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Abstract. Let (X, σ ) be a transitive sofic shift and let Aut(X) denote its automorphism
group. We generalize a result of Frisch, Schlank, and Tamuz to show that any normal
amenable subgroup of Aut(X) must be contained in the subgroup generated by the shift.
We also show that the result does not extend to higher dimensions by giving an example of
a two-dimensional mixing shift of finite type due to Hochman whose automorphism group
is amenable and not generated by the shift maps.
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1. Introduction
1.1. The center of the group of automorphisms of sofic shifts. Fix a finite alphabet A.
We define a subshift to be a closed set X ⊂AZ that is invariant under the shift map σ :
AZ
→AZ, where (σ x)n = xn+1, for (xn : n ∈ Z) ∈ X . A well-studied class are shifts of

finite type (SFTs), which can be described by a finite set of forbidden words (these notions
are defined precisely in §2). Closing SFTs under passage to factors, we obtain the sofic
shifts, and this is the context of the result in this paper. There has been much interest
in the algebraic properties of the automorphism group of the full shift and mixing SFTs
(e.g. [4, 10, 12, 16]), and many of these results generalize to sofic shifts. The automorphism
group Aut(X) is the group of homeomorphisms of X to itself that commute with σ , under
composition. For any shift X , Aut(X) trivially contains 〈σ 〉, the subgroup generated by the
shift. By the Curtis–Hedlund–Lyndon theorem [10], any automorphism is a block code; as
a corollary, Aut(X) is always a countable group.

Many results on automorphism groups of SFTs are obtained by manipulating marker
automorphisms, initially introduced in [10] as a class of finite-order automorphisms of
the full shift. Using marker automorphisms, Hedlund proved that the automorphism group
of the full shift contains, among others, isomorphic copies of every finite group and the

https://doi.org/10.1017/etds.2020.4 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2020.4&domain=pdf
https://doi.org/10.1017/etds.2020.4


Normal amenable subgroups 1251

free group on two generators. Complications arise for mixing SFTs with the existence of
forbidden patterns, but Boyle, Lind, and Rudolph [4] showed that marker automorphisms
can also be defined for SFTs, and generalized Hedlund’s results to SFTs.

Also using marker automorphisms, Kim and Roush [12] embedded the automorphism
group of the full shift into the automorphism group of any mixing SFT, using markers to
encode data words to act as symbols in a full shift. As a corollary, the automorphism groups
of the full 2-shift and the full 3-shift contain the same subgroups up to isomorphism, but
it remains an open question whether these automorphism groups are isomorphic. We note
that the Kim and Roush construction does not embed the automorphism group of a mixing
SFT into the automorphism group of another mixing SFT, as the embedding relies heavily
on the lack of forbidden words in the full shift.

On the other hand, a method to distinguish automorphism groups follows from Ryan’s
theorem [16, 17]. By definition, 〈σ 〉 is contained in the center of Aut(X, σ ). An SFT is
transitive if it contains a point whose orbit is dense. Ryan showed that for any transitive
SFT, the center is the subgroup generated by the shift. In the full 4-shift, the shift map has
a root, while the shift map for the full 2-shift does not. Using Ryan’s theorem, Boyle, Lind,
and Rudolph [4] observed that these automorphism groups cannot be isomorphic, as the
automorphism group of the full 4-shift contains an element not in the center whose square
is in the center, while the automorphism group of the full 2-shift has no such element.

A topological factor of an SFT is not necessarily an SFT. To address this, Weiss [18]
introduced the notion of sofic shifts, which form the smallest class of subshifts, closed
under taking factors, that contain SFTs. It is natural to ask whether results about
automorphism groups of SFTs also apply to sofic shifts. As the definition of marker
automorphism relies on the fact that all sufficiently long words are synchronizing and
transitive sofic shifts contain an abundance of synchronizing words, many of the results
about subgroups of automorphism groups of SFTs also carry over to sofic shifts.

More recently, Frisch, Schlank, and Tamuz [6] generalized Ryan’s theorem to show
that any normal amenable subgroup of the automorphism group of the full shift must be
contained in the subgroup generated by the shift (see §2.4 for precise definitions). In this
paper we extend their result to any transitive sofic shift.

THEOREM 1.1. Let (X, σ ) be a transitive sofic shift. Any normal amenable subgroup of
Aut(X) is contained in 〈σ 〉.

This generalizes Ryan’s theorem, as subgroups of the center are always normal
amenable subgroups, and in the case of a transitive sofic shift, our result says the converse
also holds.

Complications arise when working in sofic shifts, as there can be arbitrarily long
non-synchronizing words. Such words are necessary for a marker automorphism to
actually be an automorphism of X . To overcome this problem, we first construct
marker automorphisms for left-periodic points composed of synchronizing words as in
the definition of extreme proximality (see §2.4). We then extend the result to non-
synchronizing left-periodic points that are in the Aut(X)-orbit of the synchronizing points.
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1.2. Methods of proof. As in [6], we use a characterization of the topological boundary
due to Furman [7] to prove Theorem 1.1 (see §2 for precise definitions).

