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Abstract

We consider an extension of the Poisson hail model where the service speed is either 0
or ∞ at each point of the Euclidean space. We use and develop tools pertaining to
sub-additive ergodic theory in order to establish shape theorems for the growth of the
ice-heap under light tail assumptions on the hailstone characteristics. The asymptotic
shape depends on the statistics of the hailstones, the intensity of the underlying Poisson
point process, and on the geometrical properties of the zero speed set.
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1. Introduction

In this paper we revisit the Poisson hail growth model introduced in [1]. This model features
independent and identically distributed (i.i.d.) pairs, each consisting of a compact random closed
set (RACS) and a positive number, arriving on R

d according to a Poisson rain. Each pair is
referred to as a hailstone; the RACS is referred to as the footprint of the hailstone and the
positive number is its height. Each point of the Euclidean space is a server (in the queueing
theory sense). The case studied in [1] is that with one type of servers.

The pure growth model is that where the service speed of each point of R
d is zero, and

where the hailstones accumulate over time to form a random (ice) heap. This model can be
seen as a simplified version of the so-called diffusion limited aggregation (DLA) model [8] with
half-space initial condition. The main difference between this model and DLA lies in the fact
that the hailstones fall in a privileged direction (e.g. according to gravity) in the former case
rather than in a diffusive way in the latter.

The height of a tagged hailstone in this heap is the sum of its own height plus the maximum
of the heights of all hailstones that arrived before and that have a footprint that intersects that
of the tagged one. It was shown in [1] that when the dth power of the random diameters and
the random heights have light-tailed distributions, i.e. have finite exponential moment, then the
growth of the random heap of the pure growth model is asymptotically linear with time. This
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result was recently extended to certain heavy-tailed distributions [6]. In [1], the case where
all servers have a constant positive service speed was also analyzed. The model with positive
service speed is motivated by wireless communications: transmitters arrive according to a
Poisson rain in the Euclidean plane. The footprint of an arrival is a spatial exclusion area which
should be free of other transmitters during some random transmission time (the height of the
arrival). The hard exclusion rule is simply obtained by a first-in–first-out (FIFO) serialization:
an arriving transmitter should first wait for its exclusion area to be free of all those arrived
before; it then transmits and finally leaves.

In this paper we consider a bivariate generalization of this model with two types of servers.
All points in some subset of R

d , called the substrate, have zero service speed, whereas service
speed is infinite in the complement. For instance, when the substrate is limited to a single
point (a special case that we refer to as the stick model below), hailstones get aggregated to the
heap if their footprint intersects this point or the footprint of any earlier hailstone that is part
of the heap, which is some analogue of DLA with an initial condition given by a point. As
above, the main difference is that the diffusive and isotropic arrivals of DLA are replaced by
pure gravitation. In the wireless setting alluded to above, this model allows one to evaluate the
negative consequences of the FIFO rule. The substrate represents a customer with a very long
transmission time (zero speed) and the complement normal operation (simplified to infinite
speed). The bivariate model hence explains how congestion builds at the fluid scale in this
FIFO model.

In this paper we study the asymptotic shape of this RACS when time tends to ∞ in this
bivariate speed setting. Like the model of [1], this variant belongs to the class of infinite-
dimensional max-plus linear systems [3]. Among the few instances of such systems studied
in the past, the closest is the work on infinite tandem queueing networks [2]. The underlying
structure of the max-plus recursion in [2] is a two-dimensional lattice. In contrast, here, the
underlying structure of the recursion is random. Among common aspects, let us stress shape
theorems. The lattice shape theorems in [2] are related to those in first-passage percolation
[10], in the theory of lattice animals [5], [7]. Those of this paper pertain to first-passage
percolation in random media. This topic was recently studied for certain random graphs such
as the configuration model [4]. The shape theorems established in this paper are based on
random structures of the Euclidean space, which stem from point process theory (Poisson rain)
and stochastic geometry (RACS).

In Section 2 we provide the precise formulation of the model. In Section 3 we study the
stick model alluded to above. In this case, Theorem 3.1 establishes a linear asymptotic growth
for the maximum height of the heap in a convex set of directions. Also for the stick model,
Theorem 3.2 establishes a linear asymptotic growth for the footprint of the heap. Both proofs
rely on the version of the super additive ergodic theorem by Liggett [9]. Based on these results
we are able to prove in Theorem 3.3 the existence of an asymptotic phase transition for the heap
in the stick model.

The stick model is interesting not only because of its similarity with, e.g. the DLA, but also
because it is instrumental in extending some of the previous results to more general substrates, as
shown in the subsequent sections. The idea originates from [1] and, heuristically, it consists of
reversing time and gravitation about a given point. Analogues of Theorem 3.1 are extended by
this duality argument for compact substrates in Section 4, Theorem 4.1 and convex conical subst-
rates in Section 5, Theorem 5.1. Let us emphasize that conic substrates are the basic cases we
need to understand after performing the blow-up of a given profile which arises in the asymptotic
analysis. The extension of these results to nonconvex conical substrates remains open.
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Figure 1: Evolution of a heap.

2. The model

We consider a queue where the servers are the points of R
d . We distinguish two types of

servers: K is the set of servers with a service speed equal to zero, and R
d \ K is that of servers

with a service speed equal to ∞. The customers are characterized by:

(i) a random closed set (RACS) of R
d , such that the dth power of the diameter has a light-

tailed distribution;

(ii) a random service time that is also light-tailed.

These customers arrive to the queue (Rd ) according to a Poisson rain with intensity λ.
Starting with an empty queue at time t = 0, a customer is queued if it hits K or if it hits an

earlier customer which was already queued.
The ice-heap is a random set of R

d × R, and the main questions of interest are about the
growth of its height in various directions, and about the growth of its spatial projection (defined
as its projection on R

d ), again in various directions. See Figure 1.

2.1. Precise formulation

Consider a homogeneous Poisson point process � in R
d × R with intensity λ > 0 defined

on a probability space (�, F , P). Then � can be seen as a simple counting measure, namely,
as a sum of delta distributions at (different) points in R

d ×R. For every Borel set A ⊆ R
d ×R,

�(A) counts the number of points that belong to the set A. By being Poisson homogeneous
we mean the following:

(i) �(A) has a Poisson distribution with parameter λ|A|, where | · | denotes the Lebesgue
measure in R

d × R;

(ii) given pairwise disjoint subsets A1, . . . , An of R
d ×R, the random variables �(A1), . . . ,

�(An) are independent.

