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Summary

Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are cytokines that are involved in
the development, proliferation and apoptosis of ovarian follicular cells in domestic mammals.
The expression of these cytokines in various follicular compartments, depending on the stage of
follicle development, demonstrates their involvement in the control of primordial follicle
growth up to the preovulatory stage. The mechanism of action of these factors depends on
the presence of their receptors that transduce their biological actions. This review shows the
expression sites of TNF-α, IL-1β and their receptors in ovarian follicles, and discusses the
mechanism of action of these cytokines during follicle development, oocyte maturation and
ovulation in domestic animals.

Introduction

Ovarian follicular development involves a complex series of coordinated events, including
primordial follicle activation, growth of primary and secondary follicles, formation of antrum
cavity, oocyte maturation, steroidogenesis and ovulation (Van Den Hurk and Zhao, 2005; Silva
et al., 2009, 2016; Figueiredo et al., 2018). During these growth and differentiation processes,
paracrine factors mediate the communication among oocyte, granulosa and theca cells (Hsueh
et al., 2015). Cytokines, such as tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)
are involved in controlling follicular development and ovulation. Their functions include
regulation of cellular proliferation/differentiation, follicular survival/atresia, and oocyte
maturation (Field et al., 2014).

TNF-α is a cytokine that was originally recognized for its action in inflammatory processes
(Terranova and Rice, 1997). This factor acts by binding to one of its two receptors, namely a type I
receptor (TNFR1), which is approximately 60 kDa and a type II receptor (TNFR2). Moreover,
TNF-α is involved in the regulation of physiological processes such as follicular development,
steroidogenesis, ovulation and corpus luteum function (Sakumoto and Okuda, 2004; Glister
et al., 2014; Samir et al., 2017). It has also been reported that, depending on the stage of develop-
ment, TNF-α may regulate differentiation of granulosa cells (Glister et al., 2014) and apoptosis
(Manabe et al., 2008).

IL-1β is another important pro-inflammatory cytokine that can stimulate T-cell proliferation
and increase antibody production (Kool et al., 2012). IL-1β synthesis occurs primarily in macro-
phages and monocytes when stimulated, but may be synthesized to a lesser extent in other cell
types such as lymphocytes, neutrophils, fibroblasts, and endothelial cells (Gabay et al., 2010).
Passos et al. (2016) also reported that IL-1β and its receptors are expressed in bovine ovarian
follicles at various stages of development. The IL-1 system has two receptor types, i.e. a type I
receptor (IL-1RI) with a 213 amino acid domain in the intracytoplasmic region and a type II
receptor (IL-1RII) with only a domain of 29 residues (Adashi, 1998). IL-1RII and IL-1R antag-
onist (IL-1Ra) are natural inhibitors that prevent excessive inflammatory responses caused by
the IL-1 system (Gabay et al., 2010). It has been demonstrated that IL-1β acts in the control of
follicle development by facilitating granulosa cells proliferation and preventing premature
differentiation (Brännström, 2004). This factor also influences apoptosis in ovarian granulosa
cells (Chun et al., 1995) and appears to be involved in a number of ovulation-associated events
such as protease synthesis, regulation of plasminogen activator activity, and prostaglandin
production (Brännström, 2004). Considering that TNF-α and IL-1β are produced locally in
the ovary and, once secreted, diffuse to act in a paracrine/autocrine manner to regulate ovarian
function, it is very important to discuss recent findings about these cytokines to better under-
stand their role in ovarian folliculogenesis in domestic animals.

