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ABSTRACT

In this paper, we use queuing theory tomodel the number of insured households
in an insurance portfolio. The model is based on an idea from Boucher and
Couture-Piché (2015), who use a queuing theory model to estimate the number
of insured cars on an insurance contract. Similarly, the proposedmodel includes
households already insured, but the modeling approach is modified to include
new households that could be added to the portfolio. For each household, we
also use the queuing theory model to estimate the number of insured cars. We
analyze an insurance portfolio from a Canadian insurance company to support
this discussion. Statistical inference techniques serve to estimate each parameter
of the model, even in cases where some explanatory variables are included in
each of these parameters. We show that the proposed model offers a reasonable
approximation of what is observed, but we also highlight the situations where
the model should be improved. By assuming that the insurance company makes
a $1 profit for each one-year car exposure, the proposed approach allows us to
determine a global value of the insurance portfolio of an insurer based on the
customer equity concept.

KEYWORDS
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1. INTRODUCTION

In this paper, we generalize the queuing theorymodel developed byBoucher and
Couture-Piché (2015) (subsequently called the BCP model), which estimates
the number of insured cars on an insurance contract. An important novelty
of this paper is the inclusion of a new household’s arrival process. Because this
new model includes both already insured households and new households that
could be added to the portfolio, the proposed approach allows us to determine
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not only the customer lifetime value (see Guillén et al. (2012), Guelman et al.
(2014) or Guelman et al. (2015)), but also the global value of the insurance
portfolio of an insurer according to the customer equity concept (Rust et al.,
2004).

We propose to model the number of insured households by using (1) the
arrival process of new households, (2) a contract cancellation process and (3)
a contract renewal process. For the number of insured cars per household, the
model uses (4) a process that models the addition of a car to the contract and
(5) another process that models the removal of an insured’s car from the con-
tract. Because the mathematical models employed are similar, the models of the
number of cars per household and the number of households in the insurance
portfolio will easily be nested to form a complete model that emulates the to-
tal number of insured cars for an insurance company. Our model is based on
observations from an insurance portfolio from a Canadian insurance company.
Statistical inference techniques are proposed to estimate each parameter of the
model, even in cases where some explanatory variables are included in these pa-
rameters. We show that the proposed model offers a reasonable approximation
of what is observed, but we also highlight the situations where the model should
be improved.

We are interested in probability generating functions (PGF), which are an
effective way to obtain all the required information in a simple equation. Thus,
in Section 2, the PGF of the number of insured households is built. In Section
3, the PGF of the total number of insured cars is developed. Subsequently, in
Section 4, the parameters required for models are estimated under the specific
assumptions of our new model. Then, using these estimated parameters, inter-
esting and useful statistics are calculated in Section 5, which include the number
of insured cars at future time t, as well as an estimate of the present value of
future profits. Section 6 concludes the paper.

1.1. Definition of terms

The term household is used to designate a single customer, or an insured. This
household can include several members (or drivers) and several cars grouped
under one annual insurance contract, which can be renewed each year. The con-
tract represents the document that binds the insurer with the insured household.
Finally, the expression portfolio is used to designate all the contracts of a single
insurer.

In this paper, we focus on the number of insured households in an insurer’s
portfolio, and on the number of cars that the contract covers and that are owned
by the same household. By extension, cars that are added to or removed from
the insurance contracts are also analyzed. Finally, at any time during the insur-
ance coverage, a household can decide to cancel its contract, meaning that all
the insured cars are also canceled. We call this event a breach of contract or a
cancellation.
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FIGURE 1: Number of new households by arrival date.

1.2. Data used and empirical analysis

Our model is built from observations in our database. We base our research on
empirical analyses that come from a Canadian car insurance database, which is
the same as the one used in the illustration in the BCP model. Unlike the BCP
model, the new approach proposed in this paper considers the arrival of new
households in the portfolio.

This database contains general insurance information on each of the 322,174
households from 2003 to 2007. For each household, we have information on
each of their insured cars. We also have information about new or broken con-
tracts, contract renewal, added or removed cars. The number of new contracts
by date of entry into the insurance portfolio, and the number of insured cars per
contract at the entry date can be seen in Figure 1.

We note that depending on the calendar date, the arrival rate varies greatly
and displays an apparent seasonality. The arrival of new contracts occurs more
in summer than in winter. It should be noted that the number of cars insured
when taking out a new contract is never equal to 0, which will require some
adjustments to the equations used in the BCP model. Indeed, the BCP model
allows the possibility that an insurance contract could be active without any
insured cars.

2. NUMBER OF INSURED HOUSEHOLDS

In this section, we describe how queuing theory, based on Newell (1982), can be
used to model the number of insured households. By explaining how Boucher
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and Couture-Piché (2015) used the queuing model to predict the number of
insured cars, we introduce the Poisson process from which we add the death
component to model departures from the system. Fewer details will be given
in this part of the paper because the results require only a basic knowledge of
queuing theory. Moreover, some results have already been introduced with the
BCPmodel. This introduction to queuing theory allows us to explain some tools
that will be used in complex models.

2.1. General characteristics of the model

Let N(t) be a random variable representing the number of elements in a queu-
ing system at time t. In our case, it will first represent the number of insured
households in the insurer’s portfolio, while it will model the number of insured
cars for a specific household in Section 3. In a pure birth process, also called the
Poisson process, there is only one component of arrival, defined by a parameter
τ . It can be shown that the probability function of the number of elements in
the system at time t can be expressed as

Pr(N(t) = i) = e−τ t(τ t)i

i !
, (2.1)

where τ can be considered the rate of arrival of new elements in the system. This
distribution represents the classic Poisson distribution.

To obtain a more realistic model, we add a constant service component
(which can also be called a death component) to the pure birth process. The
resulting model is denoted M/M/∞. The first M of the acronym, which means
“Markov”, denotes the exponential distribution of the time between the arrival
of each new element. Because each element leaves the system after a certain
period of time that also follows an exponential distribution, a second M is used
in the acronym. Finally, the last symbol identifies the number of parallel servers.
Because the departure process of each element can begin before the end of the
departure process of another element, there is no waiting time and the symbol
∞ is chosen. See Gross et al. (2008) for more details about queuing theory.

