

�(i)(k(i)) = (A(i)
0 − A(i)

2 )e + (A(i) − I)k(i) ≤ 0. (14)

By supposition, we have that D(i) ≤ 0 for each i ≥ N; hence, we can satisfy (14) by solving the
system of linear equalities �(i)(k(i)) = D(i)e. That is,

�(i)(k(i)) = (A(i)
0 − A(i)

2 )e + (A(i) − I)k(i) = D(i)e.

By rearranging the terms in the above expression, we obtain

(A(i) − I)k(i) = D(i)e − (A(i)
0 − A(i)

2 )e. (15)

Since A(i) − I is singular, an explicit solution of (15) can alternatively be obtained by
employing the theory of group inverses. By Theorem 2.1 of [31], the existence and uniqueness
of the group inverse

(T (i))# = (I − A(i))
#

of the matrix T (i) = I − A(i) is guaranteed, as each A(i) is the transition matrix of an irreducible,
time-homogeneous Markov chain. Theorem 2.2 of [41] shows that every possible solution k(i)

of (15) is of the form

k(i) = −(T (i))#(D(i)e − (A(i)
0 − A(i)

2 )e) + (I − (T (i))#T (i))zi, (16)

where zi ∈RK is arbitrary for each i ≥ 1. Equation (16) can be further refined by noting the
equivalence


(i) = I − (T (i))#T (i), (17)

where 
(i) ∈RK×K is the matrix whose rows are all the stationary probability vector π (i) (see
Theorem 2.3 of [31]), from which we obtain

k(i) = −(T (i))#(D(i)e − (A(i)
0 − A(i)

2 )e) + 
(i)zi. (18)

For some non-negative scalar mi, let zi := mi e ∈RK , the column vector consisting of non-
negative scalar entries mi. Equation (18) then reduces to

k(i) = −(T (i))#(D(i)e − (A(i)
0 − A(i)

2 )e) + mie. (19)

Next, we show that there exists a positive sequence {mi : i ∈N} that induces the solutions
k(i) to be non-negative in (19). To this end, it is necessary to show that

(T (i))# = (I − A(i))
#

and D(i) = π (i)(A(i)
0 − A(i)

2 )e
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converge as i → ∞. By Assumption 1, the convergence of sequences {A(i)
j } for j = 0, 1, 2

ensures convergence of I − A(i). Next, we use this convergence, along with (17), to show that
if the generalized inverse {(T (i))#} converges, then the sequence of stationary vectors {π (i)}
likewise converges. Lemma 3 of the Appendix establishes that

lim
i→∞ (T (i))# = (T∗)#

,

ensuring that all terms on the right-hand side of (19) (with the exception of mi) form convergent
sequences. We will now choose an appropriate sequence of numbers {mi}. Define the limits

D∗ := lim
i→∞ D(i), T∗ := lim

i→∞ T (i), π∗ := lim
i→∞ π (i),

and the function κ : R→RK by

κ(x) := − (T∗)#[D∗e − (A∗
0 − A∗

2)e] + xe. (20)

As the first summand on the right-hand side of (20) is a real constant vector, we may choose
a sufficiently large number M > 0 such that κ(M) ≥ 0 component-wise. The convergence of
{k(i)} in (19) when mi : = M ensures there is an integer J ∈N such that k(i) ≥ 0 for every i ≥ J.
We may thus set

K := {k(i) : i = 0, . . . , J − 1} ∪ {k(i) : i ≥ J, mi = M} ⊂RK
+ ,

where vectors {k(i) : i = 0, . . . , J − 1} ⊂RK
+ may be chosen arbitrarily. In this way, we obtain

a sequence K of feasible solutions to �(i)(k(i)) ≤ 0 that converges to some vector k∗ ∈RK
+ .

Now, the existence of k∗ = limi→∞ k(i) ensures convergence of the sequences {A(i)
j k(i) : i ∈Z+}

for j = 0, 1, 2, and hence of {A(i)k(i) : i ∈Z+}. Consequently, we obtain the convergence of
{�(i)(k(i)) : i ∈Z+} and {	(i)(k(i)) : i ∈Z+} with the additional property that, as i → ∞,

�(i)(k(i)) → (A∗
0 − A∗

2)e + (A∗ − I)k∗ ≤ 0.

