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Abstract

Objective: To develop and validate the Discrepancy-based Evidence for Loss of Thinking Abilities (DELTA) score.
The DELTA score characterizes the strength of evidence for cognitive decline on a continuous spectrum using well-
established psychometric principles for improving detection of cognitive changes. Methods: DELTA score development
used neuropsychological test scores from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (two tests
each from Memory, Executive Function, and Language domains). We derived regression-based normative reference
scores using age, gender, years of education, and word-reading ability from robust cognitively normal ADNI
participants. Discrepancies between predicted and observed scores were used for calculating the DELTA score (range
0–15). We validated DELTA scores primarily against longitudinal Clinical Dementia Rating-Sum of Boxes (CDR-SOB)
and Functional Activities Questionnaire (FAQ) scores (baseline assessment through Year 3) using linear mixed models
and secondarily against cross-sectional Alzheimer’s biomarkers. Results: There were 1359 ADNI participants with
calculable baseline DELTA scores (age 73.7 ± 7.1 years, 55.4% female, 100% white/Caucasian). Higher baseline
DELTA scores (stronger evidence of cognitive decline) predicted higher baseline CDR-SOB (ΔR2= .318) and faster
rates of CDR-SOB increase over time (ΔR2= .209). Longitudinal changes in DELTA scores tracked closely and in
the same direction as CDR-SOB scores (fixed and random effects of meanþmean-centered DELTA, ΔR2> .7).
Results were similar for FAQ scores. High DELTA scores predicted higher PET-Aβ SUVr (ρ= 324), higher
CSF-pTau/CSF-Aβ ratio (ρ= .460), and demonstrated PPV> .9 for positive Alzheimer’s disease biomarker
classification. Conclusions: Data support initial development and validation of the DELTA score through its
associations with longitudinal functional changes and Alzheimer’s biomarkers. We provide several considerations
for future research and include an automated scoring program for clinical use.
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INTRODUCTION

Neuropsychological assessments are the accepted standard-
of-care for measuring cognition. Many of the most common

neuropsychological tests have existed for decades but
research on their strengths and limitations has led to improve-
ments in how they are used and interpreted in clinical,
research, and forensic settings. For example, research
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showing the base rates with which cognitively intact
individuals achieve low scores across a test battery has helped
reduce false positive conclusions that a patient has declined
(Binder, Iverson, & Brooks, 2009; Brooks & Iverson, 2010;
Brooks, Iverson, & White, 2009). There is also evolving
awareness of the complex relationships between diverse
neuropathologic changes and heterogeneous cognitive phe-
notypes (Boyle et al., 2018; James et al., 2016; Wennberg
et al., 2019).

Pioneering work from Bondi and Jak in longitudinal aging
cohorts rather consistently demonstrates that actuarial
approaches that classify cognitive impairment using patterns
and frequencies of low scores have led to modest rates of
clinical reversion (mild cognitive impairment or “MCI” to
“cognitively normal” at follow-up), improved characterization
of risk of progression to dementia, and stronger associations
with biologic disease markers than “single-test” methods
(Bondi et al., 2014; Bondi & Smith, 2014; Jak et al., 2009;
Jak et al., 2016; Petersen et al., 1999). Oltra-Cucarella et al.
(2018) recently showed that the number of low scores in a test
battery predicted progression from MCI to dementia in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort
with improved specificity (Oltra-Cucarella et al., 2018). Put
simply, implementing these approaches increases a clinician’s
confidence about whether a patient’s test scores reflect true
cognitive changes versus normal performance variability unre-
lated to suspected underlying disease.

Deemphasizing individual test scores known to fluctuate
in cognitively normal individuals promotes clinical transla-
tion by more closely mimicking the holistic interpretations
used by neuropsychologists. One possible limitation of these
methods, however, is that they dichotomize impairment sta-
tus rather than allowing for a continuum of evidence for cog-
nitive decline. Dichotomous approaches that reduce complex
cognitive profiles derived from psychometrically imperfect
measures might not classify patients into discrete diagnostic
groups accurately or reliably. Moving away from dichoto-
mous categorizations (“not impaired” vs. “impaired”) and
toward a continuous spectrum construct might advance clini-
cal assessment methods further and promote integration with
similarly complex disease biomarker measures.

Data from large longitudinal research cohorts with bio-
marker collection challenge traditional conceptualizations
of disease–phenotype relationships and underscore the
imperfect alignment of disease states and clinical syndromes
(Jack et al., 2018). For example, biomarker [e.g., positron
emission tomography (PET)] evidence for amyloid plaque
and tau tangle Alzheimer’s disease (AD) pathology does
not guarantee measurable cognitive impairment (De Meyer
et al., 2010; Mortamais et al., 2017) and, when present,
cognitive impairment is not universally the prototypic AD
presentation of “rapid forgetting” (Ossenkoppele et al.,
2015; Perry et al., 2017; Phillips et al., 2018). Yet, in the
absence of advanced biomarkers of disease pathology, clinical
presentation alone may not differentiate disease states
adequately (e.g., amnestic profiles associated with both AD

and limbic-predominant age-related TDP-43 encephalopathy)
(Nelson et al., 2019). The National Institute on Aging and
Alzheimer's Association (NIA-AA) established the “A/T/N”
framework for biomarker evidence of ADwith expected adap-
tation to include additional neuropathologic biomarkers (Jack
et al., 2018; Nelson et al., 2019). Anticipating this paradigm
shift, a cognitive correlate derived from neuropsychological
evaluations would complement biomarker frameworks by sys-
tematically quantifying evidence of domain-specific cognitive
decline.

The purpose of this study is to develop and validate the
Discrepancy-based Evidence for Loss of Thinking Abilities
(DELTA) score. In the absence of prior test scores for com-
parison, DELTA scores characterize evidence for cognitive
decline on a continuous spectrum based on the extent of dis-
crepancies between obtained test scores and predicted pre-
morbid scores derived from multiple-variable regression
models. The approach reflects the progress of prior research
demonstrating the benefits of accounting for low-score-base-
rates among cognitively normal individuals and psychomet-
ric principles for improving detection of cognitive changes
(Iverson & Brooks, 2011). This initial validation used the
ADNI cohort and evaluated how the DELTA score predicted
functional changes over time, as well as its association with
AD biomarkers. We provide aMicrosoft Excel-based scoring
program that directly incorporates the study findings and
we discuss next steps for broader validation outside of AD
samples.