It is possible to add flexibility to the M/M/∞ model by generalizing the
component service process. Such a generalization means that the second M of
the acronym should be replaced by aG (meaning general distribution). The pro-
posed generalization allows us to incorporate a departure rate that can change
over time. Based on Benes (1957a), the model is constructed by separating the
process into several components modeling the number of cars. Indeed, we can
suppose that the process N(t) can be expressed as N(t) = Z(t) − Y(t). In this
case, the process Z(t)will count the number of arrivals of new households in the
portfolio until time t, and the process Y(t) will count the number of departures
of households from the insurer’s portfolio until time t.
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When N(0) = 0, it can be shown that the probability function can be ex-
pressed as

Pr(N(t) = i) = (τ tqt)i e−qtτ t

i !
, (2.2)

from which we recognize a Poisson distribution with parameters τ tqt. The pa-
rameter τ again represents the rate of arrival of new households in the portfolio,
while the parameter qt has to be interpreted as a survival probability, and can
be defined as

qt =
∫ t

0

S(x)
t

dx,

where S(·) is any survival function of the service time.An interpretation ofGross
et al. (2008, p. 258), allows us to explain the parameter qt as the probability of
an arbitrary household that enters the portfolio between time (0, t) still being
in the insurer’s portfolio at time t.

To continue our construction of the model, we have to consider two different
kinds of households. Next, we separate the modeling of the number of house-
hold into two components:

1. New insureds that enter the portfolio after the start date of the analysis,
insureds which will be called new households;

2. Insureds already in the portfolio when the portfolio is analyzed, which will
be called old households.

2.2. New households

Let us first note K(t), the random variable representing the number of new
households that are still in the insurer’s portfolio at time t. We suppose that
this random variable follows a M/G/∞ process. Because, by definition, with
K(0) = 0, meaning that there are no new households in the portfolio at time 0,
we can begin themodel by using Equation (2.2).Wewill, however, generalize the
departure rate γ of this equation by adding a shock at the renewal time. Indeed,
because we expect that more insureds will not renew their insurance contracts
at the renewal date, compared with other days, we have to modify the model to
have a higher cancellation probability at the renewal date.

To include a departure shock that happens at each renewal anniversary, we
use the following function:

S(x) = e−γ x p�x�, (2.3)

where p represents the probability of renewal of the insurance contract and �x�
is a floor function that allows the parameter p to affect the survival function
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only at each renewal of the contract. Thus, we have

qt =
∫ t

0

e−γ x p�x�

t
dx

= (
1 − e−γ

) 1 − (
pe−γ

)�t�

γ t (1 − pe−γ )
+ p�t� (

e−γ �t� − e−γ t
)

γ t
. (2.4)

It can be shown that the PGF of this K(t) is

PK(t)(z, t) =
∞∑
i=0

zi e−τqtt(τqtt)i

i !

= e(z−1)τqtt (2.5)

which is the PGF of a Poisson distribution (see Gross et al. 2008).
Note that although the data shown in Figure 1 seem to exhibit seasonality,

we assume in our model that the arrivals of new households in the portfolio
will be modeled by a Poisson process with fixed parameter τ . A model that is
closer to reality would have had a rate of new arrivals that is a function of time
and would exhibit variations. Regrettably, supposing this kind of flexible arrival
rate would mean that some of the Markov properties of the model would be
lost, and would have generated more complex equation systems (for example, a
G/G/∞ process). As mentioned in Eick et al. (1993), a fixed arrival rate is an
obvious approximation strategy, commonly applied in practice. This allows us
to suppose that the number of insured households at time t follows a M/G/∞
process, from which the resulting generating function is already known.

2.3. Old households

We now define by R(t) the number of households that were initially present
in the portfolio at the time the portfolio was analyzed, and that are still in the
portfolio at time t. As opposed toK(t), the random variableR(t) is not equal to
0 at time 0. We will note R0 = R(0) as the initial number of insured households.

By construction, the random variableR(t) is affected by the departure pro-
cess only because arrivals of new households are modeled by K(t), already de-
fined. Consequently, the process is only a function of the rate of renewal of the
contract (modeled by the parameter p), and a function of the cancellation rate
(modeled by the parameter γ ).

To model the number of old households at time t, we will need to define a
new random variable. We thus note byMi (t), a random variable that indicates
whether household i is still insured at time t. In which case Mi (t) = 1. Con-
sequently, it is possible to use the equation R(t) = ∑R0

i=1 Mi (t) to model the
number of old households still insured at time t. The random variableMi (t) is
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a Bernoulli random variable and has the following PGF:

PMi (t)(z) = e−γ t p�t+ci �(z− 1) + 1, (2.6)

where p represents the probability of renewal of the insurance contract and
�t+ c� is the same floor function as Equation (2.3), which allows the parameter
p to affect the survival function at each renewal of the contract. Because t is a
unique calendar time that affects all households of the portfolio, and because
the renewal date of each household i is not the same throughout the portfolio,
we included a new constant ci in the model. This constant ci allows the correct
use of the parameter p. Indeed, the function �t + ci� will change units at each
anniversary of the insurance contract, i.e. at the time of the renewal, and will
cause a departure shock in the survival function. For example, a household i
that is analyzed at time t when its contract will be renewed in three months, will
have a value of ci = 9/12.

2.4. All households

We define by W(t) the total number of insured households at time t, i.e. the
number of old households and the number of new households still insured at
time t, or W(t) = K(t) + R(t). Because these two random variables are inde-
pendent, we have the relation PW(t)(z, t) = PK(t)(z, t) × PR(t)(z, t), from which
we get the generating function of W(t):

PW(t)(z, t) =
R0∏
i=1

[
e−γ t p�t+ci �(z− 1) + 1

] × eτ tqt(z−1). (2.7)

This PGF ofW(t) will be used in the next section of the paper to model the
number of insured cars.

3. TOTAL NUMBER OF INSURED CARS

Each insurance contract covers several vehicles: new vehicles can be added to the
insurance contract and vehicles can be removed. Consequently, from a house-
hold point of view, we are still working with a queuing theory process, this time
for the number of insured cars. By combining the number of households, and
the number of cars per household, we are able to estimate the total number of
insured cars in the portfolio. To construct this model, we use a combination of
the model for the number of households, and a classic queuing theory model
for the number of insured cars per household. By defining W(t), the number
of insured households, the total number of insured cars J (t) can be calculated
using the equation:

J (t) =
W(t)∑
j=1

N j (t), (3.1)
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whereN j (t) is the number of insured cars at time t for household j . We suppose
that W(t) = 0 means J (t) = 0.

