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By combining algorithmic learning, decision procedures, predicate abstraction and simple

templates for quantified formulae, we present an automated technique for finding loop

invariants. Theoretically, this technique can find arbitrary first-order invariants (modulo a

fixed set of atomic propositions and an underlying satisfiability modulo theories solver) in

the form of the given template and exploit the flexibility in invariants by a simple

randomized mechanism. In our study, the proposed technique was able to find quantified

invariants for loops from the Linux source and other realistic programs. Our contribution is

a simpler technique than the previous works yet with a reasonable derivation power.

1. Introduction

Algorithmic learning has been applied to assumption generation in compositional reason-

ing (Cobleigh et al. 2003). In contrast to traditional techniques, the learning approach does

not derive assumptions in an off-line manner. It instead finds assumptions by interacting

with a model checker progressively. Since assumptions in compositional reasoning are

generally not unique, algorithmic learning can exploit the flexibility in assumptions to

attain preferable solutions. Applications of algorithmic learning in formal verification and

interface synthesis have also been reported (Cobleigh et al. 2003; Alur et al. 2005a,b;

Gupta et al. 2007; Chen et al. 2009).

Finding loop invariants follows a similar pattern. Invariants are often not unique.

Indeed, programmers derive invariants incrementally. They usually have their guesses

of invariants in mind, and gradually refine their guesses by further observing program
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Fig. 1. The learning-based framework.

behaviour. Since in practice there are many invariants for given pre- and post-conditions,

programmers have more freedom in deriving invariants. Yet traditional invariant genera-

tion techniques do not exploit the flexibility. They have a similar impediment to traditional

assumption generation.

This article integrates our experiences applying algorithmic learning to invariant

generation (Jung et al. 2010; Kong et al. 2010). We show that the four technologies

(algorithmic learning, decision procedures, predicate abstraction and simple templates)

can be arranged in concert to derive loop invariants in first-order (or, quantified) formulae.

The new combined technique is able to generate invariants for some Linux device drivers

and other realistic programs without any help from static or dynamic analyses.

Figure 1 shows our framework. In the figure, the CDNF algorithm is used to drive the

search of invariants. The CDNF algorithm is an exact learning algorithm for Boolean

formulae. It computes a representation of an unknown target formula by asking a teacher

two types of queries. A membership query asks if a valuation to Boolean variables satisfies

the unknown target; an equivalence query asks if a candidate formula is equivalent to the

target. Relation between target Boolean formula and first-order formulae is established

with predicate abstraction and simple templates. One remaining thing is to automate the

query resolution process to infer an invariant.

1.1. Example for quantifier-free invariants

{i = 0}
while i < 10 do b := nondet; if b then i := i + 1 end

{i = 10 ∧ b}

The while loop assigns a random truth value to the variable b in the beginning of its body.

It increases the variable i by 1 if b is true. Observe that the variable b must be true after the

while loop. We would like to find an invariant which proves the postcondition i = 10 ∧ b.

Heuristically, we choose i = 0 (precondition) and (i = 10 ∧ b) ∨ i < 10 (postcondition or

loop guard) as under- and over-approximations to invariants respectively. With the help

of a decision procedure, these invariant approximations are used to resolve queries made

by the learning algorithm. After resolving a number of queries, the learning algorithm

asks whether i �= 0 ∧ i < 10 ∧ ¬b should be included in the invariant. Note that the query
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is not stronger than the under-approximation, nor weaker than the over-approximation.

Hence decision procedures cannot resolve it due to lack of information. At this point, one

could apply static analysis and see that it is possible to have this state at the beginning

of the loop. Instead of employing static analysis, we simply give a random answer to the

learning algorithm. For this example, this information is crucial: the learning algorithm

will ask us to give a counterexample to its best guess i = 0 ∨ (i = 10 ∧ b) after it processes

the incorrect answer. Since the guess is not an invariant and flipping coins does not

generate a counterexample, we restart the learning process. If the query i �= 0∧ i < 10∧¬b

is answered correctly, the learning algorithm infers the invariant (i = 10 ∧ b) ∨ i < 10

with two more resolvable queries. On average, our algorithm takes about 2 iterations to

generate the invariant i < 10 ∨ (i = 10 ∧ b) in 0.056 seconds.

1.2. Example for first-order invariants

In order to illustrate how our algorithm works for first-order (quantified) invariants, we

briefly describe the learning process for the max example from Srivastava and Gulwani

(2009).

{m = 0 ∧ i = 0}
while i < n do if a[m] < a[i] then m = i fi; i = i + 1 end

{∀k.k < n ⇒ a[k] � a[m]}
The max example examines a[0] through a[n − 1] and finds the index of the maximal

element in the array. This simple loop is annotated with the precondition m = 0 ∧ i = 0

and the postcondition ∀k.0 � k < n ⇒ a[k] � a[m]. Under- and over-approximations of an

invariant are constructed using the loop guard κ = (i < n) and pre- and post-conditions.

1.2.1. Template and atomic propositions. A template and atomic propositions should

be provided manually by user. We provide a simple and general template ∀k.[]. The

postcondition is universally quantified with k and gives a hint to the form of an invariant.

By extracting from the annotated loop and adding the last two atomic propositions from

the user’s guidance, we use the following set of atomic propositions:

{i < n, m = 0, i = 0, a[m] < a[i], a[k] � a[m], k < n, k < i}.

1.2.2. Query resolution. In this example, 20 membership queries and 6 equivalence queries

are made by the learning algorithm on average. For simplicity, let us find an invariant

that is weaker than the precondition but stronger than the postcondition. We describe

how the teacher resolves some of these queries.

— Equivalence query: the learning algorithm starts with an equivalence query EQ(T),

namely whether ∀k.T can be an invariant. The teacher answers NO since ∀k.T is

weaker than the postcondition. Additionally, by employing a satisfiability modulo

theories (SMT) solver, the teacher returns a counterexample {m = 0, k = 1, n = 2, i =

2, a[0] = 0, a[1] = 1}, under which ∀k.T evaluates to true, whereas the postcondition

evaluates to false.
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— Membership query: after a few equivalence queries, a membership query asks whether∧
{i � n, m = 0, i = 0, k � n, a[k] � a[m], a[m] � a[i]} is a part of an invariant.

The teacher replies YES since the query is included in the precondition and therefore

should also be included in an invariant.

— Membership query: the membership query MEM (
∧

{i < n, m = 0, i �= 0, k <

n, a[k] > a[m], k < i, a[m] � a[i]}) is not resolvable because the template is

not well formed (Definition 6.2) by the given membership query. In this case, the

teacher gives a random answer (YES or NO). Interestingly, each answer leads to

a different invariant for this query. If the answer is YES , we find an invariant

∀k.(i < n ∧ k � i) ∨ (a[k] � a[m]) ∨ (k � n); if the answer is NO , we find another

invariant ∀k.(i < n ∧ k � i) ∨ (a[k] � a[m]) ∨ (k � n ∧ k � i). This shows how our

approach exploits a multitude of invariants for the annotated loop.

1.3. Contribution

— We prove that a simple combination of algorithmic learning, decision procedures,

predicate abstraction and templates can automatically infer first-order loop invariants.

