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This paper compares the different dynamics of the simple-sum monetary aggregates and
the Divisia monetary aggregate indices over time, over the business cycle, and across high
and low inflation and interest-rate phases. Although traditional comparisons of the series
sometimes suggest that simple-sum and Divisia monetary aggregates share similar
dynamics, there are important differences around turning points that cannot be evaluated
by their average behavior. We use a factor model with a regime-switching model that
separates the common movements underlying the monetary aggregate indices from
idiosyncratic variations in each series. We find that the major differences between the
simple-sum aggregates and Divisia indices occur around the beginnings and ends of
recessions and during some high-interest-rate phases. We note the inferences’ policy
relevance, which is particularly dramatic at the broadest (M3) level of aggregation.
Indeed, as Belongia [Journal of Political Economy, 104 (5) (1996), 1065–1083] has
observed in this regard, “measurement matters.”
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1. INTRODUCTION

There is a vast literature on the appropriateness of aggregating over monetary asset
components using simple summation. Linear aggregation can be based on Hicksian
aggregation [Hicks (1946)], but that theory only holds under the unreasonable as-
sumption that the user-cost prices of the services of individual money assets do not
change over time. This condition implies that each asset is a perfect substitute for
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the others within the set of components. Simple-sum aggregation is an even more
severe special case of such highly restrictive linear aggregation, because simple
summation requires that the coefficients of the linear aggregator function all be
the same. This, in turn, implies that the constant user-cost prices among monetary
assets must be exactly equal. The assets must be not only perfect substitutes, but
also perfect one-for-one substitutes—that is, must be indistinguishable assets, with
one unit of each asset being a perfect substitute for exactly one unit of each of the
other assets.

In reality, financial assets provide different services, and each such asset yields
its own particular rate of return. As a result, the user costs, which measure foregone
interest and thereby opportunity cost, are not constant and are not equal across
financial assets. The relative prices of U.S. monetary assets fluctuate considerably,
and the interest rates paid on many monetary assets are not equal to the zero interest
rate paid on currency. These observations have motivated serious concerns about
the reliability of the simple-sum aggregation method, which has been disreputable
in the literature on index number theory and aggregation theory for over a century.
In addition, an increasing number of imperfect substitute short-term financial
assets have emerged in recent decades. Because monetary aggregates produced by
simple summation do not accurately measure the quantities of monetary services
chosen by optimizing agents, shifts in the series can be spurious, as those shifts
do not necessarily reflect a change in the utility derived from money holdings.

Microeconomic aggregation theory offers an appealing alternative to the atheo-
retical simple-sum definition of money. The quantity index under the aggregation-
theoretic approach extracts and measures the income effects of changes in relative
prices and is invariant to substitution effects, which do not alter utility and thus
do not alter perceived services received. The simple-sum index, on the other
hand, does not distinguish between income and substitution effects if the ag-
gregate’s components are not perfect substitutes in identical ratios, and thereby
the simple-sum index confounds substitution effects with actual services received.
The aggregation-theoretic monetary aggregator function, which correctly internal-
izes substitution effects, can be tracked accurately by the Divisia quantity index,
constructed by using expenditure shares as the component growth-rate weights.
Barnett (1978, 1980) derived the formula for the theoretical user-cost price of
a monetary asset, needed in computation of the Divisia index’s share weights,
and thereby originated the Divisia monetary aggregates. The growth rate weights
resulting from this approach are different across assets, depending on all of the
quantities and interest rates in each share, and those weights can be time-varying
at each point in time. For a detailed description of the theory underlying this
construction, see Barnett (1982, 1987).

It is important to understand that the direction in which an asset’s growth-rate
weight will change with an interest-rate change is not predictable in advance.
Consider Cobb–Douglas utility. Its shares are independent of relative prices, and
hence of the interest rates within the component user-cost prices. For other utility
functions, the direction of the change in shares with a price change, or equivalently
with an interest-rate change, depends on whether the own-price elasticity of
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demand exceeds or is less than −1. In elementary microeconomic theory, this
often overlooked phenomenon produces the famous “diamonds versus water para-
dox” and is the source of most of the misunderstandings of the Divisia monetary
aggregates’ weighting, as explained by Barnett (1983).