Before proceeding to the development of themodel, it is important to explain
again what the time, represented by the parameter t, represents. As opposed to
a household point of view that has its own time variable t, as in the BCP model,
in the proposed model, the time t should be seen as the calendar time, and is
therefore shared by all households. We assume that t = 0 is the time when the
insurance portfolio is analyzed. Thus, the processN j (t) depends on the calendar
time and not the age of the contract. The number of cars N j (t) of household j
therefore changes over time t, even if this household j is not even insured by the
insurer that we are analyzing.

Once again, the total number of insured cars that come from already insured
(old) households (JA(t)) and the total number of insured cars that come from
new households (JN(t)) will be analyzed separately. This will allow us to treat
the problem specifically for each case.

3.1. New households

To model JN(t), the number of insured cars owned by new households, we will
use the following equation:

JN(t) =
K(t)∑
j=1

N j (t),

where the variable N j (t) follows a M/M/∞ process.
As defined in Section 2.3, K(t) is the random variable that represents the

number of new households that are still in the insurer’s portfolio at time t.
The random variable K(t) is a M/G/∞ process that assumes no initial insured
households. The PGF ofK(t) is given by Equation (2.5). ForN j (t), the PGF of
a M/M/∞ process is a well-known model in queuing theory and expressed as

PN(t)(z, t) = [
(z− 1)e−μt + 1

]a
e

λ
μ (1−e−μt)(z−1)

, (3.2)

with a, the number of insured cars for a specific household, at the time the in-
surance portfolio was analyzed. N j (t) models the number of insured cars for
a specific household j , which means that new cars are added to the insurance
contract at a rate of λ, while vehicles leave the same insurance contract at an
individual rate of μ.

By the properties of the PGF, we can develop the equation:

PJN(t)(z, t) = PK(t)(PN (t)(z, t), t)

= exp
[
τ tqt

[(
(z− 1)e−μt + 1

)a
e(z−1)(1−e−μt) λ

μ − 1
]]

. (3.3)

We see that the PGF requires us to give a value to a, the number of in-
sured cars at time t = 0, the time the insurance portfolio was analyzed. For old
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households, the initial number of insured cars,N (0) = a, was always considered
to be known, and this information was available in the database analyzed. In the
case of a new household, we must make an assumption about the distribution
of the number of insured cars at arrival.

One possible solution is to set a fixed value for a, but it is clear that the
number of cars per household at time t = 0 is not the same for everyone. An-
other way to determine the number of insured cars per household is to take the
stationary distribution of N (t), i.e. the distribution of N (t) when t → ∞. The
resulting PGF in this case is simply

lim
t→∞ PN (t)(z, t) = e

λ
μ
(z−1)

, (3.4)

which corresponds to the PGF of a Poisson distribution with parameter λ
μ
.

Thus, one might assume that the number of insured cars of a new household
follows such a distribution. This choice for the distribution of the number of
insured cars is advantageous in that it simplifies the equations of the model be-
cause it is a distribution that is not a function of the calendar time t.

A problem caused by the use of the Poisson distribution is that it becomes
possible for a household to apply for a new insurance contract without having
a single car to insure. To address this problem, we change the support of the
random variable that models the number of cars per household by supposing
that it cannot be less than one. This suggests a transformation where we add
1 to a random variable that follows a Poisson distribution. Consequently, the
number of cars per household N (t) is equal to

N (t) = N ∗(t) + 1, (3.5)

whereN ∗(t) ∼ Poisson(λ/μ). For this transformation, however, it is impor-
tant to note that the interpretation of the parameter μ changes slightly. Conse-
quently, we obtain the following PGF for the new random variable N (t):

PN (t)(z, t) = PN ∗(t)(z, t) × z

= ze
λ
μ
(z−1)

, (3.6)

which means that we have

PJN(t)(z, t) = eτ tqt(e
λ
μ (z−1)z−1). (3.7)

3.2. Old households

For all R0 households that are already insured, we can base our modeling on
the random variable Mi (t), explained in Section 2.3, which indicates whether
household i is still insured at time t. With H j (t), which represents the number
of insured cars insured for household j , we have the following relationship:

H j (t) = M j (t) × N j (t),
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where the variableN j (t)will be the same as the one used for the new households,
and expressed by the relation (3.5). The j th household has its number of insured
carsmodeled by the randomvariableH j (t), which contains a j the initial number
of insured cars, and c j the time constant previously introduced. Thus, we find
the following equation, by composition of generating functions:

PH(t)(z, t) = PM(t)
(
PN (t,a)(z, t), t

)
= PM(t)

(
PN ∗(t,a)(z, t) × z, t

)
= 1 − e−γ t p�t+ci �

(
1 − (

(z− 1)e−μt + 1
)a−1

ze(z−1)(1−e−μt) λ
μ

)
,

where we can observe a change due to the relation N (0) = a, which implies
N ∗(0) = a − 1.

To model JA(t), the number of insured cars by old households, we then have

JA(t) =
R0∑
j=1

H j (t),

which corresponds to the sumof all insured cars owned by the R0 old households
that are still insured at time t. By using all the PGF, we have

PJA(t)(z, t) =
R0∏
i=1

[
1 − e−γ t p�t+ci �

(
1 − (

(z− 1)e−μt + 1
)ai−1

ze(z−1)(1−e−μt) λ
μ

)]
(3.8)

which expresses the PGF of JA(t).

3.3. All households

To model the total number of insured vehicles coming from new and old house-
holds, we have to find the PGF of the following random variable:

J (t) = JA(t) + JN(t). (3.9)

The PGF for the all households of the portfolio can be expressed as

PJ (t)(z, t) = PJA(t)(z, t) × PJN(t)(z, t)

=
R0∏
i=1

[
1 − e−γ t p�t+ci �

(
1 − (

(z− 1)e−μt + 1
)ai−1

ze(z−1)(1−e−μt) λ
μ

)]
× eτ tqt(e

λ
μ (z−1)z−1), (3.10)

where information from household i is used through ci and ai .
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4. INFERENCE

The PGF expressed in Equation (3.10) uses several parameters that we can
estimate using real insurance data. Indeed, we have to estimate τ , the rate of
arrival of new households in the portfolio, γ the rate of departure of households
from the portfolio, p the probability of annual contract renewal, λ the rate of
arrival of new cars on a contract and finally μ the rate of departure of cars
from the contract.

