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In the quarter plane, five lattice path models with unit steps have resisted the otherwise

general approach featured in recent works by Fayolle, Kurkova and Raschel. Here we

consider these five models, called the singular models, and prove that the univariate

generating functions marking the number of walks of a given length are not D-finite.

Furthermore, we provide exact and asymptotic enumerative formulas for the number of

such walks, and describe an efficient algorithm for exact enumeration.
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1. Introduction

Lattice path models are classical objects, appearing very naturally in a variety of

probabilistic and combinatorial contexts. Recent work has shown how they can help

us better understand generating functions in a more general setting by addressing the

question of predicting when the generating function of a combinatorial class will satisfy

a ‘nice’ differential equation. Lattice path models restricted to the quarter plane have

proved to be very useful in this regard: they offer a family of generating functions

which are straightforward to manipulate, yet which possess some surprising structure.

This, in turn, has led to some useful innovations in enumeration, including applications

of boundary value methods [12, 9, 18], powerful and widely applicable variants of the
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kernel method [5, 6, 19], original computer algebra approaches [3, 16], and some novel

restatements of classic number theory results [4].

As has been remarked upon previously [8, 14], the property of being D-finite, that is,

of satisfying a linear differential equation with polynomial coefficients, is exceptional and

not expected of an arbitrary function. Indeed, in the case of combinatorial generating

functions, the property of being D-finite appears to correlate with rich structure in the

corresponding class – structure which we have yet to fully uncover. What can we learn

from lattice path models?

A key observation of Bousquet-Mélou and Mishna [6] was that lattice path models with

small steps restricted to the quarter plane appeared to be naturally partitioned according

to the nature of their generating functions: specifically, they observed that D-finiteness of a

model’s generating function appeared to be correlated to the finiteness of a group of plane

transformations derived from the set of allowable steps. Furthermore, in two dimensions

this property is further correlated with more combinatorial qualities of the step set: for

example, symmetry across an axis or rotational symmetry, but not x ↔ y symmetry. In

some cases the explanation is well understood, such as Theorem 1 in [7]. When the

drift (that is, the vector sum of the allowable directions) is zero, Fayolle and Raschel [10]

describe an arithmetic condition which begs a more combinatorial interpretation. Of the 79

non-isomorphic models, 23 are well studied with D-finite generating functions and 51 are

highly suspected to be non-D-finite: Kurkova and Raschel [18] proved that the trivariate

generating functions marking endpoints are not D-finite, by solving related boundary value

problems, and Bostan, Raschel and Salvy [4] proved the excursion (walks returning to the

origin) generating functions are not D-finite, via an argument on the asymptotics of the

coefficients. The remaining five models are called singular , and resist both these strategies

for different reasons. (For example, the excursion generating function is trivially 1 in these

cases.) Two of these models have been previously considered [19], and both (univariate)

generating functions were proved to be non-D-finite. We apply this strategy to the final

three models: it is an application of the iterated kernel method inspired by Bousquet-Mélou

and Petkovšek [7], and Janse van Rensburg, Prellberg and Rechnitzer [15].

Specifically, we prove that the three remaining cases are not D-finite by analysing

an explicit generating function; asymptotic analysis and rapid exact enumeration are

applications of this expression. In each case, we show that the number of singularities

is infinite and far enough away from the dominating pole that they do not affect the

first-order asymptotics. The (essentially technical) challenge, as was the case in [19], is

the justification that these singularities are true poles and are not somehow cancelled

by a quirk of the expression. This is significant because a D-finite function has a finite

number of singularities, and so such a demonstration is a proof of non-D-finiteness of

the generating function. We diverge from [19] slightly and use a parametrization with its

origins in the method of [12], as this yields a simpler process. In the course of our proofs

we revisit some older theorems on polynomials that a reader faced with a similar problem

may find useful. For a more general combinatorial discussion about why these models

have D-finite generating functions, we direct the reader to [19].

In summary, for each of the five singular models we take a unified approach to

proving formulas for asymptotic enumeration and determine an explicit expression for
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Table 1. The initial terms in the counting sequences for the number of walks of a

given length with steps from the given model, restricted to the quarter plane. The

OEIS tag refers to the corresponding entry in the On-Line Encyclopedia of Integer

Sequences [20].

Model The first ten terms in the counting sequence OEIS tag

A 1, 1, 3, 7, 21, 55, 165, 457, 1371, 3909, 11727 A151267

B 1, 2, 6, 20, 70, 254, 942, 3550, 13532, 52030, 201386 A151284

C 1, 3, 13, 59, 279, 1341, 6527, 31995, 157659, 779601, 3864985 A151321

D 1, 1, 2, 4, 10, 23, 61, 153, 418, 1100, 3064 A151256

E 1, 2, 7, 24, 91, 339, 1316, 5064, 19876, 77655, 306653 A151294

the generating function, information which cannot be determined using other known

methods. In addition, we prove that the (univariate) counting generating function is not

D-finite for the five models.

1.1. The family of singular models

A lattice path model is defined by a set of vectors: the allowable directions in which one

can move along the sublattice N
2 of Z

2. We are initially interested in models which permit

only ‘small’ steps, that is, the steps are contained in {0,+1,−1}2. We use the notation

NW ≡ (−1, 1), N ≡ (0, 1), NE ≡ (1, 1), etc. The family of singular models consists of the

following five models:

A = = {NW,NE,SE}, B = = {NW,N,E,SE}, C = = {NW,N,NE,E,SE},

D = = {NW,N,SE}, E = = {NW,N,NE,SE}.

Models A and D are the two models considered by Mishna and Rechnitzer, and their

strategy, known as the iterated kernel method, extends to all of these models. Note that

the present work corrects an analytical error found in [19], which does not substantially

change the stated results.

For each model S ∈ {A,B, C,D, E} we address the following.

(1) What is the number Sn of walks of length n beginning at the origin and staying in

N
2?

(2) How does Sn grow asymptotically when n is large?

(3) Is the generating function S(t) =
∑

n Snt
n D-finite?

The approach is to give an explicit expression for the generating function via the iterated

kernel method, which entails describing a functional equation for a multivariate generating

function, isolating its kernel. We generate a telescoping sum using a prescribed sequence

of pairs which annihilate the kernel. The derived expression is useful to deduce asymptotic

information and to demonstrate the source of an infinite collection of singularities.

The next section describes how to obtain generating function expressions. This is

followed by the asymptotic analysis and non-D-finiteness proofs for the symmetric models,

and we conclude with a summary of the analysis of the asymmetric models.
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2. An explicit expression for the generating function

2.1. The functional equation and its kernel

Our central mathematical object is the multivariate generating function

Sx,y(t) =
∑
i,j,n

sij(n)x
iyjtn,

where sij(n) counts the number of walks of length n with steps from S which begin at the

origin, end at the point (i, j), and stay in N
2. (Throughout, S is our generic step set.) Our

goal is to determine properties of S(t) ≡ S1,1(t), the generating function for the number of

walks in the quarter plane.

To each of the five step sets, we associate a polynomial called the kernel ; for the step

set S , define

KS (x, y) = xy − txy
∑

(i,j)∈S
xiyj .

As we restrict ourselves to small steps, the inventory of the steps has the form∑
(i,j)∈S

xiyj = xP1(y) + P0(y) +
1

x
P−1(y) = yQ1(x) + Q0(x) +

1

y
Q−1(x). (2.1)

Thus, KS (x, y) can be regarded as a quadratic in y (resp. x) whose coefficients contain t,

x and the Qi(x) (resp. t, y, and Pi(y)):

KS (x, y) = −xtQ1(x) y2 +
(
x − txQ0(x)

)
y − xtQ−1(x). (2.2)

When the model is clear, we omit the subscript S . One common property of the singular

models is that they contain the steps NW and SE, and at least one other step, which

prevents degeneracy in the quadratic.

Each model admits a functional equation for Sx,y(t). We apply the common decompos-

ition that a walk is either the empty walk, or a shorter walk followed by a single step.