The review aims to show the expression sites of TNF-α and IL-1β system members in the
ovary and to discuss their roles and mechanisms of action during follicle development, oocyte
maturation and ovulation in domestic animal species.
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Expression of TNF-α systems in ovarian follicles and its
mechanism of action

The non-inflammatory effects to which TNF-α is related include
control of follicular development (Samir et al., 2017), ovulation,
and, depending on its mechanism of action, it may further regulate
differentiation (Glister et al., 2014) or apoptosis (Manabe et al.,
2008). In bovine ovaries, Silva et al. (2017b) showed that TNF-α
system proteins (TNF-α/TNFR1/TNFR2) are expressed in various
follicular compartments. These authors reported the presence of
TNF-α and TNFR1 in primary follicle oocytes, as well as in oocyte,
granulosa and theca cells of secondary and antral follicles. TNFR2
proteins are expressed in oocytes of primordial, primary and
secondary follicles, as well as in granulosa and theca cells of secon-
dary and antral follicles. TNF-α receptor expression was demon-
strated in granulosa cells from small (1–5 mm) and large (> 8
mm) bovine antral follicles (Spicer, 2001). In addition, mRNA
and/or protein for TNF-α are also localized in different follicular
compartments of sheep preovulatory follicles (Johnson et al.,
1999). Human oocytes and cumulus cells from large antral follicles
express both mRNA and protein for TNF-α and its TNFR2 recep-
tor (Naz et al., 1997). In pig antral follicles, intense signals for TNF-
α and its mRNAs were demonstrated in granulosa cells
(Nakayama, 2003). In rat ovaries, TNF-α localization sites include
oocytes (Marcinkiewicz et al., 1994), granulosa cells (Roby and
Terranova, 1989), corpora lutea and macrophages (Sancho-Tello
et al., 1993). In rabbits, TNF-α production and accumulation were
reported in the corpus luteum of pseudopregnant and pregnant
animals. These data highlight an autocrine and paracrine effect

of TNF-α during follicular development. Figure 1 summarizes
the sites of expression of TNF-α system in ovarian follicles.

TNF-α acts by binding to one of its two receptors, i.e. TNFR1
or TNFR2. These receptors are transmembrane proteins with
cytoplasmic domains that initiate signal transduction after
TNF-α binding (Fig. 2). After activation of TNFR1, signalling
begins with the recruitment of various adapter proteins to form
complex I, consisting of TNFR1-associated DEATH domain
protein (TRADD), TNF-associated factor 2 (TRAF2), and the
interacting receptor with protein 1 (RIP1). Then, complex II is
formed by association of complex I plus Fas-associated death
domain (FADD) and pro-caspase 8/10, which are responsible
for apoptosis (Micheau and Tschopp, 2003; Wullaert et al.,
2007). However, the TRADD protein that interacts with the intra-
cellular domain of TNFR1 can be suppressed by the crmA gene
(Hsu et al., 1995). In addition, TNFR1 receptor may also activate
transcription factor nuclear factor-kappaB (NF-κB) and promote
cell survival by permanence of the caspase-8 inhibitor (FLIP)
(Micheau and Tschopp, 2003). The p65 (RelA), RelB, c-Rel,
p50/p105 and p52/p100 members of the NF-κB family appear in
cells as homodimers or heterodimers linked to IκB proteins
(Hayden and Ghosh, 2004). NF-κB factor, when not stimulated,
is bound to IκB (one of the NF-κB inhibitory proteins), as
phosphorylation and degradation of IκB are required to promote
translocation of NF-κB (p65 and p50) to the nucleus (Baeuerle and
Baltimore, 1996). After IκB kinase (IKK) stimulation, IKKα and
IKKβ promote the classical pathway of NF-κB translocation to
the nucleus (Rauert et al., 2010). The classical pathway can be
activated by both TNFR1 and TNFR2. The NF-κB modifier

Figure 1. Expression of proteins of IL-1β, TNF-α and their receptors in bovine ovarian follicles.
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(NEMO) signals activate the IκB kinase complex beta subunit
(IKKβ), which then phosphorylates the IκB protein into two
N-terminal serine residues. This complex is recognized by
ubiquitin ligase, leading to its activation. polyubiquitination and
subsequent degradation by proteasomes (Fig. 2) (Hayden and
Ghosh, 2004).