The technique is as powerful as the previous approaches (Gulwani et al. 2008a;

Srivastava and Gulwani 2009) yet is much simpler.

— The technique works in realistic settings: the proposed technique can find invariants

for some Linux library, kernel, SPEC2000 benchmarks and device driver sources, as

well as for the benchmark code used in the previous work (Srivastava and Gulwani

2009).

— The technique can be seen as a framework for invariant generation. Static analysers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal

to existing techniques.

— The technique needs a very simple template such as ‘∀k.[]’ or ‘∀k.∃i.[]’. Our algorithm

can generate any quantified invariants expressible by a fixed set of atomic propositions

in the form of the given template. Moreover, the correctness of generated invariants

is verified by an SMT solver.

— The technique’s future improvement is free. Since our algorithm uses the two key

technologies (exact learning algorithm and decision procedures) as black boxes, future

advances of these technologies will straightforwardly benefit our approach.

1.4. Organization

We organize this paper as follows. After preliminaries (Section 2), we present our problem

and solutions in Section 3. In Section 4, we review the exact learning algorithm introduced

in Bshouty (1995). Section 5 shows how to interact different domains. Section 6 gives the

details of our learning approach. We report experiments in Section 7. Section 8 discusses

our learning approach, and future work. Section 9 surveys related work. Section 10

concludes our work.
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2. The target language and notation

The syntax of statements in our simple imperative language is as follows.

Stmt


= nop | assume Prop | Stmt; Stmt | x := Exp | b := Prop | a[Exp] := Exp |

a[Exp] := nondet | x := nondet | b := nondet | switch Exp do |
if Prop then Stmt else Stmt | { Pred } while Prop do Stmt { Pred }

Exp


= n | x | a[Exp] | Exp + Exp | Exp − Exp

Prop


= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Pred


= Prop | ∀x.Pred | ∃x.Pred | Pred ∧ Pred | ¬Pred

The language has two basic types: Booleans and natural numbers. A term in Exp is

a natural number; a term in Prop is a quantifier-free formula and of Boolean type; a

term in Pred is a first-order formula. The keyword nondet is used for unknown values

from user’s input or complex structures (e.g., pointer operations, function calls, etc.). In

an annotated loop {δ} while κ do S {ε}, κ ∈ Prop is its guard, and δ, ε ∈ Pred are

its precondition and postcondition respectively. Quantifier-free formulae of the forms b,

π0 < π1 and π0 = π1 are called atomic propositions. If A is a set of atomic propositions,

then PropA and PredA denote the set of quantifier-free and first-order formulae generated

from A, respectively.

A Boolean formula Bool is a restricted propositional formula constructed from truth

values and Boolean variables.

Bool


= F | b | ¬Bool | Bool ∧ Bool

A template t[] ∈ τ is a finite sequence of quantifiers followed by a hole to be filled with

a quantifier-free formula in PropA.

τ


= [] | ∀I.τ | ∃I.τ.

Let θ ∈ PropA be a quantifier-free formula. We write t[θ] to denote the first-order formula

obtained by replacing the hole in t[] with θ. Observe that any first-order formula can be

transformed into the prenex normal form; it can be expressed in the form of a proper

template.

A precondition Pre(ρ, S) for ρ ∈ Pred with respect to a statement S is a first-order

formula that guarantees ρ after the execution of the statement S .

Pre(ρ, nop) = ρ

Pre(ρ, assume θ) = θ ⇒ ρ

Pre(ρ, S0; S1) = Pre(Pre(ρ, S1), S0)

Pre(ρ, x := π) =

{
∀x.ρ if π = nondet

ρ[x �→ π] otherwise

Pre(ρ, b := π) =

{
∀b.ρ if π = nondet

ρ[b �→ π] otherwise
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Pre(ρ, a[e]:=π) =

⎧⎪⎨
⎪⎩

∀i.(i �= e ⇒ ρ′) ∧ (i = e ⇒ ρ′[a[e] �→ π])

if ρ = ∀i.ρ′ and ρ′ contains a[i]

ρ[a[e] �→ π] otherwise

Pre(ρ, if ρ then S0 else S1) = (ρ ⇒ Pre(ρ, S0)) ∧ (¬ρ ⇒ Pre(ρ, S1))

Pre(ρ, switch π case πi: Si) =
∧
i

(π = πi ⇒ Pre(ρ, Si))

Pre(ρ, {δ} while κ do S {ε}) =

{
δ if ε implies ρ

F otherwise

A valuation ν is an assignment of natural numbers to integer variables and truth values

to Boolean variables. If A is a set of atomic propositions and Var(A) is the set of variables

occurred in A, ValVar(A) denotes the set of valuations for Var(A). A valuation ν is a model

of a first-order formula ρ (written ν |= ρ) if ρ evaluates to T under ν. Let B be a set

of Boolean variables. We write BoolB for the class of Boolean formulae over Boolean

variables B. A Boolean valuation μ is an assignment of truth values to Boolean variables.

The set of Boolean valuations for B is denoted by ValB . A Boolean valuation μ is a

Boolean model of the Boolean formula β (written μ |= β) if β evaluates to T under μ.

Given a first-order formula ρ, an SMT solver (Dutetre and de Moura 2006; Kroening

and Strichman 2008) returns a model of ν if it exists. In general, an SMT solver is

incomplete over quantified formulae and may return a potential model (written SMT (ρ)
!→

ν). It returns UNSAT (written SMT (ρ) → UNSAT ) if the solver proves the formula

unsatisfiable. Note that an SMT solver can only err when it returns a (potential) model.

If UNSAT is returned, the input formula is certainly unsatisfiable.

3. Problems and solutions

Given an annotated loop and a template, we apply algorithmic learning to find an

invariant in the form of the given template. We deploy the CDNF algorithm to drive the

search of invariants. Since the learning algorithm assumes a teacher to answer queries, it

remains to mechanize the query resolution process (Figure 1). Let t[] be the given template

and t[θ] an invariant. We will devise a teacher to guide the CDNF algorithm to infer t[θ],

a first-order invariant.

To achieve this goal, we need to address two problems. First, the CDNF algorithm is

a learning algorithm for Boolean formulae, not quantifier-free nor quantified formulae.

Second, the CDNF algorithm assumes a teacher who knows the target t[θ] in its learning

model. However, an invariant of the given annotated loop is yet to be computed and hence

unknown to us. We need to devise a teacher without assuming any particular invariant

t[θ].

For the first problem, we adopt predicate abstraction to associate Boolean formulae

with quantified formulae. Recall that the formula θ in the invariant t[θ] is quantifier-free.

Let α be an abstraction function from quantifier-free to Boolean formulae. Then λ = α(θ)

is a Boolean formula and serves as the target function to be inferred by the CDNF

algorithm.
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For the second problem, we need to design algorithms to resolve queries about the

Boolean formula λ without knowing t[θ]. This is achieved by exploiting the information

derived from annotations and by making a few random guesses. Recall that any invariant

must be weaker than the strongest under-approximation and stronger than the weakest

over-approximation. Using an SMT solver, queries can be resolved by comparing with

these invariant approximations. For queries unresolvable through approximations, we

simply give random answers.