Taking into account the restrictions on walk location, as well as the fact that substituting

x = 0 (resp. y = 0) into the function Sx,y(t) gives the generating function of walks ending

on the y-axis (resp. x-axis), we obtain, as many others have before us, the functional

equation

K(x, y)Sx,y(t) = xy + K(x, 0)Sx,0(t) + K(0, y)S0,y(t). (2.3)

We are interested in the solutions to the kernel equation of the form

K(x, Y+(x; t)) = K(x, Y−(x; t)) = K(X+(y; t), y) = K(X−(y; t), y) = 0, (2.4)

and these algebraic functions are easily determined since the kernel is a quadratic:

Y±(x; t) =
(1 − tQ0(x)) ∓

√(
Q0(x)2 − 4Q1(x)Q−1(x)

)
t2 − 2Q0(x)t + 1

2tQ1(x)
, (2.5)

X±(y; t) =
(1 − tP0(y)) ∓

√(
P0(y)2 − 4P1(y)P−1(y)

)
t2 − 2P0(y)t + 1

2tP1(y)
. (2.6)
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There are other function pairs which annihilate the kernel, as we shall see. Note that

the boundary value method begins as we have, with the functional equation (2.3), but

ultimately uses a different parametrization for the roots of the kernel, and from there a

very different means to get access to the generating function.

The generating function has a natural expression in terms of iterated compositions of

the Y and X, hence the name iterated kernel method.

2.2. Summary: the symmetric models

We define the sequence of functions Yi by the recurrence Yn+1(x) = Yn(Y+(x; t)) with base

case Y0(x) = x. Note that Y1 ≡ Y+. In Section 3 we show that if S is a model symmetric

about the line x = y, i.e., S ∈ {A,B, C}, then one has the explicit form

S(t) =
1

1 − |S|t

(
1 − 2

∞∑
n=0

(−1)nYn(1)Yn+1(1)

)
. (2.7)

Theorem 3.1 gives the first-order asymptotics of the symmetric models, extracted from

this expression. Table 4 provides polynomial equations that are satisfied by the remaining

poles.

Section 3.3 outlines the proof that these models are not D-finite. For each model we

provide an infinite family of poles, which is sufficient because D-finite series have at

most a finite number of poles. We prove that an infinite collection of Yn(1) contribute

singularities; the main difficulty lies in ensuring that the singularities in the terms are

genuinely singularities of the sum.

2.3. Summary: the asymmetric models

The remaining two models are treated similarly, but require a bit more work. Here we

require two function sequences:

χn(x) = X+(Y+(χn−1(x))), χ0(x) = x,

Υn(y) = Y+(X+(Υn−1(x))), Υ0(y) = y.

We show in Section 4 that the generating function for the asymmetric walks is

S(t) =
1

1 − |S|t

(
1 − t

∑
n�0

χn(1) ·
(
Y+(χn(1)) − Y+(χn−1(1))

)
− t

∑
n�0

X+(Υn(1)) ·
(
Υn(1) − Υn+1(1)

))
. (2.8)

Of course, this expression is also valid for the symmetric models. In this case X+ = Y+,

and expression (2.8) reduces to equation (2.7).

The asymptotics are considered in Section 4.2, and D-finiteness results are considered

in Section 4.3.
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2.4. What makes this family special?

Consider the lowest-order terms of the roots of the kernel as a power series in t. They are

Y+ = P−1(x)t + O(t2) and Y− =
1

tP1(x)
− P0(x)

P1(x)
+ O(t),

where

Pr(x) =
∑

(i,r)∈S
xi.

Of the 56 (conjectured) non-D-finite models only five models, precisely the singular family

we are studying, have a lowest-order term with a positive power in x and t, implying

that the infinite sum obtained by the iterated kernel method converges. This prevents the

method from being applied to a broader range of models in this context.

2.5. Fast enumeration

The focus of the present work is to prove that the generating functions of singular models

are not D-finite. Nonetheless, we should not lose sight of the fact that our generating

function expressions are also useful for enumeration.

In fact, we can use the series expression to generate the first N terms of S1,0(t) and S1,1(t)

for each model with Õ(N3) bit-complexity (where the notation Õ(·) suppresses logarithmic

factors), which is an order of magnitude faster than the Õ(N4) bit-complexity of the naive

generation algorithm. The key fact which gives this speed-up is that we can form a linear

recurrence for 1/Yn (see Table 3). To be more specific, we define Zn := 1/(Yn/t
n) and

(a) generate Z0 and Z1 to precision 2N;

(b) use the recurrences in Table 3 to form a linear recurrence for Zn;

(c) exploit this recurrence to generate Z2, . . . , Z�N/2	 to precision 2N using only shifts and

additions;

(d) recover Yn = tn/Zn mod tN for n = 1, . . . , �N/2	.
The series expressions then allows us to generate the first N terms of the generating

function. The cost of generating these terms is dominated by the inversion of the Zn,

which have summands whose bit-size grows linearly.

Although the generating functions are not D-finite, and hence the coefficients do not

satisfy a fixed length linear recurrence with polynomial coefficients, we are able to generate

the terms in a more efficient manner. In order to generate a large number of terms, one

may wish to use modular methods in order to prevent a memory overflow.

3. Symmetric models: A, B, C

3.1. An explicit generating function expression

We focus first on the three models A, B and C, as these models are symmetric about the

line x = y. As such, these models benefit from the relation Sx,0 = S0,x, and equation (2.3)

can be rewritten as

K(x, y)Sx,y(t) = xy + K(0, y)S0,y(t) + K(0, x)S0,x(t). (3.1)
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Our iterates satisfy Yn+1(x) = Y+(Yn(x)), Y0(x) = x, and hence we see

K(Yn, Yn+1) = K(Yn(x), Y+(Yn(x))) = 0

for all n by substituting x = Yn(x) into the kernel relation K(x, Y+(x)) = 0. Thus, when

we make this substitution into equation (3.1) we find for each n

0 = Yn(x)Yn+1(x) + K(0, Yn+1(x))S0,Yn+1(x)(t) + K(0, Yn(x))S0,Yn(x)(t).

We can determine an expression for K(0, x)S0,x(t) by taking an alternating sum of these

equations, since all of the K(0, Yn(x))S0,Yn(x)(t) terms are cancelled for n > 0 in a telescoping

sum:

0 =

∞∑
n=0

(−1)n
(
Yn(x)Yn+1(x) + K(0, Yn+1(x))S0,Yn+1(x)(t) + K(0, Yn)S0,Yn(x)(t)

)

= K(0, x)S0,x(t) +

∞∑
n=0

(−1)nYn(x)Yn+1(x).

We rearrange this and evaluate at x = 1 to express the counting generating function for

walks returning to the axis,

S0,1(t) =
1

t

∞∑
n=0

(−1)nYn(1)Yn+1(1), (3.2)

as K(0, 1) = −t for each case considered here. This converges as a power series because

in each of these cases Yn(x) = O(tn).

Furthermore, substituting x = 1 and y = 1 into equation (3.1) gives the full counting

generating function

S(t) =
1 − 2tS0,1(t)

1 − t|S| =
1

1 − t|S |

(
1 − 2

∑
n

(−1)nYn(1)Yn+1(1)

)
. (3.3)

We address the robustness of this expression as a complex function in Theorem 3.3, after

we determine an explicit expression for Yn(1) as a rational function of Y1(1).

3.2. Asymptotic enumeration

Next we show that the sum
∑

n(−1)nYn(1)Yn+1(1) is convergent at t = 1/|S|, and that its

radius of convergence is bounded below by

t =
1

p0 + 2
√
p1p−1

,

where

pi = Pi(1) = |{(i, r) : −1 � r � 1, (i, r) ∈ S}|.

In our three symmetric models, the singularity of S(t) at 1/|S| is thus dominant.
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Theorem 3.1. For each model S in {A,B, C}, the number of walks Sn = [tn]S(t) grows

asymptotically like

Sn ∼ κS

(
1

|S|

)n

+ O
((
p0 + 2

√
p1p−1

)n)
, (3.4)

where each κS is a constant which can be calculated to arbitrary precision using

equation (3.2).

Proof. We proceed by basic singularity analysis [13], aided by estimates from the related

models restricted to the upper half plane. As

S(t) =

(
1

1 − |S|t

)
(1 − 2tS0,1(t)),

we show that S(t) admits a simple pole at |S|−1, and that this is the dominant singularity.

The asymptotic expression in equation (3.4) is then a consequence of evaluating the

residue at this value, and bounding the dominant singularity of S0,1(t).

To accomplish this, we first consider the class of walks with steps from S which remain

in the upper half plane, and return to the x-axis. This is a well-studied class, and the

methods of Banderier and Flajolet [1] yield the following expression for the generating

function H(t):

H(t) =
(1 − tp0) −

√
(1 − tp0)2 − 4t2p−1p1

2tp1p−1
.

In particular, the dominant singularity of H(t) is

t =
1

p0 + 2
√
p1p−1

.