Several authors have studied the empirical properties of the Divisia index com-
pared with the simple-sum index. The earliest comparisons are in Barnett (1982)
and Barnett et al. (1984). More recent examples include Belongia (1996), Belongia
and Ireland (2006), and Schunk (2001) and the comprehensive survey found in
Barnett and Serletis (2000). In particular, Belongia (1996) replicates some studies
of the impact of money on economic activity and compares results acquired using
a Divisia index instead of the originally used simple-sum index, Schunk (2001)
investigates the forecasting performance of the Divisia index compared with the
simple-sum aggregates, and Belongia and Ireland (2006) explore the policy im-
plications in the dual space of aggregated user costs and interest rates. Barnett and
Serletis (2000) collect and reprint seminal journal articles from this literature.1

In this paper we compare the different dynamics of simple-sum monetary ag-
gregates and the Divisia indices, not only over time, but also over the business
cycle and across high and low inflation and interest-rate phases. The potential
differences between the series can be economically very important. If one of the
indices corresponds to a better measure of money, its dynamical differences from
the official simple-sum aggregates increase the already considerable uncertainty
regarding the effectiveness and appropriateness of current monetary policy. We
aim to study the differences and whether they occur during particular periods.
Information about the state of monetary growth becomes particularly relevant for
policymakers, when inflation enters a high growth phase or the economy begins
to weaken. In fact, Barnett (1997) has argued and documented the connection
between the decline in the policy credibility of monetary aggregates and defects
that are peculiar to simple-sum aggregation.

Although traditional comparisons of the series sometimes suggest that they
share similar long-run dynamics, there are differences during certain important
periods, such as around turning points. These differences cannot be evaluated by
long-run average behavior. Our proposed approach offers several ways in which
these differences can be analyzed. A nonlinear dynamic factor model is used to
separate out the common movements underlying the monetary aggregate indices,
summarized in the latent dynamic factor, from individual variations specific to
each of the indices, captured by the idiosyncratic terms. The idiosyncratic terms
reveal where the monetary indices differ, depicting movements that are peculiar
to each series.2 That is, the dynamic factor represents simultaneous downturn
and upturn movements in money growth rate indices. If only one of the indices
declines, this will be captured by its idiosyncratic term.

We model the common factor and the idiosyncratic terms for each index as
following different Markov processes. Given that the idiosyncratic movements are
peculiar to each index, the idiosyncratic terms’ Markov processes are assumed to be
independent of each other. In addition, we allow the idiosyncratic terms to follow
autoregressive processes. These assumptions entail a very flexible framework that

https://doi.org/10.1017/S1365100509090166 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509090166


384 WILLIAM A. BARNETT ET AL.

can capture the dynamics of the differences across the indices without imposing
dependence between them.

Factor models with regime switching have been widely used to represent busi-
ness cycles [see Chauvet (1998, 2001) and Kim and Nelson (1998), among several
others], but without relationship to aggregation theory. Our proposed model differs
from the literature in its complexity, as it includes estimation of the parameters
of three independent Markov processes. In addition, the focus is not only on
the estimated common factor, but also on the idiosyncratic terms that reflect
the divergences between the monetary aggregate indices in a manner relevant to
aggregation theory.

To our knowledge, there is no parallel work in the literature that formally com-
pares the simple-sum aggregate with the Divisia index directly, using a multivariate
time-series framework to estimate the dynamical differences between these series.
Our contribution goes beyond simple comparison over time, as we also focus on
major measurement errors that might have occurred during some periods, such as
around the beginnings or ends of recessions or in transition times, as from low
(high) to high (low) inflation or interest-rate phases.

We estimate three models, one for each pair of monetary indices: simple-sum
M1 and Divisia MSI1 (Model 1), simple-sum M2 and Divisia MSI2 (Model 2), and
simple-sum M3 and Divisia MSI3 (Model 3), where MSI is the monetary services
index computed from the Divisia index by the St. Louis Federal Reserve Bank.
Our findings confirm some of the findings of the previous literature, in addition to
producing several new results.

In general, the idiosyncratic terms for both the simple-sum aggregates and the
Divisia indices display a business cycle pattern, especially since 1980. They gen-
erally rise around the end of high-interest-rate phases—a couple of quarters before
the beginning of recessions—and fall during recessions to converge subsequently
to their average behavior during the beginnings of expansions. We find that the
major differences between the simple-sum aggregates and Divisia indices occur
around the beginnings and ends of economic recessions and during some high-
interest-rate phases. This is particularly the case for the period between 1977 and
1983, which includes a slowdown, two recessions, two recoveries, and the change
in the Federal Reserve’s operating procedure during the “monetarist experiment”
period. Notice that this period also corresponds to a high-interest-rate phase.
Another time during which we find that the indices diverge substantially is around
the 1990 recession. A more detailed summary of findings is found in Section 4.

