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Abstract. It has been recently proved that the automorphism group of a minimal subshift
with non-superlinear word complexity is virtually Z [Cyr and Kra. The automorphism
group of a shift of linear growth: beyond transitivity. Forum Math. Sigma 3 (2015), e5;
Donoso et al. On automorphism groups of low complexity subshifts. Ergod. Th. & Dynam.
Sys. 36(1) (2016), 64–95]. In this article we extend this result to a broader class proving that
the automorphism group of a minimal S-adic subshift of finite alphabet rank is virtually Z.
The proof is based on a fine combinatorial analysis of the asymptotic classes in this type
of subshifts, which we prove are a finite number.
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1. Introduction
Let A be a finite alphabet and let X ⊆ AZ be a subshift, that is, a closed set that is invariant
under the left shift T : AZ → AZ. The automorphism group of (X, T ), Aut(X, T ), is
the set of homeomorphisms from X to itself which commute with T. The study of the
automorphism group of low word complexity subshifts (X, T ) has attracted a lot of
attention in recent years. By word complexity we mean the increasing function pX : N →
N which counts the number of words of length n ∈ N appearing in points of the subshift
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(X, T ). In contrast to the case of non-trivial mixing shifts of finite type or synchronized
systems, where the algebraic structure of this group can be very rich [BLR88, FF96,
KR90], the automorphism group of low word complexity subshifts is expected to present
high degrees of rigidity. The most relevant example illustrating this fact are minimal
subshifts of non-superlinear word complexity, where the automorphism group is virtually
Z [CK15, DDMP16]. Interestingly, in [Sal17] (and then in [DDMP16] in a more general
class), the author provided a Toeplitz subshift with complexity pX(n) ≤ Cn1.757, whose
automorphism group is not finitely generated. So, some richness in the algebraic structure
of the automorphism groups of low word complexity subshifts can arise. Other low word
complexity subshifts have been considered by Cyr and Kra in a series of works. In
[CK16b], they proved that for transitive subshifts, if lim infn→+∞ pX(n)/n2 = 0, then the
quotient Aut(X, T )/〈T 〉 is a periodic group, where 〈T 〉 is the group spanned by the shift
map; and, in [CK16a], for a large class of minimal subshifts of subexponential complexity,
they also proved that the automorphism group is amenable. All these classes and examples
show that there is still a lot to be understood on the automorphism groups of low word
complexity subshifts.

In this article we study the automorphism group of minimal S-adic subshifts of finite or
bounded alphabet rank. This class of minimal subshifts is somehow the most natural class
containing minimal subshifts of non-superlinear complexity, but it is much broader, as
was shown in [DDMP16, DDMP21]. Moreover, this class contains several well-studied
minimal symbolic systems. Among them are substitution subshifts, linearly recurrent
subshifts, symbolic codings of interval exchange transformations, dendric subshifts and
some Toeplitz sequences. Thus, this class represents a useful framework for both, proving
general theorems in the low word complexity world and building subshifts with interesting
dynamical behavior. The descriptions made in [BKMS13] of its invariant measures
and in [DFM19] of its eigenvalues are examples of the former, and the well-behaved
S-adic codings of high-dimensional torus translations from [BST20] is an example of the
latter.

The main result of this article is the following rigidity theorem.

THEOREM 1.1. Let (X, T ) be a minimal S-adic subshift given by an everywhere-growing
directive sequence � = (τn : A+

n+1 → A+
n )n≥0. Suppose that � is of finite alphabet rank,

that is, lim infn→+∞ #An < +∞. Then Aut(X, T ) is virtually Z.

A minimal S-adic subshift of finite topological rank, as stated in [DDMP21], is defined
as an S-adic subshift in which the defining directive sequence � is proper, primitive,
recognizable and with finite alphabet rank. In particular, � is everywhere growing.
Therefore, Theorem 1.1 includes all minimal S-adic subshifts of finite topological rank.
Also, in the same paper, the authors proved that minimal subshifts of non-superlinear
word complexity are S-adic of finite topological rank. Thus, Theorem 1.1 can be seen
as a generalization to a much broader class of the already mentioned results from [CK15,
DDMP16]. Finally, by results stated in [DDMP21], Theorem 1.1 also applies to all level
subshifts of minimal Bratteli–Vershik systems of finite topological rank and their symbolic
factors.
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The proof of Theorem 1.1 follows from a fine combinatorial analysis of asymp-
totic classes of S-adic subshifts of finite alphabet rank. This idea already appeared in
[DDMP16], where the authors proved that the automorphism group of a minimal system
is virtually Z whenever it has finitely many asymptotic classes. The following theorem
summarizes this combinatorial analysis.

THEOREM 1.2. Let W ⊆ A+ be a set of non-empty words and define 〈W〉 :=
minw∈W length(w). Then there exists B ⊆ A〈W〉 with #B ≤ 122(#W)7 such that if
x, x′ ∈ AZ are factorizable over W , x(−∞,0) = x′

(−∞,0) and x0 �= x′
0, then x[−〈W〉,0) ∈ B.

Here, the important point is that, despite the fact that the length of the elements in B is
〈W〉, the cardinality of B depends only on #W and not on 〈W〉.

Finally, we get a bound for the asymptotic classes of an S-adic subshift of finite alphabet
rank. This result does not require minimality.

THEOREM 1.3. Let (X, T ) be an S-adic subshift (not necessarily minimal) given by an
everywhere-growing directive sequence of finite alphabet rank K. Then (X, T ) has at most
122K7 asymptotic classes.

1.1. Organization. The paper is organized as follows. In the next section we give some
background in topological and symbolic dynamics. In §3 we introduce some special
ingredients allowing us to prove the main theorems: the notions of interpretation and
reducibility of sets of words together with their properties and the key Proposition 3.10,
whose technical proof is given in §5. In §4 we restate our main results and provide complete
proofs.

2. Background in topological and symbolic dynamics
All the intervals we will consider consist of integer numbers, that is, [a, b] = {k ∈ Z :
a ≤ k ≤ b} with a, b ∈ Z. For us, the set of natural numbers starts with zero, that is,
N = {0, 1, . . .}.

2.1. Basics in topological dynamics. A topological dynamical system (or just a system)
is a pair (X, T ), where X is a compact metric space and T : X → X is a homeomorphism
of X. The orbit of x ∈ X is the set {T nx : n ∈ Z}. A point x ∈ X is periodic if its orbit is
a finite set and aperiodic otherwise. A topological dynamical system is aperiodic if any
point x ∈ X is aperiodic and is minimal if the orbit of every point is dense in X. We use the
letter T to denote the action of a topological dynamical system independently of the base
set X.

An automorphism of the topological dynamical system (X, T ) is a homeomorphism
ϕ : X → X such that ϕ ◦ T = T ◦ ϕ. We use the notation ϕ : (X, T ) → (X, T ) to indicate
the automorphism. The set of all automorphisms of (X, T ) is denoted by Aut(X, T ) and is
called the automorphism group of (X, T ). It has a group structure given by the composition
of functions. It is said that Aut(X, T ) is virtually Z if the quotient Aut(X, T )/〈T 〉 is finite,
where 〈T 〉 is the subgroup generated by T.
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2.2. Basics in symbolic dynamics.

2.2.1. Words and subshifts. Let A be a finite set that we call an alphabet. Elements in
A are called letters or symbols. The set of finite sequences or words of length � ∈ N with
letters in A is denoted by A�, the set of one-sided sequences (xn)n∈N in A is denoted by
AN and the set of two-sided sequences (xn)n∈Z in A is denoted by AZ. Also, a word w =
w1 . . . w� ∈ A�, with � > 0, can be seen as an element of the free monoid A∗ endowed
with the operation of concatenation (and whose neutral element is 1, the empty word) and
as an element of the free semigroup A+ := A∗ \ {1} of non-empty words. The integer � is
the length of w and is denoted by |w| = �; the length of the empty word is 0.

We write ≤p and ≤s for the relations in A∗ of being prefix and suffix, respectively.
We also write u <p v (respectively u <s v) when u ≤p v (respectively u ≤s v) and u �=
v. When v = sut , we say that u occurs in v or that u is a subword of v. We also use
these notions and notation when considering prefixes, suffixes and subwords of infinite
sequences.

Let W ⊆ A∗ be a set of words and u ∈ A∗. We write uW = {uw : w ∈ W}, Wu =
{wu : w ∈ W} and also

〈W〉 := min
w∈W

|w| and |W| := max
w∈W

|w|.

The shift map T : AZ → AZ is defined by T ((xn)n∈Z) = (xn+1)n∈Z. A subshift is a
topological dynamical system (X, T ), where X is a closed and T-invariant subset of AZ

(we consider the product topology in AZ) and T is the shift map. Classically one identifies
(X, T ) with X, so one says that X itself is a subshift. When we say that a sequence in a
subshift is aperiodic, we implicitly mean that this sequence is aperiodic for the action of
the shift.