Now, the set of quarter plane walks with steps from S which return to the x-axis is a

subset of this set, and so

[tn]S0,1(t) � [tn]H(t).

Consequently, S0,1(t) is convergent for 0 � t � p0 + 2
√
p1p−1 < |S|, where the latter in-

equality is a result of the fact that p−1 = 1, p0 ∈ {0, 1} and p1 ∈ {1, 2, 3} in these cases.

Thus, the singularity at |S|−1 is indeed dominant.

We also need to verify that S0,1(|S|−1) �= 0 to justify that |S|−1 is not a removable

singularity. In Section 3.3.1, we determine an explicit expression for 1/Yn. Substituting

t = 1/|S | into this expression proves that Yn(1)Yn+1(1) is monotonically decreasing,

so that the error on the Nth partial sum of the alternating series is bounded by

YN+1(1)YN+2(1). Numerically evaluating the 10th partial sum is sufficient to bound

1 − 2
∑

n(−1)nYn(1)Yn+1(1) away from 0 in each case. The results are summarized in

Table 2.

We have shown that the dominant singularity of S(t) is indeed the simple pole at |S|−1.

The residue is S0,1(|S|−1) which, when evaluated with suitable precision, gives the stated

constant in Table 2. The subdominant factor comes from the inverse of the dominant
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Table 2. Asymptotic estimates for number of walk of length n. On a modern computer

the κS can be calculated to a thousand decimal places in seconds.

Model Asymptotic estimate for number of walks of length n

A An ∼ κA3n + O
((

2
√

2
)n)

κA = 0.17317888 . . .

B Bn ∼ κB4n + O
((

1 + 2
√

2
)n)

κB = 0.15194581 . . .

C Cn ∼ κC5n + O
((

1 + 2
√

3
)n)

κC = 0.38220125 . . .

singularity of S0,1(t), which is bounded by

1

p0 + 2
√
p1p−1

.

3.3. The generating functions A(t), B(t) and C(t) are not D-finite

The set of D-finite functions are closed under algebraic substitution. Thus, since our goal

is to prove that the generating functions A(t), B(t) and C(t) are not D-finite, it is sufficient

to consider these functions evaluated at t = q/(1 + q2). These turn out to be easier to

analyse as the transformation concentrates the singularities around the unit circle. As such,

we shall re-interpret the notation we have introduced thus far to be functions of q directly.

For each model, the Yn(1) terms contribute singularities. A quick glance at an example

is very suggestive; see Figure 1 for the singularities of Y20(1) in the q-plane for the three

different models. The main difficulty is proving that the singularities are genuinely present

in the generating function. To prove this we follow these steps.

Step 1. Determine an explicit expression for Yn(1).

Step 2. Determine a polynomial σn(q) whose set of roots contains the poles of Yn(1).

Step 3. Determine a region where there are roots of σn(q) that are truly poles of Yn(1).

Step 4. Show that there is no point ρ in that region that is a root of both σn(q) and σk(q)

for different n and k.

Step 5. Demonstrate that S1,0(q/(1 + q2)) has an infinite number of singularities and,

consequently, is not D-finite. It follows that S(t) is not D-finite, by closure under

algebraic substitution and the expression in equation (3.3).

3.3.1. Step 1: An explicit expression for Yn. In this section we find an explicit, non-

iterated expression for the functions Yn. We follow the method of [19] very closely, with

the exception that we make the variable substitution earlier in the process. As such, we

repeat, we view all functions as functions of q in this section.

We begin by performing the variable substitution t = q/(1 + q2) directly into equa-

tion (2.3), and re-solve the kernel to ensure control over the choice of the branch in the

solution. The kernels are:

model A K(x, y) = −q(x2 + 1) y2 + x(1 + q2) y − qx2,

model B K(x, y) = −q(x + 1) y2 + x(−qx + 1 + q2) y − qx2,

model C K(x, y) = −q(1 + x + x2) y2 + x(−qx + 1 + q2) y − qx2.
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-1 -0.5 0.5 1

(a) step set A

-1 -0.5 0.5 1

(b) step set B

-1 -0.5 0.5 1

(c) step set C

Figure 1. Plots of the singularities of Y20(1)|t= q

1+q2
for the three symmetric models.

Recall that we denote this generically as K(x, y) = a2y
2 + a1y + a0, adapting the ai to each

particular model. Each is solved as before to get our initial solutions to K(x, Y (x)) = 0.

Great care is taken here to ensure that the branch as written remains analytic at 0:

A Y±1(x; q) =
x

2q(1 + x2)

(
1 + q2 ∓

√
1 − 2(2x2 + 1)q2 + q4

)
,

B Y±1(x; q) =
x

2q(1 + x)

(
1 − qx + q2 ∓

√
q4 − 2q3x + (x2 − 4x − 2)q2 − 2qx + 1

)
,

C Y±1(x; q) =
x

2q(1 + x + x2)

(
1 − qx + q2 ∓

√
q4 − 2q3x − (3x2 + 4x + 2)q2 − 2qx + 1

)
.
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Table 3. The recurrences and solutions for models A, B, and C.

Model Recurrence Y n(q)

A Y n =

(
q +

1

q

)
Y n−1 − Y n−2

(q2 − q2n) + q(q2n − 1)Y 1

qn(q2 − 1)

B, C Y n =

(
q +

1

q

)
Y n−1 − Y n−2 − 1

q(q − 1)(q2n − 1)Y
B,C

1 + (q − qn)(2qn+1 − qn + q2 − 2q)

qn(q + 1)(q − 1)2

We define the sequence of iterates {Yn(x)}(n) as before:

Yn+1(x) = Y+(Yn(x); q), Y1(x) = Y+(x; q).

For each of these models, examining the coefficients of y in the kernel implies

1

Y−(x; q)
+

1

Y+(x; q)
=

Y−(x; q) + Y+(x; q)

Y−(x; q) · Y+(x; q)
=

−a1/a2

a0/a2
= −a1

a2
. (3.5)

Furthermore, the iterates compose nicely due to the following lemma.

Lemma 3.2. For each of the symmetric models A,B, C we have

Y−(Y+(x)) = Y+(Y−(x)) = x.

Proof. For any given model, expanding the polynomial

p(z) =
∏

(j,k)∈{±1}2

(
z − Yj(Yk(z))

)
implies p(z) = (x − z)2r(z), where r(z) ∈ R(x, t)[z] is given by

A r(z) =
(
(t2 + x2)z2 − x(1 − 2t2)z + t2x2

)(
t2 + x2

)−1
,

B r(z) =
(
(t2x2 + 2t2x + tx + tx2 + t2)z2 + (−x + 2t2x2 + tx2 + 2t2x)z + t2x2

)
·
(
t(x + 1)(tx + x + t)

)−1
,

C r(z) =
(
(2t2x + t2 + tx2 + tx + x2 + t2x2)z2 + (2t2x2 + tx2 + 2t2x − x)z + t2x2

)
·
(
2t2x + t2 + tx2 + tx + x2 + t2x2

)−1
.

Thus, two of p(z)’s roots are equal to x and examination of the initial terms of a Taylor

series in t shows that Y+(Y+(x)) and Y−(Y−(x)) are not.

It turns out to be easier to work with the reciprocal of Yn, so we define Y n =

1/(Yn(1)) and view this as a function of q. Equation (3.5) then converts into a recurrence

after the substitution x = Yn−1(x). Specifically, this gives a linear recurrence for the

reciprocal function, 1/(Yn(x)); we are interested in this evaluated at x = 1, and the

resulting recurrences and their solutions in terms of Y 1 are summarized in Table 3.

Following the same procedure as above, we obtain a generic expression for S1,0(t), the

generating function for the number of walks which return to the axis for model S , which
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can be applied to all three symmetric walks:

S1,0

(
q

1 + q2

)
= (q + 1/q)

∞∑
n=0

(−1)nYn(1)Yn+1(1). (3.6)

Our careful choice of branches now implies that this is a formal power series. (Note that

this was not the case in [19].) Our expression is robust: the sum converges everywhere,

except possibly on the unit circle and at the poles of the Yn.

Proposition 3.3. For each model in {A,B, C}, the sum(
q +

1

q

) ∞∑
n=0

(−1)nYn(1)Yn+1(1)

is convergent for all q ∈ C with |q| �= 1, except possibly at the set of points defined by the

singularities of the Yn(1) for all n.