2. MONETARY AGGREGATION THEORY

2.1. Monetary Aggregation

Aggregation theory and index-number theory have been used to generate official
governmental data since the 1920s. One exception still exists. The monetary
quantity aggregates and interest-rate aggregates supplied by many central banks
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are not based on index-number or aggregation theory, but rather are the simple
unweighted sums of the component quantities and the quantity-weighted or arith-
metic averages of interest rates. The predictable consequence has been induced
instability of money demand and supply functions and a series of “puzzles” in
the resulting applied literature. In contrast, the Divisia monetary aggregates, origi-
nated by Barnett (1980), are derived directly from economic index-number theory.
Financial aggregation and index number theory were first rigorously connected
with the literature on microeconomic aggregation and index number theory by
Barnett (1980, 1987).

The assumptions implicit in the data construction procedures must be consistent
with the assumptions made in producing the models within which the data are to
be used. Unless the theory is internally consistent, the data and its applications are
incoherent. Without that coherence between aggregator function structure and the
econometric models within which the aggregates are embedded, a stable structure
can appear to be unstable. This phenomenon has been called the Barnett critique
by Chrystal and MacDonald (1994).

2.2. Aggregation Theory versus Index Number Theory

The exact aggregates of microeconomic aggregation theory depend on unknown
aggregator functions, which typically are utility, production, cost, or distance
functions. Such functions must first be econometrically estimated. Hence the
resulting exact quantity and price indices become estimator- and specification-
dependent. This dependency is troublesome to governmental agencies, which
therefore view aggregation theory as a research tool rather than a data construction
procedure.

Statistical index-number theory, on the other hand, provides indices that are
computable directly from quantity and price data, without estimation of unknown
parameters. Within the literature on aggregation theory, such index numbers de-
pend jointly on prices and quantities, but not on unknown parameters. In a sense,
index number theory trades joint dependency on prices and quantities for depen-
dence on unknown parameters. Examples of such statistical index numbers are the
Laspeyres, Paasche, Divisia, Fisher ideal, and Törnqvist indices.

The loose link between index number theory and aggregation theory was tight-
ened when Diewert (1976) defined the class of second-order “superlative” index
numbers, which track any unknown aggregator function up to the second order.
Statistical index number theory became part of microeconomic theory, as economic
aggregation theory had been for decades, with statistical index numbers judged
by their nonparametric tracking ability in relation to the aggregator functions of
aggregation theory.

For decades, the link between statistical index number theory and microeco-
nomic aggregation theory was weaker for aggregating over monetary quantities
than for aggregating over other goods and asset quantities. Once monetary assets
began yielding interest, monetary assets became imperfect substitutes for each
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other, and the price of monetary-asset services was no longer clearly defined. That
problem was solved by Barnett (1978, 1980), who derived the formula for the user
cost of demanded monetary services.3

Barnett’s results on the user cost of the services of monetary assets set the stage
for introducing index number theory into monetary economics.

2.3. The Economic Decision

Consider a decision problem over monetary assets. The decision problem will be
defined in the simplest manner that renders the relevant literature on economic
aggregation over goods immediately applicable.4 Initially we shall assume perfect
certainty.

Let m′
t = (m1t , m2t , . . . , mnt ) be the vector of real balances of monetary assets

during period t, let rt be the vector of nominal holding-period yields for monetary
assets during period t, and let Rt be the one-period holding yield on the benchmark
asset during period t. The benchmark asset is defined to be a pure investment that
provides no services other than its yield, Rt , so that the asset is held solely to
accumulate wealth. Thus, Rt is the maximum holding-period yield in the economy
in period t.

Let yt be the real value of total budgeted expenditure on monetary services
during period t. Under simplifying assumptions for data within one country, the
conversion between nominal and real expenditure on the monetary services of one
or more assets is accomplished using the true cost of living index on consumer
goods.5 The optimal portfolio allocation decision is

maximize u(mt ) (1)
subject to π ′

tmt = yt ,

where π ′
t = (π1t , . . . , πnt ) is the vector of monetary-asset real user costs, with

πit = Rt − rit

1 + Rt

. (2)

The function u is the decision maker’s utility function, assumed to be mono-
tonically increasing and strictly concave.6 The user-cost formula (2), derived by
Barnett (1978, 1980), measures the forgone interest or opportunity cost of holding
monetary asset i, when the higher yielding benchmark asset could have been held.