2.2.2. Morphisms and substitutions. Let A and B be finite alphabets and τ : A+ → B+
be a morphism between the free semigroups that they define. Then τ extends naturally to
maps from AN to itself and from AZ to itself in the obvious way by concatenation (in the
case of a two-sided sequence, we apply τ to positive and negative coordinates separately
and we concatenate the results at coordinate zero). We say that τ is primitive if for every
a ∈ A, all letters b ∈ B occur in τ(a). The minimum length of τ is the number

〈τ 〉 := 〈τ(A)〉 = min
a∈A

|τ(a)|.

We observe that any map τ : A → B+ can be naturally extended to a morphism (that
we also denote by τ ) from A+ to B+ by concatenation, and we use this convention
throughout the article. So, from now on, all maps between finite alphabets are considered
to be morphisms between their associated free semigroups.

2.2.3. S-adic subshifts. We recall the definition of an S-adic subshift as stated
in [BSTY19]. A directive sequence � = (τn : A+

n+1 → A+
n )n≥0 is a sequence of

morphisms.
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For 0 ≤ n < N , we denote by τ[n,N) the morphism τn ◦ τn+1 ◦ · · · ◦ τN−1. We say that
� is everywhere growing if

lim
N→+∞〈τ[0,N)〉 = +∞.

We say that � is primitive if for any n ∈ N, there exists N > n such that τ[n,N) is primitive.
Observe that � is everywhere growing whenever � is primitive.

For n ∈ N, we define

X
(n)
� = {x ∈ AZ

n : for all k ∈ N, x[−k,k] occurs in τ[n,N)(a) for some N > n and a ∈ AN }.
These sets clearly define subshifts. The set X� = X

(0)
� is called the S-adic subshift

generated by � and X
(n)
� is called the nth level of the S-adic subshift generated by �. If � is

everywhere growing, then every X
(n)
� , n ∈ N, is non-empty; if � is primitive, then X

(n)
� is

minimal and non-empty for every n ∈ N. There are non-primitive directive sequences that
generate minimal subshifts.

The relation between levels of an S-adic subshift is given by the following lemma.

LEMMA 2.1 [BSTY19, Lemma 4.2]. Let � = (τn : A+
n+1 → A+

n )n≥0 be a directive

sequence of morphisms. If 0 ≤ n < N and x ∈ X
(n)
� , then there exist y ∈ X

(N)
� and k ∈ Z

such that x = T kτ[n,N)(y).

We define the alphabet rank of a directive sequence � as

AR(�) = lim inf
n→+∞ #An.

In this paper we will deal with systems (X� , T ) given by an everywhere-growing
directive sequence � of finite alphabet rank. This kind of systems generalizes the class
of finite topological rank systems stated for minimal Bratteli–Vershik systems and its
symbolic factors (see, for example, [DFM19]), but is somehow more natural and includes a
broader spectrum of systems, not all minimal. It is worth mentioning that finite topological
rank minimal systems are either subshifts or odometers [DM08].

A contraction of � = (τn : A+
n+1 → A+

n )n≥0 is a sequence �̃ = (τ[nk ,nk+1) : A+
nk+1

→
A+

nk
)k≥0, where 0 = n0 < n1 < n2 < · · · . Observe that any contraction of � generates

the same S-adic subshift X� . When � has finite alphabet rank, there exists a contraction
�̃ = (τ[nk ,nk+1) : A+

nk+1
→ A+

nk
)k≥0 of � in which Ank

has cardinality AR(�) for every
k ≥ 1.

3. Notion of interpretation
In this section we introduce the concepts of interpretation and double interpretation of a
word together with their basic properties. The definitions we provide here are variants of
the same notions used seldom in combinatorics of words; see, for example, [Lot97]. The
key proposition (Proposition 3.10), where we provide a fundamental upper bound for the
number of irreducible sets of simple double interpretations, is announced here and proved
in the last section of the article.

For the rest of this section we fix an alphabet A and a finite set of non-empty words
W ⊆ A+. If u, v, w ∈ A∗ are such that w = uv, then we write u = wv−1 and v = u−1w.
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FIGURE 1. Diagram of the W-interpretation I = dL, dM , dR , a of d in Definition 3.1.

3.1. Interpretations and simple double interpretations.

Definition 3.1. Let d ∈ A+. A W-interpretation of d is a sequence of words I =
dL, dM , dR , a such that:
(1) dM ∈ W∗ and a ∈ A;
(2) there exist uL, uR ∈ W such that 1 �= dL ≤s uL, dRa ≤p uR;
(3) d = dLdMdR .
See Figure 1 for an illustration of this definition. Note that dM and dR can be the empty
word. The extra letter a will be crucial to handle asymptotic pairs and W-interpretations
later.

If the context is clear, we will say interpretation instead of W-interpretation.
Now we make an observation that will be useful when we want to inherit interpretations

of a given word to some of its subwords. We state it as a lemma without proof.

LEMMA 3.2. Let I = dL, dM , dR , a be a W-interpretation of d ∈ A+. Suppose that d ′ ≤p

d satisfy |d ′| ≥ |dL|. Then d ′ has a W-interpretation of the form I ′ = dL, d′
M , d′

R , a′ such
that d ′a′ ≤p da.

The proofs of our main theorems are based on a procedure allowing us to reduce the
so-called double interpretations (defined below) to a special class called simple double
interpretations.

Definition 3.3. Let d ∈ A+. A W-double interpretation (written for short W-d.i.) of d is
a tuple D = (I ; I ′), where I = dL, dM , dR , a, I ′ = d′

L, d′
M , d′

R , a′ are W-interpretations
of d such that a �= a′. We say that D is simple if in addition:
(1) d′

Md′
R ≤s dR; and

(2) d′
L ∈ W or |d′

L| ≥ |u| for some u ∈ W having dRa as a prefix.

Again, if there is no ambiguity, we will omit W and simply say double interpretation
or d.i.

Note that if D is simple, then D′ = (I ′; I ) is a d.i., which is not necessarily simple.
Condition (1) in the previous definition says that d′

L, the left-most word of I ′, ‘touches’
dR , the right-most word of I; see Figure 2 for an illustration of this. Condition (2) is more
technical and we will comment about it at the end of §3.2.

Remark 3.4. From condition (2) in the previous definition, we have that |d′
L|, |d| ≥ 〈W〉

whenever D is a simple W-d.i.
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FIGURE 2. Diagram of a d.i. of d satisfying Definition 3.3(1). Here, dRa ≤p uR and d′
Ra′ ≤p u′

R , where uR , u′
R

are the words given in Definition 3.1(2).

The next lemma will be useful to build a simple double interpretation from a word
having a double interpretation.

LEMMA 3.5. Let D = (I = dL, dM , dR , a; I ′ = d′
L, d′

M , d′
R , a′) be a double interpreta-

tion of a word d ∈ A+. Suppose that d′
L ∈ W and |dL| ≤ |d′

Ld′
M |. Then there exists e ≤s d

with a simple double interpretation.

Proof. By considering the shortest suffix of d verifying the hypotheses of the lemma, we
can assume without loss of generality that this suffix is d itself. We consider three cases.

(1) d′
L <p dL. This condition and the hypotheses of the lemma imply that d′

L <p dL ≤p

d′
Ld′

M . Therefore, d′
M is not the empty word and we can write d′

M = uv with u ∈ W and
v ∈ W∗. Then e := d′

Md′
R <s d has the interpretations J = (d′

L)−1dL, dM , dR , a (here,
we are using that (d′

L)−1dL �= 1) and J ′ = u, v, d′
R , a′. But u ∈ W and |(d′

L)−1dL| ≤
|(d′

L)−1d′
Ld′

M | = |uv|, so e is a strict suffix of d having a d.i. E := (J ; J ′) verifying
the hypotheses of the lemma, which contradicts the minimality of d. Thus, this case is
incompatible with the hypotheses.

(2) dL <p d′
L. If D is not a simple d.i., we have dR <s d′

Md′
R since d′

L ∈ W and then
dL <p d′

L ≤p dLdM . This implies that dM is not the empty word. Then we can write
dM = uv with u ∈ W and v ∈ W∗. We have that E = (J = d−1

L d′
L, d′

M , d′
R , a′; J ′ =

u, v, dR , a) is a d.i. of e := dMdR <s d , which, in addition, satisfies u ∈ W and |d−1
L d′

L| ≤
|uv|. This contradicts the minimality of d and D must be simple.

(3) dL = d′
L. If dM = 1 or d′

M = 1, it follows directly from the definition that D =
(I , I ′) or D′ = (I ′, I ) are simple d.i.’s, respectively. So, we assume that dM �= 1 and d′

M �=
1. Therefore, we can write dM = uv and d′

M = u′v′ with u, u′ ∈ W and v, v′ ∈ W∗. Let
e := dMdR = d′

Md′
R , J = u, v, dR , a and J ′ = u′, v′, d′

R , a′. Observe that when |u′| ≤
|u|, E = (J ′; J ) is a d.i. of e satisfying u ∈ W and |u′| ≤ |uv| and, when |u| ≤ |u′|, E =
(J ; J ′) is a d.i. of e satisfying u′ ∈ W and |u| ≤ |u′v′|. In both cases we get a contradiction
with the minimality of d. Then, in this case either D or D′ is a simple d.i. of d.