METHODS

Data Source and Participants

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), PET, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. ADNI was
approved by the institutional review boards of all participating
institutions. Informed written consent was obtained from all
participants at each site. Data included in our study were par-
ticipant demographics, neuropsychological test results, func-
tional measures including the Clinical Dementia Rating
scale (CDR) and Functional Activities Questionnaire
(FAQ), and biomarkers of beta-amyloid[Aβ; via PET and
cerebrospinal fluid (CSF)] and phosphorylated tau (p-tau;
via CSF).

The CDR (Morris, 1993) has both a global score (range
0–3, where 0= “normal” and 3= “severe dementia”) and
Sum of Boxes (SOB) score (range 0–18) that quantify aspects
of daily functioning including memory, orientation,
judgment/problem-solving, community affairs, home and
hobbies, and personal care. The FAQ (Pfeffer, Kurosaki,
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Harrah Jr., Chance, & Filos, 1982) assesses the degree of as-
sistance individuals need when completing 10 instrumental
activities of daily living (range 0–30 with higher scores rep-
resenting greater assistance needed). Lastly, Aβ and p-tau are
the hallmark neuropathologic features of AD under the bio-
logic A/T/N classification system and commonly underlie
cognitive and behavioral changes in older adults (Jack
et al., 2018).

The ADNI cohort was used as the normative reference for
DELTA development. Regression coefficients were derived
from a sample of robust cognitively normal (RCN) individ-
uals. RCNs had to have CDR = 0 and Mini Mental Status
Exam (MMSE) score ≥29 at both baseline and 1-year fol-
low-up. We regressed age, gender, years of education, and
word-reading ability against each of the neuropsychological
test scores. Equations derived from the results of these regres-
sion models were then applied to the entire ADNI cohort to
compute individual participants’ predicted premorbid test
scores. The discrepancy between a participants’ predicted
and obtained scores is the key component of the DELTA
score, which theoretically represents the likelihood of true
cognitive decline from a predicted baseline state.

Discrepancy-Based Evidence for Loss of Thinking
Abilities (DELTA) Score Development

The DELTA score is broadly based on the following: (1) the
degree of discrepancy between an individual’s predicted and
observed scores on individual tests within a battery, and (2)
the frequency of discrepancy scores that exceed common cut-
offs for infrequently occurring or “impaired” scores. This
initial development and validation is specific to ADNI test
scores and represents a proof of concept.

Step 1: Identifying ADNI test scores to incorporate
into DELTA

The six tests used for the ADNI-based DELTA spanned three
cognitive domains: Memory [Rey Auditory Verbal Learning
Test (AVLT), Wechsler Memory Scale – Revised Logical
Memory (WMS-R LM)], Language [Animal Fluency, 30-item
Boston Naming Test (BNT-30)], and Executive Function
(Clock Drawing, Trails B); see Supplemental Table A for test
details. We isolated the “executive” component of Trails B by
dividing Trails B time by Trails A time to reduce confounding

Table 1. Regression equations for predicting test scores based on age, gender, years of education, and word-reading ability (ANART total
errors). Scores within the table used for DELTA score calculation include AVLT Delayed Recall, LM Delayed Recall, Trails B/Trails A,
Animal Fluency Total Correct, and BNT-30 Total Correct. Regression equations not calculated for Clock Drawing due to limited score
range in control group (4 or 5). The “ANART R2” column indicates the added variance attributed specifically to word-reading
performance above and beyond age, gender, and years of education

Test Test component Predicted raw score equation SEE Model R2 ANART R2

AVLT Total Learninga,b 77.107þ (Age*−.464)þ (Gender*−5.10)þ
(YrsEduc*.599)þ (ANART errors*.068)

9.12 .15 .001

Trial 6a,b 16.91þ (Age*−.138)þ (Gender*−1.51)þ
(YrsEduc*.230)þ(ANART errors*.054)

3.42 .10 .007

Delayed Recalla–c 14.53þ (Age*−.133)þ (Gender*−1.31)þ
(YrsEduc*.284)þ (ANART errors*.060)

3.70 .08 .008

LM Immediate Recallc,d 12.50þ (Age*−.001)þ (Gender*−.72)þ
(YrsEduc*.233)þ (ANART errors*−.090)

2.99 .09 .03

Delayed Recallc,d 11.33þ (Age*.001)þ (Gender*−.80)þ
(YrsEduc*.249)þ (ANART errors*−.089)

3.15 .09 .02

Trail Making Test Trails Aa 3.72þ (Age*.483)þ (Gender*−1.72)þ
(YrsEduc*−.193)þ (ANART errors*−.078)

10.83 .06 .002

Trails Ba −76.39þ (Age*1.97)þ (Gender*−4.13)þ
(YrsEduc*.41)þ (ANART errors*.814)

32.17 .12 .02

Trails B/Trails Ad .619þ (Age*.017)þ (Gender*−.078)þ
(YrsEduc*.025)þ (ANART errors*.032)

.938 .05 .03

Clock Drawing – – – – –

Animal Fluency Total Correctc 26.67þ (Age*−.146)þ (Gender*−.394)þ
(YrsEduc*.388)þ (ANART errors*−.063)

5.184 .07 .006

BNT-30 Total Correctb,d 31.12þ (Age*−.048)þ (Gender*1.362)þ
(YrsEduc*−.050)þ (ANART errors*−.063)

1.946 .13 .02

ANART, American National Adult Reading Test; AVLT, Rey Auditory Verbal Learning Test; BNT, Boston Naming Test; LM, Logical Memory (WMS-R);
SEE, standard error of the estimate; YrsEduc, Years of Education.
a Age p< .01.
b Gender p< .01.
c Years of Education p< .01.
d ANART Error Score p< .01.
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effects of psychomotor speed on measuring the set-shifting
component of Trails B (Arbuthnott & Frank, 2000).

Step 2: Calculating test score prediction equations
from robust cognitively normal (RCN) participants

Predicted scores for each relevant test component came from
regression equations using coefficients (B-weights) corre-
sponding to the effects of age, gender (male or female), years
of education, and word-reading ability on test scores in the
RCN subgroup (Eppig et al., 2017). Word-reading scores
came from the American National Adult Reading Test
(ANART number of errors), which estimates general intelli-
gence (i.e., IQ) and informs expected premorbid cognitive
abilities (McGurn et al., 2004). Word-reading ability was
chosen as a performance-based predictor of cognitive abilities
to improve upon typical demographic-only adjustment meth-
ods (Crawford, Moore, & Cameron, 1992; Duff, Chelune, &
Dennett, 2011; Duff, Dalley, Suhrie, & Hammers, 2018). All
predictors were left in the equation regardless of statistical
significance; this approach captures any variance explained
by these commonly collected variables and more clearly
allows for direct comparison of their relative prediction
strengths across test scores. The test score-specific prediction
equations therefore looked like:

Predicted Score ¼ Constantþ Age � BAge

� �

þ Gender 1 or 2ð Þ � BGender½ �
þ Years of Education � BYrsEducationð Þ
þ ANARTerrors � BANARTerrorsð Þ

Step 3: Calculating standardized discrepancy scores

We identified 270 ADNI participants as RCNs. We first cal-
culated predicted raw scores for RCNs and then standardized
by z-transforming the discrepancy (z-Discrep) between pre-
dicted and actual raw scores by dividing the difference by
the test-specific regression model’s standard error of the esti-
mate (SEE; defined as the standard deviation (SD) of the error
term). This occurred for all test scores (Table 1) except for
Clock Drawing because all RCNs obtained scores of either
4 or 5 (out of 5). We subtracted actual from predicted scores
for the Trail Making Test so that negative z-scores reflected
poor performance.

z�Discrep : Standardized zð ÞDiscrepancy ¼
Actual Test Score� Predicted Test Scoreð Þ=SEE

Step 4: Defining cutoffs for evidence of cognitive
decline

A key component to neuropsychological test score interpre-
tations is the frequency with which a given score occurs in a
reference population (e.g., scores corresponding to a z-score
of −2.0 are atypically low and usually interpreted as strong
evidence of cognitive decline). We therefore established

percentile cutoffs for infrequently occurring z-Discrep
scores: 16th, 7th, and 2nd percentile. We used percentiles
due to non-normality of the z-Discrep score distributions.
These percentiles correspond to commonly used cutoffs in
normally distributed data (16th%ile for z=−1.0, 7th%ile
for z=−1.5, 2nd%ile for z=−2.0) (Iverson &
Brooks, 2011).

Step 5: Defining DELTA score criteria

We based DELTA score criteria on the principle that
obtaining low scores on Test A and Test B within a cognitive
domain occurs less frequently than obtaining low scores on
Test A or Test B (Table 2). The DELTA score also accounts
for the degree of discrepancy between obtained and predicted
scores. For example, if both the BNT and Animal Fluency
scores have a z-Discrep below the second percentile, the indi-
vidual receives a Language score of 5. However, if only one
of those two z-Discrep scores is below the second percentile
and the other is normal, they receive a Language score of 3.
The same score of 3 could also be obtained if both z-Discrep
scores fall between the second and seventh percentile.

A unique component of the Memory DELTA score for
both AVLT and LM is the requirement of <50% retention
of initially learned information. This was done to reduce con-
founding effects of poor immediate recall on delayed recall
scores due to non-memory factors like inattentiveness or
executive deficits (Casaletto et al., 2017). We chose <50%
retention arbitrarily and this cutoff was applied uniformly.

Step 6: Calculating the DELTA score

Domain-specific scores range from 0 to 5. A maximum
domain score of 5 corresponds to both z-Discrep scores
within that domain falling below the second percentile (note
that the cutoff value of which depends on whether the
individual had a “Low,” “Average,” or “High” predicted
score - see Results). For the Memory domain, this also
requires <50% retention on both AVLT and LM delayed
recall. Domain-specific scores are then summed for a total
DELTA score (0–15).

Methods and Analyses for Validating DELTA
Scores

We calculated DELTA scores for all ADNI participants with
complete test data at Time 0 (baseline assessment; BL) and
for each follow-up year up to the fifth year (Y1, Y2, Y3,
Y4, Y5). Functional outcomes included the CDR-SOB and
FAQ scores corresponding to time points with calculable
DELTA scores. Functional outcomes were used as the pri-
mary validation of the DELTA score because it is a purely
clinical and psychometrically based score that is independent
of biomarker indicators of specific diseases processes.
Biomarkers were used in the secondary validation.
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Primary Validation with Functional Outcomes

First, we examined DELTA score changes in the RCN group
and the entire baseline sample at follow-up.

Second, we used linear mixed model analyses with maxi-
mum likelihood estimation evaluating associations between
DELTA score and longitudinal functional changes. Model
fit was evaluated in a hierarchical (i.e., nested) approach rel-
ative to the unconditional means (null) model: (1) fixed and
random effect of time, (2) fixed effects of age, gender,
and years of education, (3) fixed effect of BL DELTA score,
(4) fixed and random effect of BL DELTA × Time interac-
tion. This first approach most closely mimics a clinical
scenario where a patient obtains a DELTA score and the cli-
nician wants to know how that predicts future everyday
functioning.

Third, we leveraged the longitudinal cognitive data in
ADNI by building the following model using DELTA as a
time-varying covariate: (1) fixed and random effect of time,
(2) fixed effects of age, gender, and years of education, (3)
fixed effects of mean-DELTA and mean-centered-DELTA
(decoupled to control for each case’s mean cognitive func-
tioning across the study), (4) random effect of mean-centered
DELTA. This second approach examines how well changes
in DELTA scores coincide with changes in functional out-
comes over time.

Separate analyses were run with CDR-SOB and FAQ
scores as the dependent variable. We tracked overall model
fit using −2 Log Likelihood and Akaike’s Information
Criterion changes at each step as well as reductions in unex-
plained variance (R2 change) for the covariance parameters
(random effects).

Secondary Validation with Alzheimer’s Disease
Biomarkers

We examined associations between DELTA scores, PET-Aβ
burden, and CSF evidence of AD, stratifying participants by
apolipoprotein E (APOE) e4 carriers and noncarriers. PET-
Aβ was quantified using PET scanning with 18F-florbetapir
(AV45) tracer. Standardized uptake value ratios (SUVr) were
calculated by ADNI by dividing mean cortical florbetapir
uptake (frontal, anterior/posterior cingulate, lateral parietal, lat-
eral temporal) by whole cerebellar uptake. PET-Aβ positivity
reflected a cross-sectional SUVr> 1.11 (Landau et al.,
2014). CSF evidence of AD was determined by cutoff scores
optimized for ADNI (Hansson et al., 2018) that used the
CSF-hyperphosphorylated tau (CSF-pTau) to CSF-Aβ (1–42)
ratio (CSF-pTau/CSF-Aβ> .0251 pg/ml). We analyzed con-
tinuous associations betweenDELTA score and biomarker bur-
den using Spearman’s rho for non-normal data and examined

Table 2. Criteria for calculating the DELTA score (automatic scoring program provided)

Domain Code Criterion Risk points Max possible

Memory M.1 Both AVLT and LM Delayed Recall z-Discrep< 2nd%ileþ%Savings< 50% 5 5
M.2 a) Either AVLT or LM Delayed Recall z-Discrep< 2nd%ileþ%Savings< 50% 3

b) Both AVLT and LM Delayed Recall 2nd%ile< z-Discrep< 7th%ile
M.3 Either AVLT or LM Delayed Recall 2nd%ile< z-Discrep< 7th%ileþ