Let m∗
t be derived by solving decision (1). Under the assumption of linearly

homogeneous utility, the exact monetary aggregate of economic theory is the utility
level associated with holding the portfolio, and hence is the optimized value of
the decision’s objective function:

Mt = u(m∗
t ). (3)
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2.4. The Divisia Index

Although equation (3) is exactly correct, it depends on the unknown function,
u. Nevertheless, statistical index-number theory enables us to track Mt exactly
without estimating the u. In continuous time, the monetary aggregate, Mt = u(m∗

t ),
can be tracked exactly by the Divisia index, which solves the differential equation

d log Mt

dt
=

∑
i

sit

d log m∗
it

dt
(4)

for Mt , where

sit = πitm
∗
it

yt

is the ith asset’s share in expenditure on the total portfolio’s service flow.7 The
dual user-cost price aggregate �t = �(πt) can be tracked exactly by the Divisia
price index, which solves the differential equation

d log �t

dt
=

∑
i

sit

d log πit

dt
. (5)

The user-cost dual satisfies Fisher’s factor reversal in continuous time:

�tMt = π ′
t mt . (6)

As a formula for aggregating over quantities of perishable consumer goods,
that index was first proposed by Divisia (1925), with market prices of those goods
inserted in place of the user costs in equation (4). In continuous time, the Divisia
index, under conventional neoclassical assumptions, is exact. In discrete time, the
Törnqvist approximation is

log Mt − log Mt−1 =
∑

i

sit (log m∗
it − log m∗

i,t−1), (7)

where

sit = 1

2
(sit + si,t−1).

In discrete time, we often call equation (7) simply the Divisia quantity index.8 After
the quantity index is computed from (7), the user-cost aggregate most commonly
is computed directly from equation (6).

2.5. Risk Adjustment

Extension of index number theory to the case of risk was introduced by Barnett
et al. (2000), who derived the extended theory from the Euler equations rather than
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from the perfect-certainty first-order conditions used in the earlier index number–
theory literature. Because that extension is based on the consumption capital-asset-
pricing model (CCAPM), the extension is subject to the “equity premium puzzle”
of smaller-than-necessary adjustment for risk. We believe that the undercorrection
produced by CCAPM results from its assumption of intertemporal blockwise
strong separability of goods and services within preferences. Barnett and Wu
(2005) have extended Barnett et al.’s result to the case of risk aversion with
intertemporally nonseparable tastes.9

2.6. Dual Space

User-cost aggregates are duals to monetary quantity aggregates. Either implies the
other uniquely. In addition, user-cost aggregates imply the corresponding interest-
rate aggregates uniquely. The interest-rate aggregate rt implied by the user-cost
aggregate �t is the solution for rt of the equation

Rt − rt

1 + Rt

= �t.

Accordingly, any monetary policy that operates through the opportunity cost of
money (that is, interest rates) has a dual policy operating through the monetary
quantity aggregate, and vice versa. Aggregation theory implies no preference for
either of the two dual policy procedures or for any other approach to policy, so
long as the policy does not violate principles of aggregation theory. In our current
state-space comparisons, we model in quantity space rather than the user-cost-
price or interest-rate dual spaces. Regarding policy in the dual space, see Barnett
(1987) and Belongia and Ireland (2006).

3. THE STATE SPACE MODEL

Let Yt be the n × 1 vector of monetary indices, where n is the number of monetary
indices in the model. Then

�Yt = λ �Ft + γ τt + vt , (8)

where � = 1 − L and L is the lag operator. Changes in the monetary aggregates,
�Yt , are modeled as a function of a scalar unobservable factor that summarizes
their commonalities, �Ft , an idiosyncratic component n × 1 vector that captures
the movements peculiar to each index, vt , and a potential time trend, τ t . The factor
loadings, λ, measure the sensitivity of the series to the dynamic factor, �Ft .10 Both
the dynamic factor and the idiosyncratic terms follow autoregressive processes,

�Ft = αSt
+ φ(L)�Ft−1 + ηt , ηt ∼ N(0, σ 2), (9)

vt =ΓSh
t
+ d(L)vt−1 + εt , εt ∼ i.i.d. N(0, �), (10)
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where ηt is the common shock to the latent dynamic factor and εt are the distur-
bance terms. To capture potential nonlinearities across different monetary regimes,
the intercept of the monetary factor switches regimes according to a Markov vari-
able, St , where αSt

= α0 +α1S
α
t , and Sα

t = 0, 1. That is, monetary indices can either
be in an expansionary regime, where the mean growth rate of money is positive
(Sα

t = 1), or in a contractionary phase with a lower or negative mean growth rate
(Sα

t = 0).
We also assume that the idiosyncratic terms for each index follow distinct

two-state Markov processes, by allowing their drift terms, ΓSh
t
, to switch be-

tween regimes. For example, in the case of two monetary indices, n = 2, there
will be two idiosyncratic terms, S

β
t and Sδ

t , each one following an independent
Markov process, where S

β
t = 0, 1 and Sδ

t = 0, 1. Notice that we do not con-
strain the Markov variables Sα

t , S
β
t , and Sδ

t to be dependent on each other, but
allow them instead to move according to their own dynamics. In fact, there
is no reason to expect that the idiosyncratic terms would move in a manner
similar to each other or to the dynamic factor, because by construction they
represent movements peculiar to each index that are not captured by the common
factor.