This point process is independently marked. Each point comes with a pair of marks. These
pairs are i.i.d. However, stochastic dependence within a pair is allowed. Let

{(C(x,t), σ(x,t))}(x,t)∈�
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denote the marks. These are i.i.d. random pairs. The mark of point (x, t) consists of a compact
RACS C(x,t) centered at the origin (e.g. the center of mass of the RACS is 0) and of a random
variable σ(x,t) taking values in R

+.
Let

ξ(x,t) := diam(C(x,t)) := sup{|y − z| : y, z ∈ C(x,t)}
be the diameter of set C(x,t). We assume that both random variables σ(x,t) and ξd

(x,t) (the dth
power of ξ(x,t)) are light-tailed, in that

E(exp(cξd
(x,t))) < ∞, E(exp(cσ(x,t))) < ∞ (2.1)

for some constant c > 0 (note that the law of ξ(x,t) is the same for all (x, t) and that a similar
observation holds for σ(x,t); so that there are only two conditions here).

The homogeneity assumption is reflected by the following compatibility property. Given
the group of translations

T(x0,t0) : (x, t) �→ (x, t) + (x0, t0)

of R
d × R, there exists S : R

d × R × � → � measurable and satisfying the following
properties.

(i) Measure preserving. For every (x0, t0) ∈ R
d×R, S(x0,t0) : � → � is measure preserving.

(ii) Group property. We have S(x0,t0) ◦ S(x1,t1) = S(x0+x1,t0+t1) and S(0,0) = Id.

(iii) Compatibility. We have � ◦ S(x0,t0)(A)(ω) = �(T(x0,t0)A)(ω), A ⊂ R
d × R.

We can then extend the sequence of marks to a random process (C(x,t), σ(x,t)) defined on R
d ×R

and such that
(C(x,t), σ(x,t)) = (C(0,0), σ(0,0)) ◦ S(x,t) for all (x, t).

Because of the Poisson and independence assumptions, there is no loss of generality in
assuming that the flow S is ergodic. In particular, for every measurable G ⊆ � such that

P(S−1
(0,t)G�G) = 0 for every t ∈ R,

we have P(G) = 0 or 1. Here F�G = (F \ G) ∪ (G \ F) is the symmetric difference of F

and G.

2.2. Height profile function

Let H(x,t) be the height of the heap at location x ∈ R
d at time t ≥ 0. When the substrate

K is the whole Euclidean space, the construction of this function and the identification of the
conditions under which it is nondegenerate (e.g. not equal to +∞ almost surely (a.s.) for all x

and all t > 0) are one of the main achievements of [1]. This construction relies on a sequence
of steps, all relying on the monotonicity properties of the dynamics. These steps, which include
a discretization scheme, a percolation argument, and a branching upper bound, are combined
to show that, under the foregoing tail and independence assumptions, H(x,t) is a.s. finite for
all x and t < ∞.

The tail and independence assumptions are the same as in [1]. The finiteness of the height
profile function for a substrate K ⊂ R

d then follows from the monotonicity properties of this
function with respect to (w.r.t.) the initial condition which is

H(x,0) =
{

0 if x ∈ K,

−∞ if x /∈ K
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in place of H(x,0) ≡ 0 in [1]. The construction of [1] also shows that for all x, the function
t → H(x, t) is piecewise constant. Note that it here takes its values in R

+ ∪ {−∞}. It will be
assumed right-continuous. The left limit of H(x,·) at t will be denoted by H(x,t−).

2.3. Stochastic differential equation

The dynamics can also be described by a stochastic differential equation which we briefly
outline in this subsection (in spite of the fact that it will not be used below) as it is of independent
interest.

Let Nx denote the Poisson point process of R
d × R of RACS intersecting location x, i.e.

Nx(B × [a, b]) =
∫

B×[a,b]
1{x∈C(y,s)+y}�(dy ds)

for all a < b and B Borel sets of R
d . For t > u ≥ 0, if H(x,u) > 0, then

H(x,t) = H(x,u) +
∫

Rd×[u,t]

(
σ(z,v) + sup

y∈C(z,v)+z

H(y,v) − H(x,v−)

)
Nx(dz dv). (2.2)

The rationale is that at the first point of Nx , say (z, w) in [u, t] if any, H(x, u) is canceled by
H(x, w−) and the new value of H(x, ·) is

H(x, w) = σ(z,w) + sup
y∈C(z,w)+z

H(y,w).

If H(x,u) = −∞, this equation still holds when interpreting −∞ as a −K with K large. For
instance, in this case, at the first arrival of Nx ,

H(x,t) = H(x,u) + σ(z,w) + sup
y∈C(z,w)+z

(H(y,w) − H(x,w−))

= −K + σ(z,w) + sup
y∈C(z,w)+z

H(y,w) + K

= σ(z,w) + sup
y∈C(z,w)+z

H(y,w).

If for all y ∈ C(z,w) + z, H(y,w) = −∞, then H(x,w) = −∞ too. Otherwise, H(x,w) > 0.
It follows from the construction summarized in the previous section that, under the foregoing

tail and independence assumptions, (2.2) has a piecewise constant solution. All the results of
this paper can hence be rephrased as properties of this stochastic differential equation.

2.4. Monotonicity

The proposed model is monotone in several arguments.
Monotonicity in K . For two systems with the same data (�, {C, σ }) but with initial substrates

K(1) ⊆ K(2), the associated heights H(1) and H(2) satisfy

H
(1)
(x,t) ≤ H

(2)
(x,t) for every (x, t) ∈ R

d × [0, ∞).

Similarly, there is monotonicity in t , in the σ s and in the Cs.
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3. The stick model: K = {0}
In this section we consider the K = {0} case and call it the stick model. Theorem 3.1 shows

that there exists a finite asymptotic limit for the maximal height of the associated heap H(x,t)

(referred to as the stick heap below) in any given convex set of directions. Theorem 3.2 shows
that there exists a finite asymptotic limit for how far the spatial projection of the heap grows,
measured with respect to a set-gauge to be defined.