Our solution to the quantified invariant generation problem for annotated loops is in

fact very general. It only requires users to provide a sequence of quantifiers and a fixed set

of atomic propositions. With a number of coin tossing, our technique can infer arbitrary

quantified invariants representable by the user inputs. This suggests that the algorithmic

learning approach to invariant generation has great potential in invariant generation

problems.

4. The CDNF algorithm

In Bshouty (1995), an exact learning algorithm for Boolean formulae over a finite set

B of Boolean variables is introduced. The CDNF algorithm generates a conjunction of

formulae in disjunctive normal form equivalent to the unknown Boolean formula λ. It

assumes a teacher to answer the following queries:

1. Membership queries. Let μ be a Boolean valuation for B. The membership query

MEM (μ) asks if μ is a model of the unknown Boolean formula λ. If μ |= λ, the

teacher answers YES (denoted by MEM (μ) → YES ). Otherwise, the teacher answers

NO (denoted by MEM (μ) → NO).

2. Equivalence queries. Let β ∈ BoolB . The equivalence query EQ(β) asks if β is equivalent

to the unknown Boolean formula λ. If so, the teacher answers YES (denoted by

EQ(β) → YES ). Otherwise, the teacher returns a Boolean valuation μ for B such that

μ |= β ⊕ λ as a counterexample (denoted by EQ(β) → μ).

Let μ and a be Boolean valuations for B. The Boolean valuation μ ⊕ a is defined by

(μ ⊕ a)(bi) = μ(bi) ⊕ a(bi) for bi ∈ B. For any Boolean formula β, β[B �→ B ⊕ a] is the

Boolean formula obtained from β by replacing bi ∈ B with ¬bi if a(bi) = T. For a set S

of Boolean valuations for B, define

MDNF (μ) =
∧

μ(bi)=T

bi and MDNF (S) =
∨
μ∈S

MDNF (μ).

For the degenerate cases, MDNF (μ) = T when μ ≡ F and MDNF (�) = F. Algorithm 1 shows

the CDNF algorithm (Bshouty 1995). In the algorithm, the step ‘walk from μ towards a

while keeping μ |= λ’ takes two Boolean valuations μ and a. It flips the assignments in μ

different from those of a and maintains μ |= λ. Algorithm 2 implements the walking step

by membership queries.

Intuitively, the CDNF algorithm computes the conjunction of approximations to the

unknown Boolean formula. In Algorithm 1, Hi records the approximation generated from

the set Si of Boolean valuations with respect to the Boolean valuation ai. The algorithm

checks if the conjunction of approximations Hi’s is the unknown Boolean formula (line 5).
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(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)

Input: A teacher answers membership and equivalence queries for an unknown

Boolean formula λ

Output: A Boolean formula equivalent to λ

1 t := 0;

2 if EQ(T) → YES then return T;

3 let μ be such that EQ(T) → μ;

4 t := t + 1; (Ht, St, at) := (F,�, μ);

5 if EQ(
t∧

i=1

Hi) → YES then return
t∧

i=1

Hi;

6 let μ be such that EQ(
t∧

i=1

Hi) → μ;

7 I := {i : μ �|= Hi};
8 if I = � then goto 4;

9 foreach i ∈ I do

10 μi := μ;

11 walk from μi towards ai while keeping μi |= λ;

12 Si := Si ∪ {μi ⊕ ai};
13 end

14 Hi := MDNF (Si)[B �→ B ⊕ ai] for i = 1, . . . , t;

15 goto 5;

Algorithm 1: The CDNF algorithm.

(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)

Input: valuations μ and a for B

Output: a model μ of λ by walking towards a

1 i := 1;

2 while i � m do

3 if μ(bi) �= a(bi) then

4 μ(bi) := ¬μ(bi);

5 if MEM (μ) → YES then i := 0 else μ(bi) := ¬μ(bi);

6 end

7 i := i + 1;

8 end

9 return μ

Algorithm 2: Walking towards a.
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Fig. 2. The domains PredA, PropA and BoolB(A).

If it is, we are done. Otherwise, the algorithm tries to refine Hi by expanding Si. If none

of Hi’s can be refined (line 8), another approximation is added (line 4). The algorithm

reiterates after refining the approximations Hi’s (line 15). Let λ be a Boolean formula,

|λ|DNF and |λ|CNF denote the minimum sizes of λ in disjunctive and conjunctive normal

forms respectively. The CDNF algorithm learns any Boolean formula λ with a polynomial

number of queries in |λ|DNF , |λ|CNF , and the number of Boolean variables (Bshouty 1995).

Appendix A gives a sample run of the CDNF algorithm.

5. Predicate abstraction with a template

We begin with the association between Boolean formulae and first-order formulae in the

form of a given template. Let A be a set of atomic propositions and B(A)


= {bp : p ∈ A}

the set of corresponding Boolean variables. Figure 2 shows the abstraction used in our

algorithm. The left box represents the class PredA of first-order formulae generated from

A. The middle box corresponds to the class PropA of quantifier-free formulae generated

from A. Since we are looking for quantified invariants in the form of the template t[]

(if we are looking for quantifier-free invariants the identity function is enough for the

template), PropA is in fact the essence of generated quantified invariants. The right box

contains the class BoolB(A) of Boolean formulae over the Boolean variables B(A). The

CDNF algorithm infers a target Boolean formula by posing queries in this domain.

The pair (γ, α) gives the correspondence between the domains BoolB(A) and PropA. Let

us call a Boolean formula β ∈ BoolB(A) a canonical monomial if it is a conjunction of

literals, where each variable appears exactly once. Define

γ : BoolB(A) → PropA α : PropA → BoolB(A)

γ(β) = β[bp �→ p]

α(θ) =
∨

{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

Concretization function γ(β) ∈ PropA simply replaces Boolean variables in B(A) by

corresponding atomic propositions in A. On the other hand, α(θ) ∈ BoolB(A) is the

abstraction for any quantifier-free formula θ ∈ PropA.

The following lemmas are useful in proving our technical results:

Lemma 5.1. Let A be a set of atomic propositions, θ, ρ ∈ PropA. Then

θ ⇒ ρ implies α(θ) ⇒ α(ρ).
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Proof. Let α(θ) =
∨
i

βi where βi is a canonical monomial and θ ∧ γ(βi) is satisfiable. By

Lemma 5.2, γ(βi) ⇒ θ. Hence γ(βi) ⇒ ρ and ρ ∧ γ(βi) is satisfiable.

Lemma 5.2. Let A be a set of atomic propositions, θ ∈ PropA, and β a canonical monomial

in BoolB(A). Then θ ∧ γ(β) is satisfiable if and only if γ(β) ⇒ θ.

Proof. Let θ′ =
∨
i

θi ∈ PropA be a propositional formula in disjunctive normal form

such that θ′ is equivalent to θ.

Assume θ ∧ γ(β) is satisfiable. Then θ′ ∧ γ(β) is satisfiable and θi ∧ γ(β) is satisfiable

for some i. Since β is canonical, each atomic propositions in A appears in γ(β). Hence

θi ∧ γ(β) is satisfiable implies γ(β) → θi. We have γ(β) ⇒ θ.

The other direction is trivial.

Recall that a teacher for the CDNF algorithm answers queries in the abstract domain,

and an SMT solver computes models in the concrete domain. In order to let an SMT

solver play the role of a teacher, more transformations (α∗, β∗) are needed.