For any shift X , Aut(X) acts on the set of left-periodic points. In the case of a transitive
sofic shift, we show that an invariant subset of this space is in fact a topological boundary
for Aut(X), and the kernel of the action is 〈σ 〉. By Furman’s characterization, we can
conclude that any normal amenable subgroup of Aut(X) must be contained in 〈σ 〉.

A key ingredient of the paper is Proposition 3.5: given any two cylinder sets of the
boundary, we construct an automorphism of X that maps one into the other. This is not
needed in the case of the full shift, as [6] explicitly constructs a sequence of automorphisms
which map proper closed subsets of the boundary to a particular point.

In the proof of Theorem 1.1, we show that the action of Aut(X) on the boundary is
extremely proximal. This gives an alternate proof that for an infinite transitive sofic shift,
the automorphism group contains a copy of the free group on two generators, and more
generally, the free group on any number of generators.

1.3. Higher dimensions. In §4 we highlight the obstructions that arise when adapting
these methods to higher-dimensional shifts. Hochman [11] proves a higher-dimensional
analogue of Ryan’s theorem: for a transitive Zd SFT with positive entropy, the center of
the automorphism group is the subgroup generated by the shifts, which can be naturally
identified with Zd . While [6] also shows that for the full Zd -shift, any normal amenable
subgroup of the automorphism group is contained in the subgroup generated by the shift
maps, Zd , there is an example due to Hochman of a topological mixing Z2 SFT with
positive entropy whose automorphism group is amenable but strictly larger than Z2.

2. Preliminaries
2.1. Shift systems. Let A be a finite alphabet endowed with the discrete topology and
equip AZ with the product topology. For x = (xn : n ∈ Z) ∈AZ, let xn ∈A denote the
value of x at n ∈ Z. Define the shift map σ :AZ

→AZ by setting (σ x)n = xn+1 for any
x ∈AZ. If X ⊂AZ is a closed and shift-invariant subset, we call (X, σ ) a shift. To avoid
trivial cases, we assume X is infinite. Given x ∈ X , let

O(x) := {σ i x : i ∈ Z}

be the orbit of x under the shift, and O(x) denote its closure in X .
Given an interval [i, i + n − 1] ⊂ Z, let x[i,i+n−1] be the word w in An given by w j =

xi+ j for j = 0, 1, . . . , n − 1. A word w in An is allowable in X if there exist x ∈ X and
i ∈ Z such that w = x[i,i+n−1]; we say that w occurs in x at i. For any word w ∈An , let
|w| = n be the length of the word. We denote the collection of allowable words of length
n in X by Ln(X), and the language of X , L(X)=

⋃
n∈N Ln(X), is the set of all finite

words that occur in X . Given two words u and w, uw is the word in A|u|+|w| obtained by
concatenating u and w; when we concatenate a word with itself, we simplify notation by
writing w2.

Given a word w ∈ L(X), define the cylinder set [w] ⊂ X to be

[w] := {x ∈ X : xn = wn for 0≤ n < |w|}.
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Such cylinder sets are clopen and, together with their translates, form a basis for the
subspace topology on X . Thus, we can describe topological properties of a shift in terms
of its language. A shift (X, σ ) is transitive if for any pair of words u and w ∈ L(X), there
is some word v such that uvw ∈ L(X); a shift (X, σ ) is mixing if for any u, w ∈ L(X),
there exists an N such that for any n ≥ N , there is a word v ∈ Ln(X) such that uvw is
again allowable. Note that mixing implies transitivity.

A word w ∈ L(X) is synchronizing if, whenever uw and wv ∈ L(X), uwv is again
allowable in X . It follows that if w is synchronizing, then any word that contains w must
also be synchronizing.

We say that a word u is a root of w if we can write w = uk for some k ∈ N. If w has no
proper roots, then w is primitive.

Two words u, u′ are conjugate if we can write u = wv and u′ = vw for some v, w
(possibly empty) words.

A point x ∈ X is periodic if there exists k ∈ N such that xn = xn−k for all n ∈ Z. If x is
periodic with minimal period k, then any word of length k which appears in x is primitive,
and any two subwords of length k are conjugate.

We say x ∈ X is left-periodic up to N ∈ Z if there exists k ∈ N such that xn = xn−k for
all n < N and xN 6= xN−k . Note that a left-periodic point is not periodic, and that the index
N is independent of the choice of k. When the periodic index k is minimal, we say that
x is (left-)k-periodic. Denote the set of points in X of period k by Perk . If X contains a
left-periodic point, then it must also contain a periodic point, but the converse is not true.

A shift is of finite type, or an SFT, if it can be described by a finite set of forbidden
words; that is, X is an SFT if there exists a finite set of words F such that x ∈ X if and
only if any word that occurs in x is not an element of F . An SFT is j -step if F consists of
words of length j + 1. We can also characterize SFTs using synchronizing words: a shift
X is an SFT if all words of sufficient length are synchronizing.

When (X, σ ) is a transitive SFT, it is a classical result that X can be decomposed into
disjoint mixing components which are cyclically permuted. More precisely, there exist a
period p and a partition {Ei }1≤i≤p of X such that each (Ei , σ

p) is mixing, and σ Ei =

Ei+1 mod p (see [1, §3], [2, p. 543]). Here, p refers to the greatest common divisor of all k
with Perk 6= ∅. This extra structure says that in the case of a transitive SFT, given w and u,
we can extend u on the left to ũ and, for sufficiently large n, there is a word v of length np
with wvũ ∈ X . Transitivity also implies that periodic points are dense for SFTs.