A point x ∈ AZ is factorizable over W if there exist a point y ∈ WZ and k ∈ Z such
that x[k,∞) = y0y1y2 . . . and x(−∞,k) = · · · y−3y−2y−1. For example, if � is a directive
sequence, 0 ≤ n < N and x ∈ X

(n)
� , from Lemma 2.1 we see that x is factorizable over

τ[n,N)(AN).
The last lemma of this subsection gives the relation between asymptotic pairs that are

factorizable over the set of words W and simple double interpretations over W . This lemma
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is crucial to reduce our combinatorial studies in next sections to the case of simple double
interpretations.

LEMMA 3.6. If x, x′ ∈ AZ are factorizable over W , x(−∞,0) = x′
(−∞,0) and x0 �= x′

0, then
there exists a word e ≤s x(−∞,0) having a simple double interpretation over W .

Proof. Let l ≥ 2|W| and d := x[−l,0). Then d inherits in a natural way interpretations I =
dL, dM , dR , a and I ′ = d′

L, d′
M , d′

R , a′ from the factorizations of x and x′, respectively.
Since a = x0 �= x′

0 = a′, the tuple D := (I ; I ′) is a d.i. Moreover, by choosing adequately
l we can suppose that d ′

L ∈ W . Also, |dL| ≤ |W| ≤ l − |d′
R| = |d′

Ld′
M |, so the hypotheses

of Lemma 3.5 hold. Thus, d (and of course x(−∞,0)) has a suffix e with a simple double
interpretation over W . This proves the lemma.

3.2. Reducible and irreducible simple double interpretations. In this section we intro-
duce the notions of reducible and irreducible sets of simple double interpretations. In
Proposition 3.10, we provide an upper bound for the size of irreducible sets of simple d.i.’s
(the proof of this proposition is very technical and is postponed until §5). Thus, even if
in some cases it is not necessary, most of the notions appearing in this section will be
considered only for simple d.i.’s.

For the rest of the paper, each time we use a letter D to denote a d.i. on W , then
it double interprets the word d ∈ A+ and is written D = (ID = dL, dM , dR , aD; I ′

D =
d′

L, d′
M , d′

R , a′
D).

Definition 3.7. Given U = (uM , uR , u′
L, u′

M , u′
R , �) ∈ W5 × N, we define DU as the set

of simple W-d.i.’s D such that:
(1) either dM ∈ W∗uM or dM = 1 and dL ≤s uM ;
(2) dRaD ≤p uR and |uR| = min{|w| : dRaD ≤p w, w ∈ W};
(3) d′

Ra′
D ≤p u′

R , d′
L ≤s u′

L and |u′
L| = min{|w| : d′

L ≤s w, w ∈ W};
(4) d′

M = 1 or d′
M = v1 . . . vn ∈ W+, v1 = u′

M and max1≤j≤n |vj | = �.
See Figure 3 for an illustration of these conditions.

It is easy to see that

D :=
⋃

U∈W5×N

DU

is the set of all simple W-d.i.’s of words in A+. Moreover, from Definition 3.7(4), we
have that � ∈ {|w| : w ∈ W} ∪ {0} when DU �= ∅, so D is the union of no more than
#W5(#W + 1) sets DU .

Definition 3.8. Let D, E be simple d.i.’s on W . We say that:
(1) D is equivalent to E, and we write D ∼ E, if d and e have a common suffix of length

at least 〈W〉 (this makes sense by Remark 3.4);
(2) D reduces to E, and we write D ⇒ E, if e <s d .

Observe that, when D and E are simple d.i.’s on W with D ⇒ E, then, by Remark 3.4,
D ∼ E.
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FIGURE 3. Diagram illustrating restrictions in Definition 3.7 for a simple d.i. in the case dM , d′
M �= 1.

Definition 3.9. A subset D′ ⊆ D of simple d.i.’s is reducible if:
(1) there are two different and equivalent elements in D′; or
(2) there exists D ∈ D′ that reduces to some simple d.i.
If D′ is not reducible, we say that it is irreducible.

The main combinatorial result about irreducible sets of simple d.i.’s is the following
proposition, whose proof will be carried out in §5.

PROPOSITION 3.10. Let U ∈ W5 × N. Any irreducible subset of DU has at most 61(#W)

elements.

The use of condition (2) of Definition 3.3 appears during the proof of this proposition.
This proof consists in directly showing that sets D′ ⊆ DU with more than 61(#W)

elements are reducible. For this, one finds elements in D′ that are equivalent or can be
reduced. In this process, one observes that eliminating condition (2) in the definition of a
simple d.i. has two opposite effects. On one hand, it should be easier to find a reduction of
a given simple d.i., since more d.i.’s are simple; but, on the other hand, without condition
(2) being simple means less structure, so it is more difficult to actually find the desired
reductions during the proof. Balancing this trade-off is the reason behind the technical
condition (2). It is worth mentioning that this condition (2) is only used in the proof of
Lemma 5.4.

4. Proof of main results
In this section we prove our main results. As we commented in the introduction, the proof
of Theorem 1.1 is based on two general steps: first we use a proposition from [DDMP16]
relating the number of asymptotic components with the ‘size’ of the automorphism group
and secondly we develop a complete combinatorial analysis of the asymptotic classes
arising in an S-adic subshift of finite alphabet rank.

Let (X, T ) be a topological dynamical system. Two points x, x ′ ∈ X are (negatively)
asymptotic if limn→−∞ dist(T nx, T nx′) = 0. We define the relation ∼ in X as follows:
x ∼ x′ whenever x is asymptotic to T kx′ for some k ∈ Z. It is easy to see that ∼ is an
equivalence relation. An equivalence class for ∼ that is not the orbit of a single point is
called an asymptotic class and we write Asym(X, T ) for the set of asymptotic classes of
(X, T ). Observe that if (X, T ) is a subshift, then x ∼ x ′ if and only if x(−∞,k) = x′

(−∞,�)
for some k, � ∈ Z.
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The following proposition, which is a direct consequence of Corollary 3.3 in
[DDMP16], gives a relation between the number of asymptotic classes and the cardinality
of Aut(X, T )/〈T 〉 under conditions that any infinite minimal subshift satisfies.

PROPOSITION 4.1. Let (X, T ) be a topological dynamical system. Assume that there exists
a point x0 ∈ X with ω(x0) := ⋂

n≥0 {T kx0 : k ≥ n} = X that is asymptotic to a different
point. Then #Aut(X, T )/〈T 〉 ≤ #Asym(X, T )!.

Now we prove our first combinatorial theorem.

THEOREM 4.2. Let W ⊆ A+ be a set of non-empty words. Then there exists B ⊆ A〈W〉
with #B ≤ 122(#W)7 such that if x, x′ ∈ AZ are factorizable over W , x(−∞,0) = x′

(−∞,0)

and x0 �= x′
0, then x[−〈W〉,0) ∈ B.

As will be clear from the proof, the bound ‘122(#W)7’ is not necessarily optimal. Here,
the important point is that, despite the fact that the length of the elements in B is 〈W〉, the
cardinality of B depends only on #W and not on 〈W〉.
Proof. We start by defining the set B. For each U = (uM , uR , u′

L, u′
M , u′

R , �) ∈ W5 × N,
fix D′

U ⊆ DU , an irreducible subset of maximal size (we consider the empty set as an
irreducible set, so there always exists such a set D′

U ). We define

B := {w ∈ A〈W〉 : there exists U ∈ W5 × N, D ∈ D′
U , w ≤s d},

where in this set d ∈ A+ represents the word that is double interpreted by D. We note
that this makes sense because |d| ≥ 〈W〉 for all simple d.i.’s. As we observed previously,
we have � ∈ {|w| : w ∈ W} ∪ {0} when DU is non-empty. Thus, there are no more than
#W5(#W + 1) choices for U such that DU is non-empty. Using this and Proposition 3.10,
we get

#B ≤ 61#W · #{U ∈ W5 × N : DU �= ∅}
≤ 61#W · #W5(#W + 1) ≤ 122(#W)7.

It left to prove the main property of the theorem. For this purpose, let x, x ′ ∈ AZ be
factorizable over W with x(−∞,0) = x′

(−∞,0) and x0 �= x′
0. From Lemma 3.6, we can find

a simple d.i. D of d ≤s x(−∞,0). Let

D =: D(0) ⇒ D(1) ⇒ D(2) ⇒ · · · ⇒ D(n)

be a sequence of reductions that starts with D (where, possibly, n = 0 and D has no
reduction). We write, for convenience, D(j) = (I (j); I ′(j)) and d(j) for the word that
is double interpreted by D(j). Since |d(0)| > |d(1)| > · · · , any sequence like this ends
after a finite number of steps. In particular, we can take (and we are taking) this sequence
so that n is maximal. This implies that D(n) has no reduction.