4.1. Notations

To estimate all parameters of the new model, a list of variables that are used in
the likelihood function must be presented. All possible events observed during
the life of the insurance policy will be noted as:

1. Type 1 event, which represents an addition of a car on the insurance con-
tract:
• The parameter λ is used to model the addition rate;
• The random variable E represents the total number of events of this type

(excluding the cars already insured at the beginning of the first observed
contract);

• �1 is a random variables that defines the time before the occurrence of
an event of this type.

2. Type 2 event, which represents a removal of a car from the insurance policy.
• The parameter μ is used to model the removal rate;
• The random variable S represents the total number of events of this type;
• �2 is a random variables that defines the time before the occurrence of

an event of this type.
3. Type 3 event, which represents a cancellation of the insurance policy at a

different time than the anniversary of the policy.
• The parameter γ is used to model the cancellation rate;
• The random variable Arepresents the total number of events of this type;
• �3 is a random variables that defines the time before the occurrence of

an event of this type.
4. Type 4 event, which represents a cancellation of the insurance policy at the

policy anniversary date. In other words, an event of this type is recorded if
there is no contract renewal.
• The parameter p is used to model the probability of renewal;
• The random variable Q represents the total number of events of this type;
• �4 is a random variables that defines the time before the occurrence of

an event of this type.
5. Type 5 event, which represents the arrival of a new household.

• The parameter τ is used to model the arrival rate;
• The random variable B represents the total number of events of this

type.
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• �5 is a random variables that defines the time before the occurrence of
an event of this type.

Thus, the total number of events, noted as K , is equal to the sum of all the
previous elements, such as K = E + S+ A+ Q+ B. We also propose to note:

1. U, the total observed time period;
2. ξ , the total number of observed households in the database;
3. Ti , the number of years household i was insured;
4. V∗

i , the sum of the covered insurance time of all vehicles from household i .
Note that because we use the transformation N ∗(t) = N (t) − 1, we have
Vi = V∗

i − Ti .

Finally, because we construct the model by event, we also propose the fol-
lowing event-relation notations:

1. tj is the time of occurrence (in years) of the j th event affecting the number
of insured cars;

2. t̃ j is the time period (in years) between the ( j−1)th and the j th event, where
t̃ j = tj − tj−1, with t̃1 = t1;

3. Wj is the number of insured households in the portfolio immediately before
the j th event;

4. Jj is the total number of insured cars in the portfolio immediately before
the j th event;

5. h(̃tj ) is the total number of contracts renewed in the portfolio during the
period t̃ j .

4.2. Likelihood function

We first note that the time before the arrival of new households has an expo-
nential distribution. According to the Markov assumption, these arrivals are
independent from additions of cars, from removals of cars and breaches of con-
tract. We can use the properties of exponential distributions to calculate the
joint probability that the first event is the addition of a car.

Pr(�1 = t̃1, �2 > t̃1, �3 > t̃1, �4 > t̃1, �5 > t̃1) = (
W1λe−λW1 t̃1

)
e−J1μ̃t1e−W1γ t̃1 ph(̃t1)e−τ t̃1 .

Similarly, we have the following probabilities:

Pr(�1 > t̃1, �2 = t̃1, �3 > t̃1, �4 > t̃1, �5 > t̃1) = e−λW1 t̃1
(
J1μe−J1μ̃t1

)
e−W1γ t̃1 ph(̃t1)e−τ t̃1 ;

Pr(�1 > t̃1, �2 > t̃1, �3 = t̃1, �4 > t̃1, �5 > t̃1) = e−λW1 t̃1e−J1μ̃t1
(
W1γ e−W1γ t̃1

)
ph(̃t1)e−τ t̃1 ;

Pr(�1 > t̃1, �2 > t̃1, �3 > t̃1, �4 = t̃1, �5 > t̃1) = e−λW1 t̃1e−J1μ̃t1e−W1γ t̃1
(
ph(̃t1)−1(1 − p)

)
e−τ t̃1 ;

Pr(�1 > t̃1, �2 > t̃1, �3 > t̃1, �4 > t̃1, �5 = t̃1) = e−λW1 t̃1e−J1μ̃t1e−W1γ t̃1 ph(̃t1)
(
τe−τ t̃1

)
.

Because all processes involve exponential distribution, the likelihood func-
tion can be computed as the product of all events that occur during the observed
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time period U, such as

L(τ, γ, p, λ, μ)

= e− ∑K
j=1 t̃ j (τ+Wj (λ+γ )+Jjμ) p

∑K
j=1 h(̃tj )

E∏
j=1

(λWj )

S∏
j=1

(μJj )
A∏
j=1

(γWj )

Q∏
j=1

(1 − p)
B∏
j=1

τ

∝ e−(Uτ+∑ξ
i=1 Ti (λ+γ )+∑ξ

i=1 Viμ) p
∑ξ

i=1�Ti �−QλEμSγ A(1 − p)Qτ B, (4.1)

where constants have been removed because they are not useful for maximum
likelihood calculation.

We must adapt the likelihood function to introduce the distribution of the
number of insured cars that a new household has when it enters the insurance
portfolio. As defined by Equation (3.4), this distribution is a function of λ and
μ, meaning that the distribution of the number of cars is

Pr (N (0) = a) = Pr
(N ∗(0) = a − 1

)
= e− λ

μ

(a − 1)!

(
λ

μ

)a−1

, (4.2)

when we add this to the likelihood function (4.1), we obtain the following like-
lihood function:

L(τ, γ, p, λ, μ) ∝ e−(Uτ+∑ξ

i=1 Ti (λ+γ )+∑ξ

i=1 Viμ+ξ λ
μ
) p

∑ξ

i=1�Ti �−Q

×λE+∑ξ

i=1(ai−1)μS−∑ξ

i=1(ai−1)γ A(1 − p)Qτ B, (4.3)

where ai is the initial number of insured cars for household i .
Note that the addition of the distribution of the initial number of insured

cars ai has the effect of creating a more complex equation for estimating the
parameters μ and λ. Thus, these two parameters cannot be estimated by an
explicit formula. However, maximizing Equation (4.3), we find the following
estimators for the other parameters:

γ̂ = A∑ξ

i=1 Ti
, (4.4)

p̂ =
∑ξ

i=1�Ti� − Q∑ξ

i=1�Ti�
, (4.5)

τ̂ = B
U

. (4.6)

4.3. Estimated parameters

We estimated parameters of the model with a Canadian car insurance database,
already introduced in Section 1.2. Estimators of the parameters can be seen in
Table 1.
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TABLE 1

PARAMETERS ESTIMATORS (STD. ERR.).