3.1. Height growth

In this section we focus on the maximal height H
(	)
t of the stick heap among all directions

in a set of directions 	, which is defined as follows.

Definition 3.1. For 	⊆ Sd+ := {(x, h) ∈ R
d × (0, 1] : |(x, h)| = 1} nonempty,

H
(	)
t := sup{h ∈ [0, ∞) : there exists x ∈ R

d such that (x, h) ∈ |(x, h)|	, H(x,t) ≥ h}.
In particular, if 	 = {(0, 1)}, the north pole of Sd+, then H

(	)
t = H(0,t).

Since H(0,t) ≥ 0, the set where the supremum is evaluated in the last definition is nonempty
as it always contains h = 0 (since 0	 = {(0, 0)}). This also implies that H

(	)
t ≥ 0. See

Figure 2.

Definition 3.2. A set 	⊆ Sd+ is convex if for all θ1, θ2 ∈ 	, and s ∈ [0, 1],
sθ1 + (1 − s)θ2 ∈ |sθ1 + (1 − s)θ2|	.

Note that if 	 is convex then for all a, b ≥ 0 and θ1, θ2 ∈ 	, we have

aθ1 + bθ2 ∈ |aθ1 + bθ2|	.

Theorem 3.1. For all 	⊆ Sd+ convex and closed, there exists a nonnegative constant γ (	) such
that

lim
t→∞

H
(	)
t

t
= lim

t→∞
EH

(	)
t

t
= sup

t>0

EH
(	)
t

t
= γ (	) < ∞,

where the first limit holds both in the a.s. and the L1 sense.

Figure 2: Definition of H
(	)
t with K = {0}.
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Before proving this theorem, we give a few preliminary lemmas.
The following lemma is a direct consequence of the independence of the Poisson rain in

disjoint sets and of homogeneity. In this lemma, � ∩ B denotes the set of points of � that
belong to B.

Lemma 3.1. Let X : � → R
d be a random variable which is independent of

{� ∩ B, (C(y,s), σ(y,s)) : (y, s) ∈ B ∩ �, B ∈ B(Rd × (0, ∞))}.
Then, for every 	⊆ Sd+, the stochastic process {H(	)

t ◦ S(X,0), t > 0} has the same law as
{H(	)

t , t > 0} and it is independent of the σ -algebra generated by X and

{� ∩ B, (C(y,s), σ(y,s)) : (y, s) ∈ B ∩ �, B ∈ B(Rd × (−∞, 0])}.
Lemma 3.2. We have

sup
t>0

EH
(Sd+)

t

t
< ∞. (3.1)

The proof of Lemma 3.2 is quite close to the proof of [1, Theorem 2]. In order to make this
paper self-contained, we provide a proof in the appendix.

Lemma 3.3. For all 0 ≤ t1 < t2 and x, y ∈ R
d , the stick heap satisfies the following inequality:

H(x+y,t2) ≥ H(x,t1) + H(y,t2−t1) ◦ S(x,t1).

Proof. For t ≥ t1, let H̃(z,t) be constructed as explained above with the initial condition

H̃(z,t1) :=
{

Hx,t1 if z = x,

−∞ if z �= x.

Then, by monotonicity H(x+y,t) ≥ H̃(x+y,t) and it suffices to show that H̃(x+y,t) = H(x,t1) +
H(y,t−t1) ◦ S(x,t1).

If H(x, t1) = −∞ then H̃ (z, t1) = −∞ for all z, and it follows that H̃ (z, t) = −∞ for
all z and all t ≥ t1. If H(x, t1) is nonnegative then the process H̃ (z, t1) is nothing more than
the process H(z, t) shifted by H(x, t1) in space and by t1 in time. So, in both cases, it satisfies
the relation H̃ (x + y, t) = H(x, t1) + H(y, t − t1) ◦ S(x, t1) indeed. �

Proof of Theorem 3.1. Let Xt ∈ R
d be such that

(Xt , H
(	)
t ) ∈ |(Xt , H

(	)
t )|	, H(Xt ,t) ≥ H

(	)
t .

The existence of such an Xt is obtained from the proof of [1, Corollary 1].
This proof shows that at time t , not only the height, but also the diameter of the heap is a.s.

finite. (Later on we will also prove an upper bound for this diameter in Lemma 3.4.) Therefore,
with probability 1, we can find at least one Xt that satisfies the above properties. There could
be more than one and, in order for Xt to be a random variable (i.e. a measurable function), we
may, for instance, take the smallest Xt in the lexicographical order.

For 0 ≤ t1 ≤ t2, let
H

(	)
t1,t2

:= H
(	)
t1−t2

◦ S(Xt1 ,t1).

In order to prove that the limit in the theorem exists and is a.s. constant, we use the super-additive
ergodic theorem of Liggett; see [9]. We have to verify that the following properties hold.

https://doi.org/10.1017/apr.2016.13 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.13


532 F. BACCELLI ET AL.

(i) Super-additivity. For t2 > t1 ≥ 0,

H
(	)
t2

≥ H
(	)
t1

+ H
(	)
t1,t2

.

(ii) For t2 > t1 ≥ 0, the joint distribution of {H(	)
t2,t2+k, k > 0} is the same as that of

{H(	)
t1,t1+k, k > 0}.

(iii) For k > 0, {H(	)
nk,(n+1)k, n > 0} is a stationary process.

(iv) The bound for the expectation is

sup
t>0

EH
(	)
t

t
< ∞.

To prove (i), let t2 > t1 ≥ 0 be fixed and let

V = {(x, h) ∈ R
d × (0, ∞) : (x, h) ∈ |(x, h)|	, h ≤ H(x,t2−t1) ◦ S(Xt1 ,t1)}.

For (x, h) ∈ V , by the convexity of 	, we have

(Xt1 + x, H
(	)
t1

+ h) ∈ |(Xt1 + x, H
(	)
t1

+ h)|	. (3.2)

Moreover,
H

(	)
t1

+ h ≤ H(Xt1 ,t1) + H(x,t2−t1) ◦ S(Xt1 ,t1) ≤ H(Xt1+x,t2), (3.3)

where we used Lemma 3.3 in the last inequality. By combining (3.2) and (3.3), it follows that
H

(	)
t2

≥ H
(	)
t1

+ h, which implies the super-additive inequality after taking the supremum of h

over (x, h) ∈ V .
To prove (ii) we go back to the definition of H

(	)
ti ,ti+k for i = 1, 2,

{H(	)
ti ,ti+k, k > 0} = {H(	)

k ◦ S(Xti
,ti ), k > 0}.