Since D = ⋃
U∈W5×N

DU , we can find U ∈ W5 × N satisfying D(n) ∈ DU . We claim
that there is a word e with a simple d.i. E = (IE ; I ′

E) ∈ D′
U such that D(n) is equivalent

to E. Indeed, if D(n) ∈ D′
U , then, since D(n) is equivalent to itself, we can take E :=

D(n). If D(n) is not in D′
U , then, from the maximality of D′

U , we see that D′
U ∪ {D(n)}
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is reducible. Since D(n) has no reduction and D′
U is irreducible, there exists E ∈ D′

U

equivalent to D(n). This proves the claim.
Then, using the definitions of reduction and equivalence of simple d.i.’s, we have that

the suffix w ∈ A〈W〉 of e satisfies

w ≤s d(n) <s d(n − 1) <s · · · <s d(0) ≤s x(−∞,0)

and w ∈ B since E ∈ D′
U . This finishes the proof.

Now we have all the ingredients to compute the number of asymptotic classes in the
case of S-adic subshifts of finite alphabet rank.

THEOREM 1.3. Let (X, T ) be an S-adic subshift given by an everywhere-growing
directive sequence of alphabet rank K. Then (X, T ) has at most 122K7 asymptotic classes.

Proof. Set K ′ = 122K7. We are going to prove the following stronger result.

Claim. Let P be the set of pairs (x, y) ∈ X × X such that x(−∞,0) = y(−∞,0) and x0 �= y0.
Then #{x(−∞,0) : (x, y) ∈ P} ≤ K ′.

First, we show how this claim implies the theorem. Suppose that the claim is true
and let C0, . . . , CK ′ be asymptotic classes for (X, T ). For each j ∈ {0, . . . , K ′}, we
choose (zj , z′

j ) ∈ Cj such that zj and z′
j do not belong to the same orbit. Then there

exist mj , m′
j ∈ Z such that xj := T mj zj and yj := T

m′
j z′

j satisfy

(xj )(−∞,0) = (yj )(−∞,0) and (xj )0 �= (yj )0 for all j ∈ {0, . . . , K ′}. (1)

Thus, (xj , yj ) ∈ P for all j ∈ {0, . . . , K ′} and, by the claim and the pigeonhole principle,
there exist different j , j ′ ∈ {0, . . . , K ′} such that (xj )(−∞,0) = (xj ′)(−∞,0). This implies
that Cj = Cj ′ and, thus, that (X, T ) has at most K ′ asymptotic classes.

Now we prove the claim. Let � = (τn : A+
n+1 → A+

n )n≥0 be an everywhere-growing
directive sequence of alphabet rank K generating X. By doing a contraction, if required,
we can suppose that #An = K for every n ≥ 1. For n ≥ 1, put Wn = τ[0,n)(An) and let
Bn ⊆ A+

0 be the set given by Theorem 4.2 when it is applied to Wn. By hypothesis, #Wn ≤
#An = K , so #Bn ≤ 122(#Wn)

7 ≤ 122K7 = K ′.
For j ∈ {0, . . . , K ′}, let (xj , yj ) ∈ P . We have to show that (xj )(−∞,0) = (xj ′)(−∞,0)

for different j , j ′ ∈ {0, . . . , K ′}. Since for all n ≥ 1 and j ∈ {0, . . . , K ′} the points
xj and yj are factorizable over Wn (Lemma 2.1), from Theorem 4.2 we have that
(xj )[−〈Wn〉,0) ∈ Bn. But #Bn ≤ K ′, so by the pigeonhole principle there exist jn, j ′

n ∈
{0, . . . , K ′} with jn �= j ′

n such that

(xjn)[−〈Wn〉,0) = (xj ′
n
)[−〈Wn〉,0). (2)

Thus, again by the pigeonhole principle, we can choose 1 ≤ n1 < n2 < · · · such that
jn1 = jn2 = · · · = j �= j ′ = j ′

n1
= j ′

n2
= · · · . By (2),

(xj )[−〈Wni
〉,0) = (xj ′)[−〈Wni

〉,0) for all i ≥ 1. (3)
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Since � is everywhere growing, 〈Wn〉 goes to infinity when n → +∞. Thus, (3) implies
that (xj )(−∞,0) = (xj ′)(−∞,0), as desired. This completes the proof.

We remark again that in the previous result we do not assume minimality. This
hypothesis is needed in the next proof (of Theorem 1.1) only because we bound the size of
the automorphism group by the number of asymptotic classes via Proposition 4.1. Thus,
Theorem 1.1 is mainly a consequence of combinatorial facts inherent to S-adic subshifts.

THEOREM 1.1. Let (X, T ) be a minimal S-adic subshift given by an everywhere-growing
sequence of finite alphabet rank K. Then its automorphism group is virtually Z.

Proof. From Proposition 4.1 and Theorem 1.3, we get

#Aut(X, T )/〈T 〉 ≤ #Asym(X, T )! ≤ (122K7)! < +∞.

This inequality proves that Aut(X, T ) is virtually Z.

5. Proof of Proposition 3.10
In this last section we prove Proposition 3.10. All but one result we need (Lemma 3.5) are
presented and proved here, so the section is almost self contained.

We fix, for the rest of this section, a finite set of words W ⊆ A+ and a sequence U =
(uM , uR , u′

L, u′
M , u′

R , �) ∈ W5 × N. For D ∈ DU , we define

d̃ := dR(d′
Md′

R)−1 = (dLdM)−1d′
L.

We need a last definition: two words u, v ∈ A∗ are prefix dependent (respectively suffix
dependent) if u ≤p v or v ≤p u (respectively u ≤s v or v ≤s u). In this case, u and v share
a common prefix (respectively suffix) of length min(|u|, |v|).
LEMMA 5.1. Consider different elements D, E in DU . If any of the following conditions
holds, then the set {D, E} is reducible:

(i) d′
Md′

RaD , e′
Me′

RaE are prefix dependent;
(ii) |dR| = |eR|;

(iii) |d̃| ≤ |ẽ| ≤ |d̃d′
M | or |ẽ| ≤ |d̃| ≤ |ẽe′

M |.
Proof. We will show that under the conditions of the lemma one of the following relations
occurs: D ∼ E, E reduces to a simple d.i. or D reduces to a simple d.i.

(i) Without loss of generality, we can suppose that d′
Md′

RaD ≤p e′
Me′

RaE . We distin-
guish two cases.

(a) d′
Md′

RaD = e′
Me′

RaE . Using Definition 3.7(3), we can write d = d′
Ld′

Md′
R ≤s

u′
Ld′

Md′
R . Similarly, e ≤s u′

Le′
Me′

R . This and hypothesis (a) imply that d and e are suffix
dependent. But, since D and E are simple d.i.’s, by Remark 3.4 we have that |d|, |e| ≥ 〈W〉.
We conclude that d and e share a suffix of length at least min(|d|, |e|) ≥ 〈W〉, which
implies thatD ∼ E.

(b) d′
Md′

RaD <p e′
Me′

RaE (so, d′
Md′

RaD ≤p e′
Me′

R). We claim that � > 0 in the
definition of U. Suppose that � = 0. Then d′

M = e′
M = 1 and we can write

d′
RaD ≤p e′

R ≤p u′
R .
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Since by Definition 3.7(3) we also have d′
Ra′

D ≤p u′
R , we conclude that aD = a′

D . This
contradicts the fact that E is a d.i. Thus, � > 0.

Now, � > 0 and Definition 3.7(4) imply that vD := (u′
M)−1d′

M ∈ W∗ and vE :=
(u′

M)−1e′
M ∈ W∗. Let w := d′

Md′
R . Observe that JD = u′

M , vD , d′
R , a′

D is an interpreta-
tion of w. Moreover, since u′

M ≤p w <p u′
MvEe′

R by hypothesis (b) and vE ∈ W∗, we can
obtain, using Lemma 3.2, an interpretation of w of the form JE = u′

M , e′′
M , e′′

R , a′′
E such

that wa′′
E ≤p u′

MvEe′
R .

Next, we prove that F := (JD; JE) is a d.i. of w. Observe that vDd′
RaD ≤p vEe′

R by
hypothesis (b) and e′′

Me′′
Ra′′

E ≤p vEe′
R by the definition of JE . But vDd′

R = (u′
R)−1w =

e′′
Me′′

R , so aD = a′′
E . Hence, a′

D �= aD = a′′
E and F is a d.i. of w.

Finally, we note that since JD and JE start with u′
M ∈ W , we can use Lemma 3.5 with

F to obtain a simple d.i. G of a word g such that g ≤s w <s d . This corresponds to the fact
that D reduces to G.