Proof. In all cases the ratio test is applied to the explicit formulas for Y n(1; q). It is a

mechanical exercise to verify that for each case, when |q| < 1,

lim
n→∞

∣∣∣∣Yn+1Yn+2

YnYn+1

∣∣∣∣ =

∣∣∣∣ Y n

Y n+2

∣∣∣∣ = |q|2 < 1,

and when |q| > 1,

lim
n→∞

∣∣∣∣Yn+1Yn+2

YnYn+1

∣∣∣∣ =

∣∣∣∣ Y n

Y n+2

∣∣∣∣ =
1

|q|2 < 1.

3.3.2. Step 2: The singularities of Yn(1). In order to argue about the singularities, we

find a family of polynomials σn(q) that the roots of Y n satisfy: the polynomials in

Table 4 are obtained by manipulating the explicit expressions given above. Unfortunately,

extraneous roots are introduced during the algebraic manipulation when an equation

is squared to remove the square root present. In fact, the extraneous roots are exactly

those which correspond to a negative sign in front of the square root. If one defines

Y −n = Y −1 ◦ Y −(n−1) for n > 1, then using the same argument as above one can check

that Y −n satisfies the same recurrence relation as Y n, up to a reversal of the sign in front

of the square root. Thus, we see that the set of roots of σn(q) is simply the union of the

sets of roots of Y n and Y −n.

Furthermore, we can show that these roots are dense around the unit circle using the

results of Beraha, Kahane, and Weiss: specifically, a weakened statement of the main

theorem of [2].

Proposition 3.4 ([2]). Given non-zero polynomials μ1, . . . , μk, λ1, . . . , λk , define

Pn(q) =

k∑
j=1

μj(q)λj(q)
n.
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Table 4. The singularities of Yn in the q-plane satisfy the polynomial equation σn(q) = 0.

Model σn(q)

A αn(q) = q4n + q2n+2 − 4q2n + q2n−2 + 1

B βn(q) =
(
q2n−1 + (q3 − 2q2 − 2q + 1)qn−2 + 1

)(
q2n+1 + (q3 − 2q2 − 2q + 1)qn−1 + 1

)
C γn(q) = q2(1 + q2 − q)(1 + q4n) + q(q2 − 3q + 1)(q + 1)2(qn + q3n)

+ q2n(1 − q2 − 4q + 14q3 − 4q5 − q4 + q6)

If there does not exist a constant ω such that |ω| = 1 and λj = ωλk for j �= k, and for some

l � 2,

|λ1(x)| = |λ2(x)| = · · · = |λl(x)| > |λj(x)|,

for all l + 1 � j � k, then x is a limit point of the zeros of {Pn(q)}, i.e., there exists a

sequence qn converging to x such that Pn(qn) = 0 for all n.

As each of αn(q), βn(q), and γn(q) can be decomposed into the required form where the

λj(q) are simply powers of q, and thus have the same modulus when q is on the unit

circle, this immediately gives the following result.

Corollary 3.5. The roots of the families of polynomials {αn(q)}, {βn(q)}, and {γn(q)} are

dense around the unit circle.

Furthermore, as our results on the convergence of the series in equation (3.6) is only

valid at points off of the unit circle, we use a lemma of Konvalina and Matache [17] to

determine when the roots of αn, βn, and γn may lie on the unit circle.

Lemma 3.6 (Lemma 1 of [17]). Suppose F(x) is a palindromic polynomial (its coefficient

sequence is the same when read from the left or right) of degree 2N. Then the argument of

any root of F(x) which lies on the unit circle satisfies

φ(θ) = εN + 2

N−1∑
k=0

εk cos
(
(N − k)θ

)
,

where εj denotes the coefficient of xj in F(x).

Applied to our polynomials, it gives the following.

Proposition 3.7. For all natural numbers n, αn(q) and γn(q) have no roots on the unit circle,

except possibly q = ±1. Furthermore, if q is a root of βn(q) on the unit circle not equal to

1, then

arg q ∈
[
π − arccos

(√
2 − 1

2

)
, π

)⋃[
−π,−π + arccos

(√
2 − 1

2

))
.
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Proof. As αn(q), βn(q), and γn(q) are palindromic, Lemma 3.6 implies, after some trigo-

nometric simplification, that the argument of any root q on the unit circle satisfies

φA(θ) = X + 2 cos2(θ) − 3,

φB(θ) = X2 +
(
2 cos2(θ) − cos(θ) − 3

)
X + 2 cos3(θ) − 4 cos2(θ) − cos(θ) + 4,

φC(θ) = 2
(
2 cos(θ) − 1

)
X2 +

(
4 cos2(θ) − 2 cos(θ) − 6

)
X

+ 4 cos3(θ) − 8 cos2(θ) − 6 cos(θ) + 12,

respectively, where X = cos(nθ).

It is easy to see that φA(θ) = 0 only if θ = 0 or θ = π. For the other models, in order

to give a bound on where the roots of each expression lie, we treat X as an independent

real variable lying in the range [−1, 1] for some fixed value of θ, and determine where the

minimum value of the above expression is at most zero.

First consider φB(θ). As this is a quadratic in X it attains its minimum value either at

X = ±1 or when X = −(2 cos2(θ) − cos(θ) − 3)/2.

Substituting X = ±1 into φB(θ) yields expressions which are always greater than zero

when θ /∈ {0, π}. Furthermore, when

X = −(2 cos(θ)2 − cos(θ) − 3)/2,

our expression for φB(θ) simplifies to

1

4
(−4 cos4(θ) + 12 cos3(θ) − 5 cos2(θ) − 10 cos(θ) + 7).

One can verify that this is at most zero only when θ = 0 or

θ ∈
[
π − arccos

(√
2 − 1

2

)
, π

) ⋃[
−π,−π + arccos

(√
2 − 1

2

))
.

As φC (θ) is also a quadratic in X, an analogous argument shows that φC (θ) = 0 only

if θ ∈ {0, π}, as desired.

Thus, every point on the unit circle is a limit point of each of the sets

{q : αn(q) = 0 for some n}, {q : βn(q) = 0 for some n}, and {q : γn(q) = 0 for some n},

but no element of these sets lies on the unit circle (except in a special region when dealing

with model B). In fact, as the polynomials are palindromic, a straightforward application

of Rouché’s theorem proves that all roots of αn, βn, and γn converge to the unit circle as n

approaches infinity.

3.3.3. Step 3: Verify that Yn(1) has some singularities. At this point we have not yet

completely established that the Yn(1) actually have singularities. Theoretically, it is possible

that all the roots were added in our manipulations to determine σn(q) for the different

models (as mentioned above, the roots of σn(q) are either singularities of Yn(1) or

singularities of Y−n(1)). Thus we prove Lemma 3.8, which describes at least some region

where we are certain to find roots of Y n. Experimentally, it seems that the roots are evenly

partitioned, so that those outside the unit circle belong to Y n and those inside the unit

circle belong to Y −n, but we do not prove this.
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Lemma 3.8. For each model, if

arg(q) ∈ (−π/2,−3π/8) ∪ (3π/8, π/2),

then

Y n = Y −n|q �→1/q for all n.

Consequently Yn admits at least one singularity in the complex q-plane in that region, for

an infinite number of n.

The proof requires only basic manipulations of the formulas. We offer the proof for the

A case; the other two are similar.

Proof of case A. First note that it is sufficient to prove the result for arg(q) ∈
(−π/2,−3π/8). We claim that in this region the identity Y 1 = Y −1|q �→1/q holds, which is

equivalent to proving

q2
√

(q4 − 6q2 + 1)/q4 = −
√
q4 − 6q2 + 1

(using the standard branch-cut of the square root).

If q = reiθ in polar form, it is straightforward to verify

�
(
q4 − 6q + 1

)
,�

(
q4 − 6q + 1

)
� 0

for the values of θ under consideration, so arg(q4 − 6q2 + 1) ∈ [0, π/2]. Furthermore, for

these values of θ we have arg(1/q4) ∈ (−π/2, 0), so

arg(q4 − 6q2 + 1) + arg(1/q4) ∈ (−π/2, π/2],

and

q2
√

(q4 − 6q2 + 1)/q4 = q2
√

1/q4
√

(q4 − 6q2 + 1).

By our choice of region, arg(1/q4) = −4θ − 2π and thus

q2
√

1/q4 = r2e2iθ · 1

r2
ei(−4θ−2π)/2 = e−πi = −1,

proving the result on Y 1.

Given this, we note that

Y −n =
(q2 − q2n) + q(q2n − 1)Y −1

qn(q2 − 1)
=

q1−n − qn−1

q − q−1
+

qn − q−n

q − q−1
Y −1,

so that

Y −n|q→1/q =
q1−n − qn−1

q − q−1
+

qn − q−n

q − q−1
Y 1,

by the base case, as the rest is invariant, and thus Y −n(1/q) = Y n(q).

