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Under a suitable condition on the conditional moment generating function of the
martingale differences, an exponential supermartingale is used to generalize cer-
tain martingale inequalities due to Blackwell and Ross+

1. INTRODUCTION

Blackwell ~cf+ @2,3# ! used game-theoretic methods to obtain the following inequal-
ities+ Let $Sn �(1

n Xi , S0 � 0, Fn, n � 0% be a supermartingale such that 6Xn6 � 1
and E~Xn6Fn�1! � �g for all n ~0 � g � 1!+ Then, for any a � 0,

P~Sn � a for some n � 1!� �1 � g

1 � g
�a

+ (1)

In @3# , he considered a martingale $Sn,Fn% where 6Xn6� 1 and proved that for any
positive constants a and b,

P~Sn � a � bn for some n � 1! � exp~�2ab!, (2)

and for any positive b ~0 � b � 1! and suitable r,

P~Sn � bn for some n � m!� r m � exp~�mb202!+ (3)

Ross @5# used a supermartingale argument to extend ~2! and ~3! for martingales
Sn � (1

n Xi when �a � Xn � b~a,b � 0!+ These exponential inequalities result
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from the inherent subnormal character of the differences Xn+ Therefore, it seems
natural to widen the scope by assuming a suitable condition on the conditional
moment generating function ~mgf ! fn~u!� E~exp~uXn!6Fn�1! for wider applica-
tions+ Consequently, the boundedness condition of Xn’s is disposed and replaced by
a subnormal condition on fn~u!, leading to an exponential supermartingale, and the
subsequent inequalities are easily derived+ Thus, the purpose of this article is to
generalize Blackwell–Ross inequalities for martingales ~supermartingales! under a
subnormal structure on fn~u! for wider scope and shorter and simpler proofs of
earlier inequalities+ Another variation of these inequalities is also given under a
weaker condition leading to a sub-Poisson structure of fn~u!+ Thus, our exponen-
tial supermartingale approach unifies and generalizes the known inequalities for
broader applications without the condition of bounded martingale ~supermartin-
gale! differences+

2. THE MAIN RESULTS

Let $Sn �(1
n Xi , Fn, n � 0% be a martingale ~supermartingale! with conditional mgf

fn~u!� E~exp~uXn!6Fn�1! such that

fn~u! � f ~u! � exp~�gu� lu2 ! ~l � 0, g� 0!,

where f ~u! is a continuous positive function with f ~0!� 1+
Using a suitable exponential supermartingale, we derive the basic inequality

P~Sn � a � bn for some n � m!� Am exp~�a~b � g!0l!

for a suitable A � 1+ This inequality seems to be new under a subnormal structure
that allows it to be true for martingales as well as supermartingales without the
differences Xn’s being bounded+ The generalized version of ~3! given later also
appears to be new+ The given generalizations unify and simplify the earlier known
inequalities+All of the inequalities are derived from the following well-known super-
martingale inequality+

Lemma: Let $Zn,Fn, n � 0% be a positive supermartingale. Then, for m � 1,

P~maxn�m Zn � 1!� EZm � EZ1 � EZ0 + (4)

Proof: Let t � inf $n � m : Zn � 1% and t~k! � min~t, k!, k � m � 1+ Then
$Zt~k!,Fk% is a supermartingale by the optional stopping theorem and ~4! follows
from

P~Zt~k! � 1!� EZt~k!� EZm � EZ1 � EZ0

by letting k r `+ Most of the subsequent inequalities are based on the following
proposition, which is the basic generalized inequality described earlier+ It general-
izes known inequalities under less restrictive conditions by shorter and simpler
proofs+
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Theorem: Let $Sn � (1
n Xi ,Fn , n � 0% be a martingale (supermartingale) such

that the conditional moment generating function fn~u! satisfies

fn~u! � f ~u! � exp~�gu� lu2 !, g� 0, l � 0, u � 0,

where f ~u! is a continuous positive function such that f ~0!� 1. Then for positive a
and b,

P~Sn � a � bn for some n � m!� Am exp~�a~b � g!0l!, (5)

where A � e�bu0 f ~u0 ! � 1 and u0 � ~b � g!0l. Moreover,

P~Sn � bn for some n � m!� A0
m exp��

m~b � g!2

4l
�, (6)

where A0 � exp~�~b � g!u002! f ~u0! and u0 � ~b � g!02l.

Proof: Let Zn~u! � exp~uSn � au� bnu!, u � 0+ Clearly,

E~Zn~u!6Fn�1! � Zn�1~u!exp~�bu!fn~u!� Zn�1~u!exp~�bu! f ~u!