New Removal of Cancellation of Contract New
Cars Cars Contract Renewal Household

λ̂ μ̂ γ̂ p̂ τ̂

0.0624 (0.0002) 0.2315 (0.0007) 0.0918 (0.0003) 0.9188 (0.0003) 28,014 (83.68)

To check the quality of the model, estimated parameters can be compared
to data, via empirical estimators. Because the data used is highly censored, we
used the Kaplan–Meier estimators and Kaplan–Meier survival plots over up to
5 years. We did not include confidence intervals in our graphes, as it was quite
narrow around each curve. However, as we analyzed a dataset observed over
a small number of years (5 years), and because new households are constantly
added to the portfolio, it is important to understand that most of the observed
events happens in the first 1–2 years of each graphs.

For each estimated parameter, we observe the following results:

1. Cancellation (γ ) and renewal (p) rates:
The first interesting comparison between the data and the estimated pa-
rameters of the model would be the survival analysis of households in the
insurance portfolio, which includes both parameters γ and p. We see that
the annual renewal rate p is about 92% and that the annual probability of
cancellation γ is approximately 9%. Figure 2 compares the fit of the model
with theKaplan–Meier estimators. The fit of themodel is very good.We can
observe that the model seems to approximate quite well what is observed
with real insurance data.

2. The rate of arrival λ of new cars on a contract:
In Table 1, we see that the value of λ̂ is equal to 0.0624, whichmeans that, for
an active contract, at each 0.0624−1 = 16.02 years on average, a new car will
be added to the a contract. Figure 3 compares the value of λ̂ with Kaplan–
Meier estimators, from which we can see that the fit is close to the empirical
estimators, but seems to constantly, but slightly, overestimate it. Note that
the number of cars at time 0, as seen in Equation (4.2), also depends on λ

(and μ). We will compare the model with the initial number of insured cars
later.

3. The departure rate μ of cars from the contract:
The value of μ̂ means that each car has an average life of 0.2315−1 = 4.32
years into an insurance contract. It is also interesting to note that the arrival
rate of cars is not enough to compensate for the departure rate of cars since
λ̂ < μ̂.
We must be careful with the analysis of this parameter, which is used to
model the removal rate of vehicles. Indeed, this rate depends on the num-
ber of insured cars on the contract, as expressed in the M/M/∞ process,
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FIGURE 2: Analysis of the cancellation rate of households.

meaning that the departure rate is equal to (J−1)μ, with J representing the
number of insured cars of a specific insurance contract, at a specific time.
Figures 4, 5 and 6 show survival functions for contracts with respectively
two, three and four insured vehicles.
The fit of the model is interesting for contracts with three or four vehicles,
but not for the contracts with two vehicles. As explained, we should focus
on the first years of the graph to draw conclusions. The model consistently
underestimates the departure rate for each situation. This might explains
why the arrival rate λ was slightly higher than the Kaplan–Meier estimates;
as the arrival process tries to correct the effect of underestimation of the
departure rate μ.
The model proposed in this paper uses only one parameter (μ) to explain
the behavior of all households, without directly considering the number of
insured cars on the contract. For example, the departure rate of an insurance
contract with three insured cars is simply the double of the departure rate

https://doi.org/10.1017/asb.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.7


416 JEAN-PHILIPPE BOUCHER AND GUILLAUME COUTURE-PICHÉ

FIGURE 3: Analysis of the arrival rate of new vehicles.

of an insurance contract with two insured cars, and a contract with four
vehicles has a departure rate three times higher than a contract with two
cars. This lack of flexibility might explain the bad quality of the fit for this
process. Regrettably, it is not easy to correct this property of the model.
Both μ̂ and λ̂ are also used to estimate the number of cars at time 0, as seen
in Equation (4.2). Figure 7 compares the initial number of insured cars with
the model for a new insurance policy, where we can also observe the impact
of the transformationN ∗. The transformation ensures that the distribution
of the initial number of insured cars is closer to what is observed in real-
ity. Interestingly, if we had not changed the model to constrain the initial
number of insured cars of a new insurance policy, i.e. using N instead of
N ∗, the number of new households without insured cars would have been
approximately equal to 40%, which is obviously unrealistic.
Compared with the estimated values of parameters shown in Boucher and
Couture-Piché (2015), the main difference in estimators is μ̂. Note that the
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FIGURE 4: Analysis of the removal rate of vehicles, for contracts with two insured vehicles.

transformationN ∗ is also responsible for the small change in the parameter
estimator λ̂, while p̂ remains very similar to the estimators of in Boucher and
Couture-Piché (2015). The BCP model assumes an inactive state, while the
transition from one insured cars to no insured car is now considered as a
cancellation of the contract. Thus, it is likely that the parameter γ̂ is higher
than the BCP model.

4. The rate of arrival τ of new households in the portfolio:
Finally, we can note that τ̂ is equal to 28,014. This value means that there
would be approximately 28,014

365.25 = 76.7 new policyholders per day, or be-
tween 76.7 × 30 = 2301 and 76.7 × 31 = 2377 new households per month
in the insurer’s portfolio, depending on the number of days per month. As
mentioned at the end of Section 2.2, the insurance data we used show sea-
sonality, as illustrated in Figure 1. The number of days per month does not
fully explain the observed seasonality.
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FIGURE 5: Analysis of the removal rate of vehicles, for contracts with three insured vehicles.

4.4. Covariates

We know that some household profiles are more likely to be insured by a specific
insurance company, and are also more or less likely to add or remove cars from
their insurance contract. Similarly, some profiles may cancel more than others
and certain types of policyholders may have lower or higher renewal rates. We
still want to use the log-likelihood function expressed in Equation (2.3), but
think that the addition of covariates into each parameter λ, μ, γ, p and τ of
our queuing process model is justified.

Covariates selected to define the vector Xi of each household are provided in
Table 2. Some of the covariates available in our database refer to calendar date,
for example, the fact that the effective date of the contract is in July, or the fact
that the effective date of the insurance contact is on the first day of a month.
We cannot use those covariates because this link with the calendar date would
require us to change basic assumptions of our M/G/∞ model. Thus, three ex-
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TABLE 2

BINARY VARIABLES SUMMARIZING THE INFORMATION AVAILABLE ABOUT EACH HOUSEHOLD.