%Savings< 50%
2

M.4 Both M.2a and M.3 criteria met (only possible for one test to meet one criterion) 4
M.5 Both AVLT and LM Delayed Recall 7th%ile< z-Discrep < 16th%ileþ

%Savings< 50%
1

M.6 All other score combinations 0
Language L.1 Both BNT and Animal Fluency z-Discrep < 2nd%ile 5 5

L.2 a) Either BNT or Animal Fluency z-Discrep < 2nd%ile 3
b) Both BNT and Animal Fluency 2nd%ile< z-Discrep < 7th%ile

L.3 Either BNT or Animal Fluency 2nd%ile< z-Discrep < 7th%ile 2
L.4 Both L.2a and L.3 criteria met (only possible for one test to meet one criterion) 4
L.5 Both BNT and Animal Fluency 7th%ile< z-Discrep< 16th%ile 1
L.6 All other score combinations 0

Executive E.1 Both Clock Drawing= 0–2 and (Trails B time/Trails A time) z-Discrep< 2nd%ile 5 5
E.2 a) Either Clock Drawing= 0–2 or (Trails B time/Trails A time) z-Discrep< 2nd%ile 3

b) Both Clock Drawing= 3 and (Trails B time/Trails A time)
2nd%ile< z-Discrep < 7th%ile

E.3 Either Clock Drawing= 3 or (Trails B time/Trails A time)
2nd%ile< z-Discrep < 7th%ile

2

E.4 Both E.2a and E.3 criteria met (only possible for one test to meet one criterion) 4
E.5 Both Clock Drawing= 4 and (Trails B time/Trails A time)

7th%ile< z-Discrep< 16th%ile
1

E.6 All other score combinations 0
Total Risk Score X/15 15
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the positive predictive value (PPV) of a given DELTA group
for dichotomized biomarker outcomes (PET-Aβ positivity
and CSF-AD positivity). See www.loni.usc.edu for acquisition
and processing details.

All statistical analyses were performed using SPSS v.22 or
v.25. A priori alpha levels were set at p< .005 (unless other-
wise noted) to partially account for spurious findings associ-
ated with a large sample size and to reflect recent proposals to
lower thresholds for enhancing replication of new discoveries
(Benjamin et al., 2018; Ioannidis, 2018).

Restricted Sample

TheADNI sample considered for this study was around 92%
white/Caucasian (4% black/African American, 2% Asian,
<1% each of multiple races, American Indian/Alaskan,
and Hawaiian). We elected to restrict DELTA score devel-
opment and validation to white/Caucasian participants and
openly acknowledge this limited scope. We assumed that
indiscriminately applying the data underlying DELTA score
development across diverse racial and ethnic groups was
inappropriate. The well-documented and complex relation-
ships between sociodemographic factors and cognitive
test scores (Dotson, Kitner-Triolo, Evans, & Zonderman,
2009; Manly & Echemendia, 2007; Rivera Mindt, Byrd,
Saez, & Manly, 2010) require careful consideration when

extrapolating data from unrepresentative samples (Brooks,
Sherman, Iverson, Slick, & Strauss, 2011). We hope these
methods will be replicated using racially and ethnically
diverse cohorts.

RESULTS

The RCN group included 270 participants (mean ± SD age=
74.7 ± 5.5 years, 51.1% female, 100% white/Caucasian,
74.1% APOEe4 noncarriers; MMSE mean ± SD= 29.6 ± .5,
education years ± SD= 16.7 ± 2.6). Regression-based equa-
tions for predicting test score performance (including some
not used for DELTA score calculation), as well as the
added variance explained by the word-reading ability compo-
nent, are provided as Table 1.

The z-Discrep score distributions varied in the RCN group
as a function of predicted score. Those with higher predicted
test scores had a different distribution of z-Discrep scores
than those with lower predicted test scores. For example,
z-Discrep=−1.86 corresponds to the seventh percentile for
participants with high predicted AVLT delayed recall,
whereas z-Discrep=−1.42 corresponds to the seventh per-
centile for those with low predicted AVLT delayed recall.
Therefore, we stratified the predicted scores for each test into
“Low” (lower quartile), “Average” (middle quartiles), and
“High” (upper quartile) groups and then identified the z-

Fig. 1. Conceptual figure demonstrating derivation of the z-Discrep score that corresponds to a given percentile cutoff, stratified by each
participant’s predicted raw test score (“Low,” “Average,” or “High”). All bell curves represent the theoretical distribution of standardized
(z) discrepancy scores. The top curve shows the z-Discrep distribution for the entire RCN sample along with the theoretical “Low,”
“Average,” and “High” predicted score subgroups that make up the overall RCN sample. The bottom curves show that these subgroups were
isolated so that the z-Discrep scores that correspond to the 2nd, 7th, and 16th percentile cutoffs would be specific to the predicted score group’s
z-Discrep distribution.
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Discrep values corresponding to the 16th, 7th, and 2nd per-
centile that were specific to the predicted score group
(Figure 1).

We created five “Level of Evidence” for cognitive impair-
ment groups based on the DELTA score distribution in the
RCN sample: DELTA= 0 (“No Evidence” of cognitive
decline; 73.8% of RCNs), DELTA= 1–3 (“Low Evidence”;
24.6% of RCNs), DELTA= 4–6 (“Moderate Evidence”;
1.6% of RCNs), DELTA= 7–9 (“Strong Evidence”; .0% of
RCNs), DELTA= 10þ (“Very Strong Evidence”; .0%
of RCNs).

Evidence for Incremental Value of DELTA
Score Use

Addition of word-reading ability as a performance-based pre-
dictor of premorbid performance significantly improvedmodel
fit in 3 out of the 5 predicted test scores derived from regression
equations (Clock Drawing excluded) for DELTA score calcu-
lation: LM Delayed Recall, Trails B/A proportion score, and
the BNT-30 (Table 1).Word-reading independently accounted
for 15–60% of the total variance explained by the overall mod-
els for these tests.

We then examined the potential benefit of using multiple
test scores for characterizing cognitive abilities within a
domain by comparing rates of “low scores” on single tests
to frequencies of DELTA scores. Individual test scores were
converted to percentiles based on the RCN score distribution.
Using memory tests and a seventh percentile cutoff (z<−1.5
in a normal distribution) as an exemplar, we observed that
10.5% of RCNs had a LM Delay score <7th%ile and 9.7%
had an AVLT Delay score <7th%ile, while 19.1% had either
one or the other. In other words, one in five cognitively intact
individuals may get flagged as having “impaired” memory if
relying on individual test scores. However, 97% of the RCN
sample had a DELTA Memory score of 0 and 98% had an
overall DELTA score in the “No Evidence” (DELTA= 0)
or “Low Evidence” range (DELTA= 1–3). This suggests a
possible reduction in “false positive” determinations of cog-
nitive decline using the DELTA score.