A Boolean valuation μ ∈ ValB(A) is associated with a quantifier-free formula γ∗(μ) and

a first-order formula t[γ∗(μ)]. A valuation ν ∈ Var(A) moreover induces a natural Boolean

valuation α∗(ν) ∈ ValB(A).

γ∗(μ) =
∧
p∈A

{p : μ(bp) = T} ∧
∧
p∈A

{¬p : μ(bp) = F}

α∗(ν)(bp) = ν |= p

Lemma 5.3. Let A be a set of atomic propositions and θ ∈ PropA. Then θ ↔ γ(α(θ)).

Proof. Let θ′ =
∧
i

θi be a quantified-free formula in disjunctive normal form such that

θ′ ↔ θ. Let μ ∈ BoolB(A). Define

χ(μ) =
∧

({bp : μ(bp) = T} ∪ {¬bp : μ(bp) = F}).

Note that χ(μ) is a canonical monomial and μ |= χ(μ).

Assume ν |= θ. Then ν |= θi for some i. Consider the canonical monomial χ(α∗(ν)). Note

that ν |= γ(χ(α∗(ν))). Thus χ(α∗(ν)) is a disjunct in α(θ). We have ν |= γ(α(θ)).

Conversely, assume ν |= γ(α(θ)). Then ν |= γ(β) for some canonical monomial β and

γ(β) ∧ θ is satisfiable. By Lemma 5.2, γ(β) → θ. Hence ν |= θ.

The following lemmas characterize relations among these functions:

Lemma 5.4 (Jung et al. 2010). Let A be a set of atomic propositions, θ ∈ PropA,

β ∈ BoolB(A), and ν a valuation for Var(A). Then,

1. ν |= θ if and only if α∗(ν) |= α(θ); and

2. ν |= γ(β) if and only if α∗(ν) |= β.

Proof.

1. Assume ν |= θ. χ(α∗(ν)) is a canonical monomial. Observe that ν |= γ(χ(α∗(ν))).

Hence γ(χ(α∗(ν))) ∧ θ is satisfiable. By the definition of α(θ) and χ(α∗(ν)) is canonical,

χ(α∗(ν)) → α(θ). α∗(ν) |= α(θ) follows from α∗(ν) |= χ(α∗(ν)).
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Conversely, assume α∗(ν) |= α(θ). Then α∗(ν) |= β where β is a canonical monomial

and γ(β) ∧ θ is satisfiable. By the definition of α∗(ν), ν |= γ(β). Moreover, γ(β) → θ by

Lemma 5.2. Hence ν |= θ.

2. Assume ν |= γ(β). By Lemma 5.4(1), α∗(ν) |= α(γ(β)). Note that β = α(γ(β)). Thus

α∗(ν) |= β.

Lemma 5.5 (Jung et al. 2010). Let A be a set of atomic propositions, θ ∈ PropA, and μ a

Boolean valuation for B(A). Then γ∗(μ) ⇒ θ if and only if μ |= α(θ).

Proof. Assume γ∗(μ) → θ. By Lemma 5.1, α(γ∗(μ)) → α(θ). Note that γ∗(μ) = γ(χ(μ)).

By Lemma 5.3, χ(μ) → α(θ). Since μ |= χ(μ), we have μ |= α(θ).

Conversely, assume μ |= α(θ). We have χ(μ) → α(θ) by the definition of χ(μ). Let

ν |= γ∗(μ), that is, ν |= γ(χ(μ)). By Lemma 5.4(2), α∗(ν) |= χ(μ). Since χ(μ) → α(θ),

α∗(ν) |= α(θ). By Lemma 5.4(1), ν |= θ. Therefore, γ∗(μ) → θ.

6. Learning invariants

Consider the while statement

{δ} while κ do S {ε}.

The propositional formula κ is called the guard of the while statement; the statement S

is called the body of the while statement. The annotation is intended to denote that if

the precondition δ holds, then the postcondition ε must hold after the execution of the

while statement. The invariant generation problem is to compute an invariant to justify

the pre- and post-conditions.

Definition 6.1. Let {δ} while κ do S {ε} be a while statement. An invariant ι is a

propositional formula such that

(a)δ ⇒ ι (b)κ ∧ ι ⇒ Pre(ι, S) (c)¬κ ∧ ι ⇒ ε.

An invariant allows us to prove that the while statement fulfills the annotated

requirements. Observe that Definition 6.1 (c) is equivalent to ι ⇒ ε ∨ κ. Along with

Definition 6.1 (a), we see that any invariant must be weaker than δ but stronger than

ε∨κ. Hence δ and ε∨κ are called the strongest and weakest approximations to invariants

for {δ} while κ do S {ε} respectively.

Our goal is to apply the CDNF algorithm (Algorithm 1) to ‘learn’ an invariant for

an annotated while statement. To achieve this goal, we first lift the invariant generation

problem to the abstract domain by predicate abstraction and templates. Moreover, we

need to devise a mechanism to answer queries from the learning algorithm in the abstract

domain. In the following, we show how to answer queries by an SMT solver and invariant

approximations.

We present our query resolution algorithms, followed by the invariant generation

algorithm. The query resolution algorithms exploit the information derived from the
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/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: β ∈ BoolB(A)

Output: YES , or a counterexample ν s.t. α∗(ν) |= β ⊕ λ

1 ρ := t[γ(β)];

2 if SMT (ι ∧ ¬ρ) → UNSAT and SMT (ρ ∧ ¬ι) → UNSAT and

3 SMT (κ ∧ ρ ∧ ¬Pre(ρ, S)) → UNSAT then return YES ;

4 if SMT (ι ∧ ¬ρ)
!→ ν then return α∗(ν);

5 if SMT (ρ ∧ ¬ι)
!→ ν then return α∗(ν);

6 if SMT (ρ ∧ ¬ι)
!→ ν0 or SMT (ι ∧ ¬ρ)

!→ ν1 then

7 return α∗(ν0) or α∗(ν1) randomly;

Algorithm 3: Resolving equivalence queries.

ιρ

ν

ρ

ν

ι ι

ι

ρ

ν0 ν1

(a) (b) (c)

Fig. 3. Counterexamples in equivalence query resolution (c.f. Algorithm 3): (a) a counterexample

inside the under-approximation ι but outside the candidate ρ (line 4); (b) a counterexample inside

the candidate ρ but outside the over-approximation ι (line 5); (c) a random counterexample ν0 (or

ν1) inside the candidate ρ (or over-approximation ι) but out of the under-approximation ι (or

candidate ρ), respectively (line 6 and 7).

given annotated loop {δ} while κ do S {ε}. Let ι, ι ∈ Pred. We say ι is an under-

approximation to invariants if δ ⇒ ι and ι ⇒ ι for some invariant ι of the annotated

loop. Similarly, ι is an over-approximation to invariants if ι ⇒ ε ∨ κ and ι ⇒ ι for some

invariant ι. The strongest under-approximation δ is an under-approximation; the weakest

over-approximation ε ∨ κ is an over-approximation. Better invariant approximations can

be obtained by other techniques; they can be used in our query resolution algorithms.