Variable Description

X1 Equals 1 if the Household Comes from the General Market (as Opposed
to Group Insurance)

X2 Equals 1 if the Household has at Least One Rented Car
X3 Equals 1 if the Insureds are not Married

FIGURE 6: Analysis of the removal rate of vehicles, for contracts with four insured vehicles.

planatory variables are used, which create eight different types of profiles, given
that there are three binary explanatory variables (so 23 = 8 types of insureds).

A link function g(Xiβ) is then associated with each parameter, where β is
the vector of parameters to be estimated. In our model, the parameters satisfy
λ, γ, μ ∈ R+; consequently, a logarithmic link function is chosen because this
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TABLE 3

ESTIMATED PARAMETERS AND STANDARD ERRORS (IN BRACKETS) FOR THE PROCESS WITH COVARIATES.

Parameter βλ βμ βγ β p

β0 −2.5788 (0.0045) −1.7056 (0.0043) −2.7137 (0.0058) 2.5989(0.0066)
β1 −0.0868 (0.0074) 0.1562 (0.0071) 0.2492 (0.0074) −0.2541(0.0090)
β2 −0.2403 (0.0106) 0.3735 (0.0103) 0.0717 (0.0100) 0.0784(0.0127)
β3 −0.4222 (0.0076) 0.6885 (0.0071) 0.5453 (0.0071) −0.2628(0.0087)

FIGURE 7: Initial number of insured cars for a new insurance policy.

link function allows parameters to be always positive. Moreover, because the
parameter that models the renewal probability must satisfy p ∈ [0, 1], we use the
logit link, i.e. pi = exp(Xiβ p)

1+exp(Xiβ p)
. The estimated values of the vector parameters β

are shown in Table 3.
The use of explanatory variables included in parameter τ , corresponding to

the arrival rate of new households in the portfolio, is more difficult. Indeed,
parameter τ can be seen as a measure of the time between the arrival of two
new insureds. Thus, it is not easy to introduce explanatory variables without
changing the nature or the interpretation of the process. To solve this problem,
because our numerical example uses very few covariates and thus few types of
households, we use an estimator τ̂ j , j = 1, ..., 8, that is different for each type of
household. This means that we assume eight different arrival processes for the
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TABLE 4

PARAMETER VALUES FOR EACH PROFILE.

Covariates Parameters

X1 X2 X3 λ̂ μ̂ γ̂ p̂ τ̂

1 1 1 0.0359 0.6142 0.1576 0.8966 133
1 1 0 0.0547 0.3085 0.0914 0.9186 111
1 0 1 0.0456 0.4228 0.1467 0.8891 2060
1 0 0 0.0696 0.2124 0.0851 0.9125 985
0 1 1 0.0391 0.5254 0.1229 0.9179 1187
0 1 0 0.0597 0.2639 0.0712 0.9357 1880
0 0 1 0.0497 0.3617 0.1144 0.9118 9596
0 0 0 0.0759 0.1817 0.0663 0.9308 12098

number of new households. To estimate the parameters, we took the likelihood
Equation (4.3) as a function to maximize for each household type. We obtain
a likelihood function for the parameter τ j from which we find the estimator
τ̂ j = Bj

U , where Bj is the number of new households of type j = 1, . . . , 8.
Finally, the parameters for each type of insured appear in Table 4.We clearly

see that the arrival rate varies greatly depending on the type of household.

4.5. Discussion

The proposed model seems to include all the possible client movement in the
insurance industry: from arrivals and departures of households, to arrivals and
departures of vehicles in each annual contract of each household. However, as
we observed in Section 4.3 in the estimated parameters analysis, the M/G/∞
model has some limitations. The model seems to approximate the departures of
households and the arrivals of new vehicles on the contracts correctly, but the
modeling of departures of vehicles and the absence of seasonality in the arrivals
of households highlight some defects of the model. Obviously, the addition of
covariates in the model improves the fit. However, we analyzed the model with
covariates similarly to what has been done in Section 4.3, and the conclusions
were approximately the same for each process of the model. Those conclusions
about the quality of the approximation are based on a single insurer’s portfolio.
Depending on which dataset we analyze, the conclusions can be different and
the quality of the fit could have been better. Nevertheless, future research that
generalizes the approach and improves the approach and improve the flexibility
of the model could be interesting. Such studies should focus on queuing models
other than the M/G/∞.

The proposed model is one of the first approaches proposed in the actu-
arial sciences literature to model client’s movement in the insurance industry.
The proposed approach opens the way to interesting generalization, such as
the inclusion of ratemaking in the analysis or the inclusion of other insurance

https://doi.org/10.1017/asb.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.7


422 JEAN-PHILIPPE BOUCHER AND GUILLAUME COUTURE-PICHÉ

products. The model we built is an obvious approximation of what happens in
an insurance portfolio, but allows us to compute several interesting values, such
as the customer lifetime value and the global value of the insurance portfolio
by using the customer equity concept (see next section). We estimate that the
general fit of the model is good enough to draw general observations of what
happens in the analyzed insurance portfolio. However, because of the approxi-
mation, we should draw conclusions prudently.

5. ANALYSIS

In this section, applications are presented using the estimated parameters found
by regression in the previous section and shown in Table 4. Thus, for example,
even if we are working with λ̂, γ̂ , μ̂, p̂ or τ̂ , for simplicity, we will suppose that
those parameters correspond to λ, γ , μ, p and τ .

We can compute different results using the PGFs found previously in
Sections 2 and 3. Our first analysis will involve calculating the number of
insured cars at time t, but this time for the entire portfolio of insureds. We will
then discount the future profits generated by future insured cars, which allows
us to value the portfolio.

5.1. Expected value and variance of the number of insured cars at time t

Below we calculate the expected number of insured cars at time t. Although it
is possible to find this result by deriving the PGF of Equation (3.10), the use of
the conditional expectation leads to the same result in a simpler way. Starting
with the expectation of Equation (3.9), we develop

E(J (t)) = E

[
R0∑
i=1

Hi (t) +
K(t)∑
i=1

Ni (t)

]

= E

[
R0∑
i=1

Hi (t)

]
+ E

[
E

[K(t)∑
i=1

Ni (t)|K(t)

]]

=
R0∑
i=1

E(Hi (t)) + E(K(t)E(N (t)))

=
R0∑
i=1

E(Hi (t)) + λ

μ
E(K(t))

=
R0∑
i=1

e−γ t p�t+ci �
(

(ai − 1)e−μt + 1 + (
1 − e−μt) λ

μ

)
+ τ tqt

(
λ

μ
+ 1

)
.