The alternative NF-κB pathway through phosphorylation of the
IKKα complex (composed of p100 and RelB) is independent of
NEMO stimulation (Sun and Ley, 2008). First, TNFR2 signals
through TRAF2 that binds to TNF-associated factor 1 (TRAF1),
TNF-associated factor 3 (TRAF3) and apoptosis inhibitor protein
(cIAP) (ROTHE et al., 1995). This complex activates the inducing
kinase NF-κB (NIK), responsible for phosphorylation and activa-
tion of the IKKα homodimer (Senftleben et al., 2001). Then, two
IKKα C-terminals are phosphorylated for proteosomal degrada-
tion, generating p52 that is translocated to the nucleus (Fig. 2)
(Rauert et al., 2010). Studies suggest that the classical and alterna-
tive pathways of NF-κB have distinct regulatory functions (Bonizzi
and Karin, 2004).

Expression of IL system in ovarian follicles and its
mechanisms of action

In bovine species, Passos et al. (2016) showed that IL-1β protein
is expressed in oocytes and granulosa cells of primordial follicles,
as well as in oocyte, granulosa and theca cells from primary,
secondary and antral follicles. These authors showed that the pro-
tein for IL-1RA is found in granulosa cells of primary follicles and
in oocyte and granulosa cells of secondary and antral follicles.
Oocytes and granulosa cells from primordial and primary follicles
express IL-1RI, while this protein is found in oocyte, granulosa
and theca cells from secondary and small antral follicles. For
IL-1RII, the protein is observed in oocytes and granulosa cells of

all follicular categories. Figure 1 summarizes the sites of expression
of IL-1β system in ovarian follicles.

IL-1β was previously demonstrated in oocytes, granulosa, theca
and cumulus cells in ovaries of human (Zolti et al., 1991; Barak
et al., 1992; De Los Santos et al., 1998; Carlberg et al., 2000), mouse
(Simón et al., 1994; Terranova and Rice, 1997), rat (Brännström
et al., 1994) and mare (Martoriati et al., 2002). IL-1α protein
was previously detected in mouse (Simón et al., 1994; Terranova
and Rice, 1997) and human (De Los Santos et al., 1998) oocytes,
theca and cumulus cells (Kol et al., 1999), showing that ovarian
cells synthesize IL-1α. Moreover, IL-1β was found to be produced
by ovarian granulosa cells of preovulatory follicles (Salamonsen
et al., 2007; Trundley and Moffett, 2004). The presence of
IL-1RA was demonstrated in granulosa and cumulus cells of mares
(Martoriati et al., 2002) and human (De Los Santos et al., 1998).
The presence of IL-1RI protein was previously demonstrated in
oocytes, granulosa, theca and cumulus cells in ovarian tissues of
mouse (Simón et al., 1994), rat (Kol et al., 1999; Wang et al.,
1997), human (De Los Santos et al., 1998; Wang et al., 1997)
and mares (Martoriati et al., 2002). In mouse, the expression of
IL-1RI varies with follicular development (Terranova and Rice,
1997). In human, it has been demonstrated that mRNA for
IL-1RI is absent in primordial follicles, but present in granulosa
and theca cells from growing secondary and antral follicles
(Wang et al., 1997).

In bovine follicles, Passos et al. (2016) reported that the growth
from secondary to small antral follicles is followed by an increase in
the levels of mRNA for IL-1α, IL-1β and IL-1RA (Fig. 1). In equine
species, Martoriati et al. (2002) reported the presence of IL-1β and
IL-1RI transcripts in oocytes of antral follicles, while transcripts for
IL-1β, IL-1RA, IL-1RI and IL-1RII were found in cumulus cells.
Other studies have shown that the members of the IL-1 system
are located in various types of ovarian cells, i.e. in oocytes,

Figure 2. Mechanisms of action of TNF-α to promote cell signal transduction.
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granulosa and theca cells of several mammalian species (Sirotkin,
2011). The transcript for IL-1β is located in mural granulosa
cells, the most inner layers of the theca, and in the oocytes of
rat preantral and early antral follicles (Kol et al., 1999). IL-1RI
mRNA is also expressed in murine oocytes (Deyerle et al., 1992)
and abundant levels of IL-1RA mRNA are found in the granulosa
of rat primordial and growing follicles (Wang et al., 1997). Within
antral follicles, Passos et al. (2016) showed that the follicular wall is
the main site of production of mRNA for IL-1α, IL-1β, IL-1RA and
IL-1RI. With the growth from small to large antral follicles, a
reduction in expression of mRNA for IL-1α is observed but, in
general, large follicles had higher expression of IL-1β, IL-1RA
and IL-1RII. Other studies have shown that mare cumulus–oocyte
complexes (COCs) contain IL-1β mRNA (Martoriati et al., 2002),
and that the protein for IL-1β is secreted by cultured human
granulosa cells (Carlberg et al., 2000). Production of IL and their
receptors is also observed in both granulosa and theca cells, while
maximal production occurred in preovulatory follicles after
gonadotropin action (Ingman and Jones, 2008).