By Lemma 3.1, it follows that both families of random variables have the same joint distribution
as {H(	)

k , k > 0}.
To prove (iii) it is enough to check that, for k > 0 fixed, the random variables {H(	)

nk,(n+1)k, n >

0} are i.i.d. By definition,
H

(	)
nk,(n+1)k = H

(	)
k ◦ S(Xnk,nk).

Using Lemma 3.1 once again, it follows that H
(	)
nk,(n+1)k is distributed as H

(	)
k . Then the

independence property follows again from Lemma 3.1.
Finally, (iv) results from the upper bound given by Lemma 3.2. �

3.2. Spatial projection

Definition 3.3. For t ≥ 0, let Ft be the spatial projection of the heap; namely, the RACS of R
d

which is the union of all the RACS added to the heap up to time t :

Ft := {x ∈ R
d : H(x,t) ≥ 0}.

If the sets C(x, t) are a.s. connected then so is Ft . However, if the sets C(x, t) are a.s. convex
then Ft has no reason to be convex.

In general, Ft is not necessarily a RACS. However, under the light-tailedness assumptions
(2.1) we have the following lemma.
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Lemma 3.4. For all finite t , Ft is a RACS and

sup
t>0

E(diam(Ft ))

t
< ∞. (3.4)

Proof. The proof is an application of Lemma 3.2, which follows the ideas in the proof of
[1, Corollary 1].

It holds that Ft is a RACS as a consequence of the upper bound branching process constructed
for Ft in the proof of Lemma 3.2. This branching process has a.s. finitely many offspring in
each generation. This implies that for all finite t > 0, only a finite number of RACS C(x,s) may
contribute to Ft .

We now prove (3.4). First note that the set Ft does not depend on the heights. However, we
will make use of them in the following way. Assume that σ(x,t) = ξ(x,t) = diam(C(x,t)). We
now show that under this assumption,

4 sup
x∈Rd

H(x,t) ≥ diam(Ft ).

For every x ∈ R
d such that H(x,t) ≥ 0, there exists an integer n and some set of points

(x1, t1), . . . , (xn, tn) ∈ R
d × [0, t) such that the following hold:

(i) (xi, ti) ∈ supp � for i = 1, . . . , n;

(ii) 0 ≤ ti < ti+1 < t for i = 1, . . . , (n − 1);

(iii) x ∈ xn + C(xn,tn) and H(x,s) = H(x,tn) for s ∈ [tn, t);
(iv) for i = 1, . . . , (n − 1), there exists yi ∈ xi+1 + C(xi+1,ti+1) ∩ xi + C(xi ,ti ) such that

H(yi ,s) = H(yi ,ti ) for s ∈ [ti , tt+1);

(v) 0 ∈ x1 + C(x1,t1) and H(0,s) = 0 for s ∈ [0, t1).

Therefore,

|x| ≤ |x − xn| +
n−1∑
i=1

|xi+1 − xi | + |x1| ≤ 2
n∑

i=1

diam(C(xi ,ti )) = 2H(x,t).

Maximizing over {x ∈ R
d : H(x,t) ≥ 0} and applying Lemma 3.2 concludes the proof. �

Definition 3.4. Given a direction v ∈ Sd−1 and a closed set A ⊆ R
d containing the origin, let

D
(A,v)
t := inf{r ∈ [0, ∞) : (A + rv) ∩ Ft = ∅},

where the infimum of an empty set is ∞.

Here are a few examples. If A = {0} then D
(A,v)
t can be interpreted as the internal growth of

Ft in the v direction at time t . It is also the contact distance with free space in the v-direction.
Other interesting cases arise when A = {x ∈ R

d : x ·v ≥ 0} or A = {x ∈ R
d : x = αv, α ≥ 0};

then D
(A,v)
t can be interpreted as the external growth of Ft in the v direction. These cases are

covered in Theorem 3.2 and illustrated in Figure 3.

Definition 3.5. The pair (v, A), where v ∈ Sd−1 is a direction and A ⊆ R
d a closed set, forms

a set-gauge if

(i) A contains the origin and for every a ∈ A, A + a ⊆ A,

(ii) −v does not belong to the closed convex hull of A.
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Figure 3: Different set-gauges measuring the spatial growth of Ft . The direction of v is south. (a) is the
A = {x ∈ R

d : x · v ≥ 0} case, (b) is the A = {x ∈ R
d : x = αv, α ≥ 0} case, (c) is the A = {0} case.

The three above examples are set-gauges. Here are other examples.
If A is a closed convex cone of R

d , different from R
d , and −v /∈ A, then (v, A) forms a

set-gauge.
If (v, A) forms a set-gauge then (v, B), where B := ⋃

r>0(A + rv) also forms a set-gauge.
In this case

D
(B,v)
t = sup{r ∈ [0, ∞) : (A + rv) ∩ Ft �= ∅}.

Note that for all set-gauges (v, A), D
(A,v)
t is a.s. finite. This follows from the property that

Ft is a.s. compact and the assumption that −v does not belong to the convex hull of A.
Our main result is the following theorem.

Theorem 3.2. Given a direction v ∈ Sd−1 and a closed set A ⊆ R
d , such that (v, A) forms a

set-gauge, there exists a nonnegative constant φ = φA,v such that

lim
t→∞

D
(A,v)
t

t
= lim

t→∞
ED

(A,v)
t

t
= sup

t>0

ED
(A,v)
t

t
=: φ < ∞,

where the first limit is both a.s. and in L1.

Proof. Once again the proof relies on the distributional super-additive ergodic theorem. Let
Xt ∈ R

d be a random variable such that

Xt ∈ (A + D
(A,v)
t v) ∩ Ft .
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The existence of a finite Xt satisfying this relation follows from the fact that Ft is compact
and A is closed. It also uses the fact that −v does not belong to the convex hull of A. There is
no reason to have uniqueness. However, we can use the same construction as in the proof of
Theorem 3.1 to cope with multiple solutions.