(ii) Assume that |dR| = |eR|. Since, by Definition 3.7(2), we have that dR and eR are
prefixes of uR , hypothesis (ii) implies that dR = eR . In addition, from Definition 3.7(1),
we see that dLdM and eLeM either share the suffix uM ∈ W or are suffix dependent. We
conclude that d = dLdMdR and e = eLeMeR share a suffix of length at least 〈W〉. That is,
D ∼ E.

(iii) We consider the case |d̃| ≤ |ẽ| ≤ |d̃d′
M |; the other one is symmetric.

We start with some simplifications. Observe that condition (2) in Definition 3.7 implies
that

dRaD = d̃d′
Md′

RaD ≤p uR and eRaE = ẽe′
Me′

RaE ≤p uR . (4)

Then, if |d̃| = |ẽ|, we are in case (i) and, if |dR| = |eR|, we are in case (ii). Thus, we can
suppose, without loss of generality, that

|d̃| < |ẽ|, (5)

|dR| �= |eR|. (6)

The idea of the proof is the following. We are going to define a word w, which is a suffix
of d or e, and that has a d.i. F satisfying the hypothesis of Lemma 3.5. This would imply
that F (and then also D or E) reduces to a simple d.i., as desired.

From (5) and hypothesis (iii), we have that |d̃| �= |d̃d′
M | and thus � �= 0. In particular,

this last fact implies that vD := (u′
M)−1d′

M ∈ W∗ and vE := (u′
M)−1e′

M ∈ W∗. Also,
from (4) and (5), we see that it makes sense to define t := d̃−1ẽ �= 1. Then JD =
u′

M , vD , d′
R , a′

D is an interpretation of d′
Md′

R and JE = t , e′
M , e′

R , a′
E is an interpretation of

te′
Me′

R . Now, using (4) and (6), we also obtain that either d′
Md′

R <p te′
Me′

R or te′
Me′

R <p

d′
Md′

R . We analyze these two cases separately.
(a) Assume that d′

Md′
R <p te′

Me′
R . We define w = d′

Md′
R <s d . Note that JD is an

interpretation of w. By hypothesis (iii), we have t ≤p w <p te′
Me′

R , so we can use
Lemma 3.2 with JE to obtain an interpretation of w having the form J ′

E = t , e′′
M , e′′

R , a and
satisfying wa ≤p e′

Me′
R . We set F = (JD , J ′

E). Since wa ≤p te′
Me′

R = d̃−1eR ≤p d̃−1uR

and waD = d′
Md′

RaD = d̃−1dRaD ≤p d̃−1uR , we have a = aD . Because aD �= a′
D as D is

a d.i., we conclude that a �= a′
D and that F is a d.i. Recall that u′

R ∈ W and observe that
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FIGURE 4. Diagram of the construction in case (b) of the proof of (iii) of Lemma 5.1. Observe that the hypothesis
of case (b) of part (iii) and condition (4) say that d̃ <p ẽ ≤p ẽu′

MvE ≤p d̃u′
Mv1 . . . vn+1 ≤p uR . This and the

definitions of w and t are represented in the figure.

|t | ≤ |d′
M | by hypothesis (iii). Thus, F satisfies the hypothesis of Lemma 3.5. This implies

that D is reducible.
(b) Suppose that te′

Me′
R <p d′

Md′
R . Observe that from Definition 3.7(4), we know

that there exist n ≥ 0 and, for j ∈ {1, . . . , n}, vj ∈ W with |vj | ≤ � such that vD =
v1 . . . vn (we interpret v1 . . . vn = 1 when n = 0). We define w = te′

Me′
R <s e and

vn+1 = d′
R . See Figure 4 for an illustration of the definitions so far. Since |w| ≥ |u′

R|,
we have u′

M ≤p w <p u′
Mv1 . . . vn+1 by (b) and, thus, there exists a least integer m ∈

{1, . . . , n + 1} such that w ≤p u′
Mv1 . . . vm. The integer m being minimal, we can

write w = u′
Mv1 . . . vm−1v

′
m with v′

m ≤p vm and wa ≤p d′
Md′

R for some a ∈ A. Then
J ′

D := u′
M , v1 . . . vm−1, v′

m, a and JE are interpretations of w.
We set F = (J ′

D , JE) and claim that F is a d.i. Indeed, on the one hand, the definition
of J ′

D gives wa ≤p d′
Md′

R ≤p d̃−1uR . On the other hand, since w = d̃−1ẽe′
Me′

R = d̃−1eR ,
we have waE ≤p d̃−1uR by Definition 3.7(2). We conclude that a = aE . Then, a �= a′

E

(because E is a d.i.) and F is a d.i.
Finally, we prove that F satisfies the hypothesis of Lemma 3.5. Since J ′

D starts with
u′

M ∈ W , we only need to show that |t | ≤ |u′
Mv1 . . . vm−1|. By contradiction, we assume

that u′
Mv1 . . . vm−1 <p t . This condition implies two things. First, that we can define t ′ =

(u′
Mv1 . . . vm−1)

−1t �= 1 and, then, since u′
Mv1 . . . vm−1v

′
m = te′

Me′
R , that v′

m = t ′e′
Me′

R .
In particular, � ≤ |e′

M | < |v′
m|. The second fact is that m ≤ n. Indeed, by hypothesis

(iii), we have |u′
Mv1 . . . vm−1| < |t | ≤ |d′

M | = |u′
Mv1 . . . vn|. Hence, � < |v′

m| ≤ |vm| ≤
�, which is a contradiction. This proves that Lemma 3.5 can be applied with F, so F (and
then also E) reduces to a simple d.i.

If u ∈ A+, then we write u∞ := uuu · · · and ∞u := · · · uuu. Recall that an integer
k ≥ 1 is a period of w ∈ A+ if w ≤p u∞ (equivalently, w ≤s

∞u) for some u ∈ Ak . The
following result (also known as the Fine–Wilf lemma) is classical.

LEMMA 5.2 [Lot97, Proposition 1.3.2]. If p, p′ ≥ 1 are periods of w ∈ A+ and p + p′ ≤
|w|, then gcd(p, p′) is also a period of w.

We fix an irreducible subset D′ ⊆ DU . For D, E ∈ D′, since d̃, ẽ ≤p uR and d̃, ẽ ≤s u′
L,

we have that d̃ and ẽ are both prefix and suffix dependent. So, it makes sense to define,
in D′,

D ≤ E if and only if d̃ ≤p ẽ.
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FIGURE 5. Diagram of conditions in equation (10). Observe that, since d̃d′
Md′

R = dR ≤p uR for any D ∈ D′ by
Definition 3.7(2), all the words in the figure occur inside uR .

Observe that Lemma 5.1(iii) implies that D = E if and only if d̃ = ẽ. Therefore, ≤ is a
total order. In particular, we can use the notation D < E when D ≤ E and D �= E. In this
case it is not difficult to prove that |ẽ| − |d̃| is a period of ẽ.

Let D(1) < · · · < D(s) be all the elements in D′ (deployed in increasing order). We
adopt the mnemotechnical notation:

D(j) = (dL(j), dM(j), dR(j), a(j); d′
L(j), d′

M(j), d′
R(j), a′(j)), (7)

d(j) = dL(j)dM(j)dR(j), d̃(j) = (dL(j)dM(j))−1d′
L(j). (8)

For D, E ∈ D′, since dRaD , ẽ ≤p uR , we have that dRaD ≤p ẽ if and only if |dR| < |ẽ|.
Thus, for j ∈ {1, . . . , s}, we can define

D′(j) := {D ∈ D′ : dRaD ≤p d̃(j)} = {D ∈ D′ : |dR| < |d̃(j)|}
and D′(s + 1) := D′. By definition of the total order, this is a non-decreasing sequence.
Moreover, D′(j) ⊆ {D(k) : k ∈ {1, . . . , j − 1}} for all j ∈ {1, . . . , s + 1}. In particular,
D′(1) = ∅.

LEMMA 5.3. Let p ∈ {1, . . . , s + 1} be such that D′(p) is non-empty and let
D(p′) := max D′(p), where the maximum is taken with respect to the total order. Then
#(D′(p)\D′(p′)) ≤ 6.

Proof. We prove the lemma by contradiction. Suppose that #(D′(p)\D′(p′)) ≥ 7 and let
D(j1) < D(j2) < · · · < D(j7) be seven different elements in D′(p)\D′(p′).