Regarding the IL mechanism of action (Fig. 3), there are
inhibitors, such as IL-1 receptor antagonist (IL-1Ra) and type II
receptor (IL-1RII) that regulates the responses to IL-1β (Dinarello,
2010). In humans, IL-1β binds to two receptor types, a type I
(IL-1RI) and a type II receptor (IL-1RII) (Adashi, 1998). IL-1RII
and IL-1R antagonist (IL-1Ra) are natural inhibitors that prevent
excessive inflammatory responses caused by the IL-1 system
(Gabay et al., 2010). Additionally, it was shown that IL-1RA blocks
IL-1βmechanisms (Martoriati et al., 2003a). The IL-1β receptor is
a complex formed by the type I receptor and an accessory receptor
protein (IL-1RAcP) that form an IL-1 heterodimer (Boraschi and

Tagliabue, 2013). Myeloid differentiation protein (MyD88) is an
molecule that acts as a transient adapter or regulator in the
IL-1R signalling complex (Muzio et al., 1997) and is capable of
recruiting interleukin receptor-associated kinase type 1 (IRAK1)
and type 2 (IRAK2) (Wesche et al., 1997). In addition, receptor-
associated factor 6 (TRAF6) is recruited by IL-1R and requires
MyD88 to activate NF-κB (Wu and Arron, 2003). The classical
NF-κB pathway occurs with the phosphorylation of two serine
residues (ser32 and ser36) of the IκB protein by IκB kinase activity
(IKK), the polyubiquitination of IKKβ and then degradation by the
26S proteosome, releasing NF-κB dimers (p65 and p50) (Nishikori,
2005; Karin and Ben-Neriah, 2000). IKKβ-dependent activation of
NF-κB plays an important role in the transcriptional control of
acute and chronic inflammation (Bonizzi and Karin, 2004).
However, studies show that IL-1-induced, but not TNF-α induced,
NEMO and IKKα are sufficient for NF-κB activation without
requiring the IKKβ dimer (Solt et al., 2007). Therefore, IL-1 can
induce both the classical pathway through IKKβ and IKKα through
NEMO (Solt et al., 2007; Bonizzi and Karin, 2004; Nishikori, 2005).
Following activation by the IKKα complex, there is the transfer of
p52 and RelB to the nucleus (Rauert et al., 2010) and the IKKβ
complex translocation of p65 and p50 (Baeuerle and
Baltimore, 1996).

Effects of TNF-α during folliculogenesis, oocyte
maturation and ovulation

Silva et al. (2017b) showed that that TNF-α increases the number
of apoptotic cells in cultured bovine ovarian tissue and reduces
primordial follicle survival. Other studies reported that TNF-α