The class of SFTs is not closed under factors, and we can consider the larger natural
class which is. Given a compact metric space X and a homeomorphism T , a topological
factor is a system (Y, S) with a continuous surjective map π : X→ Y satisfying π ◦ T =
S ◦ π . We say that a shift is sofic if it is a topological factor of an SFT. There are many
equivalent definitions of sofic shifts, and we refer the reader to [14, Theorem 3.2.1] for
more details. Sofic shifts are the smallest class of shifts which are closed under taking
factors and contain SFTs. Note that transitivity and mixing are each preserved under
factors, and a transitive (cf. mixing) sofic shift is a factor of a transitive (cf. mixing) SFT. It
follows that in a transitive sofic shift, periodic points are also dense. By recoding, we can
assume that this factor map is a 0-block map. This presentation is convenient as it allows
us to lift words in the sofic shift to words of the same length in the SFT. It follows that in
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transitive sofic shifts, as with transitive SFTs, between any two allowable words, we can
insert arbitrary spacer words whose lengths form an arithmetic progression.

2.2. Automorphisms of a shift. An automorphism of (X, σ ) is a homeomorphism from
X to itself that commutes with the shift map.

By the Curtis–Hedlund–Lyndon theorem [10], any automorphism is defined by a
block code: given an automorphism g ∈ Aut(X), there exist an R ∈ N and a map
ĝ : L2R+1(X)→A such that gxi = ĝ(xi−R,...,i+R). We say that R is a range for ϕ.

The set of automorphisms of X under composition forms a group Aut(X, σ ), or simply
Aut(X) when σ is clear from context. Since only finitely many automorphisms can have
a given range, Aut(X) is countable. Given two automorphisms g1, g2 ∈ Aut(X), let g1g2

denote the composition g1 ◦ g2.
In general, it is difficult to construct automorphisms of an arbitrary shift; however, if

a shift contains synchronizing words, there are finite-order automorphisms called marker
automorphisms originally defined by Hedlund [10] for full shifts, and later for SFTs by
Boyle, Lind, and Rudolph [4]. We now define marker automorphisms more generally,
making slight modifications to conventions introduced in [6].

We say that two words w and u overlap if we can write w = w′v and u = vu′ (or vice
versa). When needed, we specify the length of overlap, and we say that w and u overlap
with length i , where i = |v|.

Let (X, σ ) be a shift and M` and Mr ∈ L(X) be synchronizing words. Let D ⊂ Ln

be a set of words of length n appearing in X such that words of the form M`d Mr are
allowable for all d ∈D. Suppose these words satisfy the following overlap condition:
for any d and d ′ ∈D, if M`d Mr and M`d ′Mr overlap non-trivially with length i , then
i ≤min(|M`|, |Mr |). Then any permutation τ of D induces an automorphism gτ on X
by sending words of the form M`d Mr to M`τ(d)Mr and leaving other words unchanged.
Such an automorphism is called a marker automorphism, and we refer to M` and Mr as the
left and right markers, respectively, and d ∈D as data words. We note that as originally
defined for a j-step SFT, the length of marker words have to be greater than j . The key is
that such words are synchronizing, which is the necessary condition to ensure that applying
the map does not introduce forbidden words.

Example 2.1. Let X ⊂ {0, 1}Z be the one-step SFT defined by the forbidden word 11.
(X, σ ) is the golden mean shift.

Let M` = 100 and Mr = 0101 be start and end markers, and D = {0, 1} be data words.
Given special blocks of the form M`d Mr and M`d ′Mr , for d, d ′ ∈D, M`d Mr and
M`d ′Mr can only overlap non-trivially by length 1.

Let g ∈ Aut(X) be the marker automorphism induced by the non-trivial permutation on
D. It permutes blocks of the form

· · · 10010101 · · ·

· · · 10000101 · · ·

and leaves other blocks unchanged.
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Example 2.2. Let (Y, σ )⊂ {0, 1}Z be the even shift, consisting of bi-infinite sequences
with only an even number of consecutive 1s. Y is a factor of the golden mean shift in
the previous example, so it is sofic, but it is not an SFT. The word 12i+1 for any i ∈ N
is allowable (as a subword of 012i+20) and 012i+1, 12i+10 are also allowable. However,
012i+10 is not in the language of Y , so 12i

+1 is not a synchronizing word. We have
generated arbitrarily long non-synchronizing words; thus, Y cannot be an SFT. We call
such shifts strictly sofic.

We note that any word which contains 0 is a synchronizing word, so we can define
marker automorphisms with markers that contain 0.

2.3. Generalized Ryan’s theorem for sofic shifts. By generalizing the definition of
marker automorphisms, we can adapt the proof of Ryan’s theorem to show that for a
transitive sofic shift, the center of the automorphism group must be the subgroup generated
by the shift. We show that for a transitive sofic shift, the automorphism group contains
enough markers so that Ryan’s theorem still holds. The key proposition needed, which we
state without proof, is that a transitive shift contains infinitely many synchronizing words.