As the region considered above is disjoint from the region where the roots of βn(q) lie

on the unit circle, all the singularities we have found lie off of the unit circle.
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3.3.4. Step 4: The singularities are distinct. We prove that the poles are distinct when they

lie off of the unit circle by determining expressions for the powers of q at the poles of the

Yn.

Proposition 3.9. For models A and C, if qn is a pole of Yn which lies off of the unit circle

then it is not a pole of Yk for k �= n. For model B, if qn is a pole of Yn off of the unit circle

then it is not a pole of Yk for |k − n| > 1.

Proof. For each of the three models we find the roots of the numerators of our explicit

expressions in Table 3 as quadratics in qn. This determines functions r1(q) and r2(q),

independent of n, such that qnn = r1(qn) or qnn = r2(qn) at any pole qn of Yn.

Now, suppose qn is also a pole of Yk for k �= n, so that qkn = r1(qn) or qkn = r2(qn). If

qkn = r1(qn) = qnn or qkn = r2(qn) = qnn , then it is immediate that qn must be on the unit

circle. Thus we may assume, without loss of generality, that qnn = r1(qn) and qkn = r2(qn);

we consider each model separately.

• Model A. Here,

r1(q), r2(q) = ± 2
√

−q2

q2 +
√

1 − 6q2 + q4 − 1
,

so that qn−k
n = r1(qn)/r2(qn) = −1, implying that qn must lie on the unit circle.

• Model B. Here,

r1(q) =
2q2

2q2 +
√
q4 − 2q3 − 5q2 − 2q + 1 − 2q + q

√
q4 − 2q3 − 5q2 − 2q + 1 − 1 − q3

,

and r2(q) = r1(q)/q, so that qn−k
n = r1(qn)/r2(qn) = qn. Thus, either n = k + 1 or qn lies

on the unit circle.

• Model C. In this slightly trickier case we have

r1(q) =
q(−1 − q − i

√
3 +

√
3q)

−2q2 −
√

1 − 2q − 9q2 − 2q3 + q4 − 2q + q
√

1 − 2q − 9q2 − 2q3 + q4 + 1 + q3
,

r2(q) =
q(−1 − q + i

√
3 −

√
3q)

−2q2 −
√

1 − 2q − 9q2 − 2q3 + q4 − 2q + q
√

1 − 2q − 9q2 − 2q3 + q4 + 1 + q3
,

which implies

qn−k
n = r1(qn)/r2(qn) = e−2πi/3 +

√
3

e−πi/6

q − eπi/3
.

Substituting qn = reiθ into this expression allows one to see that the right-hand side

has modulus greater than or equal to one when θ ∈ [0, π) and modulus less than or

equal to one when θ ∈ (−π, 0].

Suppose now that n > k. If |qn| < 1 then |qn|n−k < 1, and qn cannot lie above the

real axis (as the modulus of the right-hand side would be greater than or equal to

1). Similarly, if |qn| > 1 then |qn|n−k > 1 and qn cannot lie beneath the real axis. As

we take the principal branch of the square root in the definition of Y n(q), we have
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Y n(q)
∗ = Y n(q

∗) (where q∗ denotes the complex conjugate of q) so there are, in fact,

no solutions off of the unit circle or real axis. One can easily verify that there are no

non-unit real solutions, and when n < k the argument is analogous.

3.3.5. Step 5: The generating function is not D-finite. Now we tie up all the arguments.

Theorem 3.10. The generating functions A(t), B(t), C(t) of walks in the quarter plane, with

steps from A, B, and C, respectively, are all not D-finite.

Proof. We now show that the infinite set of poles described in Proposition 3.9 are indeed

poles of the generating function. The D-finiteness result follows from this and the fact

that D-finite functions have only a finite number of singularities.

Fix a model. For each n, there is at least one choice of qn amongst the poles of

Yn(1) which is not a pole of any Yk(1) for |n − k| > 1. This is a direct consequence of

Proposition 3.9.

Next, we break the main sum of equation (3.6) into three parts, and examine the

behaviour at qn. Let us first consider the cases of models A and C. The sum is decomposed

as follows:

q

1 + q2
· S0,1 =

n−2∑
k=0

(−1)kYkYk+1︸ ︷︷ ︸
a finite sum

+ (−1)n−1Yn(Yn−1 − Yn+1)︸ ︷︷ ︸
pole contribution

+
∑

k�n+1

(−1)kYkYk+1

︸ ︷︷ ︸
convergent at q=qn

.

The initial and terminal sums do not admit poles at qn since Proposition 3.9 implies in

these two cases that Yk does not have a pole at qn for k �= n, and an argument identical

to the proof of Proposition 3.3 implies that the second summation is convergent at this

point. Furthermore, if we substitute qn into the corresponding recurrence from Table 3,

and recall that it is a zero of Y n, we derive Y n+1(qn) = −Y n−1(qn) + ε (where ε = 0 for

model A and ε = 1 for models B and C), and so Yn−1 − Yn+1 �= 0. We can then conclude

that qn is a pole of the series, for all n � 1.

Thus, we have shown that both A(q/(1 + q2)) and C(q/(1 + q2)) have an infinite number

of poles, and are not D-finite. The stated result follows immediately from the fact that

the class of D-finite functions is closed under algebraic substitution.

The remaining case of model B is almost identical, save for the fact that Yn and Yn−1

share some, but not all, of their poles. If qn is not a pole of Yn+1, then the argument

above shows that it is a pole of B(q/(1 + q2)). If qn is a pole of Yn+1, then the summand

(−1)nYnYn+1 has a pole of a larger order than the other two summands in which that

pole appears, and it cannot be cancelled by the rest of the summation. This means that

qn is again a pole of B(q/(1 + q2)), and the remainder of the argument is as for the other

two cases.

3.4. Return to the t-plane

It is useful to visualize the singularities in the t-plane as well, as they control the

subdominant asymptotics. Figure 2 contains precisely such a plot.
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Figure 2. All singularities from Y1(t), . . . , Y15(t) for the symmetric models; these form the subdominant

singularities of S1,1(t). The curve |t| = 1/2 is sketched.

The subdominant singularities in the t-plane appear to converge to t = 1/2; in fact

for model C there are two singularities of Y2(t) which have modulus exactly 1/2:

t = −1/4 ±
√

3i/4.

4. Asymmetric models

The asymmetric models are not substantially different, but when we iterate we have more

functions to track. Aside from some irritating bookkeeping, there is no main obstacle to

following the strategy of the symmetric models.

4.1. An explicit generating function expression

To obtain the generating function expressions we follow the same path as in the symmetric

case: we generate a sequence of equations, each of which annihilates the kernel. This opens

up the possibility of a telescoping sum expression from which we can find an expression

for the generating function of walks returning to the axis in terms of iterates. An explicit

expression for these iterates is obtained by solving some very simple recurrences. We

complete these steps for the asymmetric models in this section.

As before, we begin with the main functional equation (2.3), make the substitution

t = q/(1 + q2), and rearrange to get the kernel equations:(
xy(1 + q2) − qy2 − qxy2 − qx2

)
Dx,y(t) = xy(1 + q2) − qx2Dx,0(t) − qy2D0,y(t),(

xy(1 + q2) − qy2 − qxy2 − qx2y2 − qx2
)
Ex,y(t) = xy(1 + q2) − qx2Ex,0(t) − qy2E0,y(t),

with kernels

model D K(x, y) = −q(1 + x)y2 + (1 + q2)xy − qx2,

model E K(x, y) = −q(1 + x + x2)y2 + (1 + q2)xy − qx2.
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As there is no longer an x = y symmetry, we solve the kernels as functions of both x and

y; that is, we find Y (x) satisfying K(x, Y (x)) = 0 and also X(y) satisfying K(X(y), y) = 0.

We have some choice over how we split the solutions over different branches. One such

choice of branches is

D X±(y; q) =
y

2q
·
(
1 − qy + q2 ∓

√
q4 − 2q3y + (y2 − 2)q2 − 2qy + 1

)
,

Y±(x; q) =
x

2q(1 + x)
·
(
1 + q2 ∓

√
q4 − 4q2x − 2q2 + 1

)
,

E X±(y; q) =
y

2q(1 + y2)
·
(
1 − qy + q2 ∓

√
q4 − 2q3y − (3y2 + 2)q2 − 2qy + 1

)
,

Y±(x; q) =
x

2q(1 + x + x2)
·
(
1 + q2 ∓

√
q4 − 2(2x2 + 2x + 1)q2 + 1

)
.