Figure 3. Mechanisms of action of IL-1β to promote cell signal transduction. (a) IL-1β system heterodimer complex capable of promoting signal transduction (classical pathway
by NEMO stimulation). (b) Natural IL-1β antagonist (IL-1Ra) promoting blockade of signal transduction. (c) Type II receptor (IL-1RII) inhibiting signal transduction by the small
peptide chain that does not cross the membrane completely.
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induces oocyte, granulosa and luteal cell death (Chen et al., 1993;
Kaipia et al., 1996; Sasson et al., 2002; Abdo et al., 2003), as well as
apoptosis in granulosa cells of rat preovulatory follicles (Sasson
et al., 2002). In mice, Nilsson et al. (2006) demonstrated that
TNF-α can interact with P4 to regulate the growth of primordial
follicles. In bovine secondary follicles in vitro, Paulino et al.
(2018) showed that TNF-α promotes growth, antrum formation
and maintains the ultrastructure of secondary follicles in vitro.
These studies show that the effect of TNF-α on ovarian cells is
dependent on the stage of follicle development, which can be
associated with different levels of TNF-α receptor expression
(Witty et al., 1996). The ability of TNF-α to promote the increase
in follicular diameter could be because these follicles have receptors
(TNFR1 and TNFR2) for TNF-α in their oocyte and granulosa cells
(Silva et al., 2017b). Exogenous TNF-α added into culture medium
can bind to the TNFR2 and promote follicular growth, instead of
apoptosis. As reported by Wajant et al. (2003), TNFR2 can induce
gene transcription associated with cell survival, growth and differ-
entiation. Fischer et al. (2011) showed that protection from cell
death is dependent on TNFR2 activation of the PI3K–PKB/Akt
pathway. TNF-α has also been shown to activate NF-κB, which
in turn regulates the expression of proteins associated with cell
survival and cell proliferation (Aggarwal et al., 2004).

TNF-α can also modulate steroidogenesis by granulosa, thecal
and luteal cells (Chun and Hsueh, 1998), as some studies reported
that TNF-α inhibits secretion of estradiol and P4 in murine,
porcine, bovine and human granulosa cells in vitro (Spicer,
1998; Veldhuis et al., 1991; Rice et al., 1996). TNF-α also exerts
an inhibitory effect on luteinization of pig granulosa cells and
influences the balance between follicular growth (proliferation)
and atresia (apoptosis) (Prange-Kiel et al., 2001).

Regarding the effects of TNF-α on oocyte maturation, Ma et al.
(2010) showed that exposure of porcine oocytes to TNF-α causes a
reduction in oocytematuration and abnormalities in chromosomal
alignment. Conversely, in bovine species, this factor promotes in
vitro oocyte growth during 48 h of culture of COCs from antral
follicles and influenced the distribution of mitochondria in
pre-matured oocytes (Lima et al., 2018). TNF-α also reduces
CASP3 and CASP6 mRNA levels in bovine cumulus cells after
12 h of culture (Silva et al., 2017a). This fact suggests that, in bovine
oocyte and cumulus cells, TNF-α is mainly acting by binding to the
TNFR2, thereby reducing the apoptotic process. Silva et al.,
(2017a) also showed that TNF-α reduces HAS-2 mRNA levels in
cumulus cells after culturing bovine COCs for 12 h, but this reduc-
tion in expression did not interfere with cumulus expansion at the
end of maturation. Recently, Kong et al. (2018) showed that ageing
mouse cumulus cells secrete TNF-α, which accelerates oocyte
ageing by interacting with TNFR.

TNF-α is a mediator of ovulation in terms of oocyte release and
death induction via apoptosis and autophagy of granulosa cells in
ovarian tissue remodelling (Yamamoto et al., 2015). Crespo et al.
(2012) showed that luteinizing hormone (LH) induces ovulation
via TNF-α-dependent increases in prostaglandin F2α. TNF-α is
secreted by mammalian preovulatory follicles (Brännström et al.,
1994) and, in rats, its levels are increased by in vivo administration
of hCG (Rice et al., 1996). TNF-α enhances ovulation rates in rat
ovary (Brännström et al., 1994) and stimulates apoptosis
(Murdoch et al., 1997) and collagenolytic activity in preovulatory
follicles (Johnson et al., 1999).