Longitudinal DELTA Scores

Inspection of the overall sample’s longitudinal mean func-
tional and DELTA score data showed expected group-level
worsening until around Y3 and then decreased scores
between Y3 and Y4 that held through Y5, suggesting a sur-
vival bias in the sample’s attrition over time. There was also a
consistent decline in representation of APOEe4 carriers. We
therefore focused results on longitudinal data spanning BL,
Y1, Y2, and Y3. Table 3 shows descriptive data stratified
by assessment time point.

Of the 270RCNs used for calculating regression-predicted
test score performance, 256 (94.8%) completed all tests
and therefore had calculable DELTA scores. Rates of
DELTA group changes for the RCN sample and overall
BL sample are provided as supplemental material

(Supplemental Table B) and in Table 4. Over 83% of
RCNs with “No Evidence” at baseline and follow-up cogni-
tive data (i.e., remained in the study) stayed in this group at
Y1, Y2, and Y3 follow-up. For RCNs with “Low Evidence”
at BL and with follow-up cognitive data, over 90% remained
either as “Low Evidence” or reverted to “No Evidence.”

For the overall BL sample (Table 4), progression to higher
levels of evidence for cognitive decline (e.g., “Moderate” or
higher) was relatively rare for those with “No Evidence” at
BL, but rates increased as a function of BL DELTA group.
Reversion and progression percentages become skewed at
the highest BL DELTA groups (“Strong” and “Very
Strong”) due to lower rates of these levels of evidence at
BL and greater loss to follow-up.

DELTA Validation Against Longitudinal
Functional Changes

Linear mixed model analyses focused on CDR-SOB and
FAQ changes from BL through Y3 as a function of BL
DELTA scores. Table 5 shows the model fit characteristics
at each stage of the analyses. Higher BL DELTA score
(i.e., worse cognition) predicted higher BL CDR-SOB
beyond the effects of age, gender, and education (between-
case intercept, ΔR2= .318, large effect). The BL DELTA
score × Time interaction term significantly improved model
fit (ΔR2= .742, large effect) and suggested that higher BL
DELTA score was associated with faster increases in
CDR-SOB score (i.e., worsening) over time. No covariates
explained additional within-case residual variance (i.e.,
deviation from regression-predicted CDR-SOB) above the
effects of time (ΔR2< .02).

We then ran the models using participants’ longitudinal,
visit-specific DELTA scores instead of just the BL
DELTA score (i.e., DELTA as a time-varying covariate).
Higher mean and mean-centered BL DELTA scores pre-
dicted faster rates of increase in CDR-SOB score beyond
the effects of time (occasion-intercept, ΔR2= .658, large
effect), and accounting for person-specific longitudinal
changes in DELTA score further improved the model
(ΔR2= .791). These results suggest that longitudinal changes
in CDR-SOB track closely and in the same direction as
changes in DELTA score. Of note, remaining significant
unexplained variance indicated that the degree to which
DELTA score tracks with CDR-SOB is not uniform across
all participants (i.e., the strength of the association between
DELTA score and CDR-SOB differs from person to person).

Results were similar when evaluating longitudinal FAQ
changes in place of CDR-SOB. For all analyses, age, gender,
and years of education did not significantly predict longitudinal
functional changes in models that included DELTA scores.

DELTA Validation Against PET and CSF
Biomarkers

Biomarker validation was performed on the subset of the
BL sample with available PET and/or CSF biomarkers.
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Table 3. Sample descriptive statistics stratified by assessment point. Robust cognitively normal (RCN) data represent the RCN samples baseline visit

RCN Baseline Year 1 Year 2 Year 3 Year 4 Year 5

n 256 1359 1070 915 576 474 234
Age, y

Mean (SD) 74.7 (5.5) 73.7 (7.1) 74.6 (7.0) 75.4 (7.0) 76.0 (7.1) 76.8 (7.0) 77.9 (6.9)
Median (IQR) 73.9 (70.9–78.2) 73.6 (69.2–78.8) 74.7 (70.2–79.5) 75.5 (70.8–80.2) 76.1 (71.2–80.9) 76.7 (72.0–81.6) 78.0 (74.9–82.7)
Gender (%female) 50.4 44.6 43.3 45.5 43.2 43.0 39.7

Education, y
Mean (SD) 16.7 (2.6) 16.0 (2.8) 16.1 (2.8) 16.2 (2.7) 16.2 (2.7) 16.3 (2.6) 16.7 (2.8)
Median (IQR) 16 (15–19) 16 (14–18) 16 (14–18) 16 (14–18) 16 (14–18) 16 (14–18) 16 (14–18)
APOEe4 (%
Carriers)

26.1 44.7 43.7 40.4 37.9 36.9 32.1

CDR-SOB
Mean (SD) 0 (.1) 1.4 (1.6) 1.6 (1.9) 1.4 (2.0) 1.5 (2.1) 1.3 (2.0) 1.2 (1.6)
Median (IQR) 0 (0–0) 1.0 (0–2.0) 1.0 (0–2.5) .5 (0–2.0) 1.0 (0–2.0) .5 (0–2.0) .5 (0–2.0)
Min.–Max. 0–1.0 0–10.0 0–12.0 0–16.0 0–14.0 0–17.0 0–7.0

FAQ Total
Mean (SD) .2 (.7) 3.4 (5.3) 4.2 (6.4) 3.6 (6.2) 3.8 (6.4) 3.2 (5.8) 3.0 (5.4)
Median (IQR) 0 (0–0) 1 (0–5) 1 (0–6) 0 (0–4) 0 (0–5) 0 (0–3) 0 (0–4)
Min.–Max. 0–6 0–28 0–30 0–30 0–29 0–29 0–27