6.1. Equivalence queries

An equivalence query EQ(β) with β ∈ BoolB(A) asks if β is equivalent to the unknown

target λ. Algorithm 3 gives our equivalence resolution algorithm. It first checks if ρ =

t[γ(β)] is indeed an invariant for the annotated loop by verifying ι ⇒ ρ, ρ ⇒ ι and

κ ∧ ρ ⇒ Pre(ρ, S) with an SMT solver (line 2 and 3). If so, the CDNF algorithm has

generated an invariant and our teacher acknowledges that the target has been found.

If the candidate ρ is not an invariant, we need to provide a counterexample. Figure 3

describes the process of counterexample discovery. The algorithm first tries to generate

a counterexample inside of under-approximation (a), or outside of over-approximation
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(b). If it fails to find such counterexamples, the algorithm tries to return a valuation

distinguishing ρ from invariant approximations as a random answer (c).

Recall that SMT solvers may err when a potential model is returned (line 4–6). If it

returns an incorrect model, our equivalence resolution algorithm will give an incorrect

answer to the learning algorithm. Incorrect answers effectively guide the CDNF algorithm

to different quantified invariants. Note also that random answers do not yield incorrect

results because the equivalence query resolution algorithm uses an SMT solver to verify

that the found first-order formula is indeed an invariant.

6.2. Membership queries

/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: a valuation μ for B(A)

Output: YES or NO

1 if SMT (γ∗(μ)) → UNSAT then return NO;

2 ρ := t[γ∗(μ)];

3 if SMT (ρ ∧ ¬ι)
!→ ν then return NO;

4 if SMT (ρ ∧ ¬ι) → UNSAT and isWellFormed (t[], γ∗(μ)) then return YES ;

5 return YES or NO randomly

Algorithm 4: Resolving membership queries.

In a membership query MEM (μ), our membership query resolution algorithm (Al-

gorithm 4) should answer whether μ |= λ. Note that any relation between atomic

propositions A is lost in the abstract domain BoolB(A). A valuation may not correspond to

a consistent quantifier-free formula (for example, bx=0 = bx>0 = T). If the valuation

μ ∈ ValB(A) corresponds to an inconsistent quantifier-free formula (that is, γ∗(μ) is

unsatisfiable), we simply answer NO to the membership query (line 1). Otherwise, we

compare ρ = t[γ∗(μ)] with invariant approximations. Figure 4 shows the scenarios when

queries can be answered by comparing ρ with invariant approximations. In case 4(a),

ρ ⇒ ι does not hold and we would like to show μ �|= λ. This requires the following lemma:

Lemma 6.1. Let t[] ∈ τ be a template. For any θ1, θ2 ∈ PropA, θ1 ⇒ θ2 implies t[θ1] ⇒
t[θ2].

By Lemma 6.1 and t[γ∗(μ)] �⇒ ι (line 3), we have γ∗(μ) �⇒ γ(λ). Hence μ �|= λ (Lemma 5.5).

For case 4(b), we have ρ ⇒ ι and would like to show μ |= λ. However, the implication

t[θ1] ⇒ t[θ2] carries little information about the relation between θ1 and θ2. Consider

t[] ≡ ∀i.[], θ1 ≡ i < 10, and θ2 ≡ i < 1. We have ∀i.i < 10 ⇒ ∀i.i < 1 but i < 10 �⇒ i < 1.

In order to infer more information from ρ ⇒ ι, we introduce a subclass of templates.

Definition 6.2. Let θ ∈ PropA be a quantifier-free formula over A. A well-formed template

t[] with respect to θ is defined as follows.
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ρ

ν

ι
ι

ρ

(a) (b)

Fig. 4. Resolving a membership query with invariant approximations (c.f. Algorithm 4): (a) the

guess ρ is not included in the over-approximation ι (line 3); (b) the guess ρ is included in the

under-approximation ι (line 4).

— [] is well formed with respect to θ;

— ∀I.t′[] is well formed with respect to θ if t′[] is well formed with respect to θ and

t′[θ] ⇒ ∀I.t′[θ];
— ∃I.t′[] is well formed with respect to θ if t′[] is well formed with respect to θ and

¬t′[θ].

Using an SMT solver, it is straightforward to check if a template t[] is well formed

with respect to a quantifier-free formula θ by a simple recursion. For instance, when the

template is ∀I.t′[], it suffices to check SMT (t′[θ] ∧ ∃I.¬t′[θ]) → UNSAT and t′[] is well

formed with respect to θ. More importantly, well-formed templates allow us to infer the

relation between hole-filling quantifier-free formulae.

Lemma 6.2. Let A be a set of atomic propositions, θ1 ∈ PropA, and t[] ∈ τ a well-formed

template with respect to θ1. For any θ2 ∈ PropA, t[θ1] ⇒ t[θ2] implies θ1 ⇒ θ2.

By Lemma 6.2 and 5.5, we have μ |= λ from ρ ⇒ ι (line 4) and the well formedness

of t[] with respect to γ∗(μ). As in the case of the equivalence query resolution algorithm,

incorrect models from SMT solvers (line 3) simply guide the CDNF algorithm to other

quantified invariants. Note that Algorithm 4 also gives a random answer if a membership

query cannot be resolved through invariant approximations. The correctness of generated

invariants is ensured by SMT solvers in the equivalence query resolution algorithm

(Algorithm 3).

6.3. Main loop

Algorithm 5 shows our invariant generation algorithm. It invokes the CDNF algorithm in

the main loop. Whenever a query is made, our algorithm uses one of the query resolution

algorithms (Algorithm 3 or 4) to give an answer. In both query resolution algorithms,

we use the strongest under-approximation δ and the weakest over-approximation κ ∨
ε to resolve queries from the learning algorithm. Observe that the equivalence and

membership query resolution algorithms give random answers independently. They may

send inconsistent answers to the CDNF algorithm. When inconsistencies arise, the main

loop forces the learning algorithm to restart (line 6). If the CDNF algorithm infers

a Boolean formula λ ∈ BoolB(A), the first-order formula t[γ(λ)] is an invariant for the

annotated loop in the form of the template t[].
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Input: {δ} while κ do S {ε} : an annotated loop; t[] : a template

Output: an invariant in the form of t[]

1 ι := δ;

2 ι := κ ∨ ε;

3 repeat

4 try

5 λ := call CDNF with query resolution algorithms (Algorithm 3 and 4)

6 when inconsistent → continue

7 until λ is defined ;

8 return t[γ(λ)];

Algorithm 5: Main loop.

In contrast to traditional deterministic algorithms, our algorithm gives random answers

in both query resolution algorithms. Due to the undecidability of first-order theories

in SMT solvers, verifying quantified invariants and comparing invariant approximations

are not solvable in general. If we committed to a particular solution deterministically,

we would be forced to address computability issues. Random answers simply divert the

learning algorithm to search for other quantified invariants and try the limit of SMT

solvers. They could not be effective if there were very few solutions. Our thesis is that

there are sufficiently many invariants for any given annotated loop in practice. As long

as our random answers are consistent with one verifiable invariant, the CDNF algorithm

is guaranteed to generate an invariant for us.