For 0 ≤ t1 ≤ t2, let
D

(A,v)
t1,t2

:= D
(A,v)
t2−t1

◦ SXt1 ,t1 .

By Lemma 3.1, properties analogous to properties (ii) and (iii) in the proof of Theorem 3.1 do
hold. We now prove the super-additivity and the boundedness of the expectations.

In order to prove the super-additive inequality, it is enough to show that, for every r <

D
(A,v)
t1

+ D
(A,v)
t1,t2

,
(A + rv) ∩ Ft2 �= ∅. (3.5)

If r < D
(A,v)
t1

, this follows from the monotonicity of Ft w.r.t. time and from the definition of
D

(A,v)
t1

. Now let r = D
(A,v)
t1

+ r ′ with r ′ ∈ [0, D
(A,v)
t1,t2

). From the definition of Ft ,

Ft2−t1 ◦ SXt1 ,t1 + Xt1 ⊆ Ft2 .

From the definition of a set-gauge and the property Xt1 ∈ A + D
(A,v)
t1

v,

A + Xt1 + r ′v ⊆ A + rv.

From the definition of D
(A,v)
t1,t2

, for r ′ < D
(A,v)
t1,t2

,

(A + r ′v) ∩ (Ft2−t1 ◦ SXt1 ,t1) �= ∅,

which implies that (A + Xt1 + r ′v) ∩ (Ft2−t1 ◦ SXt1 ,t1 + Xt1) �= ∅ and (3.5) follows from the
last two inclusions.

Now we prove the boundedness of expectations. Given that A and v form a gauge there
exists a hyperplane given by P = {x ∈ R

d : x · w = 0}, with w ∈ Sd−1, that separates −v and
A, i.e.

(i) v · w > 0,

(ii) a · w ≥ 0 for every a ∈ A.

Then, letting A′ = {x ∈ R
d : x · w ≥ 0}, and using the monotonicity inherited from the fact

that A ⊆ A′, we have

D
(A,v)
t ≤ D

(A′,w)
t ≤ diam(Ft )

|v · w| .

Finally, applying Lemma 3.4, we obtain

lim sup
t→∞

ED
(A,v)
t

t
≤ lim supt→∞ E diam(Ft )/t

|v · w| < ∞.

So the proof is complete. �
We now focus on the gauges with A = {0}. Our aim is to prove that, under an extra

assumption on the RACS,

lim
t→∞

D
(A,v)
t

t
> 0.

This will in turn imply that for every x ∈ R
d , the time that it takes for Ft to hit x is a.s. finite.
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Lemma 3.5. Assume that the intensity of � is positive and that, with a positive probability, the
footprint has a nonempty interior that contains the origin. Then, for A = {0} and v ∈ Sd−1,
we have

lim
t→∞

D
(A,v)
t

t
> 0.

Proof. By Theorem 3.2,

lim
t→∞

D
(A,v)
t

t
= sup

t>0

ED
(A,v)
t

t
≥ ED

(A,v)
1 .

From the lemma conditions, there is a positive r such that, with positive probability, C contains
the ball Br with radius r centered at the origin. By the thinning property of the Poisson point
process, we may consider only the Poisson rain (with a smaller, but positive intensity) with
RACS that include Br . Then, using the monotonicity mentioned earlier, we may take C = Br .
In the latter case, it is not difficult to see that

P

(
D

(A,v)
1 >

r

2

)
≥ P(�(Br/2 × (0, 1]) > 0) > 0.

Then ED
(A,v)
1 > 0 and the result follows. �

Definition 3.6. Given K ⊆ R
d let τ(K) denote the time it takes for Ft to cover K , i.e.

τ(K) := inf{t ∈ [0, ∞]: K \ Ft = ∅}.
Remark 3.1. It holds that τ(K) is a stopping time in the sense that {τ(K) ≤ t} belongs to the
σ -algebra generated by

{� ∩ B, (C(y,s), σ(y,s)) : (y, s) ∈ � ∩ B, B ∈ B(Rd × [0, t])}.
Moreover, {τ(K) ≤ t} is independent of the σ -algebra of subsequent events generated by

{� ∩ B, (C(y,s), σ(y,s)) : (y, s) ∈ � ∩ B, B ∈ B(Rd × [t, ∞))}.
Corollary 3.1. Assume that the intensity of � is positive and that, with a positive probability,
the footprint has a nonempty interior that contains the origin. Then, for all bounded sets
K ⊆ R

d , τ(K) is a.s. finite.

Proof. It suffices to assume, by the same reasoning as in the previous proof, that the
footprint C is a ball of fixed radius r > 0, sufficiently small. Let {x1, . . . , xn} ⊆ K \ {0}
such that

K ⊆
n⋃

i=1

Br/2(xi).

Denote also vi = xi/|xi | for i = 1, . . . , n.
Consider now C′ := Br/2 and F ′

t , D
′(A,v)
t constructed from C′ and A = {0}. By Lemma

3.5, it follows that, for i = 1, . . . , n,

τ ′
i := inf{t ∈ [0, ∞]: D

′(A,vi )
t ≥ |xi |} < ∞ a.s.

By construction of C′, if xi ∈ F ′
t then also Br/2(xi) ⊆ Ft , which concludes the proof. �
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3.3. Phase transition

From Theorem 3.1 there exists a growth rate γθw(φ) in the direction

θw(φ) := sin(φ)ed+1 + cos(φ)w ∈ Sd+, w ∈ Sd−1, φ ∈
[

0,
π

2

]
.

For fixed w ∈ Sd−1, γθw(·) admits the following phase transition.

Theorem 3.3. Assume that with a positive probability, the footprint has a nonempty interior
that contains the origin. Then, for w ∈ Sd−1 there exists an angle, φ∗(w) ∈ (0, π/2) such that
γθw(φ) is positive for any φ ∈ (φ∗(w), π/2] and γθw(φ) = 0 for any φ ∈ [0, φ∗(w)).

Proof. Let us first show that if γθw(φ) > 0 then for all φ̂ ∈ (φ, π/2), γ
θw(φ̂)

> 0.
For any t > 0, let xt be defined by t = xt tan φ and let t̂ = xt tan φ̂. Then

H(xtw,t̂) ≥ H(xtw,t) + H(0,t̂−t) ◦ S(xtw,t),

so that

γ
θw(φ̂)

= lim
H(xtw,t̂)

t̂
≥ γθw(φ)

tan φ

tan φ̂
> 0.