� Zn�1~u!exp~�~b � g!u� lu2 !� Zn�1~u!

if u � u0 � ~b � g!0l+ Thus, Zn~u0! is a positive supermartingale and, hence,
~4! gives

P~Sn � a � bn for some n � m!� EZm~u0 !+

It is clear that EZm~u0! � f ~u0 !e
�bu0EZm�1~u0 !� AEZm�1~u0! and, thus,

EZm~u0 ! � AEZm�1~u0 !� A2EZm�2~u0 !� {{{� AmEZ0~u0 !� Am exp~�au0 !,

and ~5! follows+ To see ~6!, let g~s, n!� m~b � s!� sn, n � m, s � b, and note that
bn � g~s, n! for every n � m, and a minimization consideration leads to the choice
of s � s0 � ~b � g!02+ Thus,

P~Sn � bn for some n � m!

� P�Sn �
m~b � g!

2
�
~b � g!

2
n for some n � m�

� P�Sn �
m~b � g!

2
�
~b � g!

2
n for some n � 1�,

and ~5! gives

P~Sn � bn for some n � m!� A0
m exp~�m~b � g!204l!,

where A0 � exp~� 1
2
_ ~b � g!u0! f ~u0! and u0 � ~b � g!02l+
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Remark 1: If b � 0, it is possible to improve ~5! by assuming that f ~u! is convex
and f '~0!� 0+ Using the convexity and negative slope at u� 0, it is easy to see that
f ~u!� 1 has a unique solution u1 � u0 � g02l ~g � 0! defined earlier+ Therefore,
Zn~u1! becomes a supermartingale and the bound in ~5! becomes exp~�au1!+ This
remark will be used later in connection with the special case leading to ~1!+

Special Cases: Let $Sn � (1
n Xi ,Fn�1, n � 0% be a supermartingale where �a �

Xn � b and E ~Xn6Fn�1! � �g ~a � g � 0, b � 0! for all n+ For u � 0, let
m � ~e bu � e�au!0~a� b! and

L~x! �
a

a� b
e bu �

b

a� b
e�au � mx

be the line through ~�a, e�au! and ~b, e bu!+ Due to convexity, eux � L~x! and,
hence,

fn~u! � E~Xn 6Fn�1!�
a

a� b
e bu �

b

a� b
e�au � mg+

Letting p � ~a� g!0~a� b! and q � ~b� g!0~a� b!, we obtain

fn~u! � e�gu~ pe ~a�b!uq � qe�~a�b!pu !� f ~u!+ (7)

By Lemma A+6 of Alon and Spencer @1, p+ 235# , we have

fn~u! � exp��gu�
~a� b!2u2

8
�+

Consequently, ~5! gives

P~Sn � a � bn for some n � m!� Am exp��
8a~b � g!

~a� b!2
�, (8)

where A � f ~u0 !e
�bu0 , u0 � 8~b � g!0~a� b!2 , and f ~u! is defined in ~7!+ Simi-

larly, ~6! gives

P~Sn � bn for some n � m!� A0
m exp��

2m~b � g!2

~a� b!2
�,

where A0 � exp~� 1
2
_ ~b � g!u0! f ~u0! and u0 � 4~b � g!0~a� b!2 +

If g� 0, then the preceding inequalities become the ones obtained by Ross @5# +
Moreover, Blackwell’s inequality ~1! is also included in ~8! with a different bound+
Since A � 1 and setting b � 0 and a� b� 1, ~8! becomes

P~Sn � a for some n � 1! � exp~�2ag!,
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as opposed to the bound ~~1 � g!0~1 � g!!a + However, as mentioned in Remark 1,
we can improve the bound ~5! as follows+ Clearly, in this special case, f ~u! defined
in ~7! becomes

1 � g

2
eu �

1 � g

2
e�u,

and the unique nonzero solution of f ~u!� 1 is

u1 � ln�1 � g

1 � g
�

and the bound exp~�au1! in Remark 1 produces ~1!+ Also, it should be noted
that ~1! gives a sharper bound than exp~�2ag!+ In fact, ~~1 � g!0~1 � g!!a �
exp~�2ag!, and the bound in ~1! is attained+ For example, let X1, X2, + + + be iid
random variables such that P~X1 � �1! � q � ~1 � g!02 and P~X1 � 1! � p �
@~1 � g!02# ~0 � g � 1! so that EX1 � �g+ Set Sn �(1

n Xi and let f ~a!� P~Sn � a
for some n � 1!� P~Sn � a for some n � 1!, where a is a positive integer+ A sim-
ple conditioning argument shows that f ~a!� pf ~a �1!� q f ~a �1!+ Since f ~a!� 1,
the only nontrivial solution is f ~a! � ~ p0q!a � ~~1 � g!0~1 � g!!a + It is also
possible to find an analogue of the first part of ~3! as follows+ Consider Zn~u! �
exp~uSn � bnu!, u � 0, and note that E~Zn~u!6Fn�1! � Zn�1~u!e�bufn~u!+ From
~7!, we have

E~Zn~u!6Fn�1! � Zn�1~u!exp~�bu! f ~u!� Zn�1~u!c~u!,

where c~u!� p exp~~b� b!u!� q exp~�~a� b!u!, a � g � 0, and b � b+ It is
easy to see that c~u! is convex and c~0!�1 and c '~0!� �g� b � 0+ Hence, there
exists u* � 0 such that c~u*! � 1, and there is u1 ~0 � u1 � u*! that minimizes
c~u!; it occurs at

u1 �
1

~a� b!
ln
~b� g!~a� b!