We now show that {�(i)(k(i)) : i ∈Z+} and {	(i)(k(i)) : i ∈Z+} converge to the same limit. To
this end, let ‖B‖ be any matrix norm of a square matrix of K dimensions with real entries and
let ‖B‖op be the operator norm of a bounded linear transformation RK →RK whose operator
matrix is B. Observe that for any ε > 0 and sufficiently large i,

‖	(i)(k(i)) − �(i)(k(i))‖
= ‖(A(i)

0 k(i+1) − A(i)
0 k(i)) + (A(i)

1 k(i) − A(i)
1 k(i)) + (A(i)

2 k(i−1) − A(i)
2 k(i))‖

≤ ‖A(i)
0 k(i+1) − A(i)

0 k(i)‖ + ‖A(i)
2 k(i−1) − A(i)

2 k(i)‖
≤ ‖A(i)

0 ‖op‖k(i+1) − k(i)‖ + ‖A(i)
2 ‖op‖k(i−1) − k(i)‖

≤ η0‖k(i+1) − k(i)‖ + η2‖k(i−1) − k(i)‖
≤ η(ε/2) + η(ε/2)

= ηε, (21)

where η = max{η0, η2}, since convergent sequences are Cauchy-convergent in finite-dimen-
sional Euclidean space. Thus, there exists an N∗ > N such that 	(i)(k(i)) ≤ 0 for each i ≥ N∗;
hence, the process � is recurrent.
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(⇐) Conversely, suppose that � is recurrent. By [15, Theorem 2.2.1], there exists some
N∗ > 0 and some sequence K = {k(i) : i ∈Z+} ⊂RK

+ of vectors such that

	(i)(k(i)) ≤ 0, i ≥ N∗. (22)

It is possible to construct a convergent K′ from the elements of K that satisfies (22). Indeed,
due to Assumption 1, each A(i)

k for k = 0, 1, 2 converges element-wise, thereby ensuring the
existence of some N′ ≥ N∗ such that (22) holds for the convergent sequence

K′ = {k(i) : i ∈Z+ , k(i) = k(N′) for i ≥ N′}.
Then, from Assumption 1 and the convergence of sequence K′, we obtain the inequality (21)
over the sequence K′ whenever i ≥ N′′, for some N′′ > N′. This, together with the fact that (22)
holds over K′ shows that �(i)(k(i)) ≤ 0 must likewise hold over K′ for sufficiently large i. By
Lemmas 1 and 2, it must be the case that D(i) ≤ 0 for all such i. This completes the proof of
part (i).

Part (ii): positive recurrence. The assertion of part (ii) follows directly from the proof of part
(i) by invoking Theorem 2.2.3 of [16] in place of Theorem 2.2.1 of the same reference. �

4. Connections to level-independent QBD processes

In this section we draw parallels between established drift conditions for level-independent
QBD processes and conditions derived in Section 3. In Proposition 2 we establish the existence
of the limiting drift D∗ and show that it can be computed in a manner that is analogous to
computing the average drift of its level-independent counterpart.

Proposition 2. Suppose that the assumptions of Theorem 3 hold for the discrete-time
process �. Then the limiting drift D∗ exists and is given by

D∗ := lim
i→∞ D(i) = π∗(A∗

0 − A∗
2)e,

where π∗ is the unique solution to the system of equations

xA∗ = x and xe = 1, (23)

A∗ = A∗
2 + A∗

1 + A∗
0, and the matrices A∗

j , j = 0, 1, 2 are defined in Assumption 1.

Proof. First we establish that the K-dimensional vector π∗ := lim π (i) is a solution to (23).
For each i ∈N, π (i)A(i) = π (i) and π (i)e = 1; therefore,

lim
i→∞ π (i)A(i) = lim

i→∞ π (i) = π∗ and 1 = lim
i→∞ π (i)e = π∗e. (24)

Next we show that π (i)A(i) → π∗A∗ as i → ∞. For each phase j ∈P ,

lim
i→∞ [π (i)A(i)]j = lim

i→∞
∑
m∈P

π (i)
m A(i)

m,j =
∑
m∈P

lim
i→∞ π (i)

m A(i)
m,j =

∑
m∈P

(π∗
m)(A∗

m,j) = [π∗A∗]j.