PROPOSITION 2.3. [14, Proposition 3.3.16] Suppose (X, σ ) is a transitive sofic shift. Then
any word w ∈ L(X) can be extended on the right to a synchronizing word wu.

Remark 2.4. We note that in [14], sofic shifts are defined as the set of all bi-infinite paths
on a labeled graph. The definition of synchronizing word in [14] is dependent on the graph,
while they use the term intrinsically synchronizing to denote words we call synchronizing.
However, if one chooses the minimal graph presentation for the sofic shift, these definitions
coincide.

To prove Ryan’s theorem for transitive sofic shifts, it suffices to show that there exist
infinitely many synchronizing words which do not overlap themselves. To prove this
lemma, we appeal to the following theorem in the field of combinatorics on words,
translated into the language of symbolic dynamics.

THEOREM 2.5. ([5, Theorem 3.1], [15]) Letw ∈An be a primitive word. Then there exists
w′ conjugate to w which does not overlap itself.

LEMMA 2.6. Let (X, σ ) be a transitive sofic shift. Then for any n ∈ N, there is a
synchronizing word M of at least length n which does not overlap itself non-trivially.

Proof. Let w be a synchronizing word of at least length n. By transitivity, there exists
u ∈ L(X) such that wuw ∈ L(X) and u is not a power of w. Note that wuw is again a
synchronizing word.

Since periodic points are dense, there is a periodic point x of minimal period k ≥ |wuw|
such that wuw appears in x . By Theorem 2.5, x must contain a subword M of length k
which does not overlap itself. Since |wuw| ≤ k, w must appear in M , and thus M is a
synchronizing word. �

For completeness, we give a proof of the generalized Ryan’s theorem, and we follow
the proof for SFTs, due to Kitchens [13, Theorem 3.3.22].
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THEOREM 2.7. Let (X, σ ) be a transitive sofic shift. The center of Aut(X) is 〈σ 〉.

Proof. Let (X, σ ) be a transitive sofic shift, and let ϕ ∈ Aut(X) commute with all
automorphisms. Suppose ϕ has range R. Recall that for transitive sofic shifts, between any
two words we can always insert spacers of lengths that form an arithmetic progression,
where the difference is p, the period of X . Using these spacers and the sufficiently long
markers produced by Lemma 2.6, we can find a synchronizing M ∈ L(X) and n ∈ N, with
2R + 1≤ n ≤ |M |, such that for

D(M, n) := {d ∈ Ln(X) : Md M ∈ L(X)},

every word of length 2R + 1 appears as a subword of some element of D(M, n). This
can be done by applying the transitive property simultaneously to M and words of length
2R + 1 so that the spacers are of the same length. If necessary we can extend M to the
left. Repeat the process on the right to get words of the form Md M . For any permutation
τ ∈ Sym(D(M, n)), let gτ denote the marker automorphism induced by τ .

Consider the periodic points of period |M | + n obtained by concatenating Md with
itself, for any d ∈D(M, n). We denote such points Per(M, n)⊂ Per|M |+n . Let Orb(M, n)
be the set of distinct σ -orbits in Per(M, n). Note that |Orb(M, n)| ≥ 2, as each word of
length 2R + 1 appears in some d ∈D(M, n).

For any permutation of Orb(M, n), there is a gτ , for some τ ∈ Sym(D(M, n)) whose
action on Orb(M, n) coincides with the given permutation. In addition, gτ acts as the
identity on periodic points of period |M | + n which are not in Per(M, n).

We claim that ϕ acts on Orb(M, n). Suppose not. Then ϕ maps some x ∈ Per(M, n)
to a periodic point y not in Per(M, n). Since ϕ commutes with all gτ , this means that all
points in Per(M, n) are mapped to the σ -orbit of y, which contradicts that ϕ permutes the
periodic points of each period.

Now we show that ϕ acts as the identity permutation. Let x and y ∈ Per(M, n) be
in distinct σ -orbits. We note that there exists ϕ(x)= σ j (x) for some −R ≤ j ≤ R. This
equality holds for all points in the σ -orbit of x , and we show that it holds for y as well. Let
gτ be a permutation that takes O(x) to O(y). As ϕ commutes with gτ , we have

ϕ(y)= g−1
τ ◦ ϕ ◦ gτ (y)= σ j y.

As every block of length 2R + 1 appears in some d ∈D(M, n), we conclude ϕ = σ j . �

2.4. Topological boundaries. Throughout this section let G be a locally compact group
and let � be a compact metric space with a continuous G action G ×�→�: for any
g ∈ G and ω ∈�,

(g, ω)= g · ω.

We call � a G-space. Given ω ∈�, let Gω denote the G-orbit of ω,

Gω = {g · ω : g ∈ G} ⊂�,

and Gω its closure in �.
Let Prob(�) be the set of Borel probability measures on �, equipped with the weak-*

topology. Since � is compact, Prob(�) is also a compact metric space. Given ω ∈�, let
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δω denote the Dirac measure concentrated at ω. The mapping ω 7→ δω gives an embedding
of � into Prob(�).

The G-action on � induces an action on Prob(�) by viewing elements of G as self-
homeomorphisms of �: for any g ∈ G and ω ∈�,

g · µ= µ ◦ g−1.