Next, as described in Section 2.3, we repeatedly alternate the substitution of the X and

Y and create two related sequences of functions:

χn(x) = X+(Y+(χn−1(x); q); q), χ0(x) = x,

Υn(y) = Y+(X+(Υn−1(y); q); q), Υ0(y) = y.

Simple substitutions yield the kernel relations

K(χn(x), Y+(χn(x))) = K(X+(Υ(y)), Υ(y)) = 0,

amongst others. As before, we generate an infinite list of relations by substituting x =

χn(x), y = Y+(χn(x)), and then a second infinite list using the substitutions x = X+(Υ(y)),

y = Υ(y). Again, we form a telescoping sum, and after some manipulation this results

in an expression for the generating functions of the walks returning to the axis. For

S ∈ {D,E} we have

Sx,0

(
q

1 + q2

)
=

q

1 + q2

∑
n�0

χn(x) ·
(
Y+ ◦ χn(x) − Y+ ◦ χn−1(x)

)︸ ︷︷ ︸
ΔL,n(x)

, (4.1)

S0,y

(
q

1 + q2

)
=

q

1 + q2

∑
n�0

X+ ◦ Υn(y) ·
(
Υn(y) − Υn+1(y)

)︸ ︷︷ ︸
ΔR,n(y)

. (4.2)

The two models have identical structure in their generating function, and differ only in

their respective functions X+ and Y+. Our greatest challenge at this point is keeping track

of the various parts:

ΔL,n(x) = Y+ ◦ χn(x) − Y+ ◦ χn−1(x), ΔR,n(y) = Υn(y) − Υn+1(y),

ΔL,0(x) = Y+(x), ΔR,0(y) = Υ0(y).

For each model we isolate the left- and right-hand sides, defining

L(x, q) = qx2Sx,0(q/(1 + q2)) and R(y, q) = qy2S0,y(q/(1 + q2)),

so that

Sx,y(q/(1 + q2)) =
xy(1 + q2) − L(x, q) − R(y, q)

K(x, y)
,
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and the counting generating function has the form

S(q/(1 + q2)) =
(1 + q2) − L(1, q) − R(1, q)

1 − K(1, 1)
. (4.3)

For both asymmetric models we find an infinite set of points at which L(1, q) is singular

but R(1, q) is convergent.

Similar to previous cases, we can use the coefficients of K(x, y) and the facts that

Y±(X∓(y)) = y, X±(Y∓(x)) = x,

to form paired up recurrences for the multiplicative inverses of these functions. Here we

again use the notation that F = 1/F:

χn = (q + 1/q)Y+ ◦ χn−1 − χn−1 − 1, Y+ ◦ χn = (q + 1/q)χn − Y+ ◦ χn−1,

Υn = (q + 1/q)X+ ◦ Υn−1 − Υn−1, X+ ◦ Υn = (q + 1/q)Υn − X+ ◦ Υn−1 − 1.
(4.4)

Solving these recurrences, we obtain the closed-form expressions

χn =
(q4n+3 − q4n+1 − q3 + q)Y + − 2q4n+2 + q4n + 2q2n+2 + q4 − 2q2

q2n(q2 − 1)2
,

Y+ ◦ χn =
(q4n+4 − q4n+2 − q2 + 1)Y + − 2q4n+3 + q4n+1 + q2n+3 + q2n+1 + q3 − 2q

q2n(q2 − 1)2
,

Υn =
(q4n+3 − q4n+1 − q3 + q)X+ − q4n+2 − q4n+1 + q4n + q2n+3 + q2n+1 + q4 − q3 − q2

q2n(q2 − 1)2
,

X+ ◦ Υn =
(q4n+4 − q4n+2 − q2 + 1)X+ − q4n+3 − q4n+2 + q4n+1 + 2q2n+2 + q3 − q2 − q

q2n(q2 − 1)2
.

(4.5)

We next show that our expressions for L(1, q) and R(1, q) in terms of χn, Y+ ◦ χn,Υn,

and X+ ◦ Υn are valid for almost all of the complex plane.

Proposition 4.1. For either D or E , let q ∈ C such that |q| �= 1 and χn,ΔL,n,ΔR,n, and X+ ◦
Υn are all analytic. Then the related series L(1, q) and R(1, q) both converge for q ∈ C.

Proof. Using our explicit expressions above, it can easily be shown that for both models,

lim
n→∞

∣∣∣∣ χn(x)ΔL,n(x)

χn−1(x)ΔL,n−1(x)

∣∣∣∣ = lim
n→∞

∣∣∣∣ X+ ◦ Υn(x)ΔS
R,n(x)

X+ ◦ Υn−1(x)ΔR,n−1(x)

∣∣∣∣ =

{
1/|q|4 |q| > 1,

|q|4 |q| < 1,

which proves the convergence where the functions χn,ΔL,n,ΔR,n, and X+ ◦ Υn are analytic.

4.2. Asymptotic enumeration of models D and E
Both of the generating functions for the asymmetric models have a dominant singularity

at t = 1/|S|, although proving this is more complicated than in the symmetric case. For

model D, the numerator of the generating function has a residue of zero (indeed a

square-root singularity appears) and one must do a more careful analysis. For model E ,

the numerator of the generating function has a non-zero residue as before, but we must
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consider two series in the proof. Because of this, we simply get a bound on the growth

constant at the dominant singularity: we do not provide a mechanism for its calculation

to arbitrary precision as in the symmetric cases. We make use of combinatorial arguments,

so we return to the t-plane for the remainder of this section.

4.2.1. Model D. This case was considered thoroughly by Mishna and Rechnitzer [19],

and we restate their results.

Theorem 4.2 (Proposition 16 of [19]). If Dn denotes the number of walks with steps from

D and staying in the positive quarter plane, then

Dn ∼ κD
3n√
n
(1 + o(1)), where κD ∈

[
0,

√
3

π

]
.

4.2.2. Model E . In this case we separately consider the two generating functions of walks

returning to the axis, and bound their convergence at the point t = 1/4.

Lemma 4.3. The function E1,0(t) is analytic for |t| � 1/(2
√

3), while the function E0,1(t) is

analytic for |t| � 1/(1 + 2
√

2).

Proof. We use the same approach as in Theorem 3.1, bounding the exponential growth

factor by considering walks in the half plane that end at the x- and y-axis respectively.

This proves the coefficient of tn in E1,0(t) has growth bounded above by O((2
√

3)n) and the

coefficient of tn in E0,1(t) has growth bounded above by O((1 + 2
√

2)n). The exponential

growth in the asymptotic expression corresponds to the inverse of the dominant singularity,

and the result follows.

Lemma 4.4. The function E(t) has a simple singularity at t = 1/4 where it has a residue

of value

κE ∈
[
122

525
,

7

10

]
.

Proof. To compute the residue, it suffices to substitute the required value into the

explicit expressions for χn, Y+ ◦ χn,Υn, and X+ ◦ Υn for all n. We treat the generating

functions returning to the axes separately, with convergence established by the ratio test.

Furthermore, we can tightly bound the series in the numerator using the values of some

initial terms and two telescoping series, and compute that, as desired:

1 − 1

4
E1,0(1/4) − 1

4
E0,1(1/4) ∈

[
122

525
,

7

10

]
⊂ [0.232, 0.7].

One may note that the location of the singularity is predicted, but not proved, by the

results of [11]. Lemmas 4.3 and 4.4 combine to give us the leading-term asymptotics of

model E .
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Table 5. The minimal polynomials of the singularities for functions defined by

equation (4.5) (model D).

χn ω1
n =

(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)2

Y+ ◦ χn ω2
n =

(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)(
q4n+4 + q2n+4 − 4q2n+2 + q2n + 1

)
Υn ω3

n =
(
q4n+3 + q2n+4 − q2n+3 − 2q2n+2 − q2n+1 + q2n + q

)
·
(
q4n+1 + q2n+4 − q2n+3 − 2q2n+2 − q2n+1 + q2n + q3

)
X+ ◦ Υn ω3

n =
(
q4n+3 + q2n+4 − q2n+3 − 2q2n+2 − q2n+1 + q2n + q

)2

Corollary 4.5. The number, En, of walks taking steps in E and staying in the positive quarter

plane grows asymptotically as

En = κE · 4n + O
((

1 + 2
√

2
)n)

, where κE ∈
[
122

525
,

7

10

]
⊂ [0.232, 0.7].