Similar to other invariant generation techniques based on predicate abstraction, our

algorithm is not guaranteed to generate invariants. If no invariant can be expressed by

the template with a given set of atomic propositions, our algorithm will not terminate.

Moreover, if no invariant in the form of the given template can be verified by SMT

solvers, our algorithm does not terminate either. On the other hand, if there is one

verifiable invariant in the form of the given template, there is a sequence of random

answers that leads to the verifiable invariant. If sufficiently many verifiable invariants are

expressible in the form of the template, random answers almost surely guide the learning

algorithm to one of them. Since our algorithmic learning approach with random answers

does not commit to any particular invariant, it can be more flexible and hence effective

than traditional deterministic techniques in practice.

7. Experiments

We have implemented a prototype in OCaml†. In our implementation, we use Yices as

the SMT solver to resolve queries (Algorithm 4 and 3).

Table 1 shows experimental results. For quantifier-free invariant generation, we chose

five while statements from SPEC2000 benchmarks and Linux device drivers. Among

† Available at http://ropas.snu.ac.kr/aplas10/qinv-learn-released.tar.gz

https://doi.org/10.1017/S0960129513000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000078


Inferring invariants via algorithmic learning 907

Table 1. Experimental results.

case Template AP MEM EQ MEMR EQR ITER Time (s) σTime(s)

vpr [] 5 18.8 7.8 71% 22% 1.6 0.05 0.03

ide ide tape [] 5 22.2 12.8 43% 38% 2.5 0.07 0.03

ide wait ireason [] 5 3,103 1,804 38% 26% 187 1.10 1.07

usb message [] 10 1,260 198 29% 25% 20 2.29 1.90

parser [] 15 809 139 25% 5% 4 2.96 2.05

max ∀k.[] 7 5,968 1,742 65% 26% 269 5.71 7.01

selection sort ∀k1.∃k2.[] 6 9,630 5,832 100% 4% 1,672 9.59 11.03

devres ∀k.[] 7 2,084 1,214 91% 21% 310 0.92 0.66

rm pkey ∀k.[] 8 2,204 919 67% 20% 107 2.52 1.62

tracepoint1 ∃k.[] 4 246 195 61% 25% 31 0.26 0.15

tracepoint2 ∀k1.∃k2.[] 7 33,963 13,063 69% 5% 2,088 157.55 230.40

AP : # of atomic propositions, MEM : # of membership queries, EQ : # of equivalence queries,

MEMR : fraction of randomly resolved membership queries to MEM , EQR fraction of randomly

resolved equivalence queries to EQ, ITER : # of the CDNF algorithm invocations, and σTime :

standard deviation of the running time.

five while statements, the cases parser and vpr are extracted from PARSER and VPR

in SPEC2000 benchmarks respectively. The other three cases are extracted from Linux

2.6.28 device drivers: both ide-ide-tape and ide-wait-ireason are from IDE driver;

usb-message is from USB driver. For quantified invariant generation, we took two cases

from the ten benchmarks in Srivastava and Gulwani (2009) with the same annotation (max

and selection sort). We also chose four for statements from Linux 2.6.28. Benchmark

devres is from library, tracepoint1 and tracepoint2 are from kernel, and rm pkey is

from InfiniBand device driver. We translated them into our language and annotated pre

and post conditions manually. Sets of atomic proposition are manually chosen from the

program texts.

For each case, we report the number of atomic propositions (AP ), the number of

membership queries (MEM ), the number of equivalence queries (EQ), the percentages

of randomly resolved membership queries (MEMR) and equivalence queries (EQR), the

number of the CDNF algorithm invocations (ITER), the execution time and standard

deviation of the running time (σTime). The data are the average of 500 runs and collected

on a 2.6GHz Intel E5300 Duo Core with 3GB memory running Linux 2.6.28.

7.1. Quantifier-free invariants

For inferring quantifier-free invariants specific templates are not required. We use identity

template [].

7.1.1. ide-ide-tape from Linux IDE driver. Figure 5 is a while statement extracted

from Linux IDE driver.It copies data of size n from tape records. The variable count

contains the size of the data to be copied from the current record (bh b size and
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{ ret = 0 ∧ bh b count � bh b size }
1 while n > 0 do

2 if (bh b size − bh b count) < n then count := bh b size − bh b count

3 else count := n;

4 b := nondet;

5 if b then ret := 1;

6 n := n − count; bh b count := bh b count + count;

7 if bh b count = bh b size then

8 bh b size := nondet; bh b count := nondet; bh b count := 0;

9 end

{ n = 0 ∧ bh b count � bh b size }

Fig. 5. A sample loop in Linux IDE driver.

bh b count). If the current tape record runs out of data, more data are copied from the

next record. The flexibility in invariants can be witnessed in the following run. After

successfully resolving 3 equivalence and 7 membership queries, the CDNF algorithm

makes the following membership query unresolvable by the invariant approximations:

ρ︷ ︸︸ ︷
n > 0 ∧ (bh b size − bh b count) < n ∧ ret �= 0 ∧bh b count = bh b size.

Answering NO to this query leads to the following unresolvable membership query after

successfully resolving two more membership query:

ρ ∧ bh b count �= bh b size ∧ bh b count � bh b size.

We proceed with a random answer YES . After successfully resolving one more membership

queries, we reach the following unresolvable membership query:

ρ ∧ bh b count �= bh b size ∧ bh b count > bh b size.

For this query, both answers lead to invariants. Answering YES yields the following

invariant:

n �= 0 ∨ (bh b size − bh b count) � n.

Answering NO yields the following invariant:

(bh b count � bh b size ∧ n �= 0) ∨ (bh b size − bh b count) � n.

Note that they are two different invariants. The equivalence query resolution algorithm

(Algorithm 3) ensures that both fulfill the conditions in Definition 6.1.

7.1.2. parser from VPR in SPEC2000 benchmarks. Figure 6 shows a sample while

statement from the parser program in SPEC2000 benchmark.In the while body, there

are three locations where give up or success is set to T. Thus one of these conditions

in the if statements must hold (the first conjunct of postcondition). Variable valid may

get an arbitrary value if linkages is not zero. But it cannot be greater than linkages by

the assume statement (the second conjunct of postcondition). The variable linkages gets
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{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do

2 entered phase := F;

3 if ¬phase then

4 if cutoff = 0 then cutoff := 1;

5 else if cutoff = 1 ∧ maxcost > 1 then cutoff := maxcost;

6 else phase := T; entered phase := T; cutoff := 1000;

7 if cutoff = maxcost ∧ ¬search then give up := T;

8 else

9 count := count + 1;

10 if count > words then give up := T;

11 if entered phase then count := 1;

12 linkages := nondet;

13 if linkages > 5000 then linkages := 5000;

14 canonical := 0; valid := 0;

15 if linkages �= 0 then

16 valid := nondet; assume 0 � valid ∧ valid � linkages;

17 canonical := linkages;

18 if valid > 0 then success := T;

19 end

{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid � linkages ∧ canonical = linkages ∧ linkages � 5000 }

Fig. 6. A sample loop in SPEC2000 benchmark PARSER.

an arbitrary value near the end of the while body. But it cannot be greater than 5000

(the fourth conjunct), and always equal to the variable canonical (the third conjunct of

postcondition). Despite the complexity of the postcondition and the while body, our

approach is able to compute an invariant in 4 iterations on average.