As the left- and right-hand sides are equal for every j, it follows that

lim
i→∞ π (i)A(i) = π∗A∗. (25)
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By equations (24) and (25), π∗A∗ = π∗ and π∗e = 1. To see that π∗ is the unique solution to
(23), note that

e = lim
i→∞ A(i)e =

(
lim

i→∞ A(i)
)

e = A∗e,

demonstrating that A∗ is stochastic. The irreducibility and finite-dimensionality of A∗, along
with (24) and (25), prove that π∗ uniquely solves (23). Finally, the existence of π∗, along with
Assumption 1, establish the existence of

D∗ = lim
i→∞ π (i)(A(i)

0 − A(i)
2 )e =

(
lim

i→∞ π (i)
)(

lim
i→∞ (A(i)

0 − A(i)
2 )e

)
= π∗(A∗

0 − A∗
2)e,

and the proof is complete. �
For the embedded DTMC of irreducible, level-independent QBD processes in which A0,

A1, and A2 are constant matrices over the levels i, it is well known that the average drift of the
process is

D = π (A0 − A2)e,

where π is the unique solution of the system of equations π (A0 + A1 + A2) = π and πe = 1.
Furthermore, it can be shown that the process is positive recurrent if and only if D < 0, null
recurrent if and only if D = 0, and transient if D > 0 (see [24] and [38]). Proposition 3 asserts
that similar conditions can be stated for the level-dependent process � considered herein.

Proposition 3. Suppose the assumptions of Theorem 3 hold. Then the discrete-time LDQBD
process � is

(i) recurrent if and only if D∗ ≤ 0 and D(i) > 0 for at most finitely many i,

(ii) positive recurrent if and only if D∗ < 0,

(iii) null recurrent if and only if D∗ = 0 and D(i) > 0 for at most finitely many i,

(iv) transient if and only if D∗ ≥ 0 and D(i) > 0 for infinitely many i.

Proof. For part (i), suppose first that D∗ ≤ 0 and D(i) > 0 for at most a finite number of
terms i. Then there must be some N > 0 such that the terms D(i) ≤ 0 for every i ≥ N, by
existence of D∗ = limi→∞ D(i). Thus, there is a finite number ε = infi≥N (−D(i)) ≥ 0. So by
Lemmas 1 and 2, there is a sequence K = {k(i) ∈RK

+ : i ∈Z+} such that

�(i)(k(i)) ≤ −ε for i ≥ N.

It was shown in the proof of Theorem 3 that K is convergent and, furthermore, that there exists
an N∗ > N such that

	(i)(k(i)) ≤ −ε, i ≥ N∗,

thus establishing the recurrence of �. Conversely, if � is recurrent, then by Theorem 3, there
exists an ε ≥ 0 and N > 0 such that D(i) ≤ −ε for all i ≥ N. As D(i) → D∗, the limit point must
satisfy D∗ ≤ −ε, which completes the proof of part (i).

For part (ii), assuming the strict inequality D∗ < 0 implies the existence of some N > 0 such
that the terms D(i) < 0 for every i > N. This further implies the existence of a finite number
ε = infi≥N (−D(i)) > 0. By Lemma 2, we then obtain a sequence K = {k(i) ∈RK

+ : i ∈Z+} such
that

�(i)(k(i)) ≤ −ε < 0 for i ≥ N.
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As in the proof of part (i), we may then infer the existence of an N∗ > N such that

	(i)(k(i)) ≤ −ε < 0, i ≥ N∗,

which establishes the positive recurrence of �. On the other hand, if � is positive recurrent,
then Theorem 3 gives the existence of an ε > 0 and N > 0 such that D(i) ≤ −ε < 0 for all i ≥ N.
As D(i) → D∗, the limit point must satisfy D∗ ≤ −ε < 0, which completes the proof of part (ii).

Part (iii) follows immediately from parts (i) and (ii), since the region of null recurrence
indicated by D∗ must be the complement of the set {D∗ ∈R : D∗ < 0} within the indicated
region of recurrence.

Finally, part (iv) follows from part (i) due to the fact that the regions of transience and
recurrence must be complementary. �

5. Conclusion

In this paper, we have provided both necessary and sufficient conditions for the recurrence
and positive recurrence of a class of LDQBD processes that exhibit convergence in the rows
by employing a Foster–Lyapunov approach. For such processes, a limiting drift term D∗
was shown to exist, and this term provides an analytical means by which to characterize the
recurrence properties of the process. The parallels to the level-independent QBD process are
apparent, namely that a negative average drift is necessary and sufficient to ensure positive
recurrence. The analysis contained herein provides a simpler means by which to perform
stability analysis for broad classes of queueing models with non-standard input and output
processes.