Neuropsychological Testing [Median (IQR)]
LM I 14 (12–17) 10 (6–13) 11 (7–15) 12 (8–16) 12 (8–15) 13 (10–16) 14 (10–16)
LM II 13 (11–16) 8 (3–11) 9 (3–13) 10 (5–15) 10 (5–14) 12 (7–15) 12 (7–15)
LM % Retention 93 (85–100) 79 (50–94) 80 (50–94) 85 (64–100) 85 (63–100) 88 (70–100) 90 (73–100)
AVLT (Trial “6”) 9 (6–11) 5 (3–9) 6 (3–9) 7 (3–10) 6 (3–9) 7 (4–10) 7 (4–10)
AVLT Delay 8 (5–11) 4 (1–8) 4 (0–8) 5 (1–9) 5 (1–8) 5 (2–10) 5 (1–8)
AVLT % Retention 91 (75–100) 78 (33–100) 75 (0–100) 80 (25–100) 80 (41–100) 83 (40–100) 78 (40–100)
Clock Drawing 5 (5–5) 5 (4–5) 5 (4–5) 5 (4–5) 5 (4–5) 5 (4–5) 5 (4–5)
Trails B/A Ratio 2.2 (1.8–2.8) 2.5 (2.0–3.4) 2.5 (2.0–3.3) 2.5 (2.0–3.3) 2.5 (2.0–3.2) 2.4 (2.0–3.2) 2.5 (2.0–3.2)
Animal Fluency 21 (17–24) 18 (14–22) 18 (14–22) 19 (14–23) 18 (14–21) 19 (15–22) 18 (15–22)
BNT-30 29 (28–30) 28 (25–29) 29 (26–30) 29 (27–30) 29 (26–30) 29 (27–30) 29 (27–30)

APOEe4, apolipoprotein epsilon 4; AVLT, Rey Auditory Verbal Learning Test; BNT-30, 30-item Boston Naming Test; CDR-SOB, Clinical Dementia Rating-Sum of Boxes score; FAQ, Functional Activities
Questionnaire; IQR, interquartile range; LM, Logical Memory (WMS-R); Min.–Max., minimum value–maximum value; RCN, robust cognitively normal; SD, standard deviation; y, years.
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Higher BL DELTA score predicted higher PET-Aβ SUVr
(n= 739, ρ= .324, medium effect), lower CSF-Aβ (n= 1000,
ρ=−.412, medium–large effect), higher CSF-pTau (n= 998,
ρ= .340, medium effect), and higher CSF-pTau/CSF-Aβ
ratio (n= 997, ρ= .460, medium–large effect); all p’s< .001.
We looked at the Memory subscore (0–5) of the DELTA
score independently and found similar relationships with bio-
markers as the total DELTA score.

Figure 2A shows relationships among DELTA groups and
PET-Aβ status stratified by APOEe4 noncarriers and carriers.
Among APOEe4 noncarriers with PET-Aβ scans (n= 416),
135 (32.5%) were PET-Aβ(þ). Positive predictive value
(PPV) of the DELTA scores increased as a function of
DELTA “level of evidence” group from 25.7% in the
DELTA = 0 group (“No Evidence”) to 63.6% for participants
with DELTA> 6 (“Strong Evidence” plus “Very Strong
Evidence” groups). Results were similar when looking at

Memory score only (Figure 2B). AmongAPOEe4 carriers with
PET-Aβ scans (n= 320), 240 (75.0%) were PET-Aβ(þ). PPV
of theDELTAgroups increased from 62.7% in theDELTA= 0
group (“No Evidence”) to 92.7% for participants with
DELTA> 3 (“Moderate Evidence” or higher groups). We
found slightly stronger relationships based on theMemory sub-
score, such that aMemory scores of 4 (17/17 participants) and 5
(17/17 participants) had 100% PPV.

Figure 3A shows relationships among DELTA groups and
CSF-AD biomarker status stratified by APOEe4 noncarriers
and carriers. Among APOEe4 noncarriers with CSF-AD bio-
markers (pTau/Aβ ratios, n= 553), 166 (30.0%) were CSF-
AD(þ). PPV of the DELTA scores again increased as a func-
tion BL DELTA “level of evidence” group from 18.6% in the
“No Evidence” group to 88.9% in the “Very Strong
Evidence” group (8/9 participants). Results were similar
when looking at Memory score only (Figure 3B). Among

Table 4. Change in DELTA group status based on BL DELTA group for the entire BL sample. Values represent
the percentage of participants with follow-up DELTA scores within each DELTA group. Interpret reversion and
progression percentages at the highest BL DELTA groups (“Strong” and “Very Strong”) with caution due to
lower frequency of these DELTA groups at BL and greater loss to follow-up (i.e., survivor bias), particularly
by Year 3

Overall baseline DELTA group
(score range)

Follow-up DELTA group
(score range) Year 1 Year 2 Year 3

“Level of Evidence” “Level of Evidence” n= 497 n= 490 n= 300
No Evidence (0) n= 593 No Evidence (0) 77.1 74.1 76.3

Low (1–3) 19.1 20.6 19.0
Moderate (4–6) 3.2 4.5 3.7
Strong (7–9) .6 .6 .7
Very Strong (10–15) .0 .2 .3

n= 303 n= 270 n= 190
Low (1–3) n= 379 No Evidence (0) 44.2 41.1 39.5

Low (1–3) 33.0 34.4 33.7
Moderate (4–6) 16.8 17.0 16.3
Strong (7–9) 5.0 5.9 8.4
Very Strong (10–15) 1.0 1.5 2.1

n= 169 n= 109 n= 78
Moderate (4–6) n= 249 No Evidence (0) 9.5 14.7 16.7

Low (1–3) 23.7 31.2 17.9
Moderate (4–6) 34.9 26.6 37.2
Strong (7–9) 27.2 15.9 20.5
Very Strong (10–15) 4.7 11.9 7.7

n= 78 n= 49 n= 18
Strong (7–9) n= 141 No Evidence (0) 2.6 2.0 5.6

Low (1–3) 5.1 8.2 11.1
Moderate (4–6) 23.1 14.3 33.3
Strong (7–9) 38.5 32.7 22.2
Very Strong (10–15) 30.8 42.9 27.8

n= 26 n= 12 n= 3
Very Strong (10–15) n= 57 No Evidence (0) .0 .0 .0

Low (1–3) 3.8 16.7 .0
Moderate (4–6) 7.7 8.5 33.3
Strong (7–9) 26.9 25.0 33.3
Very Strong (10–15) 61.5 50.0 33.3

DELTA, Discrepancy-based Evidence for Loss of Thinking Abilities.
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Table 5. Linear mixed model analysis of baseline and longitudinal DELTA scores predicting CDR-SOB and FAQ score changes over 3-year follow-up. Terms: “Between-Intercept” – Variance
associated with between-participant baseline differences (i.e., initial CDR-SOB/FAQ score); “Within-Residual” –Variance associated with discrepancies between regression-predicted and actual
CDR-SOB/FAQ score for each participant; “Time-Intercept” –Variance associated with rates of change in CDR-SOB/FAQ score over time (i.e., between-participant differences in slope of change)

Linear mixed model
tracking

Model parameters Model fit statistics Unexplained variances and overall model R2

Model predictors Fixed or random Parameters (n) −2LL ΔX2a AIC
Between-
intercept R2 Within-residual R2

