Probability in the Engineering and Informational Sciences, 21, 2007, 109-115. Printed in the U.S.A.

SOME REMARKS ON
BLACKWELL-ROSS MARTINGALE
INEQUALITIES

RasuL A. KHAN

Cleveland State University
Cleveland, OH
E-mail: r.khan @ csuohio.edu

Under a suitable condition on the conditional moment generating function of the
martingale differences, an exponential supermartingale is used to generalize cer-
tain martingale inequalities due to Blackwell and Ross.

1. INTRODUCTION

Blackwell (cf.[2,3]) used game-theoretic methods to obtain the following inequal-
ities. Let {S, = 21 X,, So = 0, F,, n = 0} be a supermartingale such that | X,| =1
and E(X,|F,—;) = —y forall n (0 <y < 1). Then, for any a > 0,

1— a
P(S,=aforsomen=1) = (_7) 1)
1+y

In [3], he considered a martingale {S,, F,} where | X,,| =1 and proved that for any
positive constants a and b,

P(S, = a + bn for some n = 1) < exp(—2ab), 2)
and for any positive b (0 < b < 1) and suitable r,
P(S, = bn for some n = m) < r™ < exp(—mb?/2). )

Ross [5] used a supermartingale argument to extend (2) and (3) for martingales
S, = 21X; when —a = X,, = B(«, 8 > 0). These exponential inequalities result
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from the inherent subnormal character of the differences X,,. Therefore, it seems
natural to widen the scope by assuming a suitable condition on the conditional
moment generating function (mgf) ¢,(6) = E(exp(0X,,)|F,—:) for wider applica-
tions. Consequently, the boundedness condition of X,,’s is disposed and replaced by
a subnormal condition on ¢, (0), leading to an exponential supermartingale, and the
subsequent inequalities are easily derived. Thus, the purpose of this article is to
generalize Blackwell-Ross inequalities for martingales (supermartingales) under a
subnormal structure on ¢,,(0) for wider scope and shorter and simpler proofs of
earlier inequalities. Another variation of these inequalities is also given under a
weaker condition leading to a sub-Poisson structure of ¢, (). Thus, our exponen-
tial supermartingale approach unifies and generalizes the known inequalities for
broader applications without the condition of bounded martingale (supermartin-
gale) differences.

2. THE MAIN RESULTS

Let{S, =21 X;, F,, n =0} be a martingale (supermartingale) with conditional mgf
¢,(0) = E(exp(6X,)| F,—1) such that

$,(0) = f(0) = exp(=y8 + 16%) (A>0,y=0),

where f(6) is a continuous positive function with f(0) = 1.
Using a suitable exponential supermartingale, we derive the basic inequality

P(S,= a+ bnfor some n =m) < A" exp(—a(b + y)/A)

for a suitable A = 1. This inequality seems to be new under a subnormal structure
that allows it to be true for martingales as well as supermartingales without the
differences X,,’s being bounded. The generalized version of (3) given later also
appears to be new. The given generalizations unify and simplify the earlier known
inequalities. All of the inequalities are derived from the following well-known super-
martingale inequality.

Lemma: Let {Z,, F,,n = 0} be a positive supermartingale. Then, for m = 1,

P(max,-, Z,=1)=<EZ,=<EZ, < EZ,. @

n=m

ProoF: Let t = inf{n = m:Z, = 1} and t(k) = min(t,k), k = m = 1. Then
{Z. (1), i} is a supermartingale by the optional stopping theorem and (4) follows
from

P(Z,=1)=EZ =EZ,=EZ =EZ,

by letting k — co. Most of the subsequent inequalities are based on the following
proposition, which is the basic generalized inequality described earlier. It general-
izes known inequalities under less restrictive conditions by shorter and simpler
proofs.
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THEOREM: Let {S, = 21 X;, F,,n = 0} be a martingale (supermartingale) such
that the conditional moment generating function ¢,(0) satisfies

b,(0) = £(0) < exp(—vy0 + 10?), vy=0,A1>0,0>0,

where f(0) is a continuous positive function such that f(0) = 1. Then for positive a
and b,

P(S,= a+ bn for some n=m) = A" exp(—a(b + vy)/\), 5
where A = e "%f(6,) =1 and 6, = (b + v)/\. Moreover,

m(b + ‘)/)2)

41 ©)

P(S, = bn for some n = m) = A} exp <—

where Ag = exp(—(b — y)00/2)f(6) and 6, = (b + y)/2A.
ProoF: Let Z,(0) = exp(6S, — ab — bnh), 6 > 0. Clearly,
E(Z,(0)|F,-1) = Z,-1(0)exp(=b0),(0) = Z,_,(0)exp(—b0)f(6)
=Z, (0)exp(—(b+7y)0+A0%)=Z,_,(0)

if 8 = 6, = (b + vy)/\. Thus, Z,(6,) is a positive supermartingale and, hence,
(4) gives