We start by obtaining some relations. First, from Lemma 5.1(iii) and the irreducibility
of D′, we get

d̃d′
M <p ẽ for all D, E ∈ D′(p) such that D < E. (9)

Thus,

d̃(jk) ≤p d̃(jk)d′
M(jk) <p d̃(jk+1) ≤p d̃(jk+1)d′

M(jk+1) for all k ∈ {1, . . . , 6}. (10)

In Figure 5 we illustrate these conditions.
We set vk = d̃(jk)d′

M(jk), k ∈ {1, . . . , 6}. By (10),

v1 <p · · · <p v5 <p d̃(j6) <p v6 <p d̃(j7).
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Also, observe that for any D ∈ D′(p)\D′(p′), we have D ≤ D(p′) and D �∈ D′(p′), which
gives

d̃ ≤p d̃(p′) ≤p dR ≤p uR . (11)

Equation (10), the first inequality of (11) used with d(j7) and the second inequality of
(11) used with d̃(jk) imply that

vk <p d̃(j7) ≤p d̃(p′) ≤p dR(jk) for all k ∈ {1, . . . , 6}. (12)

From previous relations we can define the non-empty word w := v−1
1 d̃(j7). Let q ≤p w

be such that |q| is the least period of w. We will prove that |q| divides |v−1
1 vk| for all

k ∈ {1, . . . , 5}.
On the one hand, the observation made before the proof shows that |d̃(j6)

−1d̃(j7)| is a
period of d̃(j7) and thus also of w. On the other hand, if k ∈ {1, . . . , 6}, then from (12)
and the definition of d̃, we get

(v−1
1 vk)

−1w = v−1
k d̃(j7) ≤p v−1

k dR(jk) = d′
R(jk) ≤p u′

R ,

the last step being true due to Definition 3.7(3). In particular, for k = 1, we get w ≤p u′
R .

These inequalities imply that w ≤p (v−1
1 vk)

∞. Consequently, |v−1
1 vk| is a period of w.

Since, by (10), v−1
k d̃(j6) is defined for all k ∈ {1, . . . , 5}, then for these values of k we can

compute

|q| + |v−1
1 vk| ≤ |d̃(j6)

−1d̃(j7)| + |v−1
1 vk| = |w| − |v−1

k d̃(j6)| ≤ |w|.
Hence, Lemma 5.2 can be applied to get that gcd(|q|, |v−1

1 vk|) is a period of w for
k ∈ {1, . . . , 5}. In particular, |q| = gcd(|q|, |v−1

1 vk|) and |q| divides |v−1
1 vk| for k ∈

{1, . . . , 5}.
Then we have w ≤p q∞ and, by the claim, for k ∈ {1, . . . , 5} there exists nk ≥ 0

satisfying v−1
1 vk = qnk . Moreover, from the definition of vk , we have vk = v1q

nk , which
implies that

d′
R(jk)a(jk) = v−1

k dR(jk)a(jk) ≤p v−1
k uR = q−nkv−1

1 uR

and d′
R(jk)a

′(jk) ≤p u′
R . Thus, since a(jk) �= a′(jk), we deduce that d′

R(jk) is the
maximal common prefix of q−nkv−1

1 uR and u′
R .

Now, let n, n′ ≥ 0 and r , r ′ <p q be maximal such that qnr ≤p v−1
1 uR and qn′

r ′ ≤p

u′
R . We conclude that

d′
R(jk) = qn−nk rif n − nk < n′ and d′

R(jk) = qn′
r ′if n − nk > n′ (13)

for k ∈ {1, . . . , 5}.
We have all the elements to complete the proof. Since n2 < n3 < n4 < n5, we have

n2 < n3 < n − n′ or n5 > n4 > n − n′. We are going to show that both cases give a
contradiction, proving, thereby, the lemma.

First, suppose that n2 < n3 < n − n′. Then, for k ∈ {2, 3}, we have n − nk > n′ and,
thus, by (13), d′

R(jk) = qn′
r ′. If � = 0, d(jk) = d′

L(jk)d′
R(jk) ≤s u′

Lqn′
r ′. Then d(j2) and

d(j3) are suffix dependent, which gives that D(j2) is equivalent to D(j3), contradicting
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the irreducibility of D′. If � > 0, we have dR(jk) = v1(v
−1
1 vk)d′

R(jk) = v1q
nk+n′

r ′. Then,
using (10),

|qnk | = |v−1
1 vk| ≥ |v−1

1 v2| ≥ |d′
M(j2)| ≥ |u′

M | ≥ 〈W〉
and hence d(j2) and d(j3) share a common suffix of length 〈W〉. This is, D(j2) ∼ D(j3),
which is a contradiction.

Finally, assume that n5 > n4 > n − n′. We have, by (13), that d′
R(jk) = qn−nk r for k ∈

{4, 5}. Hence, dR(jk) = v1(v
−1
1 vk)d′

R(jk) = v1q
nkd′

R(jk) = v1q
nr . In particular, condi-

tion (ii) of Lemma 5.1 holds for {D(j4), D(j5)}, contradicting the irreducibility of D′.
This completes the proof.

LEMMA 5.4. Let p ∈ {1, . . . , s} be such that #D′(p) ≥ 2 and let D(p′) = max D′(p),
D(p′′) = max D′(p) \ {D(p′)}. Then there exist w ∈ W and w′ ≤p d̃(s)d̃(p′′)−1 such
that w and w′ are suffix dependent, |w| ≥ |d̃(p′)| and |w′| > |d̃(s)| − |d̃(p)|.

Proof. Note that p′′ < p′ < p. Before proving the main statement of the lemma, we
highlight two useful relations. First, note that

dL(p′′)dM(p′′)d̃(p′′) = d′
L(p′′) (14)

as D(p′′) is simple. Second, since uR and u′
L are, by Definition 3.7, the shortest words in

W satisfying dR(p′′)a(p′′) ≤p uR and d′
L(p′′) ≤s u′

L, respectively, we have, by condition
(2) of the definition of a simple d.i., that |d′

L(p′′)| ≥ min(|uR|, |u′
L|) ≥ |d̃(k)| for k ∈

{1, . . . , s}. This and the fact that d′
L(p′′) and d̃(k) are both suffixes of u′

L imply that

d̃(k) ≤s d′
L(p′′) for k ∈ {1, . . . , s}. (15)

Now we are ready to prove the main statement of the lemma. Using (15) and d̃(p′) ≤p

d̃(p), we have (d′
L(p′′)d̃(p)−1)d̃(p′) ≤p d′

L(p′′). In addition, dL(p′′) ≤p d′
L(p′′) by the

simplicity of D(p′′). Thus, (d′
L(p′′)d̃(p)−1)d̃(p′) and dL(p′′) are prefix dependent. In

what follows, we split the proof in two cases according to which of these words is a prefix
of the other.

(a) (d′
L(p′′)d̃(p)−1)d̃(p′) ≤p dL(p′′). Observe that d̃(s) ≤s u′

L and dM(p′′)d̃(p′′) ≤s

d′
L(p′′) ≤s u′

L, so d̃(s) and dM(p′′)d̃(p′′) are suffix dependent. In addition, from (14) and
(a), we get

|dM(p′′)d̃(p′′)| = |d′
L(p′′)| − |dL(p′′)|

≤ |d′
L(p′′)| − |(d′

L(p′′)d̃(p)−1)d̃(p′)|
= |d̃(p)| − |d̃(p′)| ≤ |d̃(s)|. (16)

We conclude that

dM(p′′)d̃(p′′) ≤s d̃(s).

Thus, it makes sense to define w′ := d̃(s)(dM(p′′)d̃(p′′))−1. Clearly, w′ ≤p d̃(s)d̃(p′′)−1.
Let w ∈ W be a word satisfying dL(p′′) ≤s w, as in the definition of interpretation.
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Observe that, by (15) and (14),

w′ ≤s d′
L(p′′)(dM(p′′)d̃(p′′))−1 = dL(p′′) ≤s w,

so w and w′ are suffix dependent. It left to prove that |w′| ≥ |d̃(s)| − |d̃(p)| and |w| ≥
|d̃(p′)|. For this, we note that in (16) it was shown that |dM(p′)d̃(p′′)| ≤ |d̃(p)| − |d̃(p′)|.
Thus,

|w′| ≥ |d̃(s)| − |d̃(p)| + |d̃(p′)| ≥ max(|d̃(s)| − |d̃(p)|, |d̃(p′)|).
We conclude that |w′| ≥ |d̃(s)| − |d̃(p)| and, since w′ ≤s w, |w| ≥ |w′| ≥ |d̃(p′)|. This
completes the proof in case (a).

(b) dL(p′′) <p (d′
L(p′′)d̃(p)−1)d̃(p′). We start by claiming that

|d̃(p′′)| + |d̃(p′)| < |d̃(p)|. (17)

Assume that (17) does not hold. Let q be the shortest word satisfying d̃(p) ≤s
∞q.