The switches from one state to another are determined by the transition prob-
abilities of the first-order two-state Markov processes, pk

ij = P(Sk
t = j | Sk

t−1 = i),
where

∑1
j=0 pk

ij = 1, i, j = 0, 1, with k = α, β, δ identifying the Markov
processes for the dynamic factor and the two idiosyncratic terms, respec-
tively.

The model separates out the common signal underlying the monetary aggregates
from individual variations in each of the indices. The dynamic factor captures
simultaneous downturns and upturns in money growth indices. On the other hand,
if only one of the variables declined, for example, M1, this would not characterize
a general monetary contraction in the model and would be captured by the M1
idiosyncratic term. A general monetary contraction (expansion) will occur when
all n variables decrease (increase) at about the same time. That is, ηt and vt

are assumed to be mutually independent at all leads and lags for all n variables,
and d(L) is diagonal. The dynamic factor is the outcome of averaging out the
discrete states. Although the n monetary indices represent different measurements
of money, the estimated dynamic factor is a nonlinear combination of them,
representing broader movements in monetary aggregates in the United States.
On the other hand, once a contraction or expansion is clearly under way, the
idiosyncratic term for a particular aggregate can be highly informative near a
turning point.

Dynamic factor models with regime switching have been widely used to rep-
resent business cycles. The proposed model differs from those in the literature in
its complexity, as it includes estimation of the parameters of three independent
Markov processes.
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The model is cast in state space form, where (11) and (12) are the measurement
and transition equations, respectively:

�Yt = Z ξt + Gτt (11)

ξt = µξst
+ Tξt−1 + ut . (12)

A particular state space representation for the estimated indicator using two vari-
ables is

�Yt =
[

�Y1t

�Y2t

]
, Z =

[
λ1 1 0 0
1 0 1 0

]
, ξt =

⎡
⎢⎢⎣

�Ft

v1t

v2t

Ft−1

⎤
⎥⎥⎦ µξst

=

⎡
⎢⎢⎣

αst

βst

δst

0

⎤
⎥⎥⎦ ,

T =

⎡
⎢⎢⎣

φ1 0 0 0
0 d1 0 0
0 0 d2 0
1 0 0 1

⎤
⎥⎥⎦ , G =

[
γ1

γ2

]
, and ut =

⎡
⎢⎢⎣

ηt

ε1t

ε2t

0

⎤
⎥⎥⎦ .

The term Ft−1 is included in the state vector to allow estimation of the dynamic
factor in levels from the identity �Ft−1 = Ft−1 − Ft−2.

The model is estimated using an extended version of the nonlinear Kalman
filter to compute the latent dynamic factor and each of three Markov processes.
The nonlinear filter forms forecasts of the unobserved state vector, ξ

(i,j)

t |t−1, and
the associated mean squared error matrices, θ

(i,j)

t |t−1, based on information, It−1 ≡
[�Y′

t−1, �Y′
t−2, . . . ,�Y′

1]′, available up to time t − 1 on the Markov state St ,
with each St = Sα

t , S
β
t , Sδ

t taking on the value j, and St−1 taking on the value i, for
i, j = 0, 1:

ξ
(i,j)

t |t−1 = E(ξt | It−1, St = j, St−1 = i), (13)

θ
(i,j)

t |t−1 = E[(ξt − ξt |t−1)(ξt − ξt |t−1)
′ | It−1, St = j, St−1 = i)]. (14)

The filter uses as inputs the joint probability of the Markov-switching states at
times t − 1 and t, conditional on information up to t − 1, P(St−1 = i, St = j | It−1);
an inference ξ

(i,j)

t−1|t−1 about the state vector using information up to t − 1, given
St−1 = i and St = j; and the mean squared error matrices, {θ(i,j)

t−1|t−1}. The outputs
are their one-step updated values. The nonlinear Kalman filter is

ξ
(i,j)

t |t−1 = µξxt
+ Tξi

t−1|t−1, (15)

(prediction equations)