We say that the G-action on � is minimal if for any ω ∈�, the G-orbit closure
Gω =�. The G-action on � is strongly proximal if for all µ ∈ Prob(�), the G-orbit
closure Gµ⊂ Prob(�) contains a Dirac measure δω for some ω ∈�. A G-space � is
a topological boundary if the G-action on � is minimal and strongly proximal.

The G-action on � is extremely proximal if |�| ≥ 2 and for any proper closed set
C (�, and any open set U ⊂� there is some g ∈ G with gC ⊂U .

It is known that extreme proximality implies strong proximality [8, §3] and the product
of strongly proximal actions is again strongly proximal [9, §3].

A group G is amenable if for every compact G-space�, the G-action on Prob(�) has a
fixed point. Examples of amenable groups include abelian groups and finite groups, while
the free group is not amenable.

3. Topological boundaries of the automorphism group of transitive sofic shifts
3.1. The action of the automorphism group on left-periodic points. Recall from §2 that
left-periodic points are not periodic. For any shift (X, σ ), we define a compact space
equipped with an Aut(X) action.

LEMMA 3.1. Let (X, σ ) be a shift and k ∈ N. Suppose X contains a left-k-periodic point.
We denote the set of left-k-periodic points up to k by Qk . Then Qk is an Aut(X)-space,
and σ acts trivially on Qk . If X contains a left-k-periodic point which is transitive, then
the kernel of the action is 〈σ 〉.

Proof. Since any automorphism is a block map, the set of left-k-periodic points is invariant
under Aut(X). The set of all left-k-periodic points is precisely

⋃
i∈Z σ

i Qk . Thus, for any
g ∈ Aut(X) and x ∈ Qk ,

gx ∈ σ i Qk, (1)

for some unique i , since the shifts of Qk are pairwise disjoint. Define a cocycle α :
Aut(X)× Qk→ Z to be

α(g, x)=−i, (2)

where i is obtained from equation (1). The cocycle condition ensures that the induced
Aut(X)-action on Qk is well defined, where for g ∈ Aut(X), x ∈ Qk ,

g · x = σα(g,x) ◦ gx . (3)

We note here that the action of Aut(X) on X is different from the action on Qk , so
we use different notation to make clear which action we are referencing. For any x ∈ Qk ,
α(σ, x)=−1, so σ · x = x .

Suppose in addition that x ∈ X is a transitive left-k-periodic point. Let g /∈ 〈σ 〉. For
each n ∈ N, let Rn denote the maximum of n and the range of g. Let ĝn and σ̂ n denote the
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block codes of width Rn that induce g and σ n , respectively. Then there exists a word wn

of length 2Rn + 1 such that ĝn(wn) 6= σ̂
n(wn). Since every wn appears in x , g · x 6= x . �

The set of k-periodic points Perk is invariant under Aut(X). We can decompose Perk

into a disjoint union of distinct σ -orbits:

Perk =O(x1)q · · · qO(x j ). (4)

Thus, the action of Aut(X) on X descends to an action on Perk /〈σ 〉.

LEMMA 3.2. Let (X, σ ) be a shift that contains a left-k-periodic point, and Qk be the set
of left-k-periodic points up to k. There is a map

π : Qk→ Perk /〈σ 〉 (5)

which is Aut(X)-equivariant. When (X, σ ) is a transitive sofic shift, π is a projection.

Proof. Given x ∈ Qk , there exists a unique k-periodic point such that yn = xn for all n < k.
Define the projection π which sends x to the σ -orbit in Perk containing y. Since any
automorphism is a block code, for any x ∈ Qk and g ∈ Aut(X), π(gx)= gπ(x).

Suppose (X, σ ) is a transitive sofic shift, and let y ∈ Perk . Consider the word y[k−N ,k),
which we can extend to the right to be a synchronizing word w. Since X is transitive, there
is a word u ∈ L(X) of the form u = wsa, where a 6= yk+p−1 (where p refers to the greatest
common divisor of the periods of all periodic points; see §2). Then we can extend u to a
left-k periodic point in Qk (after shifting appropriately so it lands in Qk) that projects to
the σ -orbit containing y. �

A map s : Perk /〈σ 〉 → Qk is a section of the projection π if s is a right inverse of π .
Let � be the collection of all sections s : Perk /〈σ 〉 → Qk of the projection π . Since π is
equivariant, the action of Aut(X) on Qk induces an action on �: for any g ∈ G and s ∈�,

gs = g · (s ◦ g−1)

where we view g−1 as the permutation of Perk /〈σ 〉 induced by g−1.
Let {�m

} denote the fibers of π : Qk→ Perk /〈σ 〉. Given a periodic orbit O(xm) ∈

Perk /〈σ 〉,
�m
= {x ∈ Qk : ∃i ∈ Z with xn = xm

n−i for all n < k}. (6)

Let N G Aut(X) be the normal subgroup given by the kernel of π . Since N preserves
the fibers {�m

}, the restriction of the action on� to N is isomorphic to the diagonal action
of N on the product of the fibers

∏ j
m=1 �

m , where j is the number of distinct k-periodic
orbits defined in (4).