Now let

φ∗(w) = inf

{
φ ∈

[
0,

π

2

]
: γθw(φ) > 0

}
.

If φ = π/2 then γθw(φ) > 0. Hence, φ∗(w) is well defined. It follows from the last monotonicity
property that it is the threshold above which γθw(φ) > 0.

It remains to prove that this threshold is nondegenerate.
Let us first prove that it is positive. Let sw denote the spatial growth rate in direction w and h

the vertical growth rate. Both sw and h are positive and finite. So if the angle φ is smaller than
arctan(h/sw) > 0, then γθw(φ) = 0.

Let us now show that φ∗(w) < π/2.
For all n ∈ N, let xn = (nr/2)w (here r > 0 such that with positive probability, Br ⊆ C). Let

�n be the Poisson rain of RACSs that contain a ball of radius r centered at xn. Let t0 ≡ T0 > 0
be the first time or arrival of a RACS of �0 and, for each n = 0, 1, . . . , let Tn+1 = Tn + tn+1 be
the first arrival time after Tn of a RACS of �n+1. The random variables tn are i.i.d. exponential
with mean, say, b > 0. Also, H(xn,Tn) is not smaller than the sum of (n + 1) i.i.d. random
variables with distribution H(0,T0). Since EH(0,T0) > 0, it follows that lim inf H(xi ,Ti )/Ti > 0
a.s. Further, Ti/xi → 2b/r < ∞, so φ∗(w) ≤ arctan(2b/r) < π/2. �

4. The model with K compact

In this section we study the growth of the heap starting with a compact substrate K ⊆ R
d ,

in some convex set of directions 	.

4.1. Asymptote at 0 ∈ K

In this section we fix 0 ∈ K . Let K(0) = {0}. Whenever H
(	)
t is computed with respect to

K(0) (respectively K) we denote it by H
(	,0)
t (respectively H

(	)
t ). An analogous notation is

used for all the other possible constructions. Given a constant M ≥ 0, the measure preserving
transformation S(0,M) of � to itself is denoted by SM .
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In the next lemma τ := τ(K) denotes the time it takes for F
(0)
t to cover the whole set K .

Lemma 4.1. For all 	⊆ Sd+ closed and for all M, t ≥ 0, the following inequalities hold on
{τ ≤ M}:

H
(	,0)
M+t ≥ H

(	)
t ◦ SM ≥ H

(	,0)
t ◦ SM.

Proof. On τ ≤ M , K ⊆ F
(0)
M , so that for every x ∈ R

d , H(0)
(x,M) ≥ H(x,0) ◦ SM . This implies

that H
(0)
(x,M+t) ≥ H(x,t) ◦ SM for all t > 0 by the monotonicity in the construction of H . The

leftmost inequality then follows.
The rightmost inequality is just a consequence of the monotonicity w.r.t. the initial substrates

K(0) ⊆ K . �
Lemma 4.2. Under the assumptions of Corollary 3.1 and Theorem 3.1, if 0 ∈ K , we have

lim
t→∞

H
(	)
t

t
= lim

t→∞
EH

(	)
t

t
= sup

t>0

EH
(	,0)
t

t
= γ (	) < ∞,

where the first limit is both in the a.s. and the L1 sense.

Note that the rightmost term is the one corresponding to K(0); this tells us that asymptotically,
the heaps starting at K or K(0) behave similarly in terms of directional shape.

Proof. By Lemma 4.1, Theorem 3.1, and the fact that SM is measure preserving, we have

lim
t→∞

H
(	)
t ◦ SM

t
1{τ≤M} = sup

t>0

EH
(	,0)
t

t
1{τ≤M} a.s.

Hence,

P

(
lim

t→∞
H

(	)
t

t
= sup

t>0

EH
(	,0)
t

t

)
= P

(
lim

t→∞
H

(	)
t ◦ SM

t
= sup

t>0

EH
(	,0)
t

t

)
≥ P(τ ≤ M).

Since M > 0 is arbitrary and τ is finite a.s., we obtain the a.s. convergence of H
(	)
t /t to the

announced limit.
Now we proceed to show the convergence in L1. By Lemma 4.1,(

H
(	,0)
M+t

t
− sup

t>0

EH
(	,0)
t

t

)
1{τ≤M} ≥

(
H

(	)
t ◦ SM

t
− sup

t>0

EH
(	,0)
t

t

)
1{τ≤M}.

Then

E

∣∣∣∣H(	,0)
M+t

t
− sup

t>0

EH
(	,0)
t

t

∣∣∣∣ ≥ E

∣∣∣∣(H
(	)
t ◦ SM

t
− sup

t>0

EH
(	,0)
t

t

)
1{τ≤M}

∣∣∣∣.
By the independence property given in Remark 3.1, and using again that SM is measure
preserving,

E

∣∣∣∣H(	,0)
M+t

t
− sup

t>0

EH
(	,0)
t

t

∣∣∣∣ ≥ E

∣∣∣∣H(	)
t

t
− sup

t>0

EH
(	,0)
t

t

∣∣∣∣P(τ ≤ M).

Choose M sufficiently large so that P(τ ≤ M) > 0. Then letting t → ∞ concludes the proof
thanks to the L1 convergence of Theorem 3.1. �
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4.2. Asymptote at 0 /∈ K

In this section we assume that 0 /∈ K �= ∅. We use the following notation: K(0) = {0} and
K(1) = K ∪ {0}. Whenever H

(	)
t is computed with respect to K(0) (respectively K(1) or K),

we denote it by H
(	,0)
t (respectively H

(	,1)
t or H

(	)
t ). We use analogous notation for all other

possible constructions.
In the next lemma, τ := τ(K(0)) is the time it takes for Ft to hit the origin.

Lemma 4.3. For all closed 	⊆ Sd+ and all M, t ≥ 0, the following inequalities hold on
{τ ≤ M}:

H
(	,1)
t+M ≥ H

(	)
t+M ≥ H

(	,0)
t ◦ SM.