Appendix A.

Theorem 4. (Farkas’s lemma.) Let M ∈Rm×n be an m × n matrix and b ∈Rm a column vector
of dimension m. Then exactly one of the statements (i) or (ii) is true.

(i) There exists some x ∈Rn with x ≥ 0 such that Mx = b.

(ii) There exists some y ∈Rm such that y′M ≥ 0 and y′b < 0.

Theorem 5. (Gordan’s theorem.) Let M ∈Rm×n be an m × n matrix. Then exactly one of the
statements (i) or (ii) is true.

(i) There exists some x ∈Rn with x ≥ 0 and x 	= 0 such that Mx = 0.

(ii) There exists some y ∈Rm such that y′M > 0.

Proposition 4. For n ∈N, let {Mi} be a sequence of elements in Rn×n that converges element-
wise to an invertible limit M∗. Then

lim
i→∞ M−1

i = M−1∗ .

Proof. From rudimentary linear algebra, it is known that diagonalizable invertible matrices
Mi may be expressed in terms of the decompositions Mi = PiDiP

−1
i , where Di is a diagonal

matrix whose non-zero entries are the (possibly repeated) real and complex eigenvalues of Mi,
and is unique up to ordering of the eigenvalues. Otherwise, if Mi is not diagonalizable, then
one may still decompose the matrix as Mi = PiJiP

−1
i , where Ji is the corresponding Jordan
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canonical form (JCF) of Mi. Likewise, one may also write M∗ = P∗D∗P−1∗ or M∗ = P∗J∗P−1∗ ,
where D∗ is a diagonal matrix and J∗ is a JCF, depending upon whether or not M∗ is
diagonalizable.

For the special case in which each Mi = PiDiP
−1
i is a diagonalizable matrix, the fact that

Mi → M∗, together with the uniqueness of the diagonal decomposition and the invertibility
of Pi, guarantees the convergence Pi → P∗, P−1

i → P−1∗ , and hence Di → D∗. This shows that
M∗ must likewise be diagonalizable. Setting

Di := diag(λi1, λi2, . . . , λin), D∗ = diag(λ∗1, λ∗2, . . . , λ∗n),

we see that λik → λ∗k must hold for each k = 1, . . . , n. Consequently, we must also have
1/λik → 1/λ∗k for each k, which proves that D−1

i → D−1∗ , and thus M−1
i → M−1∗ .

For the case in which each Mi is non-diagonalizable, we may express each Ji for large
enough i as Ji = diag(Ji1, Ji2, . . . , Jir) and J∗ = diag(J∗1, J∗2, . . . , J∗r) for some r ≥ 1. For a
fixed k ∈Z+ and complex eigenvalues λik and λ∗k, the corresponding block entries Jik and J∗k,
both of which are of the dimension nk × nk, appear in the form

Jik =

⎡
⎢⎢⎢⎣

λik 1
λik 1

. . .
. . .

λik 1

⎤
⎥⎥⎥⎦ , J∗k =

⎡
⎢⎢⎢⎣

λ∗k 1
λ∗k 1

. . .
. . .

λ∗k 1

⎤
⎥⎥⎥⎦ .

The dimensions of these matrices must obey the relation n =∑r
k=1 nk. By the uniqueness of

the JCF decomposition (up to ordering of the eigenvalues in the JCF matrix), together with
the invertibility of Pi, the convergence Mi → M∗ implies that Pi → P∗, P−1

i → P−1∗ , and thus
Ji → J∗. In particular, Jik → J∗k implies that λik → λ∗k for each k = 1, . . . , r.

We will now show that M−1
i → M−1∗ , where

M−1
i = P−1

i J−1
i Pi and M−1∗ = P−1∗ J−1∗ P∗.

Based on the properties of JCF decompositions, it is sufficient to demonstrate the convergence
J−1

i → J−1∗ . In order to do this, we will consider Ji for large i. Since

J−1
i = diag(J−1

i1 , J−1
i2 , . . . , J−1

ir ),

we will choose an arbitrary fixed k and note that

J−1
ik =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μik μ2
ik μ3

ik . . . μ
nk
ik

μik μ2
ik . . . μ

nk−1
ik

μik . . . μ
nk−2
ik

. . .
...

μik

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, μik = 1/λik.