Computational evidence given by calculating the series for E1,0(1/4) and E0,1(1/4) to

a large number of terms implies that the value of the growth constant is approximately

0.2636, which is consistent with the growth of computationally generated values of En for

large n.

4.3. The generating functions D(t) and E(t) are not D-finite

The additional sums that arise in our expressions for D(t) and E(t) do not change

our fundamental argument. In the symmetric examples we found a set of singularities

associated to each Yn and proved that they do not cancel. Here, although the same structure

is undoubtedly present, we prove the existence and non-cancellation of singularities along

a single line. The set of singularities is infinite, and thus the generating functions are not

D-finite. Indeed, this argument is simpler and we would have emulated it in the symmetric

cases had we found a ray or line which contained an infinite number of singularities.

More specifically, for both asymmetric models, we demonstrate an infinite source of

singularities in L(1, q) and prove that R(1, q) converges at those points. As in the previous

cases, we find polynomials ω1
n , ω

2
n , ω

3
n , and ω4

n that the roots of χn, Y+ ◦ χn,Υn, and X+ ◦ Υn

must satisfy; note that the orders of the roots of the polynomials match the orders of the

roots of our functions. These polynomials are summarized in Tables 5 and 6. To be more

precise, ω1
n(q) contains the poles of χn(q), ω

2
n(q) contains the poles of Y+ ◦ χn(q), etc.

We next prove that for even n, each χn has a distinct singularity on the imaginary

axis, and we prove that it is indeed a singularity of the generating function. We prove

this separately for each model, but the arguments (indeed the computations!) are almost

identical in both cases. In order to manipulate the unwieldy formulas which arise, we used

the Groebner package in Maple version 16 to calculate the relevant Gröbner bases.

Both cases also invoke χ−n(q) to prove that certain solutions of the polynomial are

actually solutions of the model. These are defined by rolling the recurrence in reverse, as

before.
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Table 6. The minimal polynomials of the singularities for functions defined by equation (4.5)

(model E).

χn ω1
n = q2

(
q4 − q2 + 1

)(
q8n + 1

)
+ 2q2(q4 − 4q2 + 1)

(
q6n + q2n

)
+ (q8 − 10q6 + 24q4 − 10q2 + 1)q4n

Y+ ◦ χn ω2
n = (q4 − q2 + 1)

(
q8n+4 + 1

)
+ (q6 − 3q4 − 3q2 + 1)

(
q6n+2 + q2n

)
+ (q8 − 9q6 + 22q4 − 9q2 + 1)q4n

Υn ω3
n = q2(q4 − q2 + 1)

(
q8n + 1

)
+ q(q6 − q5 − q4 − 2q3 − q2 − q + 1)

(
q6n + q2n

)
+ (q8 − 2q7 − 4q6 + 2q5 + 12q4 + 2q3 − 4q2 − 2q + 1)q4n

X+ ◦ Υn ω4
n = (q4 − q2 + 1)

(
q8n+4 + 1

)
+ 2q(q4 − q3 − 2q2 − q + 1)

(
q6n+2 + q2n

)
+ (q8 − 2q7 − 5q6 + 2q5 + 14q4 + 2q3 − 5q2 − 2q + 1)q4n

4.4. Model D
First, note that in the case of model D the poles of χn(q) are contained in the roots of

ω1
n =

(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)2
,

by Table 5.

Lemma 4.6. The function χn(q) has a root on the imaginary axis between i and 2i, when n

is even.

Proof. Suppose r ∈ R and substitute q = ri into ω1
n(q):

ω1
n(ri) = R2 − r2 + 4r2R2 − r2R4 + r4R2,

where R = rn. We remark that this is a real-valued function of r, and if r = 1 then R = 1

and ω1
n(i) = 4. However, ω1

n(2i) = 33R2 − 4 − 4R4, which is negative for R � 2. Thus, the

Intermediate Value Theorem implies that ω1
n(ri) has a zero on the imaginary axis between

i and 2i. Denote this value by rc. The expression for ω1
n(ri) is palindromic, so r = 1/rc is

also a root of ω1
n(ri).

For r > 0 it can easily be shown that χn(i/r) = χ−n(ri), and thus one of irc and i/rc
must be a root of χn. As the numerator of χn(ri) is

4R4r2 + (r4 + 1)(1 + R4) + (r2 + 1)(1 − R4)
√

1 + 6r2 + r4 + 4r2(1 − R2),

which is strictly positive for 0 < r < 1, the root of ω1
n between i and 2i is in fact a root of

χn.

Furthermore, the poles of χn and the poles of χk are distinct when n �= k. To see this,

note that we can rewrite the expression above for ω1
n(ri) as −R4r2 + (1 + 4r2 + r4)R2 − r2.

Treating r and R as independent variables, for a fixed positive value of r this expression is

a polynomial in R whose coefficients have signs negative, positive, negative, respectively.

Descartes’s Rule of Signs then implies that there are at most two roots to this equation,

one of which we know to be inside the unit circle and one of which lies outside it. The
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result then follows from the observation that different values of n each yield a different

value of (ri)n = Rn for r > 1.

Next we show that these singularities are present in the term χnΔL,n(q). To do this, we

let o � 1 denote the multiplicity of the root q = ri of q4n+2 + q2n+4 − 4q2n+2 + q2n + q2 we

found above, so that χn(q) has a pole of order 2o at q = ri.

Lemma 4.7. For an infinite number of n there exists a distinct purely imaginary number

ri with 1 < r < 2, such that χn(Y+ ◦ χn − Y+ ◦ χn−1) has a pole (of order 3o � 3) at q = ri.

Furthermore, for k �= n the summand χk(Y+ ◦ χk − Y+ ◦ χk−1) of L(1, q) is analytic at ri.

Proof. Let ri be the root of χn described above. Then, using the identity

Y+ ◦ χn − Y+ ◦ χn−1 =
Y+ ◦ χn−1 − Y+ ◦ χn

Y+ ◦ χn−1Y+ ◦ χn
,

we find that the zeros of Y+ ◦ χn − Y+ ◦ χn−1 are also roots (with the same multiplicity) of

the polynomial equation(
q2n+1 + qn+2 − qn + q

)(
q2n+1 + qn + q − qn+2

)(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)
= 0,

while the poles of Y+ ◦ χn − Y+ ◦ χn−1 are also roots (with the same multiplicity) of the

polynomial equation(
q4n+4 + q2n+4 − 4q2n+2 + q2n + 1

)(
q4n + q2n+4 − 4q2n+2 + q2n + q4

)
·
(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)2
= 0.

Note that the last factor of each of these polynomials is the factor that appears in

ω1
n! In fact, by treating qn as an independent variable Q and taking a Gröbner basis

with respect to a lexicographical ordering, one can show that for all values of q not

satisfying (q4 − 4q2 + 1)(q2 + 3q + 1)(q2 − 3q + 1) = 0, these are the only factors of the

above polynomials that can share roots with ω1
n . Since (q4 − 4q2 + 1)(q2 + 3q + 1)(q2 −

3q + 1) has no zeros on the imaginary axis, we can see that Y+ ◦ χn − Y+ ◦ χn−1 has a

pole of order o at ri, which combines with the pole of χn, which has order 2o, to yield the

result.

We have already noted above that χk shares no poles with χn when k �= n, so it is

sufficient to show Y+ ◦ χk − Y+ ◦ χk−1 does not have a pole at ri. Indeed, since the poles

of Y+ ◦ χk − Y+ ◦ χk−1 are roots of(
q4k+4 + q2k+4 − 4q2k+2 + q2k + 1

)(
q4k + q2k+4 − 4q2k+2 + q2k + q4

)
·
(
q4k+2 + q2k+4 − 4q2k+2 + q2k + q2

)2
,

we can substitute q = ri, set P = rk , and factor the result to see that the only possible way

this polynomial can be zero for |r| > 1 is if rP 2 − P − r − Pr2 = 0. Taking a Gröbner

basis (again with respect to a lexicographical ordering) of this polynomial with the one

obtained by substituting R = rn in ω1
n(ri), we get (PR − 1)(PR + 1)(R − P )(R + P ) as a

generator, which cannot equal 0 when |r| > 1.
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Theorem 4.8. The generating function D(t) for walks in the quarter plane with steps from D
is not D-finite.

Proof. First, recall that

D(q/(1 + q2)) =
(1 + q2) − L(1, q) − R(1, q)

q2 − 3q + 1
.