3.2. Extreme proximality. Given a bi-infinite sequence x ∈ X , we say that x is
synchronizing if all sufficiently long words that appear in x are synchronizing. If x is
periodic and some synchronizing word appears in x , then x itself is synchronizing. Since
the definition only depends on words that appear in x , a sequence is synchronizing if and
only if any point in its orbit closure is synchronizing.
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Every periodic orbit O(x) is exactly one of the three following types:
(1) x is synchronizing;
(2) x is not synchronizing, but there exists an automorphism h ∈ Aut(X) such that hx is

synchronizing;
(3) x is not synchronizing, and for all automorphisms h ∈ Aut(X), hx is not

synchronizing.

Remark 3.3. When X is an SFT, all sequences are synchronizing and Perk consists only of
synchronizing points for large enough k.

In general, the action of Aut(X) on Perk may not be transitive. In the case of SFTs,
however, for sufficiently large k, Aut(X) does act on Perk transitively (see [4]). The proof
constructs a composition of marker automorphisms which permute periodic points with
disjoint orbits, building on work by Boyle and Krieger [3] for the full shift. The same proof
shows that for a transitive sofic shift, Aut(X) acts transitively on the synchronizing points
in Perk . However, non-synchronizing points do not contain any synchronizing subwords,
so they are fixed by all marker automorphisms.

Let Synk ⊂ Perk be the subset of periodic points of type (1) and type (2). Then Synk is
the Aut(X)-orbit under Aut(X) of any synchronizing point, so Aut(X)must act transitively
on Synk .

Remark 3.4. It is possible that no periodic points of type (2) exist. We do not know if there
exist automorphisms which do not fix non-synchronizing points.

Define �̃ analogously to � in §3.1, but for the restricted action. For any section s ∈�,
where s : Perk /〈σ 〉 → Qk , let s|Synk /〈σ 〉 : Synk /〈σ 〉 → Qk be the corresponding element
in �̃. Note that this is not injective and many s ∈� project to the same map in �̃.

We now show that �̃ is a topological boundary for Aut(X). Recall that N , the kernel of
the action of Perk , acts on each �m . If we consider the action of N on �̃,

�̃∼=
∏
m

�m

where the product is taken over values of m where xm is of type (1) or type (2).
We show that the action of N on�m is extremely proximal, and use this to prove that the

full action of Aut(X) on �̃ is a topological boundary. The key step is constructing marker
automorphisms in �m , where xm is a synchronizing point. Then for non-synchronizing
points, we exploit the fact that such points are in the Aut(X)-orbit of some synchronizing
point to achieve the same result.

The set �m is closed in X , so cylinder sets of the form

[w]m := [w] ∩�m where w ∈ L(X) (7)

form a subbase that generates the subspace topology on �m .

PROPOSITION 3.5. Let (X, σ ) be a transitive sofic shift and k ∈ N. Suppose X contains a
left-k-periodic point. Fix xm

∈ Synk , and define �m as in (6). Let w, u be words in L(X)
such that the corresponding cylinder sets [w]m and [u]m in�m are non-empty and proper.
Then there is an involution g ∈ Aut(X) which acts as the identity on Perk /〈σ 〉 and satisfies
g · [w]m ⊂ [u]m .
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Proof. We fix xm
∈ Synk , so xm is of either type (1) or type (2).

Case 1: xm is synchronizing.
There exists c ∈ N such that all subwords of length at least c are synchronizing.

Since points in �m are left-k-periodic up to k, if |w| ≤ k, we can replace it with a
word w̃ of length k + 1 such that [w]m = [w̃]m . So we may assume that |w|, |u|> k.
Write a = w[0,...,k−1]. If w[0] 6= u[0], let ũ be the unique extension of u so that w and ũ
begin with the same letter.

We can assume that ũ does not appear as the initial word of w, otherwise a power of
the shift will map [w]m into [u]m and the identity automorphism satisfies the conclusion
of the lemma. We first deal with the case where w does not appear as the initial word of ũ.

Let ar be the word obtained by concatenating r copies of a. Since it is a word of at least
length c which appears in xm , it must be synchronizing. As [w]m 6= ∅, arw is allowable,
and must also be synchronizing. Since X is transitive, choose v ∈ L(X) such that ũvar is
an allowable word. Since a is the initial word of ũ, we can choose v with |̃uv| = r pk for
some r ≥max{|w|, c}, where p is the greatest common divisor of k with Perk 6= ∅. Set ar

to be the left marker, arw to be the right marker, and D = {ar p, ũv} to be data words.
To show these markers induce a well-defined marker automorphism, it suffices to check

that special words of the form ar darw, for d ∈D, satisfy the overlap condition given in
the definition of marker automorphism. The word a is a primitive word of length k which
appears in xm , a k-periodic point. While a may overlap itself non-trivially, ar can only
overlap itself by multiples of k, as k is the least period of xm .

The initial word of w and ũ is a, while a does not occur at position k in w or ũ. Thus, if
the special words ar ar parw and ar ũvarw overlap non-trivially, the length of the overlap
must be either less than |w|, or exactly rk + |w|. In the second case, the special blocks
would overlap by ar . However, this overlap would force ũ to be the initial word of w,
which contradicts the assumption.

Because special words begin with ar , a similar argument shows that a special word can
only overlap with itself non-trivially by at most |w|. By the choice of r , |ar

| ≥ |w|, so the
marker automorphism g determined by the non-trivial permutation on D is well defined,
and g is an involution.