Due to the triangular shape of the matrix, it is possible to find some nilpotent matrix Nik such
that Nnk+1

ik = 0 for some nk ≥ 1, and for which

J−1
ik = I − μikNik + μ2

ikN2
ik − · · · ± μ

nk
ik Nnk

ik = μik(I + μikNik)−1. (26)
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Applying the convergence λik → λ∗k to (26) then gives μik → μ∗k = 1/λ∗k, which in turn
produces J−1

ik → J−1
∗k for each k = 1, . . . , r. Consequently, J−1

i → J−1∗ and

M−1∗ = P−1∗ J−1∗ P∗ = lim
i→∞ P−1

i J−1
i Pi,

and the proof is complete. �
Lemma 3. Suppose that Assumption 1 holds. Then

lim
i→∞ (T (i))# = (T∗)#

,

where T (i) = I − A(i), T∗ = limi→∞ T (i) and B# denotes the generalized inverse of a matrix
B ∈RK×K defined in [31].

Proof. To prove the assertion, we will appeal to the Jordan canonical forms (JCF) of the
operator T (i) and its group inverse (T (i))#. The irreducibility of A(i) for every i allows us to
invoke Corollary 2.1 of [31], which states that

T (i) = (S(i))
−1
(

0 0

0 I − U(i)

)
S(i), (T (i))# = (S(i))

−1

(
0 0

0 (I − U(i))
−1

)
S(i),

where S(i) ∈RK×K and U(i) ∈R(K−1)×(K−1) are invertible matrices. By Assumption 1, we
know that T∗ = I − A∗ = limi→∞ I − A(i) exists. Thus, from the same result, we obtain the
JCF decompositions

T∗ = (S∗)−1
(

0 0
0 I − U∗

)
S∗, (T∗)# = (S∗)−1

(
0 0

0 (I − U∗)−1

)
S∗,

where S∗ ∈RK×K and U∗ ∈R(K−1)×(K−1) are invertible matrices. It is well known that the JCF
decomposition is unique up to ordering of the distinct eigenvalues, as explained in the proof of
Proposition 4. We will assume that the eigenvalues in each I − U(i) are ordered in such a way
that the element-wise convergence (I − U(i)) → (I − U∗) makes sense, should it occur.

For notational brevity, we will label the following JCFs as

J(i) :=
(

0 0

0 I − U(i)

)
and J∗ :=

(
0 0
0 I − U∗

)
.

The known convergence of T (i) = S(i)J(i)(S(i))
−1 → T∗, together with the invertibility of S(i)

and the uniqueness of the JCF decomposition, allows us to assert the convergence of S(i) → S∗,

U(i) → U∗, J(i) → J∗, and (S(i))
−1 → (S∗)−1. The convergence U(i) → U∗ further implies that

J(i) → J∗. In summary, we obtain the convergence of {T (i)} to the limiting JCF decomposition

T∗ = lim
i→∞ T (i) = lim

i→∞ (S(i))
−1

J(i)S(i) = (S∗)−1J∗S∗. (27)

We may now apply the convergence S(i) → S∗, U(i) → U∗, J(i) → J∗, and (S(i))
−1 → (S∗)−1,

which were determined in the course of formulating (27), to the sequence {(T (i))#} in order to
obtain

lim
i→∞ (T (i))# = (S∗)−1

(
0 0

0 (I − U∗)−1

)
S∗ = (T∗)#

,

where {(I − U(i))
−1} → (I − U∗)−1 results from Proposition 4. �

https://doi.org/10.1017/apr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.43


On the ergodicity of a class of LDQBD processes 1127

Acknowledgements

The authors are grateful to an anonymous referee for valuable comments that have improved
the results of this work. This research was sponsored in part by a grant from the US Air Force
Office of Scientific Research (FA9550-08-1-0004). The views expressed in this paper are those
of the authors and do not reflect the official policy or position of the US Air Force, Department
of Defense, or the US Government.

References

[1] ALFA, A. (2006). Discrete-time analysis of GI/G/1 system with Bernoulli retrials: an algorithmic approach.
Ann. Operat. Res. 141, 51–66.

[2] ANISIMOV, V. AND ARTALEJO, J. (2002). Approximation of multiserver retrial queues by means of
generalized truncated models. TOP 10, 51–66.

[3] ARTALEJO, J. AND CHAKRAVARTHY, S. (2006). Algorithmic analysis of the MAP/PH/1 retrial queue. TOP
14, 293–332.