Proof. The proof is very similar to the proof of Lemma 4.1. On τ ≤ M , K(0) ⊆ FM ;
therefore, for every x ∈ R

d , H(M,x) ≥ H
(0)
(0,x) ◦ SM , which implies the second inequality. The

first inequality is a consequence of the monotonicity. �
Using this lemma (instead of Lemma 4.1) and the same ideas as in the proof of Lemma 4.2,

leads to the following theorem.

Theorem 4.1. Under the assumptions of Corollary 3.1 and Theorem 3.1, in all cases (0 ∈ K
or 0 /∈ K),

lim
t→∞

H
(	)
t

t
= lim

t→∞
EH

(	)
t

t
= sup

t>0

EH
(	,0)
t

t
= γ (	) < ∞,

with the first limit holding both a.s. and in the L1 sense.

5. The model with K a convex cone and its generalizations

In this section the substrate is first a convex cone of R
d with its vertex at the origin, and then

an object similar to such a cone but more general.

Definition 5.1. Given C ⊆ R
d a closed convex cone with vertex at the origin, we define

	(C)⊆ Sd+ to be the following subset of Sd+ (see Definition 3.1): 	(C) := Sd+ ∩ (C × R).

For the proofs of this section, we use yet another property of the model, which is some form
of invariance by time reversal. Consider the reflection

R : (x, t) �→ (x, −t).

Because the Poisson rain is invariant in law by R, and because the marks are i.i.d., there exists
a measure preserving V : � → � which is compatible with R, i.e.

(� ◦ V )(A) = �(RA), C(x,t) ◦ V = CR(x,t), σ(x,t) ◦ V = σR(x,t).

In the following theorem, H
(	,0)
t and H

(	,1)
t are the heights computed when starting with the

substrate K(0) := {0} or K(x) := {0, x}, respectively, whereas H(x,t) is the height at x when
starting with the substrate K = C.

Theorem 5.1. Under the assumptions of Corollary 3.1, for all closed convex cones K ⊆ R
d

and all x ∈ R
d ,

lim
t→∞

max(0, H(x,t))

t
= lim

t→∞
E max(0, H(x,t))

t
= sup

t>0

EH
(	(K),0)
t

t
= Z < ∞,

where the first limit is in L1.
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Proof. We split the proof into three cases.
Case 1: x is the vertex of the cone. Without loss of generality, the vertex is assumed to be

at the origin. The key observation is the following duality between the dynamics starting with
K and K(0):

H(0,t) = H
(	(K),0)
(0,t) ◦ V ◦ S(0,t),

see the supporting Figure 4. Once this is established, the L1 limit results from the fact that
S(0,t) ◦ V is measure preserving and therefore both sides are equivalent in distribution.

We first prove that H(0,t) ≤ H
(	(K),0)
(0,t) ◦ V ◦ S(0,t). Consider the set of points

(x0, t0), . . . , (xn, tn) ∈ R
d × [0, t)

‘connecting’ 0 with its height at t . Specifically, these satisfy

(i) (xi, ti) ∈ supp � for i = 0, . . . , n,

(ii) 0 ≤ ti < ti+1 < t for i = 0, . . . , (n − 1),

(iii) 0 ∈ C(xn,tn) and H(0,s) = H(0,tn) for s ∈ [tn, t],
(iv) there exists yi ∈ C(xi+1,ti+1) ∩ C(xi ,ti ) such that H(yi ,s) = Hyi,ti for s ∈ [ti , tt+1) and

i = 0, . . . , (n − 1),

(v) there exists z ∈ C(x0,t0) ∩ K and H(z,s) = 0 for s ∈ [0, t0).

Now let (x̃i , t̃i ) = T(0,t)R(xn−i , tn−i ) = (xn−i , t − tn−i ) and ỹi = yn−i . Then, by the
compatibility properties, these quantities satisfy

(i) (x̃i , t̃i ) ∈ supp � ◦ V ◦ S(0,t) for i = 0, . . . , n,

(ii) 0 ≤ ti < ti+1 < t for i = 0, . . . , (n − 1),

(iii) z ∈ C(x̃n,t̃n) and H
(0)
(z,s) ◦ V ◦ S(0,t) = H

(0)
(z,tn) ◦ V ◦ S(0,t) for s ∈ [t̃n, t],

(iv) ỹi+1 ∈ C(x̃i+1,t̃i+1)
◦V ◦S(0,t)∩C(x̃i ,t̃i )

◦ V ◦ S(0,t) such that H(0)

(ỹi ,s)
◦ V ◦ S(0,t) = H

(0)

x̃i ,t̃i
◦

V ◦ S(0,t) for s ∈ [t̃i , t̃t+1) and i = 0, . . . , (n − 1),

(v) 0 ∈ C(x̃1,t̃1)
and H

(0)
(0,s) ◦ V ◦ S(0,t) = 0 for s ∈ [0, t̃0).

Given that z ∈ K and K is the convex cone C, then, for any h > 0,

(z, h)

|(z, h)| ∈ 	(K).

Then

H
(	(K),0)
(0,t) ◦ V ◦ S(0,t) ≥ H

(0)
(z,t) ◦ V ◦ S(0,t) =

n∑
i=0

σ(x̃i ,t̃i )
◦ V ◦ S(0,t) =

n∑
i=0

σ(xi ,ti ) = H(0,t).

The proof of the inequality in the other direction is similar to the previous one but starting with
the dynamics of H

(	(K),0)
(0,t) ◦ V ◦ S(0,t).

Case 2: x ∈ K . The result in this case is obtained by comparison with the growth of the
vertex studied in case 1. From the monotonicity w.r.t. the initial substrates,

H
(0)
(0,t) ◦ S(x,0) ≤ H(x,t). (5.1)
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Figure 4: Visualization of the duality argument in the proof of Theorem 5.1 in the x = 0 case.

On the other hand, using K(x) = {0, x}, we have the following identity:

H(x,t) ≤ H
(	(K),1)
t ◦ V ◦ S(0,t). (5.2)

To prove the last relation, we again use a set of points (x0, t0), . . . , (xn, tn) ∈ R
d × [0, t)

connecting x with its height. As before

(i) (xi, ti) ∈ supp � for i = 0, . . . , n,

(ii) 0 ≤ ti < ti+1 < t for i = 0, . . . , (n − 1),

(iii) 0 ∈ C(xn,tn) and H(0,s) = H(0,tn) for s ∈ [tn, t],
(iv) there exists yi ∈ C(xi+1,ti+1) ∩ C(xi ,ti ) such that H(yi ,s) = Hyi,ti for s ∈ [ti , tt+1) and

i = 0, . . . , (n − 1),

(v) there exists z ∈ C(x0,t0) ∩ K and H(z,s) = 0 for s ∈ [0, t0).