One of the found invariants is the following:

success ⇒ (valid � linkages ∧ linkages � 5000 ∧ canonical = linkages)
∧

success ⇒ (¬search ∨ count > words ∨ valid �= 0)
∧

success ⇒ (count > words ∨ cutoff = maxcost∨
(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))

∧
give up ⇒ ((valid = 0 ∧ linkages = 0 ∧ canonical = linkages)∨

(canonical �= 0 ∧ valid � linkages ∧ linkages � 5000 ∧ canonical = linkages))
∧

give up ⇒ (cutoff = maxcost ∨ count > words∨
(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))

∧
give up ⇒ (¬search ∨ count > words ∨ valid �= 0)

This invariant describes the conditions when success or give up are true. For instance,

it specifies that valid � linkages ∧ linkages � 5000 ∧ canonical = linkages should hold if

success is true. In Figure 6, we see that success is assigned to T at line 18 when valid is

positive. Yet valid is set to 0 at line 14. Hence line 16 and 17 must be executed. Thus,
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the first (valid � linkages) and the third (canonical = linkages) conjuncts hold. Moreover,

line 13 ensures that the second conjunct (linkages � 5000) holds as well.

7.2. Quantified invariants

For generating quantified invariants, user should carefully provide templates to our

framework. In practice, the quantified variables in postconditions can give hints to users.

In our experiments all templates are able to be extracted from postconditions. We find

that simple templates, such as ∀k1.∃k2.[], which only specify the quantified variables and

type of quantification are useful enough to derive quantified invariants in our experiments.

7.2.1. devres from Linux library. Figure 7(c) shows an annotated loop extracted from a

Linux library.In the postcondition, we assert that ret implies tbl [i] = 0, and every element

in the array tbl [] is not equal to addr otherwise. Using the set of atomic propositions

{tbl [k] = addr , i < n, i = n, k < i, tbl [i] = 0, ret} and the simple template ∀k.[], our

algorithm finds following quantified invariants in different runs:

∀k.(k < i ⇒ tbl [k] �= addr) ∧ (ret ⇒ tbl [i] = 0) and ∀k.(k < i) ⇒ tbl[k] �= addr.

Observe that our algorithm is able to infer an arbitrary quantifier-free formula (over a

fixed set of atomic propositions) to fill the hole in the given template. A simple template

such as ∀k.[] suffices to serve as a hint in our approach.

7.2.2. selection sort. Consider the selection sort algorithm (Srivastava and Gulwani

2009) in Figure 7(b). Let ′a[] denote the content of the array a[] before the algorithm

is executed. The postcondition states that the contents of array a[] come from its old

contents. In this test case, we apply our invariant generation algorithm to compute an

invariant to establish the postcondition of the outer loop. For computing the invariant of

the outer loop, we make use of the inner loop’s specification.

We use the following set of atomic propositions: {k1 � 0, k1 < i, k1 = i, k2 < n, k2 = n,

a[k1] = ′a[k2], i < n − 1, i = min}. Using the template ∀k1.∃k2.[], our algorithm infers

following invariants in different runs:

∀k1.(∃k2.[(k2 < n ∧ a[k1] = ′a[k2]) ∨ k1 � i]); and

∀k1.(∃k2.[(k1 � i ∨ min = i ∨ k2 < n) ∧ (k1 � i ∨ (min �= i ∧ a[k1] =′ a[k2]))]).

Note that all membership queries are resolved randomly due to the alternation of quanti-

fiers in array theory. Still a simple random walk suffices to find invariants in this example.

Moreover, templates allow us to infer not only universally quantified invariants but also

first-order invariants with alternating quantifications. Inferring arbitrary quantifier-free

formulae over a fixed set of atomic propositions again greatly simplifies the form of

templates used in this example.

7.2.3. rm pkey from Linux InfiniBand driver. Figure 7(a) is a while statement extracted

from Linux InfiniBand driver.The conjuncts in the postcondition represent (1) if the loop

terminates without break, all elements of pkeys are not equal to key (line 2); (2) if the loop
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(a) rm pkey

{ i = 0 ∧ key �= 0 ∧ ¬ret ∧ ¬break}
1 while(i < n ∧ ¬break ) do

2 if(pkeys[i] = key) then

3 pkeyrefs[i ]:=pkeyrefs[i ] − 1;

4 if(pkeyrefs[i ] = 0) then

5 pkeys[i ]:=0; ret:=true;

6 break :=true;

7 else i :=i + 1;

8 done

{(¬ret ∧ ¬break ) ⇒ (∀k.k < n ⇒ pkeys[k ] �= key)

∧(¬ret ∧ break ) ⇒ (pkeys[i ] = key ∧ pkeyrefs[i ] �= 0)

∧ ret ⇒ (pkeyrefs[i ] = 0 ∧ pkeys[i ] = 0) }

(c) devres

{ i = 0 ∧ ¬ret }
1 while i < n ∧ ¬ret do

2 if tbl [i] = addr then

3 tbl [i]:=0; ret:=true

4 else

5 i:=i + 1

6 end

{(¬ret ⇒ ∀k. k < n ⇒ tbl [k] �= addr)

∧(ret ⇒ tbl [i] = 0) }

(b) selection sort

{ i = 0 }
1 while i < n − 1 do

2 min:=i;

3 j :=i + 1;

4 while j < n do

5 if a[j] < a[min] then

6 min:=j;

7 j:=j + 1;

8 done

9 if i�=min then

10 tmp:=a[i];

11 a[i]:=a[min];

12 a[min]:=tmp;

13 i:=i + 1;

14 done

{(i � n − 1)

∧ (∀k1.k1 < n ⇒
(∃k2.k2 < n ∧ a[k1] = ′a[k2]))}

Fig. 7. Benchmark examples: (a) rm pkey from Linux InfiniBand driver, (b) selection sort and

(c) devres from Linux library.

terminates with break but ret is false, then pkeys[i] is equal to key (line 2) but pkeyrefs[i]

is not equal to zero (line 4); (3) if ret is true after the loop, then both pkeyrefs[i ] (line 4)

and pkeys[i ] (line 5) are equal to zero. From the postcondition, we guess that an invariant

can be universally quantified with k. Using the simple template ∀k.[] and the set of atomic

propositions {ret , break , i < n , k < i , pkeys[i ] = 0, pkeys[i ] = key , pkeyrefs[i ] = 0,

pkeyrefs[k] = key}, our algorithm finds following quantified invariants in different runs:

(∀k.(k < i) ⇒ pkeys[k ] �= key) ∧ (ret ⇒ pkeyrefs[i ] = 0 ∧ pkeys[i ] = 0)

∧ (¬ret ∧ break ⇒ pkeys[i ] = key ∧ pkeyrefs[i ] �= 0); and

(∀k.(¬ret ∨ ¬break ∨ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0)) ∧ (pkeys[k] �= key ∨ k � i)

∧(¬ret ∨ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0 ∧ i < n ∧ break ))

∧ (¬break ∨ pkeyrefs[i] �= 0 ∨ ret) ∧ (¬break ∨ pkeys[i] = key ∨ ret)).