(5.1)
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The variance or the standard deviation can also be computed using a similar
method, from which we obtain

Var(J (t)) = Var

[
R0∑
i=1

Hi (t) +
K(t)∑
i=1

Ni (t)

]
(5.2)

=
R0∑
i=1

Var

⎡⎣E

⎡⎣Mi (t)∑
j=1

Ni (t, ai )

∣∣∣∣∣∣M(t)

⎤⎦⎤⎦ +
R0∑
i=1

E

⎡⎣Var

⎡⎣Mi (t)∑
j=1

Ni (t, ai )

∣∣∣∣∣∣M(t)

⎤⎦⎤⎦
+Var

[
E

[ K(t)∑
i=1

Ni (t)

∣∣∣∣∣K(t)

]]
+ E

[
Var

[ K(t)∑
i=1

Ni (t)

∣∣∣∣∣K(t)

]]

=
R0∑
i=1

Var [Mi (t)E[Ni (t, ai )]] +
R0∑
i=1

E [Mi (t)Var[Ni (t, ai )]]

+Var [K(t)E[N (t)]] + E [K(t)Var[N (t)]]

=
R0∑
i=1

Var
[
Mi (t)

[
(ai − 1)e−μt + 1 + λ

μ

(
1 − e−μt

)]]

+
R0∑
i=1

E

[
Mi (t)

[
(ai − 1)e−μt

(
1 − e−μt

) + λ

μ

(
1 − e−μt

)]]

+Var
[
K(t)

(
λ

μ
+ 1

)]
+ E

[
K(t)

λ

μ

]

=
R0∑
i=1

e−γ t p�t+ci � (
1 − e−γ t p�t+ci �) (

(ai − 1)e−γ t + 1 + (
1 − e−μt

) λ

μ

)2

+
R0∑
i=1

e−γ t p�t+ci �
(

(ai − 1)e−μt
(
1 − e−μt

) + (
1 − e−μt

) λ

μ

)

+
(

λ

μ
+ 1

)2

τ tqt + λ

μ
τ tqt. (5.3)

We computed those values using the insurer’s database, and projected the
number of insured cars after 1 year, 5 years and 10 years, as shown in Table 5.
We also added a variation of plus or minus the standard deviation, thus showing
the potential variability of results. Results shown depend on the model (mean-
ing that model specification errors should be considered), but also on other er-
rors, such as the variability of the estimators, which was not considered in this
calculation.

By taking the limit of the expected value or by using the PGF when t → ∞,
we could see that the number of expected insured cars converges to a specific
value when t increases. Even if the expected number of new cars per year is
high, we can observe that the standard deviation is low. We can see the expected
number of insured cars per year in Figure 8, where the standard deviation on
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TABLE 5

EXPECTED VALUE OF THE FUTURE NUMBER OF INSURED CARS.

t 1 5 10

E(J (t)) + √
Var(J (t)) 240,414 228,915 225,932

E(J (t)) 240,075 228,379 225,355
E(J (t)) − √

Var(J (t)) 239,737 227,843 224,779

the number of vehicles increases only slightly over time. Our prediction does not
include the estimation error, and we think that the addition of this kind of error
in the predictions would be more realistic. This element should be analyzed in
future research.

The second graph of Figure 8 shows the expected number of insured cars
from new households (JN) and the expected number of insured cars from old
households (JA). Obviously, the sum of the two variables gives us the total num-
ber of cars insured, as shown by the equation J (t) = JN(t)+JA(t). In the case
of the insurer analyzed in this paper, the total number of insured cars remains
essentially the same over the years. However, we see that the old households are
quickly replaced by new ones. Thus, after only five years, half of the insurer’s
portfolio will be composed of new households. This empirical analysis shows
the importance of constantly conducting promotional campaigns to attract new
customers.

It may be interesting to analyze whether this behavior is the same for all types
of insureds. Table 6 provides an overview of J (t) for t = 0 and for t → ∞.
Figure 9 shows the evolution of the number of insured cars by risk profile.

We can see that the portfolio composition changes significantly over time.
Because of substantial changes in the proportions of certain profiles in the port-
folio, we can reasonably assume that the arrival rate of some households’ profiles
was different in the past. Thus, if those insured households are profitable, a mar-
keting analysis could identify what changes to company policy have generated
this difference.

5.2. Value of the insurance portfolio

It is possible to calculate the lifetime value of an insurance portfolio by dis-
counting the future profits of each household. Indeed, for illustration, we will
suppose that the insurance company makes a $1 profit for each one-year car
exposure. In Boucher and Couture-Piché (2015), the authors used this method.
We will apply the same method to all clients who are currently insured, but also
to those who will be insured by the insurance company in the future. This allows
us to obtain the total present value of the profit of the insurance portfolio. This
value is sometimes called customer equity (see Rust et al., 2004 for an analysis
of the links between this method and customer lifetime value), and can be seen
as a measure of the health of the insurance company.
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FIGURE 8: Expected number of insured cars over time (dotted line represents observed data).

By noting �, the random variable representing the value of this portfolio,
we can find the expected value as follows:

E(�) =
∫ ∞

0
E(J (t))e−δtdt

=
∫ ∞

0

R0∑
i=1

E(Hi (t))e−δt +
(

λ

μ
+ 1

)
τ tqte−δtdt

=
R0∑
i=1

∫ ∞

0
E(Hi (t))e−δtdt +

(
λ

μ
+ 1

)∫ ∞

0
τ tqte−δtdt. (5.4)
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TABLE 6

EXPECTED NUMBER OF INSURED CARS, AND PROPORTION, OVER TIME BY RISK PROFILE.