[4] ARTALEJO, J., KRISHNAMOORTHY, A. AND LOPEZ-HERRERO, M. (2006). Numerical analysis of (s, S)
inventory systems with repeated attempts. Ann. Operat. Res. 141, 67–83.

[5] AVRAM, F. AND GÓMEZ-CORRAL, A. (2006). On bulk-service MAP/PHL,N /1/N G-queues with repeated
attempts. Ann. Operat. Res. 141, 109–137.

[6] BAUMANN, H., DAYAR, T., ORHAN, M. C. AND SANDMANN, W. (2013). On the numerical solution of
Kronecker-based infinite level-dependent QBD processes. Performance Evaluation 70, 663–681.

[7] BREUER, L., DUDIN, A. AND KLIMENOK, V. (2002). A retrial BMAP/PH/N system. Queueing Systems 40,
433–457.

[8] BRIGHT, L. AND TAYLOR, P. (1995). Calculating the equilibrium distribution in level dependent quasi-birth-
and-death processes. Commun. Statist. Stoch. Models 11, 497–525.

[9] CIARDO, G. AND SMIRNI, E. (1999). ETAQA: an efficient technique for the analysis of QBD-processes by
aggregation. Performance Evaluation 36, 71–93.

[10] DAYAR, T., SANDMANN, W., SPIELER, D. AND WOLF, V. (2011). Infinite level-dependent QBD processes
and matrix-analytic solutions for stochastic chemical kinetics. Adv. Appl. Prob. 43 (4), 1005–1026.

[11] DUDIN, A. AND KLIMENOK, V. (1999). BMAP/SM/1 model with Markov modulated retrials. TOP 7, 267–278.
[12] DUDIN, A. AND KLIMENOK, V. (1999). Multi-dimensional quasitoeplitz Markov chains. J. Appl. Math. Stoch.

Anal. 12, 393–415.
[13] DUDIN, A. AND KLIMENOK, V. (2000). A retrial BMAP/SM/1 system with linear repeated requests. Queueing

Systems 34, 47–66.
[14] EISEN, M. AND TAINITER, M. (1963). Stochastic variations in queuing processes. Operat. Res. 11, 922–927.
[15] FAYOLLE, G., MALYSHEV, V. AND MENSHIKOV, M. (1992). Random walks in a quarter plane with zero

drifts, I: Ergodicity and null recurrence. Ann. Inst. H. Poincaré Prob. Statist. 28, 179–194.
[16] FAYOLLE, G., MALYSHEV, V. AND MENSHIKOV, M. (1995). Topics in the Constructive Theory of Countable

Markov Chains. Cambridge University Press, Cambridge.
[17] FOSTER, F. G. (1953). On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist.

24, pp. 355–360.
[18] GORDAN, P. (1873). Über die auflösung linearer Gleichungen mit reelen Coefficienten [On the solution of

linear inequalities with real coefficients]. Math. Ann. 6, 23–28.
[19] KAPLAN, M. (1979). A sufficient condition of nonergodicity of a Markov chain. IEEE Trans. Inform. Theory

25, 470–471.
[20] KIM, C. S., KLIMENOK, V., MUSHKO, V. AND DUDIN, A. (2010). The BMAP/PH/N retrial queueing system

operating in Markovian random environment. Comput. Operat. Res. 37, 1228–1237.
[21] KLIMENOK, V. AND DUDIN, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and

their application in queueing theory. Queueing Systems 54, 245–259.
[22] KOUKOUTSIDIS, I., ALTMAN, E. AND KELIF, J. M. (2005). A non-homogeneous QBD approach for the

admission and GoS control in a multiservice WCDMA system. In Proceedings of IWQoS 2005 (Lecture Notes
Comput. Sci. 3552), pp. 327–340. IFIP International Federation for Information Processing, INRIA.

[23] KUMAR, B., RUKMANI, R. AND THANGARAJ, V. (2009). An M/M/c retrial queueing system with Bernoulli
vacations. J. Systems Sci. Systems Engineering 18, 222–242.

[24] LATOUCHE, G. AND RAMASWAMI, V. (1999). Introduction to Matrix Analytic Methods in Stochastic
Modeling. Society for Industrial and Applied Mathematics, Philadelphia, PA.