~a� g!~b� b!
+

Also, note that r � c~u1! � c~u0! � 1, where u0 � 8~b � g!0~a � b!2 + Thus,
EZn~u1! � rEZn�1~u1!, and it follows that EZm~u1! � rm + Hence, we obtain

P~Sn � bn for some n � m!� rm � A0
m exp��

2m~b � g!2

~a� b!2
�,

where the second bound is the same as obtained earlier by the use of Alon and
Spencer’s inequality for c~u!+ This is the generalized version of ~3! for nonsym-
metrically bounded martingales ~supermartingales!, and the first bound rm is cer-
tainly new+Also, it should be remarked that the left-hand probability is zero if b � b+
In the special case a� b� 1 and g� 0, our minimizing u1 becomes
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u1 �
1

2
ln
~1 � b!

~1 � b!
, 0 � b � 1

and

r � c~u1!� 10@~1 � b!1�b~1 � b!1�b #102,

which produces Blackwell’s inequality ~3!+

3. ANOTHER EXTENSION

We now consider a supermartingale $Sn � (1
n Xi ,Fn , n � 0% such that Xn � b

~b � 0! for all n ~i+e+, the differences Xn are bounded above only!+With no loss of
generality, we assume that b� 1+ For u � 0 and x � 1, we will use the inequality

eux � 1 � ux � x 2~eu � u� 1!+ (9)

Inequality ~9! is obvious from eux �(k�0
` ~ukx k0k!! when 0 � x � 1+ That ~9! is true

for x � 0 follows from the elementary inequality eu � 1 � u � 1
2
_ u2 , which follows

from e t � 1 � t when integrated from u to zero+ Replacing u by ux ~x � 0,u � 0!
and using the fact that eu� u�1 � 1

2
_u2 , ~9! follows+ Now let vn � E~Xn

2 6Fn�1! and
note from ~9! that

fn~u! � E~euXn 6Fn�1!� 1 � vn~eu � u� 1! � exp~vn~eu � u� 1!!+ (10)

Now define Zn~u! � exp~uSn � au � bu (1
n vi !, u � 0+ Then E~Zn~u!6Fn�1! �

Zn�1~u!exp~�bvnu!fn~u!, and it follows from ~10! that

E~Zn~u!6Fn�1! � Zn�1~u!exp~vnc~u!!,

where c~u!� eu� ~1� b! u�1+We set c~u!� 0,which has a unique solution u0 �
d~b! � 0, so that Zn~u0! is a supermartingale+ Hence, we obtain from ~4! that

P�Sn � a � b(
1

n

vi for some n � 1� � exp~�ad~b!!+ (11)

If we suppose that the vi ’s are constants, then

P�Sn � b(
1

n

vi for some n � m�
� P�Sn �

1

2
b(

1

m

vi �
1

2
b(

1

n

vi for some n � 1�
� exp��

b

2
d~b02!(1

m vi�+ (12)
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Properties of d~b! have been noted in Lemma 1 of @4# ~e+g+, ln~1� b!� d~b!�
2b!+ These inequalities become useful for certain convergence problems+ Clearly,
if Sn is a martingale, then ~12! continues to hold for 6Sn6 when the bound is multi-
plied by a factor of 2, and obviously Sn 0(i�1

n vi converges to zero a+s+ provided
(i�1

n vir ` as nr `+As an example, let P~Xn � �16Fn�1!� 10~n � 1!, P~Xn �
0 6Fn�1! � 1 � @20~n � 1!# , and P~Xn � 16Fn�1! � 10~n � 1!, n � 1+ Then vn �
20~n � 1!, and Sn 0(i�1

n vi converges to zero with probability 1, and the denomina-
tor is;ln~n! ~as opposed to n in the usual strong law of large numbers!+

Remark 2: If Xn � b ~b� 0!, then replacing a by ab and b by bb in ~11! and ~12!,
the inequalities continue to hold+ In addition, if E~Xn6Fn�1! � �g ~g � 0!, then
~11! continues to hold when a is replaced by ~a � g!+

Remark 3: A final remark is that when 0 � u � 1, then c~u! � e u � u � 1 �

(2
`~uk0k!!� 1

2
_u2~1� 1

3
_ � 1

9
_ � 1

27
_ � {{{!� 3

4
_u2 +Now set Zn~u!� exp~uSn � au� bu

(1
n vi !, where vi has been defined earlier+ Clearly, E~Zn~u!6Fn�1! � Zn�1~u!

exp~�bu� 3
4
_u2!+ Hence, letting u0 � 4b03, it follows that if b � 3

4
_ , then ~4! implies

P�Sn � a � b(
1

n

vi for some n � 1� � exp~�au0 ! � exp~�4ab03! � exp~�ab!+

Moreover, if $Sn,Fn% is a martingale, then this inequality still hods with vi as the
conditional variance of the martingale difference Xi +
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