P(S,= a+ bn for some n =m) < EZ,(6,).
It is clear that EZ,,(0,) < f(6,)e **EZ, _,(0,) = AEZ,, ,(6,) and, thus,
EZm(QO) = AEZm—l(QO) = AzEZm—Z(QO) == AmEZO(QO) =A" exp(_aao),

and (5) follows. To see (6), let g(s,n) = m(b — s) + sn, n = m, s = b, and note that
bn = g(s,n) for every n = m, and a minimization consideration leads to the choice
of s = 59 = (b — v)/2. Thus,

P(S, = bn for some n = m)

S})(San(lﬂr“y)Jr(b—)/)

5 n for some n = m)

SP<Snzm(b+v)+(b—v)

> n for some n = 1),

and (5) gives
P(S, = bn for some n = m) < A exp(—m(b + y)¥/4)),

where Ay = exp(—3(b — v)8,)f(6y) and 6, = (b + y)/2A.
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Remark 1: If b = 0, it is possible to improve (5) by assuming that f(6) is convex
and f'(0) < 0. Using the convexity and negative slope at § = 0, it is easy to see that
f(6) =1 has a unique solution 6; = 6, = y/2\ (7y > 0) defined earlier. Therefore,
Z,(0,) becomes a supermartingale and the bound in (5) becomes exp(—a#),). This
remark will be used later in connection with the special case leading to (1).

Special Cases: Let {S, = 2 X;, F,_,,n = 0} be a supermartingale where —a =<
X, =pBand E(X,|F,_1) = =y (¢ >y = 0,8 > 0) for all n. For # > 0, let
m=(eP? — e *)/(a + B) and

eP? +
a+p a+p

e + mx

L(x) =

be the line through (—a,e™%%) and (B, e??). Due to convexity, e’ = L(x) and,
hence,

6.0) = EGX|F )= —5—opr 4 P e
n n n*l—a+ﬂ a—l-l[)’

Letting p = (¢ — y)/(a + B) and ¢ = (B + y)/(a + B), we obtain

$,(0) = e 7 (pel@ B 4 ge~ e 800) = f(p). )

— my.

By Lemma A.6 of Alon and Spencer [1, p. 235], we have

(a + 3)202)

$,(0) = exp <—79 + s

Consequently, (5) gives

8a(b + y)) ®

P(S, = a+ bn for some n = m) < A" exp(— (a+ B)>
o

where A = f(6,)e %%, 6, = 8(b + y)/(a + B)?, and £(0) is defined in (7). Simi-
larly, (6) gives
2m(b + 'y)2>

(@+p)> )

P(S, = bn for some n = m) = A exp (—

where Ay = exp(—3(b — ¥)6,)f(6,) and 6, = 4(b + y)/(a + B)*.

If y = 0, then the preceding inequalities become the ones obtained by Ross [5].
Moreover, Blackwell’s inequality (1) is also included in (8) with a different bound.
Since A = 1 and setting b = 0 and « = 8 = 1, (8) becomes

P(S, = a for some n = 1) < exp(—2ay),
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as opposed to the bound ((1 — y)/(1 + v))“. However, as mentioned in Remark 1,
we can improve the bound (5) as follows. Clearly, in this special case, f(6) defined
in (7) becomes

1- 1+
Y o0+ ye_g,

2 2

and the unique nonzero solution of f(6) =1 is

1_
01=ln< 7)
1+y

and the bound exp(—a6,) in Remark 1 produces (1). Also, it should be noted
that (1) gives a sharper bound than exp(—2avy). In fact, ((1 — y)/(1 + y))* <
exp(—2ay), and the bound in (1) is attained. For example, let X, X>,... be iid
random variables such that P(X, = —1)=¢g=(1+vy)/2and P(X, =1)=p =
[(1—=7)/2] (0 <y <1)sothat EX; = —y.SetS,=>1X, and let f(a) = P(S,=a
for some n = 1) = P(S, = a for some n = 1), where a is a positive integer. A sim-
ple conditioning argument shows that f(a) = pf(a —1) + g f(a + 1). Since f(a) < 1,
the only nontrivial solution is f(a) = (p/q)* = (1 — y)/(1 + y))“. It is also
possible to find an analogue of the first part of (3) as follows. Consider Z,(0) =
exp(6S, — bnd), 6 > 0, and note that E(Z,(0)|F,_,) = Z,_1(0)e *?$,(6). From
(7), we have