As we commented before Lemma 5.3, condition p′, p′′ < p implies that d̃(p′), as well
as d̃(p′′), are prefixes and suffixes of d̃(p). So, |d̃(p)| − |d̃(p′)| and |d̃(p)| − |d̃(p′′)|
are periods of d̃(p). Moreover, since we are assuming that (17) is not true, we also
have that (|d̃(p)| − |d̃(p′)|) + (|d̃(p)| − |d̃(p′′)|) ≤ |d̃(p)|. Then, by Lemma 5.2, we
obtain that |q| divides |d̃(p)| − |d̃(p′)| and |d̃(p)| − |d̃(p′′)|. Hence, there exist n′, n′′ ∈
N such that qn′ = d̃(p′)−1d̃(p) and qn′′ = d̃(p′′)−1d̃(p). Now, since p′, p′′ ∈ D′(p),
we can write d′

M(p′)d′
R(p′)a(p′) = d̃(p′)−1dR(p′)a(p′) ≤p d̃(p′)−1d̃(p) = qn′ ≤p q∞

and, in a similar way, d′
M(p′′)d′

R(p′′)a(p′′) ≤p q∞. Thus, {D(p′), D(p′′)} is reducible by
Lemma 5.1(i), which contradicts the irreducibility of D′. This proves the claim.

From (17) and (14), we get

|(d′
L(p′′)d̃(p)−1)d̃(p′)| = |d′

L(p′′)| − |d̃(p)| + |d̃(p′)|
< |d′

L(p′′)| − |d̃(p′′)| = |d̃(p′′)−1d′
L(p′′)| = |dL(p′′)dM(p′′)|.

Then, since

(d′
L(p′′)d̃(p)−1)d̃(p′) ≤p (d′

L(p′′)d̃(p)−1)d̃(p) = d′
L(p′′) = dL(p′′)dM(p′′)d̃(p′′),

we obtain that (d′
L(p′′)d̃(p)−1)d̃(p′) <p dL(p′′)dM(p′′). This and (b) can be written

together as

dL(p′′) <p (d′
L(p′′)d̃(p)−1)d̃(p′) <p dL(p′′)dM(p′′). (18)

Since dL(p′′)dM(p′′)d̃(p′′) = d′
L(p′′) by (14), we can represent the right-hand side of

equation (18) as in Figure 6.
By (18), we can write dL(p′′)dM(p′′) = vwv′, where v ∈ dL(p′′)W∗, w ∈ W , v′ ∈ W∗

and

v <p (d′
L(p′′)d̃(p)−1)d̃(p′) ≤p vw. (19)

The word w is the one we need in the statement of the lemma. To define w′, we first note
that d̃(s) ≤s d′

L(p′′) and v′d̃(p′′) ≤s dL(p′′)dM(p′′)d̃(p′′) = d′
L(p′′), so d̃(s) and v′d̃(p′′)

https://doi.org/10.1017/etds.2021.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.64


2818 B. Espinoza and A. Maass

FIGURE 6. Diagram of the right-hand side of equation (18).

are suffix dependent. Moreover, using (19), we get

|v′d̃(p′′)| = |d′
L(p′′)| − |vw| ≤ |d′

L(p′′)| − |(d′
L(p′′)d̃(p)−1)d̃(p′)|

= |d̃(p)| − |d̃(p′)|. (20)

Then |v′d̃(p′′)| ≤ |d̃(p)| − |d̃(p′)| ≤ |d̃(s)| and v′d̃(p′′) ≤s d̃(s). Now, it makes sense
to define w′ := d̃(s)(v′d̃(p′′))−1, which clearly verifies w′ ≤p d̃(s)d̃(p′′)−1. It is also
clear that w and w′ are suffix dependent. Indeed, from (15) and (14), we have w′ ≤s

d′
L(p′′)(v′d̃(p′′))−1 = vw.

Now, from (20), |w′| ≥ |d̃(s)| − |d̃(p)| + |d̃(p′)| ≥ |d̃(s)| − |d̃(p)|, proving the desired
condition on the length of w′. It is only left to prove that |w| ≥ |d̃(p′)|. We argue by
contradiction. Assume that

|w| < |d̃(p′)|. (21)

First, we prove that it makes sense to define the word

w′′ := ((d′
L(p′′)d̃(p)−1)−1v)−1dR(p′) ∈ A+. (22)

From (19) and (21), we get |v| ≥ |(d′
L(p′′)d̃(p)−1)d̃(p′)| − |w| > |d′

L(p′′)d̃(p)−1|. But,
v ≤p dL(p′′)dM(p′′) ≤p d′

L(p′′) and d′
L(p′′)d̃(p)−1 ≤p d′

L(p′′), so d′
L(p′′)d̃(p)−1 <p v

and (d′
L(p′′)d̃(p)−1)−1v exists and is not the empty word. Hence, by (19),

(d′
L(p′′)d̃(p)−1)−1v <p d̃(p′) ≤p dR(p′) (23)

and w′′ is well defined.
Now, we have that vw ≤p dL(p′′)dM(p′′) ≤p d′

L(p′′) and, using p′ ∈ D′(p), that
(d′

L(p′′)d̃(p)−1)dR(p′) ≤p (d′
L(p′′)d̃(p)−1)d̃(p) = d′

L(p′′). Thus, vw and (d′
L(p′′)

d̃(p)−1)dR(p′) are prefix dependent. Therefore, there are two cases: vw is a prefix of
(d′

L(p′′)d̃(p)−1)dR(p′) and (d′
L(p′′)d̃(p)−1)dR(p′) is a strict prefix of vw; in each of

these cases we will build a reduction for D(p′), producing a contradiction.
(b.1) vw ≤p (d′

L(p′′)d̃(p)−1)dR(p′). We start by building a d.i. of w′′. Note that

w′′a(p′) ≤p wv′d̃(p′′). (24)

Indeed, since D(p′) ∈ D′(p) and (d′
L(p′′)d̃(p)−1)d̃(p) = d′

L(p′′) = vwv′d̃(p′′), we
have dR(p′)a(p′) ≤p d̃(p) = (d′

L(p′′)d̃(p)−1)−1vwv′d̃(p′′), which implies (24). Now,
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since w ∈ W , v′ ∈ W∗ and d̃(p′) <p uR , the word wv′d̃(p′) has an interpretation
of the form J = w, v′, d̃(p′), a. Moreover, using (b.1), we can get |w′′| = |dR(p′)| +
|d′

L(p′′)d̃(p)−1| − |v| ≥ |w|. Hence, by (24), Lemma 3.2 can be applied with J
to obtain an interpretation of w′′ having the form I ′ = w, r , r ′, a(p′). We need
another interpretation of w′′. Note that in the middle step of (23) we showed that
(d′

L(p′′)d̃(p)−1)−1v <p d̃(p′). In particular, the word ((d′
L(p′′)d̃(p)−1)−1v)−1d̃(p′) is

non-empty and is a suffix of u′
L ∈ W . Then

I := ((d′
L(p′′)d̃(p)−1)−1v)−1d̃(p′), d′

M(p′), d′
R(p′), a′(p′))

is an interpretation of w′′ (here, we used that d̃(p′)d′
M(p′)d′

R(p′) = dR(p′)). We set D =
(I , I ′). Since a(p′) �= a′(p′), D is a d.i. of w′′.

Now, we can conclude the proof of this case. From (19), we have |v| ≥ |(d′
L(p′′)d̃(p)−1)

d̃(p′)| − |w|, which implies that |((d′
L(p′′)d̃(p)−1)−1v)−1d̃(p′)| ≤ |w| ≤ |wr|. This and

that w ∈ W allow us to use Lemma 3.5 to obtain a simple d.i. E of a word e such that
e ≤s w′′. Since w′′ <s dR(p′) <s d(p′), we have that D(p′) reduces to E. This is the
desired contradiction.

(b.2) (d′
L(p′′)d̃(p)−1)dR(p′) <p vw. We are going to build a simple d.i. D = (I ; I ′)

of dR(p′) <s d(p′), proving, thereby, that D(p′) has a reduction.
Let I ′ = d̃(p′), d′

M(p′), d′
R(p′), a′(p′). It is clear that I ′ is an interpretation of dR(p′)

since d̃(p′) ≤s u′
L, d′

M(p′) ∈ W∗, d′
R(p′)a′(p′) ≤p u′

R and |d̃(p′)| > |d̃(p′′)| ≥ 0. To
define I, observe that in the proof of (22), we showed that (d′

L(p′′)d̃(p)−1)−1v exists and
is not the empty word. But, moreover, from v ∈ dL(p′′)W∗, we see that we can write
(d′

L(p′′)d̃(p)−1)−1v = rr ′ in such a way that r is a non-empty suffix of some word in
W and r ′ ∈ W∗. Since, by definition, dR(p′) = rr ′w′′, to prove that I := r , r ′, w′′, a(p′)
is an interpretation of dR(p′), it is enough to show that w′′a(p′) ≤p w. From (b.2), we
get rr ′w′′ = dR(p′) <p rr ′w, so w′′a′ ≤p w for some a′ ∈ A. Then, using that vw ≤p

vwv′d̃(p′′) = d′
L(p′′), we obtain

dR(p′)a′ ≤p rr ′w = (d′
L(p′′)d̃(p)−1)−1vw

≤p (d′
L(p′′)d̃(p)−1)−1d′

L(p′′) = d̃(p) ≤p uR .

Since we also have dR(p′)a(p′) ≤p uR , we deduce that a′ = a(py). Hence, w′′a(p′) ≤p

w and I is an interpretation of dR(p′). Because a(p′) �= a′(p′), we conclude that D :=
(I ; I ′) is a d.i. of dR(p′).