In spite of undecidability of first-order theories in Yices and random answers, each

of the 500 runs in our experiments infers an invariant successfully. Moreover, several

quantified invariants are found in each case among 500 runs. This suggests that invariants

are abundant. Note that the templates in the test cases selection sort and tracepoint2

have alternating quantification. Satisfiability of alternating quantified formulae is in

general undecidable. That is why both cases have substantially more restarts than the
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others. Interestingly, our algorithm is able to generate a verifiable invariant in each run.

Our simple randomized mechanism proves to be effective even for most difficult cases.

8. Discussion and future work

The complexity of our technique depends on the distribution of invariants. It works

most effectively if invariants are abundant. The number of iterations depends on the

outcomes of coin tossing. The main loop may reiterate several times or not even terminate.

Our experiments suggest that there are sufficiently many invariants in practice. Our

technique always generates an invariant, even though it takes 2,088 iterations for the most

complicated case tracepoint2 on average.

Since plentiful of invariants are available, sometimes one of them seems to be generated

by merely coin tossing. In selection sort, simple over- and under-approximations

cannot help resolving membership queries. All membership queries are resolved randomly.

However, if we also randomly resolve equivalence queries then our technique does not

terminate. Invariant approximations are essential to our framework.

Atomic predicates are collected from program texts, pre and post conditions in

our experiments. Recently, automatic predicate generation technique is proposed (Jung

et al. 2011). However, this technique supports atomic predicates only for quantifier-free

invariants. Generating atomic predicates for templates is challenging because quantified

variables do not appear on the program text. Better invariant approximations (ι and ι)

computed by static analysis can be used in our framework. More precise approximations

of ι and ι will improve the performance by reducing the number of iterations via increasing

the number of resolvable queries. Also, a variety of techniques from static analysis or

loop invariant generation (Flanagan and Qadeer 2002; Gulwani et al. 2009; Srivastava

and Gulwani 2009; Gulwani et al. 2008b; Gupta and Rybalchenko 2009; Kovács and

Voronkov 2009; Lahiri et al. 2004; McMillan 2008) in particular can be integrated to

resolve queries in addition to one SMT solver with coin tossing. Such a set of multiple

teachers will increase the number of resolvable queries because it suffices to have just one

teacher to answer the query to proceed.

9. Related work

Existing impressive techniques for invariant generation can be adopted as the query

resolution components (teachers) in our algorithmic learning-based framework. Srivastava

and Gulwani (2009) devise three algorithms, two of them use fixed point computation and

the other uses a constraint based approach (Gulwani et al. 2009, 2008b) to derive quantified

invariants. Gupta and Rybalchenko (2009) present an efficient invariant generator. They

apply dynamic analysis to make invariant generation more efficient. Flanagan and Qadeer

use predicate abstraction to infer universally quantified loop invariants (Flanagan and

Qadeer 2002). Predicates over Skolem constants are used to handle unbounded arrays.

McMillan (2008) extends a paramodulation-based saturation prover to an interpolating

prover that is complete for universally quantified interpolants. He also solves the problem

of divergence in interpolated-based invariant generation. Completeness of our framework
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can be increased by more powerful decision procedures (Dutetre and de Moura 2006; Ge

and Moura 2009; Srivastava et al. 2009) and theorem provers (McMillan 2008; Bertot

and Castéran 2004; Nipkow et al. 2002).

In contrast to previous template-based approaches (Srivastava and Gulwani 2009;

Gulwani et al. 2008a), our template is more general as it allows arbitrary hole-filling

quantifier-free formulae. The templates in Srivastava and Gulwani (2009) can only be

filled with formulae over conjunctions of predicates from a given set. Any disjunction must

be explicitly specified as part of a template. In Gulwani et al. (2008a), the authors consider

invariants of the form E ∧
∧n

j=1 ∀Uj(Fj ⇒ ej), where E, Fj and ej must be quantifier free

finite conjunctions of atomic facts.

With respect to the analysis of properties of array contents, Halbwachs et al. (Halbwachs

and Péron 2008) handle programs which manipulate arrays by sequential traversal,

incrementing (or decrementing) their index at each iteration, and which access arrays

by simple expressions of the loop index. A loop property generation method for loops

iterating over multi-dimensional arrays is introduced in Henzinger et al. (2010). For

inferring range predicates, Jhala and McMillan (2007) described a framework that uses

infeasible counterexample paths. As a deficiency, the prover may find proofs refuting

short paths, but which do not generalize to longer paths. Due to this problem, this

approach (Jhala and McMillan 2007) fails to prove that an implementation of insertion

sort correctly sorts an array.

10. Conclusions

By combining algorithmic learning, decision procedures, predicate abstraction and tem-

plates, we present a technique for generating invariants. The new technique searches

for invariants in the given template form guided by query resolution algorithms. We

exploit the flexibility of algorithmic learning by deploying a randomized query resolution

algorithm. When there are sufficiently many invariants, random answers will not prevent

algorithmic learning from inferring verifiable invariants. Our experiments show that our

learning-based approach is able to infer non-trivial invariants with this näıve randomized

resolution for some loops extracted from Linux drivers.

Under- and over-approximations are presently derived from annotations provided by

users. They can in fact be obtained by other techniques such as static analysis. The

integration of various refinement techniques for predicate abstraction will certainly be an

important future work.

Appendix A. An Example of the CDNF Algorithm

Let us apply Algorithm 1 to learn the Boolean formula b0 ⊕ b1. The algorithm first

makes the query EQ(T) (Figure 8). The teacher responds by giving the valuation μ1(b0) =

μ1(b1) = 0 (denoted by μ1(b0b1) = 00). Hence Algorithm 1 assigns � to S1, F to H1, and

μ1 to a1. Next, the query EQ(H1) is made and the teacher responds with the valuation

μ2(b0b1) = 01. Since μ2 �|= F, we have I = {1}. Algorithm 1 now walks from μ2 towards

a1. Since flipping μ2(b1) would not give us a model of b0 ⊕ b1, we have S1 = {μ2} and
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Equivalence query Answer I Si Hi ai

T μ1(b0b1) = 00 S1 = � H1 = F a1 = μ1

F μ2(b0b1) = 01 {1} S1 = {μ2} H1 = b1

b1 μ3(b0b1) = 11 � S2 = � H2 = F a2 = μ3

b1 ∧ F μ4(b0b1) = 01 {2} S2 = {μ5}† H2 = ¬b0

b1 ∧ ¬b0 μ6(b0b1) = 10 {1, 2} S1 = {μ2, μ6}
S2 = {μ5, μ7}†

H1 = b1 ∨ b0

H2 = ¬b0 ∨ ¬b1

(b1 ∨ b0) ∧ (¬b0 ∨ ¬b1) YES

† μ5(b0b1) = 10 and μ7(b0b1) = 01

Fig. 8. Learning b0 ⊕ b1.

H1 = b1. In this example, Algorithm 1 generates (b1 ∨b0)∧ (¬b0 ∨ ¬b1) as a representation

for the unknown Boolean formula b0 ⊕ b1. Observe that the generated Boolean formula

is a conjunction of two Boolean formulae in disjunctive normal form.
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Halbwachs, N. and Péron, M. (2008) Discovering properties about arrays in simple programs. In:

PLDI 339–348.
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