θ
(i,j)

t |t−1 = Tθi
t−1|t−1T′ + H, (16)
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ξ
(i,j)

t |t = ξ
(i,j)

t |t−1 + K(i,j)
t N(i,j)

t |t−1, (17)

(updating equations)

θ
(i,j)

t |t = (In − K(i,j)
t Z)θ

(i,j)

t |t−1, (18)

where H is the variance–covariance matrix of the vector of disturbances ut , In

is the identity matrix, K
(i,j)
t = θ

(i,j)

t |t−1Z′[Q(i,j)
t ]−1, N

(i,j)

t |t−1 =�Yt − Zξ
(i,j)

t |t−1 is the
conditional forecast error of �Yt , and Q(i,j)

t = Zθ
(i,j)

t |t−1Z
′ is its conditional variance.

The probability terms are computed using Hamilton’s filter, for each St =
Sα

t , S
β
t , Sδ

t , as

P(St−1 = i, St = j | It−1) = pij

1∑
h=0

P(St−2 = h, St−1 = i | It−1). (19)

From these joint conditional probabilities, the density of �Yt conditional on St−1,
St , and It−1 is

f (�Yt | St−1 = i, St = j, It−1)

= [
(2π)−n/2

∣∣Q(i,j)
t

∣∣−1/2
exp

(
−1

2
N(i,j)′

t |t−1Q(i,j)−1

t N(i,j)

t |t−1

)
. (20)

The joint probability density of states and observations is then calculated by
multiplying each element of (19) by the corresponding element of (20):

f (�Yt , St−1 = i, St = j | It−1)

= f (�Yt | St−1 = i, St = j, It−1)P (St−1 = i, St = j | It−1). (21)

The probability density of �Yt given It −1 is

f (�Yt | It−1) =
1∑

j=0

1∑
i=0

f (�Yt , St−1 = i, St = j | It−1). (22)

The joint probability density of states is calculated by dividing each element of
(14) by the corresponding element of (22):

P(St−1 = i, St = j | It ) = f (�Yt , St−1 = i, St = j | It−1)/f (�Yt | It−1). (23)

Finally, summing over the states in (23), we obtain the filtered probabilities of
expansions or recessions:

P(St = j | It ) =
1∑

i=0

P(St−1 = i, St = j | It ). (24)

As with the linear Kalman filter, the algorithm calculates recursively one-step-
ahead predictions and updates equations of the dynamic factor and the mean
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squared error matrices, given the parameters of the model and starting values for
ξ

j

t |t , θ
j

t |t and the probabilities of the Markov states. However, for each date t the
nonlinear filter computes 2k forecasts, where k is the number of states, and at each
iteration the number of cases is multiplied by k. This implies that the algorithm
would be computationally unfeasible, even for the simplest cases. Kim (1994), on
the basis of Harrison and Stevens (1976), proposes an approximation introduced
through ξ

j

t |t and θ
j

t |t for t > 1. This approximation consists of truncating the up-
dating equations into averages weighted by the probabilities of the Markov states.

At each t, the conditional likelihood of the observable variables is obtained as
a by-product of the algorithm from equation (20), which is used to estimate the
unknown model parameters. The filter evaluates this likelihood function, which is
then maximized with respect to the model parameters using a nonlinear optimiza-
tion algorithm. The maximum likelihood estimators and the sample data are then
used in a final application of the filter to draw inferences about the dynamic factor
and probabilities, based on information available at time t. The final estimated
state vector is calculated as

ξt |t =
1∑

i=0

P(St = j | It )ξ
j

t |t .

The estimation is implemented through a numerical procedure. The nonlinear
discrete filter produces two outputs: the state vector, ξt |t , containing the dynamic
factor, and the idiosyncratic terms, along with the associated probabilities of the
Markov states. The filtered probabilities give at time t the probability of the Markov
state, using only information available at t, P(St = 0, 1 | It ). On the other hand,
the smoothing probabilities are obtained through backward recursion using the
information in the full sample, P(St = 0, 1 | IT ).

4. EMPIRICAL RESULTS

4.1. Data

We use the federal funds rate as the interest rate in defining high and low interest-
rate phases and the log first difference of the consumer price index as the inflation
rate in defining high and low inflation phases. Those two series and the simple-sum
monetary aggregates, M1, M2, and M3, as well as their corresponding “monetary
service indices” (Divisia), MSI1, MSI2, and MSI3, were all obtained from the
Federal Reserve Bank of Saint Louis. The Research Division of the Saint Louis
Federal Bank produces the MSI indices on a regular basis using equation (7). The
MSI Divisia indices measure the flows of monetary services obtained by house-
holds and firms from holding monetary assets. For the theory and methodology
utilized in the construction of these indices, and for details of the construction
of these indices, see Anderson et al. (1997a, 1997b). For a survey of the theory
of monetary aggregation, empirical comparisons of monetary aggregates, and
reprints of seminal papers on the subject, see Barnett and Serletis (2000). We use
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quarterly data from 1960:2 to 2005:4, which is the sample period for which the
Divisia indices data were available at the time when this research was conducted.