Let x i
∈ Perk . Since no special words appear, g acts as the identity on x i , so g is in the

kernel of the action on Perk /〈σ 〉.
Lastly, we show that g · [w]m ⊂ [u]m . Let y ∈ [w]m . Since y is left-k-periodic, the first

occurrence of a special word in y is ar ar parw at −(2r + r p)k. Thus,

gy = · · · aũv.w · · · .

Applying the cocycle α gives

g · y = · · · ã.uvw · · · ∈ [u]m

where ã is the initial k-block of u.
Suppose now w is the initial word of ũ. We can partition [w]m by the finitely many

allowable extensions of w given by wb, where each wb is of length |̃u|. Applying the
process above gives marker automorphisms gb for each extension wb. Since special words
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for each gb have the same length and are distinct, the involutions gb all commute. The
composition of {gb} is well defined, and is an involution that maps [w]m into [u]m .

Case 2: xm is not synchronizing, and there is an h ∈ Aut(X) such that hxm is
synchronizing.
Let h ∈ Aut(X) where hxm

= x i is synchronizing, and let [w]m, [u]m satisfy the
hypothesis. Consider the sets

h[w]m and h[u]m .

We can partition them into finitely many cylinder sets, so by the previous construction,
there is some g ∈ N that maps

g · h[w]m ⊂ h[u]m .

Then
h−1gh · [w]m ⊂ [u]m

with h−1gh ∈ N , as desired. �

Recall that N G Aut(X) is the kernel of π :�→ Perk /〈σ 〉, so the automorphism
produced above is contained in N .

COROLLARY 3.6. Let (X, σ ) be a transitive sofic shift and k ∈ N. Suppose that X contains
a left-k-periodic point. Then the following statements hold.
(1) The action of N on �m , as defined in (6), is minimal.
(2) The action of Aut(X) on �, as defined in §3.1, is minimal.
(3) The N action on �m is extremely proximal.
(4) The Aut(X) action on � is strongly proximal.

Proof. (1) It suffices to show that the N -orbits of any non-empty open subset U cover
all of �m . Let [u]m ⊂U be a non-empty cylinder set with |u| ≥ k and [w]m be an non-
empty cylinder with |w| ≥ k. By Proposition 3.5, there exists an involution g ∈ N such
that g · [w]m ⊂ [u]m . Since g = g−1, we have [w]m ⊂ g · [u]m . As [u]m was arbitrary, this
shows that

⋃
g∈N g ·U =�m .

(2) Let U ⊂� be an open set. If the intersections U ∩�m are all non-empty, then by
part (1), the N -orbit of U covers �. Suppose U is contained in some �m . The action of
Aut(X) on Synk is transitive, so there exists g ∈ Aut(X) such that gU ∩�n is non-empty
for any �n . By part (1), the Aut(X)-orbit of U covers �.

(3) Each �m contains more than two points, and cylinder sets form a subbase that
generates the topology on �m . In addition, �m is compact, so any closed set is covered
by finitely many cylinder sets. By Proposition 3.5, the N action on each �m is extremely
proximal.

(4) As extremely proximal actions are also strongly proximal, by part (3), the N action
on each �m is strongly proximal. Thus, the product action of N on

∏ j
m=1 �

m is also
strongly proximal. Since the diagonal action of N on the product space is isomorphic (as
continuous group actions) on �, it follows that the action of Aut(X), which contains N ,
on � is also strongly proximal. �
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We use a proposition of Furman which relates the kernel of boundary actions and normal
amenable subgroups.

PROPOSITION 3.7. (Furman [7]) Let G be a discrete group, and consider the following
subgroups of G:
(1) N =

⋂
i∈I Ker(G→ Homeo(X i )), where I is the set of isomorphism classes of

boundary actions on the set of G-spaces;
(2)

√
G, the group generated by all closed normal amenable subgroups in G.

Then N =
√

G.

In particular, the kernel of any boundary action contains any normal amenable subgroup.
We have now assembled the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Let (X, σ ) be a transitive sofic shift. As periodic points are dense,
there exists some k such that X contains k-periodic points and Synk 6= ∅. Since X is not
finite, X also contains left-k-periodic points.

Corollaries 3.6(2) and 3.6(4) show that � is an Aut(X)-boundary. By Proposition 3.7,
any normal amenable subgroup of Aut(X) is contained in the kernel of a boundary action.

An element in � is a section of the projection π :�→ Perk /〈σ 〉, so the kernel of
Aut(X) acting on � must be contained in the kernel of Aut(X) acting on Qk , the set
of left-k-periodic points up to k. Thus, it follows from Lemma 3.1 that the kernel of the
Aut(X) action on � is precisely 〈σ 〉, and we obtain the desired result. �

4. Higher dimensions
We show that the direct analogue of Theorem 1.1 in higher dimensions fails by giving a
counterexample and explain why the methods of proof do not generalize even with stronger
hypotheses. Consistent with the definition of one-dimensional shifts given in §2, we define
a Zd -shift to be a closed, translation-invariant subset of AZd

. A Zd -shift is an SFT if
it can be described by forbidden patterns in AF , for some finite set F ⊂ Zd , and a Zd

sofic shift is a topological factor of a Zd SFT. The automorphism group consists of self-
homeomorphisms of the shift that commute with the shift maps, which can be identified
with Zd .