Finally, we prove that D is simple. Using the middle step in (23), we get rr ′ =
(d′

L(p′′)−1d̃(p))−1v <p d̃(p′). This implies that d′
M(p′)d′

R(p′) = d̃(p′)−1dR(p′) ≤s

(rr ′)−1dR(p′) = w′′, which is the first condition in Definition 3.3. Since w′′a(p′) ≤p w

and, by (21), |d̃(p′)| ≥ |w|, the second condition also holds. Hence, D is simple and D(p′)
reduces to it.

We remark that in the last paragraph it was the first time that in a proof we built a
reduction to a simple d.i. satisfying the second condition of (2) in Definition 3.3.
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5.1. Proof of Proposition 3.10.

PROPOSITION 3.10. Any irreducible subset of DU has at most 61(#W) elements.

Proof. Let D′ be an irreducible subset of DU . Recall that, with the notation intro-
duced above, D(1) < · · · < D(s) are the elements of D′ deployed in increasing order,
D′(s + 1) = D′ and D′(j) = {D ∈ D′ : dRaD ≤p d̃(j)} = {D ∈ D′ : |dR| < |d̃(j)|} for
j ∈ {1, . . . , s}.

We define recursively a finite decreasing sequence (pi)
t+1
i=0. We start with p0 = s + 1.

Then, for i ≥ 0: a) if #D′(pi) ≤ 1, we put pi+1 = 1 and the procedure stops; b)
if #D′(pi) > 1, we set D(pi+1) = max D′(pi). Observe that D′(pi+1) � D′(pi). Let
t ≥ 0 be the first integer for which #D′(pt ) ≤ 1, so that D′(pt+1) = D′(1) = ∅. This
construction gives

D′ =
t⋃

i=0

D′(pi)\D′(pi+1).

From Lemma 5.3, we get that #D′ ≤ 6t + 1. To complete the proof, we are going to show
that t ≤ 8#W + 2.

We proceed by contradiction, so we suppose that t > 8#W + 2. This will imply that D′
is reducible, which contradicts our hypothesis.

Let 1 ≤ i ≤ t − 1. Since pi �= s + 1 and #D′(pi) > 1, we can define D(p′′
i ) =

max D′(pi) \ {D(pi+1)} and use Lemma 5.4 with D′(pi) to obtain suffix-dependent
words wi ∈ W and w′

i ∈ A∗ such that

(i) |wi | > |d̃(pi+1)|, (ii) |w′
i | ≥ |d̃(s)| − |d̃(pi)|, (iii) w′

i ≤p d̃(s)d̃(p′′
i )−1. (25)

Then, by the pigeonhole principle, we can find 1 ≤ i5 < · · · < i1 ≤ t − 1 such that

(a) w := wi1 = · · · = wi5 and (b) ik+1 + 2 ≤ ik for any k ∈ {1, . . . , 4}.
Using (a) and (b), we are going to obtain relations (26) and (27) below.

First, we use (b) to prove that

d̃(s)d̃(pik+1)
−1 <p w′

ik+1
≤p d̃(s)d̃(pik )

−1 <p w′
ik

for any k ∈ {1, . . . , 4}. (26)

Let k ∈ {1, . . . , 4}. By (b), we have ik+1 ≤ ik+1 + 1 < ik+1 + 2 ≤ t − 1. Thus,
D(pik+1+2) < D(pik+1+1) and D(pik+1+1), D(pik+1+2) ∈ D′(pik+1), which implies that
p′′

ik+1
≥ pik+1+2 by the definition of p′′

ik+1
. Because pik+1+2 ≥ pik , by (b), we obtain

p′′
ik+1

≥ pik . This and (25)(iii) imply that w′
ik+1

≤p d̃(s)d̃(p′′
ik+1

)−1 ≤p d̃(s)d̃(pik )
−1. This

proves the middle inequality of (26). Let k ∈ {1, . . . , 5}. Since w′
ik

≤p d̃(s)d̃(p′′
ik
)−1 ≤p

d̃(s) by (25)(iii) and d̃(s)d̃(pik )
−1 ≤p d̃(s), we have that w′

ik
and d̃(s)d̃(pik )

−1 are prefix

dependent. Moreover, |w′
ik
| > |d̃(s)d̃(pik )

−1| by (25)(ii), so d̃(s)d̃(pik )
−1 <p w′

ik
. This

proves the first and last inequalities of (26), completing the proof.
Thanks to (26), the word (d̃(s)d̃(pik )

−1)−1w′
ik′ exists for any 1 ≤ k′ ≤ k ≤ 5. We will

use this fact freely throughout the proof.
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Next, we want to obtain from (a) that

(d̃(s)d̃(pi4)
−1)−1w′

ik
≤s w for k ∈ {1, . . . , 4}. (27)

By (a) and (25)(i), we have |d̃(pi4)| ≤ |d̃(pi5+1)| ≤ |w|. This and (iii) imply that

|(d̃(s)d̃(pi4)
−1)−1w′

ik
| ≤ |d̃(s)d̃(p′′

ik
)−1| − |d̃(s)d̃(pi4)

−1| ≤ |d̃(pi4)| ≤ |w|.
But, because w and (d̃(s)d̃(pi4)

−1)−1w′
ik

are suffix dependent since w and w′
ik

have the

same property and (d̃(s)d̃(pi4)
−1)−1w′

ik
≤s w′

ik
, we obtain that (d̃(s)d̃(pi4)

−1)−1w′
ik

≤s

w, as desired.
Now we use relations (26) and (27) to obtain restrictions on the smallest period of

v := (d̃(s)d̃(pi4)
−1)−1w′

i1
. More precisely, we claim that if q ∈ A+ is the shortest word

satisfying v ≤p q∞, then |q| divides |d̃(pi4)| − |d̃(pik )| for k ∈ {2, 3}.
Fix k ∈ {2, 3}. First, observe that v ≤s w and v((w′

i2
)−1w′

i1
)−1 = (d̃(s)d̃(pi4)

−1)−1

w′
i2

≤s w by (27). Because (w′
i2
)−1w′

i1
�= 1 by (25), we deduce that v ≤s

∞((w′
i2
)−1w′

i1
).

This implies that |q| ≤ |(w′
i2
)−1w′

i1
|. Thus,

|q| + |d̃(pi4)d̃(pik )
−1| ≤ |(w′

i2
)−1w′

i1
| + |d̃(pi4)d̃(pik )

−1|
= |v| + |(d̃(s)d̃(pik )

−1)−1w′
i2
| ≤ |v|, (28)

where (d̃(s)d̃(pik )
−1)−1w′

i2
exists because k ≥ 2.

Second, since w′
i1

≤p d̃(s) by (25)(iii), we have that v = (d̃(s)d̃(pi4)
−1)−1w′

i1
≤p

d̃(pi4) ≤p uR and (d̃(s)d̃(pik )
−1)−1w′

i1
≤p d̃(pik ) ≤p uR . Therefore,

v ≤p uR and (d̃(pi4)d̃(pik )
−1)−1v = (d̃(s)d̃(pik )

−1)−1w′
i1

≤p uR .

This and the fact that, by (25), (d̃(pi4)d̃(pik )
−1) �= 1 imply that v ≤p (d̃(pi4)d̃(pik )

−1)∞.
Hence,

|d̃(pi4)d̃(pik )
−1| is a period of v. (29)

Then, from (28) and (29), we can use Lemma 5.2 with v to deduce that |q| divides
|d̃(pi4)d̃(pik )

−1|, proving the claim.
Let now q̃ ∈ A+ be the shortest word such that d̃(pi4) ≤p q̃∞. From the last

claim, we have for k ∈ {2, 3} that d̃(pi4)d̃(pik )
−1 = qnk for some nk ≥ 1. Then,

since |d̃(pi4)d̃(pik )
−1| is a period of d̃(pi4) as pik < pi4 , we obtain d̃(pi4) ≤p

(d̃(pi4)d̃(pik )
−1)∞ = q∞ and q̃ ≤p q. Since v ≤p d̃(pi4) ≤p q̃∞, we also have q ≤p q̃.

Therefore, q̃ = q.
Now we can finish the proof of the proposition. Since d̃(pi4) ≤p q∞, there are n ≥ 0

and r <p q such that d̃(pi4) = qnr . Then, for k ∈ {2, 3}, we have d̃(pik ) = q−nk d̃(pi4) =
qn−nk r . Because pi2 , pi3 ∈ D′(pi4), we get

d̃′
M(pik )d̃

′
R(pik )a(pik )=d̃(pik )

−1d̃R(pik )a(pik )≤p d̃(pik )
−1d̃(pi4) = r−1qnk ≤p r−1q∞.

Thus, condition (i) of Lemma 5.1 holds, which implies that {D(pi2), D(pi3)} is reducible,
contradicting our hypothesis.
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