[25] LATOUCHE, G. AND TAYLOR, P. G. (2003). Drift conditions for matrix-analytic models. Math. Operat. Res.
28, 346–360.

https://doi.org/10.1017/apr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.43


1128 J. D. CORDEIRO ET AL.

[26] LI, Q., YING, Y. AND ZHAO, Y. (2006). A BMAP/G/1 retrial queue with server subject to breakdowns and
repairs. Ann. Operat. Res. 141, 233–270.

[27] MALYSHEV, V. (1993). Networks and dynamical systems. Adv. Appl. Prob. 25, 140–175.
[28] MANGASARIAN, O. (1994). Nonlinear Programming. Society for Industrial and Applied Mathematics,

Philadelphia, PA.
[29] MARLIN, P. G. (1973). On the ergodic theory of Markov chains. Operat. Res. 21, 617–622.
[30] MERTENS, J.-F., SAMUEL-CAHN, E. AND ZAMIR, S. (1978). Necessary and sufficient conditions for

recurrence and transience of Markov chains, in terms of inequalities. J. Appl. Prob. 15, 848–851.
[31] MEYER, C. D. (1975). The role of the group generalized inverse in the theory of finite Markov chains. SIAM

Rev. 17, 443–464.
[32] MONTORO CAZORLA, D. AND PEREZ-OCON, R. (2008). An LDQBD process under degradation, inspection,

and two types of repair. Europ. J. Operat. Res. 190, 494–508.
[33] MUSHKO, V., JACOB, M., RAMAKRISHNAN, K., KRISHNANMOORTHY, A. AND DUDIN, A. (2006).

Multiserver queue with addressed retrials. Ann. Operat. Res. 141, 283–301.
[34] NEUTS, M. F. (1971). A queue subject to extraneous phase changes. Adv. Appl. Prob. 3, 78–119.
[35] NEUTS, M. F. (1978). Further results on the M/M/1 queue with randomly varying rates. OPSEARCH 15,

158–168.
[36] NEUTS, M. F. (1978). The M/M/1 queue with randomly varying arrival and service rates. OPSEARCH 15,

139–157.
[37] NEUTS, M. F. (1979). A versatile Markovian point process. J. Appl. Prob. 16, 764–779.
[38] NEUTS, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach (Dover

Books on Advanced Mathematics). Dover Publications, New York.
[39] PAKES, A. G. (1969). Some conditions for ergodicity and recurrence of Markov chains. Operat. Res. 17,

1058–1061.
[40] PURDUE, P. (1974). The M/M/1 queue in a Markovian environment. Operat. Res. 22, 562–569.
[41] RAO, C. R. AND MITRA, S. K. (1972). Generalized inverse of a matrix and its applications. In Proceedings

of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1: Theory of Statistics,
pp. 601–620. University of California Press, Berkeley, CA.

[42] ROSBERG, Z. (1980). A positive recurrence criterion associated with multidimensional queueing processes.
J. Appl. Prob. 17, 790–801.

[43] ROSBERG, Z. (1981). A note on the ergodicity of Markov chains. J. Appl. Prob. 18, 112–121.
[44] SENNOTT, L. I. (1985). Tests for the nonergodicity of multidimensional Markov chains. Operat. Res. 33,

161–167.
[45] SENNOTT, L. I., HUMBLET, P. A. AND TWEEDIE, R. L. (1983). Mean drifts and the non-ergodicity of Markov

chains. Operat. Res. 31, 783–788.
[46] SHIN, Y. (2007). Multi-server retrial queue with negative customers and disasters. Queueing Systems 55,

223–237.
[47] SZPANKOWSKI, W. (1984). Ergodicity aspects of multidimensional Markov chains with application to

computer communication system analysis. In Modelling and Performance Evaluation Methodology (Lecture
Notes Control Inform. Sci. 60), eds. F. Baccelli and G. Fayolle, pp. 297–319. Springer, Berlin.

[48] TWEEDIE, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a general
state space. Stoch. Process. Appl. 3, 385–403.

[49] TWEEDIE, R. L. (1976). Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737–771.
[50] YECHIALI, U. AND NAOR, P. (1971). Queuing problems with heterogeneous arrivals and service. Operat. Res.

19, 722–734.

https://doi.org/10.1017/apr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.43

	Introduction
	Preliminaries
	Component and average drift conditions
	Connections to level-independent QBD processes
	Conclusion
	
	Acknowledgements
	References