4.2. Specification Tests

The dynamic factor structure captures cyclical comovements underlying the ob-
servable variables. We find that the resulting dynamic factor is highly correlated
with all of the monetary aggregates used in its construction. As a result, it is clear
that the structure was not imposed on the data by assuming large idiosyncratic
errors.

In addition, tests for the number of states strongly support the single-factor
specification. This conclusion is tested in different ways. First, the eigenvalues
of the correlation matrix of the common factor indicate adequacy of the single-
factor specification.11 Second, the model assumes that the factor summarizes the
common dynamic correlation underlying the observable variables. Consequently,
the idiosyncratic terms in vt are uncorrelated with the observed variables in �Yt .12

To test this assumption, the idiosyncratic terms vt are regressed on six lags of the
observable variables �Yt , and the parameters of the equations are found to be
insignificantly different from zero. In addition, the one-step-ahead conditional
forecast errors, Nt |t−1, obtained from the filter described in Section 2, are not pre-
dictable by lags of the observable variables. These results support the single-factor
specification, because these error terms are not capturing common information
underlying the observable variables.

With respect to the errors, εt , the i.i.d. assumption is tested using Ljung–Box
statistics on their sample autocorrelation and the BDS test proposed by Brock
et al. (1996).13 Both tests fail to reject the i.i.d. assumption at any level.

4.3. High and Low Inflation and Interest-Rate Phases

We study changes in monetary growth across business cycle phases and across
high and low inflation and interest-rate periods. We use economic recessions and
expansions as dated by the NBER to analyze changes across business cycle states.
Regarding inflation, we are mostly interested in identifying periods during which
there is a persistent change in this series. We classify a high inflation phase as
one in which inflation increases persistently for several quarters until it reaches
a peak. Analogously, low inflation phases start when inflation falls for several
quarters until it reaches a trough. A high (low) inflation phase may include periods
during which the level of inflation is still relatively low (high) but is increasing
(decreasing) persistently. That is, the level of inflation is not as relevant as its
rate of change. For example, inflation was historically low in the early 2000s, but
because its derivative turned positive in 2002:1 and remained so for a couple of
quarters, this date indicates the beginning of a high inflation phase.

The metric proposed to determine inflation phases is as follows: a high inflation
phase starts in quarter t if inflation πt−1 was in a low phase in quarter t − 1 and
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FIGURE 1. Smoothed inflation ( ), inflation (---), high-inflation phases ( ), and NBER
recessions (shaded areas).

πt+2 ≥ πt+1 ≥ πt ≥ πt−1, that is, if inflation grows for three consecutive quarters.
A low inflation phase starts in quarter t if inflation πt−1 was in a high phase in quar-
ter t − 1 and πt+1 < πt < πt−1, that is, if inflation falls for two consecutive quar-
ters. This is similar to the rule of thumb of two quarters decrease (increase) in GDP
to determine the beginning of a recession (expansion), although we use an asym-
metric number of quarters for high and low phases based on inflation persistence.
However, the results do not change if we use two quarters decrease or increase.

We also use the Bry and Boschan (B-B) (1971) routine to determine inflation
phases. Bry and Boschan formalize turning point dating rules into a computer
routine, which has been refined by Haywood (1973) to include an amplitude
criterion.14 The turning points obtained coincide with our proposed criterion
described above. In fact, both methods select turning points that would be easily
picked simply by visual inspection of the smoothed series.

The resulting inflation phases are plotted in Figure 1 together with inflation,
smoothed inflation, and NBER recessions. When inflation starts increasing, it does
so slowly and steadily. However, when inflation falls, it drops abruptly, making it
easier to identify the beginning of a low inflation phase than the start of a high
inflation phase. Note that inflation phases are associated with NBER recessions. In
particular, all recessions begin around the end of high inflation phases. In addition,
there were only two high inflation phases, in 1983–1984 and in 2002, during which
a recession did not follow. However, the economy entered a slowdown in 1984–
1986.
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FIGURE 2. Smoothed interest rates ( ), interest rates (---), high-interest-rate phases
( ), and NBER recessions (shaded areas).