Effects of IL-1 system members during folliculogenesis,
oocyte maturation and ovulation

Regarding folliculogenesis, Passos et al. (2016) demonstrated that
IL-1β promotes the development and activation of primordial
bovine follicles and contributes to maintain early follicle survival.
These findings suggest that IL-1β is a survival factor for bovine
ovarian follicles, its action being partially mediated via NO and
cGMP generation (Chun et al., 1995). Previous studies have
revealed that IL-1β controls the transition of follicular cells by
facilitating their proliferation and differentiation (Brännström,
2004). For bovine secondary follicles, Paulino et al. (2018) showed
that IL-1β does not influence their development in vitro. Probably,
IL-1β acts mainly in large antral follicles. IL-1β is capable of pro-
moting proliferation of bovine granulosa cells (Basini et al., 1998)
and suppressing apoptosis of rat ovarian follicles (Chun et al.,
1995), acting as a survival factor. Studies in murine (Karakji and
Tsang, 1995) and bovine (Baratta et al., 1996) species showed that
the effects of IL-1 on granulosa cell proliferation in vitro are depen-
dent on follicle size. IL-1β is also able to modulate steroidogenesis
and promote the proliferation of granulosa cells in porcine
(Fukuoka et al., 1989) and human (Best and Hill, 1995) species.
IL-1β promotes an increase in the production of cAMP, oestrogen,
and progesterone in mice granulosa cells that are essential for
growth and follicular development (Chun et al., 1995). In contrast,
Uri-Belapolsky et al. (2014) reported that IL-1β promotes apop-
totic pathways and causes age-related exhaustion of ovarian
reserves in mice.

In large antral follicles, intra-follicular injection of IL-1β in
dominant follicles induces oocyte maturation in vivo (Martoriati
et al., 2003b). Chaubey et al. (2018) showed that IL-1β improves
cumulus expansion and developmental ability of poor quality
buffalo oocytes. In bovine species, IL-1β also improved the per-
centage of oocytes developing to the blastocyst stage. Recently,
Javvaji et al. (2019) showed that IL-7 at low concentrations is
beneficial for oocyte maturation, through the favourable level of
intracellular reactive oxygen species and antioxidant mechanisms.
Other studies have indicated that IL-7 promotes survival and
multiplication of granulosa cells, germinal vesicle breakdown
and quality and nuclear maturation of oocytes in murine species
(Cakmak et al., 2016; Franciosi et al., 2016; Cheng et al., 2011).
Caillaud et al. (2005) showed that IL-1β alone is not able to
promote cytoplasmic maturation of equine oocyte, but it may play
an essential role in the physiology of equine oocytes by acting on
meiosis resumption. Additionally, there is an important inter-
dependence between IL-1α and follicle-stimulating hormone
receptor (FSHR), as IL-1 receptor inactivation increases FSHR
expression in rat granulosa cells (Uri-Belapolsky et al., 2017).
IL-1β reduces the expression of LH receptors in rat granulosa
cells in vitro (Gottschall et al., 1988) and promotes the switch in
granulosa cell proliferation to differentiation (Karakji and
Tsang, 1995), indicating that this cytokine participates in deter-
mining whether follicles undergo atresia or progress to ovulation.
IL-1β can also upregulate granulosa cell and intraovarian macro-
phage nitric oxide (NO) production, thereby influencing cellular
growth or apoptosis (Matsumi et al., 2000).

Both IL-1β and TNF-α are known to induce ovulation in
rats and rabbits (Machelon and Emilie, 1997). The acceleration
of ovulation has been reported to occur by neutrophil infiltration
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into the theca cells layer, which induces IL-1β synthesis and
promotes synergy to stimulate ovulation (Tanaka et al., 2017).
In mice and humans, IL-1β mRNA levels increase in granulosa
cells as the follicle nears rupture (Machelon et al., 1995; Adashi,
1998), emphasizing the role of IL-1β in ovulation. Furthermore,
IL-1β modulates total prostaglandin E (PGE) production by
granulosa cells, therefore providing a mechanism to determine
the site of follicle rupture (Hurwitz et al., 1991, 1992, 1995;
Duffy et al., 2019).

Final considerations

TNF-α and IL-1β systems are expressed in ovarian follicles of
different species and influence follicular development, oocyte
maturation and ovulation. TNF-α is related to cell growth and
differentiation and apoptosis, depending on which receptors it
binds. IL-1β is related to granulosa cell proliferation, acting on
the transition of follicular cells and facilitating the process of
differentiation and proliferation. Both TNF-α and IL-1β are also
involved in the nuclear and/or cytoplasmic oocyte maturation
process, as well as in mechanisms that determine follicle ovulation.
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