E(Z,(0)|F,—1) = Z,-(0)exp(=00)f(0) = Z,—,(0) (),

where (0) = pexp((B — b)0) + gexp(—(a + b)), a >y =0,and b = B. It is
easy to see that /(6) is convex and (0) = 1 and ¢'(0) = —y — b < 0. Hence, there
exists 8* > 0 such that y(6*) = 1, and there is 6, (0 < 6, < 6*) that minimizes
¥ (0); it occurs at

s L Byt
@B @B -b)

Also, note that p = ¢(6,) < (6,) = 1, where 6, = 8(b + y)/(a + 8)2. Thus,
EZ,(0,) = pEZ,_,(6,), and it follows that EZ,,(6,) = p™. Hence, we obtain

2m(b + y)z)
(a+B)? )

P(S, = bn for some n = m) = p” = A exp <—

where the second bound is the same as obtained earlier by the use of Alon and
Spencer’s inequality for ¢(6). This is the generalized version of (3) for nonsym-
metrically bounded martingales (supermartingales), and the first bound p™ is cer-
tainly new. Also, it should be remarked that the left-hand probability is zero if b > (.
In the special case « = 8 =1 and y = 0, our minimizing 6; becomes
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(1+b)

1
0, = -In——, 0<b<]1
a0 —p)

and
p=uy0,)=1/[1+b)""(1—b) "]

which produces Blackwell’s inequality (3).

3. ANOTHER EXTENSION

We now consider a supermartingale {S, = 21 X,, F,,n = 0} such that X,, < 8
(B > 0) for all n (i.e., the differences X,, are bounded above only). With no loss of
generality, we assume that 8 = 1. For § > 0 and x = 1, we will use the inequality

e =1+0x+x%’—0—-1). 9

Inequality (9) is obvious from e% = 277 ,(6*x*/k!) when O = x < 1. That (9) is true
for x = 0 follows from the elementary inequality e* <1 + u + 5u?, which follows
from e’ = 1 + ¢ when integrated from u to zero. Replacing u by 6x (x = 0,60 > 0)
and using the fact that e? — 6 — 1 = 162, (9) follows. Now letv, = E(X?2| F,_,) and
note from (9) that

$,(0) = E(e™ | F, ) =1+v,(e” —0—1) =exp(v,(e’—0—1). (10

Now define Z,(0) = exp(0S, — af — b X v;), 0 > 0. Then E(Z,(0)|F,—1) =
Z,-1(0)exp(—bv,0)d,(0), and it follows from (10) that

E(Zn(6)|ﬁfl) = Zn*l(e)exp(vrzlp(a)),

where ((0) = e’ — (14 b) 6 — 1. We set 4/(6) = 0, which has a unique solution 6, =
8(b) > 0, so that Z,,(6,) is a supermartingale. Hence, we obtain from (4) that

P(S,, =a+ b > v, for some n = 1) = exp(—ad(b)). (11)
1
If we suppose that the v,’s are constants, then

P(S,,ZbEUiforsomean)
1

1 - |
SP(SnzEvai-}—EbEviforsomenZl)
| |

b
= exp(—a S(b/Z)ETU,-). (12)
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Properties of §(b) have been noted in Lemma 1 of [4] (e.g., In(1 + b) < 8(b) <
2b). These inequalities become useful for certain convergence problems. Clearly,
if S, is a martingale, then (12) continues to hold for |S,| when the bound is multi-
plied by a factor of 2, and obviously S, />, v; converges to zero a.s. provided
> v; — oo asn —> oo. As an example, let P(X, = —1|F,_)) =1/(n + 1), P(X, =
0|F,_)=1-[2/(n+1)],and P(X, =1|F,_,) =1/(n+1),n=1. Then v, =
2/(n+1),and S, />, v; converges to zero with probability 1, and the denomina-
tor is ~In(n) (as opposed to n in the usual strong law of large numbers).

Remark 2: If X,, = B (B > 0), then replacing a by a3 and b by bB in (11) and (12),
the inequalities continue to hold. In addition, if E(X,|F,-,) = —vy (y > 0), then
(11) continues to hold when a is replaced by (a + 7).

Remark 3: A final remark is that when 0 < # < 1, then /() = e’ — 0 — 1 =
Y0 =301+ 1+ 5+ 5 +---) =202 Nowset Z,(0) = exp(6S, — af — b6
>v;), where v; has been defined earlier. Clearly, E(Z,(0)|F,—\) = Z,_(0)
exp(—b0 + 36?). Hence, letting 6, = 4b/3, it follows that if b = 2, then (4) implies

P (Sn =a+ b D, v, for some n = 1) = exp(—ab,) = exp(—4ab/3) < exp(—ab).
1

Moreover, if {S,, F,} is a martingale, then this inequality still hods with v; as the
conditional variance of the martingale difference X;.
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