Time-
intercept R2

CDR-SOB Model

CDR-SOB Base
Model

Unconditional Means – 3 19376 – 19382 4.56 – 1.92 – – –

þTime Fixedþ Random 5 17324 2051.4 17334 2.93 .357 .585 .695 .971 –

þAge/Gender/Education Fixed 8 17279 45.1 17295 2.84 .378 .585 .695 .969 .002

CDR-SOB Base Modelþ Baseline DELTA Score Covariates

Baseline DELTA
Effects

þBL DELTA Score Fixed 9 15448 1831.7 15466 1.39 .696 .581 .697 .768 .209
þBL DELTA × Time Fixedþ Random 11 14669 779.4 14690 1.42 .688 .551 .713 .048 .951

CDR-SOB Base Modelþ Longitudinal DELTA Score Covariates

Longitudinal DELTA
Effects

þm-DELTAþ c-DELTA Fixed 10 11967 5312.6 11987 1.35 .704 .357 .814 .330 .660
þc-DELTA Random 11 11805 161.4 11827 1.44 .683 .304 .841 .201 .793

FAQ Model

FAQ Base Model Unconditional Means – 3 35616 – 35622 43.54 – 12.52 – – –

þTime Fixedþ Random 5 33825 1790.4 33835 36.21 .168 4.80 .617 4.89 –

þAge/Gender/Education Fixed 8 31355 2470.1 31371 34.99 .196 4.86 .612 5.06 .000
FAQ Base Modelþ Baseline DELTA Score Covariates

Baseline DELTA
Effects

þBL DELTA Score Fixed 9 26340 5014.7 26359 18.75 .569 4.94 .605 4.29 .120
þBL DELTA × Time Fixedþ Random 11 25719 621.3 25741 19.19 .559 4.71 .624 .42 .914

FAQ Base Modelþ Longitudinal DELTA Score Covariates

Longitudinal DELTA
Effects

þm-DELTAþ c-DELTA Fixed 10 22052 9303.8 22072 17.84 .590 3.85 .692 1.81 .629
þc-DELTA Random 11 21910 142.0 21932 18.84 .567 3.03 .758 1.36 .721

−2LL, −2 Log Likelihood; AIC, Akaike’s Information Criterion; BL, baseline; CDR-SOB, Clinical Dementia Rating Sum of Boxes score; DELTA, Discrepancy-based Evidence for Loss of Thinking Abilities score;
c-DELTA, mean-centered DELTA score; FAQ, Functional Activities Questionnaire; m-DELTA, mean DELTA score across time points.
a All stepwise model additions statistically improved model fit (p< .0001).
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APOEe4 carriers with CSF-AD biomarkers (n= 444), 340
(76.6%) were CSF-AD(þ). PPV of the DELTA scores
increased from 52.7% in the “No Evidence” group to
95.1% in the “Strong Evidence” group (58/61 participants)
and 96.6% in the “Very Strong Evidence” group (28/29 par-
ticipants). We again observed stronger relationships based on
the Memory subscore in the APOEe4 carrier group, such that
a Memory scores of 4 (32/32 participants) and 5 (36/36
participants) had 100% PPV.

Automated Scoring Program

An automated scoring program for calculating DELTA
scores is provided for free use in Supplemental program.

DISCUSSION

We set out to develop and validate a novel approach for char-
acterizing and quantifying evidence for cognitive decline

Fig. 2. (A–B): Positive predictive value for PET-Aβ (SUVr> 1.11) across each DELTA group (A) and stratified by DELTA Memory score
(B). Separate lines represent APOE e4 status (carriers vs. noncarriers) and the total sample, with base rates of PET-Aβ positivity provided for
each group (dotted lines). NOTE: No participants obtained a DELTA Memory score of “1” (see Table 2 for criteria).

474 B. M. Asken et al.

https://doi.org/10.1017/S1355617719001346 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617719001346


based on normative reference methods, which we termed
the DELTA score. The DELTA score does not replace
existing methods for assessing within-person longitudinal
change (e.g., reliable change indices, standardized regression-
based change). Novel aspects of the DELTA score and
specific considerations for appropriate use are outlined in
supplemental material. The approach was rooted in principles
of low-score-base-rates aggregated across a relatively com-
prehensive neuropsychological test battery that evaluated

components of memory, executive function, and language.
This is similar conceptually to prior work (Bondi et al.,
2014; Jak et al., 2009; Oltra-Cucarella et al., 2018) but differs
in that the DELTA Score is continuous compared to typical
dichotomization of “impaired” versus “unimpaired” status.
We note that while the DELTA scores themselves have some-
what limited variability (0–15 overall, 0–5 per domain), the
automated scoring program also produces the continuous
standardized discrepancy scores for each test, which can be
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Fig. 3. (A–B): Positive predictive value for CSF-AD biomarkers (pTau/Aβ ratio> .0251 pg/ml) across each DELTA group (A) and stratified
by DELTA Memory score (B). Separate lines represent APOE e4 status (carriers vs. noncarriers) and the total sample, with base rates of
CSF-AD positivity provided for each group. NOTE: No participants obtained a DELTA Memory score of “1” (see Table 2 for criteria).
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flexibly applied in research and clinical settings to fit individ-
ual needs.

Prior work using the ADNI cohort separately developed
continuous composite scores for memory and executive func-
tion, which demonstrated improved prediction of cognitive
decline and association with neuroimaging/CSF biomarker
outcomes compared to single test scores (Crane et al.,
2012; Gibbons et al., 2012). A key finding of these composite
approaches was the ability to detect meaningful clinical
changes with smaller sample sizes than would be required
if using individual tests. This has significant implications
when designing clinical trials with cognitive outcomes.
Therefore, the DELTA approach may enhance usefulness
in this regard given that it is based on multiple test scores
and includes multiple cognitive domains, though further
research and validation are required.

Jak et al. (2009) showed that “impairment” classification
methods with the greatest stability and fewest instances of
reversion also likely have the lowest sensitivity to true cog-
nitive impairment (i.e., single-score approaches). This high-
lights important concepts: (1) progression/reversion/stability
rates only matter if the clinician is confident in the diagnostic
classification in the first place, (2) diagnostic sensitivity and
specificity is a direct function of the strictness of the criteria
for determining “impairment” (Iverson & Brooks, 2011).
Relatedly, reliance on interpretation of single test scores
obtained from a larger test battery may increase risk for both
false positives and false negatives. This has been demon-
strated regularly in the “multivariate base rate” literature
(Binder et al., 2009; Brooks & Iverson, 2010; Houck et al.,
2019) and the concept held true in our study as well. For
example, if a clinician defined “memory impairment” based
on a score <7th percentile of a normative reference group
(or z<−1.5 in a normal distribution), they are accepting a
7% false positive rate. However, the false positive rate
increases exponentially when more test scores are available.
Almost 20% of our study’s RCN group would qualify as
memory impaired (i.e., one in five scored <7th%ile on either
their AVLT or LM delayed recall). In contrast, 97% of our
robust normal controls had a DELTA Memory score of 0
thereby illustrating that interpretive approaches like the
DELTA score alleviate such problems by taking these con-
cepts into account.