When we now consider (x̃i , t̃i ) = T(0,t) ◦ R(xn−i , tn−i ) = (xn−i , t − tn−i ) and ỹi = yn−i , it
follows that there exists a path of RACS starting at x and finishing at (z, H(x,t)) ∈ 	(K). By
the very definition of H

(	(K),1)
t ◦ V ◦ S(0,t) this then implies (5.2).

The desired limit then follows from (5.1) and (5.2), the result of case 1 and Lemma 4.2.
Note that the L1 limit is hence the same for all points x ∈ K .

Case 3: x /∈ K . Let x /∈ K and let u be the Euclidean distance from x to K , so that
|x − y| = u for some y ∈ K . On the segment [x, y], choose points x0 = y, x1, . . . , xm = x

equidistantly, where m is the smallest integer that exceeds 2u/r . Consider shifted versions of
K , say K0 = K, K1, . . . ,Km such that for any i ≥ 1, Ki ⊃ Ki−1, and Ki includes the
points x0, . . . , xi and does not include the points xi+1, . . . , xm. Then we show the convergence
of max(0, H(xi ,t)) to Z in L1 using an induction argument: if the convergence holds for xi−1,
then it also holds for xi . Because of that, we may assume without loss of generality that m = 1,
so y = x0, x = x1, and |x − y| ≤ r/2.

Let K̃ = K1 and let H̃(y,t) be the height associated with the cone K̃ . Let ε be a positive
number.

First, we show that
lim

t→∞ P

(
H(y,t)

t
> Z + ε

)
= 0 (5.3)

and that the random variables max(0, H(y, t))/t are uniformly integrable. By monotonicity
(see Section 2.4), we have H(y,t) ≤ H̃(y,t) and, in view of the previous cases, max(0, H̃(y,t))/t →
Z in L1 and, therefore, in probability. Therefore, both (5.3) and uniform integrability of H(y,t)/t

follow.
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Secondly, we show that

lim
t→∞ P

(
H(y,t)

t
< Z − ε

)
= 0. (5.4)

Indeed, let �x,y be a stream of RACSs that contain a ball of radius r that covers both x and y.
By our assumptions, this is a homogeneous Poisson process of positive intensity, say ν. For
each t , let t − ηt be the last arrival of such a RACS before t . Clearly, the random variable ηt

has an exponential distribution with parameter ν. Further, H(y,t) ≥ H(x,t−ηt ) a.s., so for any
T > 0,

P

(
H(y,t)

t
< Z − ε

)
≤ P(ηt > T ) + P

(
H(x,t−T )

t
< Z − ε

)
→ e−νT as t → ∞.

Letting T → ∞ leads to (5.4).
Finally (5.3) and (5.4) imply the convergence in probability H(x,t)/t → Z and, further,

uniform integrability implies the L1-convergence of max(0, H(x,t)) to Z. �
Definition 5.2. We say that K ⊆ R

d is similar to the closed convex cone K(c) ⊆ R
d if there

exist two vectors v± ∈ R
d such that K(c) + v− ⊆ K ⊆ K(c) + v+.

Remark 5.1. Note that if K is a convex cone then it is trivially similar to itself. Also, if K is
similar to the convex cones K(c)

1 and K(c)
2 then K(c)

1 = K(c)
2 by the geometry of the convex

cones.

By monotonicity we obtain the following corollary from Theorem 5.1.

Corollary 5.1. Assume that the hypothesis of Corollary 3.1 holds. Given that K ⊆ R
d is

similar to a closed convex cone K(c) with vertex at the origin, for all x ∈ K ,

lim
t→∞

max(H(x,t), 0)

t
= lim

t→∞
E max(H(x,t), 0)

t
= sup

t>0

EH
(	(K(c)),0)
t

t
< ∞,

where the first limit is in L1.

Appendix

Proof of Lemma 3.2. The proof leverages the ideas developed in the proof of [1, Theorem 2].
We use the same discretization of time and space as in the proof of this theorem to show the
following.

(i) There exists a branching process constructed from an i.i.d. family of random variables
{(vi, si)}i with light-tails. For a given i, vi denotes the number of offsprings of i and si
denotes the (common) height of its offspring.

(ii) For n ∈ N, let h(n) denote the maximum height of this branching process at generation n,
namely the maximum, over all lineages, of the sum of the heights of all generations in
the lineage. Then, in order to prove (3.1), it suffices to prove that Eh(n) ≤ Cn for every
n > 0 for some finite C.

For n ∈ N, let dn denote the number of individuals of generation n in this branching process.
For a > 0, let

D(a) :=
⋃
n≥1

{dn > an}, D̄(a) := � \ D(a).
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Let am = Cm, m ∈ N. From Chernoff’s inequality, for some sufficiently large constant C > 0,

P(D(am)) ≤ 2−m.

From Chernoff’s inequality again, it follows that for all i ∈ N, δ > 0, and cm > 0 to be fixed,
we obtain,

P

({
h(n)

n
> (cm + i)

}
∩ D̄(am)

)
≤ (amE(eδs)e−δcm)ne−δni ,

where s is a typical height. Therefore,

E

(
h(n)

n

)
=

∑
m≥1

E

(
h(n)

n
1{D̄(am)\D̄(am−1)}

)
,

≤
∑
m≥1

(∑
i≥0

P

({
h(n)

n
> (cm + i)

}
∩ D̄(am)

))
+ P(D̄(am−1))cm,

≤
∑
m≥1

(
amE(eδs)e−δcm

1 − e−δ

)n

+ 2(2−mcm).

Now we fix δ sufficiently small such that E(eδs) < ∞. Recalling that am = Cm, in order to
conclude the proof, it suffices to construct cm independent of n, such that

(Cme−δcm)n ≤ 2−m,
∑
m≥1

2−mcm < ∞,

where C is a constant independent of n. The last bound is satisfied for cm = Bm for any B > 0.
However, for B sufficiently large Ce−δBm ≤ 4−m, which concludes the proof. �
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