Hochman [11] constructs a two-dimensional SFT X ⊂AZ2
, which is topologically

mixing and has positive entropy. Hochman explicitly computes the automorphism group
to be Z2

⊕
⋃

Si, j , where Z2 is generated by the shift maps and
⋃

Si, j is a directed union
of infinitely many finite groups, arising from higher-dimensional marker automorphisms.
Amenability is closed under taking direct limits and sums; thus, the automorphism group is
amenable. In higher dimensions, Ryan’s theorem holds [11], and the center is the subgroup
generated by the shifts, Z2. In particular, Aut(X) has normal amenable subgroups that are
not contained in the center. While this shift is topologically mixing, the set of periodic
points is not dense, which suggests this may not be the right condition to impose.

There are various notions of uniform mixing in higher dimensions (for example,
strongly irreducible, uniform filling, and block gluing), each of which imply that periodic
points are dense. In each case, if two allowable patterns are sufficiently far apart, there is
another allowable pattern which agrees with the original patterns; the distinct notions of
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uniform mixing depend on the shape of patterns we consider. In contrast, for d = 1, these
definitions of uniform mixing are equivalent to topological mixing.

However, even with dense periodic points, we cannot construct a topological boundary
for uniformly mixing Zd SFTs as we did in the one-dimensional case. Because there
are now more directions of periodicity, we cannot construct a space on which the
automorphism group acts in the same manner. More specifically, we cannot define a Zd

cocycle as we did in equation (1).
In the case of the higher-dimensional full shift, Frisch, Schlank, and Tamuz [6] show

that any normal amenable subgroup must be contained in the subgroup generated by the
shifts; unfortunately, their methods do not generalize to uniformly mixing SFTs. They
construct a class of automorphisms of AZd

, induced by automorphisms of AZ, which act
independently on bi-infinite sequences of a configuration x ∈AZd

. This relies strongly
on the fact that in the full shift, there are no forbidden blocks. In a more general Zd -SFT,
acting independently on lower-dimensional subspaces may produce forbidden patterns. We
note that higher-dimensional marker automorphisms cannot arise from such a construction.

Acknowledgements. This research was supported in part by the National Science
Foundation grant 1502632, ‘RTG: Analysis on manifolds’, at Northwestern University.

REFERENCES

[1] R. L. Adler and B. Marcus. Topological entropy and equivalence of dynamical systems. Mem. Amer. Math.
Soc. 20(219) (1979).

[2] M. Boyle. Lower entropy factors of sofic systems. Ergod. Th. & Dynam. Sys. 3(4) (1983), 541–557.
[3] M. Boyle and W. Krieger. Periodic points and automorphisms of the shift. Trans. Amer. Math. Soc. 302(1)

(1987), 125–149.
[4] M. Boyle, D. Lind and D. Rudolph. The automorphism group of a shift of finite type. Trans. Amer. Math.

Soc. 306(1) (1988), 71–114.
[5] A. Ehrenfeucht and D. M. Silberger. Periodicity and unbordered segments of words. Discrete Math. 26(2)

(1979), 101–109.
[6] J. Frisch, T. Schlank and O. Tamuz. Normal amenable subgroups of the automorphism group of the full

shift. Ergod. Th. & Dynam. Sys. 39(5) (2019), 1290–1298.
[7] A. Furman. On minimal strongly proximal actions of locally compact groups. Israel J. Math. 136 (2003),

173–187.
[8] S. Glasner. Topological dynamics and group theory. Trans. Amer. Math. Soc. 187 (1974), 327–334.
[9] S. Glasner. Proximal Flows (Lecture Notes in Mathematics, 517). Springer, New York, 1976.
[10] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory

3 (1969), 320–375.
[11] M. Hochman. On the automorphism groups of multidimensional shifts of finite type. Ergod. Th. & Dynam.

Sys. 30(3) (2010), 809–840.
[12] K. H. Kim and F. W. Roush. On the automorphism groups of subshifts. Pure Math. Appl. Ser. B 1(4) (1990),

203–230.
[13] B. P. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts. Springer,

Berlin, 1998.
[14] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press,

Cambridge, 1995.
[15] R. C. Lyndon. On Burnside’s problem. Trans. Amer. Math. Soc. 77 (1954), 202–215.
[16] J. P. Ryan. The shift and commutativity. Math. Systems Theory 6 (1972), 82–85.
[17] J. P. Ryan. The shift and commutativity II. Math. Systems Theory 8(3) (1974), 249–250.
[18] B. Weiss. Subshifts of finite type and sofic systems. Monatsh. Math. 77 (1973), 462–474.

https://doi.org/10.1017/etds.2020.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.4

	Introduction
	The center of the group of automorphisms of sofic shifts
	Methods of proof
	Higher dimensions

	Preliminaries
	Shift systems
	Automorphisms of a shift
	Generalized Ryan's theorem for sofic shifts
	Topological boundaries

	Topological boundaries of the automorphism group of transitive sofic shifts
	The action of the automorphism group on left-periodic points
	Extreme proximality

	Higher dimensions
	Acknowledgements
	References