As discussed, there are several strengths of using
composite scores derived from comprehensive evaluations
for characterizing cognitive status, but there are also practical
considerations. Incorporating more tests increases the length
of assessments. Other composite scores derived from ADNI
data (Crane et al., 2012; Gibbons et al., 2012) included four
tests underlying a memory composite [Rey AVLT, WMS-R
LM, the Alzheimer’s Disease Assessment Schedule, and
MMSE] and five tests for the executive function composite
[category fluency (both animals and vegetables), Trail
Making Test, Digit Span, WAIS-R Digit-Symbol, Clock
Drawing]. The DELTA score in this study comprises a bat-
tery of six total tests covering three domains, which we esti-
mate would take 35–40 min. This offers practical advantages

potentially more readily integrated into modern medical set-
tings that emphasize multidisciplinary and time-efficient
patient visits. The DELTA score’s high PPV for both
PET-Aβ and CSF-AD biomarker status (þ or −) highlights
a potential future application for efficiently identifying
(or ruling out) presumably related (or unrelated) disease
states for clinical trial enrollment.

Individual neuropsychological tests often have suboptimal
test–retest reliability, and therefore scores fluctuate (both
higher and lower) due to factors unrelated to the disease proc-
ess (Brooks et al., 2011). Using normative reference groups
demographically and/or intellectually dissimilar to an indi-
vidual patient also heightens risk for misclassifying cognitive
decline (Iverson &Brooks, 2011). Clinicians must be wary of
“red herrings” in the form of cognitive test score variability
unrelated to disease state. Reducing this phenomenon
requires development of more reliable and culturally appro-
priate measures, and/or classifying cognitive function using
multiple test scores in conjunction with low-score-base-rate
concepts.

Neuropsychologists uniquely appreciate these concepts
and, unsurprisingly, have spearheaded modern approaches
for classifying cognitive impairment. However, even the
more methodologically rigorous classification criteria
often reduce samples to either “impaired” or “unimpaired”
status and then characterize by the type of impairment
(combinations of single vs. multiple domain and amnestic
vs. non-amnestic labels). Dichotomizing cognitive status
may contribute to mixed findings regarding clinical pro-
gression, reversion, or stability (Pandya, Clem, Silva, &
Woon, 2016). Variability in progression, reversion, and
stability rates across studies also likely reflects inconsistent
definitions for impairment and the number of parameters used
for classifying participants (Edmonds et al., 2015; Jak et al.,
2009; Thomas et al., 2019).

LIMITATIONS

Multiple limitations of this initial validation coincide with
necessary future research outlined below. The current
DELTA score was derived from an exclusively white/
Caucasian sample that is highly educated. Not every partici-
pant contributed data for all follow-up assessment points,
likely resulting in survivor bias. Some participants contrib-
uted data inconsistently (e.g., BL, Y1, and Y3 but not Y2,
Y4, and Y5), which could bias longitudinal frequency rate
statistics. Advanced biomarkers were available only on a sub-
set of the total study sample that seemingly was enriched for
APOEe4 carriers (about 40% of those with biomarker data);
therefore, PPVs using the total study sample may overesti-
mate general population risk. Age, gender, years of educa-
tion, and word-reading ability collectively explained only
5–13% of the variance in predicted test scores, suggesting
several unmeasured and potentially important factors that
could improve the models. Exploration of nonlinear and/or
non-mean regression (e.g., quantile regression) when exam-
ining the roles of age, education, word-reading, etc. and
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accounting for variability in residuals across the spectrum of
these variables may further improve premorbid score predic-
tions (Sherwood, Zhou, Weintraub, & Lang, 2016). Sample
size was relatively small for certain DELTA groups and asso-
ciated data should be interpreted cautiously, while further
research may refine the cutoff scores associated with a given
“level of evidence” for decline group. Lastly, no participants
in the study obtained a DELTA Memory score of “1.”
Replication in other large samples will help refine scoring
criteria, if necessary.

FUTURE DEVELOPMENT AND EXPANSION
OF DELTA METHODS

We demonstrated a proof of concept for a novel approach to
characterizing evidence for cognitive decline. As with any
pilot endeavor, there are many opportunities for expansion
and improvement.We propose several ideas that we hopewill
guide researchers and clinicians in independent replication
and validation efforts, and help promote clinical translation.

• Replicate this work in multicultural samples.
• Expand predictors in the regression equations to better

explain cognitive test scores. The automated scoring pro-
gram contains empty fields for “VARIABLE #5” and
“VARIABLE #6”, so other researchers can easily adapt
the scoring program using new data and novel predictor
variables.

• Incorporate tests from additional cognitive domains.
• Validate the DELTA approach using different neuro-

psychological tests than those used in the present study
due to convenience of the ADNI sample.

• We envision opportunities for identifying clinically rel-
evant “profiles” based on patterns of domain-specific
DELTA scores. Analogous to “A/T/N” classifications for
biomarker evidence of amyloid, tau, and neurodegener-
ation, we propose something like “M/E/L” for neuro-
psychological evidence of memory, executive, and
language decline using DELTA methodology. We antici-
pate diverse opinions regarding which cognitive domains
to add and which test scores qualify for a given domain

• Evaluate use of DELTA scores in clinical trials using cog-
nitive outcomes.

• Apply similar methodology for developing a “mood” score
and a “behavior” score that could be used in conjunction
with the cognitive DELTA score and biomarker panels.
This could more precisely characterize clinical syndromes
with prominent noncognitive features (e.g., FTD
syndromes).

CONCLUSIONS

We present data supporting the initial development and val-
idation of a discrepancy-based test score metric, called the
DELTA score, for characterizing the level of evidence for
cognitive decline. Higher initial DELTA scores predicted
faster rates of functional decline and longitudinal changes
in DELTA scores coincided with changes in functional ques-
tionnaire scores. Greater evidence for cognitive decline

predicted AD biomarker status, particularly for APOEe4 car-
riers. Future work should expand the DELTA score to differ-
ent populations, include additional cognitive domains, and
evaluate how domain-specific score patterns align with
neurodegenerative disease biomarkers.
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