The proof is similar to the symmetric case, except that we restrict our attention to poles

located on the imaginary axis. For each n, Lemma 4.7 describes qn, a purely imaginary

pole of the nth summand in L(1, q). We show that it is also a pole of L(1, q), and then

verify that it is not a pole of R(1, q). Consequently it is not cancelled in the full expression,

and is also a pole of D(q/(1 + q2)).

Lemma 4.7 proves that the purely imaginary poles of the term χn(Y+ ◦ χn − Y+ ◦ χn−1)

are not poles of any other term of the main summation in our expression for

D1,0

(
q

1 + q2

)
.

The arguments of the symmetric case can be used almost verbatim to show that the poles

are also poles of L(1, q).

Next, we show that none of the summands of R(1, q) have purely imaginary poles. We

consider the family of polynomials that the poles satisfy, and show that none of them

have purely imaginary roots via a Gröbner basis computation, where we replace the qn

terms by a single variable in order to make the computation generic.

Specifically, the computation is done as follows: substitute q = ri into ω3
n , set R = rn,

and take a Gröbner basis of the real and imaginary parts of the resulting polynomial

with respect to a lexicographical ordering. The result has r5(r − 1)(r + 1)(r2 + 1)6 as an

element, so ω3
n has no root of the form q = ri with r > 1. Similarly, the analogous Gröbner

basis computation on the real and imaginary parts of ω4
n(ri) has r5(r2 + 1)6 as an element.

Thus, ΥS
n and X+ ◦ ΥS

n have no poles of the form q = ri with r > 1, so R(1, q) contains no

pole located at any of the singularities of L(1, q) described above.

By now we are almost on autopilot: any singularity of L(1, q) not cancelled by R(1, q)

is a singularity of the complete expression. Since we have an infinite family of poles,

D(1/(1 + q2)) is not D-finite since it has an infinite family of singularities on the imaginary

axis. As a consequence, D(t) is also not D-finite since it can be obtained from this function

by algebraic substitution.

4.4.1. Model E . The argument to show that this model is not D-finite is identical, save for

the actual location of the singularities on the imaginary axis. We highlight the differences.

Lemma 4.9. The function χEn (q) has a root on the imaginary axis between i and 2i.

Proof. As before, we substitute q = ri into the equation for χn(q) to get

χn(ri) = 4R4r2 + 4r2 − 4R2r2 + R4r4 + R4 + r4 + 1

+ (r2 + 1 − R4 − R4r2)
√

1 + 10r2 + r4,
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where R = rn. If we substitute r = R = 1 into this expression, we get the value 8. If we

substitute r = 2, we get the expression

33R4 + 33 − 16R2 + (5 − 5R4)
√

57,

which is negative for R � 2. Thus, the Intermediate Value Theorem implies that χn(ri) has

a root for r ∈ (1, 2).

As was the case with model D, Descartes’s Rule of Signs allows us to conclude that

this root is unique as

χn(ri) = −r2(1 + r2 + r4)R8 − 2r2(1 + 4r2 + r4)R6

+ (1 + 10r2 + 24r4 + 10r6 + r8)R4 − 2r2(1 + 4r2 + r4)R2 − r2(1 + r2 + r4)

has two sign changes in its coefficients when viewed as a polynomial in R. Now, we prove

that the other functions under consideration have no imaginary poles.

Lemma 4.10. The functions Y+ ◦ χn(q), Υn(q), and X+ ◦ Υn(q) have no poles q on the

imaginary axis.

Proof. Substituting q = ri into our expression for ω2
n(q) gives

ω2
n(ri) = r8R8 + r4 + r6R8 + r2 + r4R8 + 1 + R2 + 3R2r2 + R4 + 9R4r2 + 22R4r4

+ 3R6r4(r2 − 1) + 3R2r4(3R2r2 − 1) + R6r2(r6 − 1) + R2r6(R2r2 − 1),

which is strictly positive for r > 1. To prove that Υn(q) and X+ ◦ Υn(q) have no roots on

the imaginary axis, we substitute q = ri into ω3
n(q) and ω4

n(q) obtaining expressions which

have real and imaginary components which are non-zero polynomials in r and R. Taking

a Gröbner basis of these real and imaginary components allows us to eliminate R in each

case and prove the result.

This has the immediate corollary that R(1, q) admits no polar singularities at these

poles of χn(q), of which we have found an infinite number. Next, we show that the poles

do not cancel.

Lemma 4.11. At each of the poles found above, Y+ ◦ χn(q) − Y+ ◦ χn−1(q) �= 0.

Proof. Substituting q = ri into our explicit expression for Y+ ◦ χn(q) allows us to

determine that any root of Y+ ◦ χn(q) − Y+ ◦ χn−1(q) must satisfy the polynomial equation

(4r6 + 9r4 + 4r2)R8 − (r8 + 1)R4 + 4r6 + 9r4 + 4r2 = 0.

The Gröbner basis of this polynomial, and the one we found for χn(ri) with respect to a

lexicographical ordering, has

r2(9r16 + 236r14 + 2148r12 + 7684r10 + 11974r8 + 7684r6 + 2148r4 + 236r2 + 9)(1 + r2)4

as one of its generators. This has no positive real roots in r, so the result holds.
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This allows us to conclude our study of model E with the following theorem.

Theorem 4.12. The generating function E(t) for walks in the quarter plane with steps from

E is not D-finite.

5. Conclusion

This work addresses a family of lattice path models that have resisted other powerful

approaches. There could also be other models, with larger step sizes or in higher

dimensions, for which this method is suitable. In three dimensions the challenge is to

set up the equations in such a way that unknowns are cancelled at the same rate at which

they are generated. Ideally, we would like to automate as much as possible.

In this model, the connection between the infiniteness of the group and the infinite

number of singularities is quite transparent. Is there any hope of transporting this concept

to the remaining small step models in the quarter plane and showing that their counting

functions are also not D-finite (in addition to the provably non-D-finite multivariate

generating function)?
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[7] Bousquet-Mélou, M. and Petkovšek, M. (2003) Walks confined in a quadrant are not always

D-finite. Theoret. Comput. Sci. 307 257–276.

[8] Christol, G. (1990) Globally bounded solutions of differential equations. In Analytic Number

Theory: Tokyo, 1988, Vol. 1434 of Lecture Notes in Mathematics, Springer, pp. 45–64.

[9] Fayolle, G. and Raschel, K. (2010) On the holonomy or algebraicity of generating functions

counting lattice walks in the quarter-plane. Markov Process. Rel. Fields 16 485–496.

https://doi.org/10.1017/S0963548314000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000145


888 S. Melczer and M. Mishna

[10] Fayolle, G. and Raschel, K. (2011) Random walks in the quarter-plane with zero drift: An

explicit criterion for the finiteness of the associated group. Markov Process. Rel. Fields 17

619–636.

[11] Fayolle, G. and Raschel, K. (2012) Some exact asymptotics in the counting of walks in the

quarter plane. In AofA, Discrete Mathematics and Theoretical Computer Science, pp. 109–124.

[12] Fayolle, G., Iasnogorodski, R. and Malyshev, V. A. (1999) Random Walks in the Quarter-

Plane: Algebraic Methods, Boundary Value Problems and Applications, Vol. 40 of Applications

of Mathematics, Springer.

[13] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.

[14] Flajolet, P., Gerhold, S. and Salvy, B. (2004/06) On the non-holonomic character of logarithms,

powers, and the nth prime function. Electron. J. Combin. 11 2.

[15] Janse van Rensburg, E. J., Prellberg, T. and Rechnitzer, A. (2008) Partially directed paths in a

wedge. J. Combin. Theory Ser. A 115 623–650.

[16] Kauers, M., Koutschan, C. and Zeilberger, D. (2009) Proof of Ira Gessel’s lattice path conjecture.

Proc. Natl. Acad. Sci. USA 106 11502–11505.

[17] Konvalina, J. and Matache, V. (2004) Palindrome-polynomials with roots on the unit circle. CR

Math. Acad. Sci. Soc. R. Can. 26 39–44.

[18] Kurkova, I. and Raschel, K. (2011) Explicit expression for the generating function counting

Gessel’s walks. Adv. Appl. Math. 47 414–433.

[19] Mishna, M. and Rechnitzer, A. (2009) Two non-holonomic lattice walks in the quarter plane.

Theoret. Comput. Sci. 410 3616–3630.

[20] OEIS Foundation Inc. (2011) The On-Line Encyclopedia of Integer Sequences.

http://oeis.org

https://doi.org/10.1017/S0963548314000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000145