Insured Cars at Stationary
Covariates Insured Cars at 12/31/2007 Level

X1 X2 X3 Number Percentage Number Percentage

1 1 1 1,929 0.8% 556 0.2%
1 1 0 4,432 1.7% 773 0.3%
1 0 1 17,977 7.6% 9,141 4.0%
1 0 0 30,040 12.3% 7,741 3.4%
0 1 1 6,579 2.6% 6,375 2.8%
0 1 0 17,657 6.8% 17,302 7.7%
0 0 1 48,605 20.0% 55,221 24.5%
0 0 0 119,445 48.2% 128,735 57.0%

Total 246,664 100.0% 225,845 100.0%

FIGURE 9: Expected number of insured cars over time by risk profile (dotted lines represent observed data).

https://doi.org/10.1017/asb.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.7


MODELING THE NUMBER OF INSURED HOUSEHOLDS 427

The BCP model was used to compute
∫ ∞
0 E(Hi (t))e−δtdt. The same compu-

tation cannot be used directly in our model. Indeed, some basic assumptions
about the model have changed, such as the one that prohibits the possibility of
having an insured household without insured cars. Consequently, we have

∫ ∞

0

R0∑
i=1

E(Hi (t))e−δtdt

=
R0∑
i=1

(
ai − 1 − λ

μ

)
e−(1−ci )(γ+δ+μ)

pe−(γ+δ+μ)
(
1 − e−(γ+δ+μ)

)(
1 − pe−(γ+δ+μ)

)
(γ + δ + μ)

+
(

λ

μ
+ 1

)
e−(1−ci )(γ+δ)

pe−(γ+δ)
(
1 − e−(γ+δ)

)(
1 − pe−(γ+δ)

)
(γ + δ)

+
(
ai − 1 − λ

μ

)
1 − e−(1−ci )(γ+δ+μ)

γ + δ + μ

+
(

λ

μ
+ 1

)
1 − e−(1−ci )(γ+δ)

γ + δ
. (5.5)

The second integral of (5.4) is calculated as follows:

∫ ∞

0
τ tqte−δtdt

=
∫ ∞

0

τ

γ

[(
1 − e−γ

) 1 − (
pe−γ

)�t�

1 − pe−γ
+ p�t� (

e−γ �t� − e−γ t)] e−δtdt

=
∞∑
i=0

∫ i+1

i

τ

γ

[(
1 − e−γ

) 1 − (
pe−γ

)i
1 − pe−γ

+ pi
(
e−γ i − e−γ t)] e−δtdt

=
∞∑
i=0

τ

γ

[(
1 − e−γ

) 1 − (
pe−γ

)i
1 − pe−γ

e−δi
(
1 − e−δ

)
δ

+ (
pe−(γ+δ)

)i (1 − e−δ

δ
− 1 − e−(δ+γ )

δ + γ

)]

= τ

γ

[
1 − e−γ

δ (1 − pe−γ )

(
1 − 1 − e−δ

1 − pe−(γ+δ)

)
+ 1 − e−δ

δ
(
1 − pe−(γ+δ)

)
− 1 − e−(δ+γ )

(γ + δ)
(
1 − pe−(γ+δ)

)]
. (5.6)
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TABLE 7

CUSTOMER EQUITY FOR EACH RISK PROFILE.

Old New
Covariates Households Households Total

X1 X2 X3 Value % Value % Value %

1 1 1 6,481 0.5% 25,867 0.3% 32,349 0.3%
1 1 0 22,156 1.7% 35,630 0.4% 57,786 0.5%
1 0 1 62,223 4.7% 426,630 4.3% 488,852 4.3%
1 0 0 149,871 11.4% 342,266 3.4% 492,137 4.3%
0 1 1 27,754 2.1% 299,241 3.0% 326,995 2.9%
0 1 0 105,349 8.0% 757,722 7.6% 863,071 7.6%
0 0 1 210,379 16.0% 2,486,015 24.8% 2,696,394 23.8%
0 0 0 730,249 55.6% 5,644,101 56.3% 6,374,350 56.3%

Total 1,314,462 100% 10,017,472 100% 11,331,934 100%

Using a value of δ equal to 0.02, the results of the discounted profits appear
in Table 7 for each type of household. We separated the future profit by old
households and new households.

From Table 7, we observe that the total value of the insurance portfolio is
approximately $11.3 million. Only $1.3 million of this value comes from old
households, meaning that only a small proportion of actual insureds participate
in the long-term profits of the company. Consequently, our analysis can be used
to justify that more efforts have to be made to attract new insureds, compared to
the efforts made to keep actual insureds. It is important to understand that this
analysis is based on the strong assumption that the insurer can make a $1 profit
for each one-year car exposure. As an anonymous referee pointed out, however,
this conclusion ignores the expenses associated with underwriting new business.
Indeed, new business implies greater administrative expenses, and commissions,
compared with existing business. A more precise model that could be based on
what we propose on the paper would suppose that profit can depend on the
characteristics of the household.

However, the analysis does not specify what is a new insured household
is. For example, if an insured household cancels its current contract, it may
want to be covered again by the same insurance company a few years later. The
database used in our analysis cannot differentiate genuine new households from
past clients that simply come back. Consequently, efforts to keep current clients
should not be minimized following our analysis.

6. CONCLUSION

In this paper, we presented a generalization of the BCP model, whereby we
model the number the number of insured households in an insurance company.
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We based our work on queuing theory models. We assume that the number of
insured cars of each insured follows a similar process as the one proposed in the
BCP model. However, we also added a new process that models the number of
insured households in a portfolio. Because these two mathematical models are
similar, models have been easily nested to form a complete model that emulates
the total number of insured cars for an insurance company.

Themodel proposed in this paper requires five parameters: the arrival rate of
new households in the portfolio, the departure rate of households from the port-
folio, the probability of annual contract renewal, the arrival rate of new cars on a
contract and finally the departure rate of cars from the contract. The model has
been generalized to allow the use of explanatory variables in each of the model
parameters.We compared the estimated parameters with the data to verify if the
proposedmodel correctly approximates what happens in an insurance portfolio.
We conclude that the general modeling is reasonable. More precisely, the model
seems to correctly approximate the departures of households and the arrivals of
new vehicle on the contract, but the modeling of the departure of vehicles and
the absence of seasonality in the arrival of households highlight some flaws of
the model. Those conclusions about the quality of the approximation are based
on a single insurer portfolio, and it is possible that the model proposed in this
paper fits better with other insurer’s portfolios. Nevertheless, we think that the
proposedmodel should be improved in the future to add flexbility, and tomodel
some specific characteristics of the insurance process more accurately.

Parameters calculated from the model were used to generate various key
statistics for an insurance company. The concept of customer equity was ex-
plored. This allowed us to note that some types of insureds, even if they rep-
resent a large proportion of the current insurance portfolio, represent only a
small proportion of future profits of the insurance company. An insurer could
therefore direct its marketing policies according to the model we proposed.
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