With respect to interest rate, the determination of peaks and troughs is simplified
by the fact that this series is smoother than inflation. We use a metric similar to
the one used for inflation. However, using two or three quarters of change as the
cutoff for dating the phases results in exactly the same dating. Thus, we use the
following metric: a high-interest-rate phase starts in quarter t if interest rate it−1

was in a low phase in quarter t − 1 and if it+1 ≥ it ≥ it−1; and a low-interest-rate
phase starts in quarter t if interest rate it−1 was in a high phase in quarter t − 1 and
if it+1 < it < it−1. That is, the turning point of interest-rate phases takes place,
when the interest rate falls or rises for two consecutive quarters. Once again, we
use the B-B (1971) routine to determine interest-rate phases and find the same
turning points as the two-consecutive-quarter rule of thumb.

The interest-rate phases are shown in Figure 2, as well as interest rate, smoothed
interest rate, and NBER recessions. Interest-rate phases are also associated with
the NBER recessions and expansions—the peak generally is at, or right before, an
economic recession, whereas the trough is roughly in the middle of an expansion.
One exception is for the most recent expansion, in which the high interest phase
started a lot earlier, at the trough of the 2001 recession.

4.4. Estimates

Table 1 displays the maximum likelihood estimates of the Markov switching
dynamic factor model applied to the monetary aggregates. Three models were
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TABLE 1. Maximum likelihood estimates

Parameter M1 and MSI1 M2 and MSI2 M3 and MSI3

α0 −0.226 0.621 −0.767
(0.022) (0.115) (0.137)

α1 0.636 0.731 0.949
(0.226) (0.195) (0.141)

� 0.556 0.518 0.497
(0.070) (0.082) (0.071)

dM 0.431 0.976 0.962
(0.084) (0.020) (0.039)

dMSI 0.979 0.589 0.603
(0.010) (0.095) (0.075)

σ 2 0.511 0.254 0.157
(0.056) (0.038) (0.026)

σ 2
M 0.030 0.006 0.005

(0.003) (0.003) (0.002)
σ 2

MSI 1.099 0.047 0.093
(0.018) (0.007) (0.011)

λM 1.099 0.977 1.172
(0.018) (0.034) (0.054)

pα
00 0.987 0.970 0.857

(0.016) (0.031) (0.076)
pα

11 0.941 0.795 0.967
(0.059) (0.150) (0.022)

p
β

00 0.560 0.633 0.992
(0.209) (0.144) (0.009)

p
β

11 0.967 0.977 0.976
(0.019) (0.011) (0.021)

pδ
00 0.954 0.681 0.679

(0.019) (0.138) (0.136)
pδ

11 0.701 0.971 0.972
(0.137) (0.014) (0.014)

β0 −0.322 −0.549 −0.040
(0.063) (0.059) (0.010)

β1 0.024 0.009 0.262
(0.012) (0.002) (0.015)

δ0 −0.018 −0.703 −0.857
(0.010) (0.433) (0.086)

δ1 0.096 0.008 0.051
(0.020) (0.003) (0.020)

τ 0.002 0.002 0.004
(0.001) (0.001) (0.0007)

Log L(θ ) −88.404 −68.893 −77.295

Note: Asymptotic standard errors in parentheses.
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estimated, one for each pair of monetary indices: M1 and MSI1 (Model 1), M2 and
MSI2 (Model 2), and M3 and MSI3 (Model 3).

The Markov states for the factors are statistically significant across the specifi-
cations. For Models 1 and 3, state 1 has a positive mean growth rate, α1, whereas
state 0 has a negative mean growth rate, α0. For Model 2, the mean growth rates
in both states are positive, although the mean growth rate in state 0 is smaller than
that in state 1, and they are both statistically significant at the 1% level.

The autoregressive coefficient for the factor, φ, is positive and near 0.5 across
all specifications. The factor loadings measure how changes in the dynamic factor
affect changes in the observable variables. The loadings for the Divisia monetary
indices are set equal to one to provide a scale for the latent dynamic factors. This
normalization is a necessary condition for identification of the factors. The choice
of parameter scale does not affect any of the time series properties of the dynamic
factor or the correlation with its components. We find that the estimated factor
loading for the simple-sum monetary aggregate is positive and close to one across
all models, indicating that the Divisia index and the simple-sum aggregate have a
similar and proportional impact on the factor for each model.

All other parameters of the model are statistically significant as well. We discuss
their dynamics for each model below.

4.5. Simple M1 Aggregate and Divisia M1

The factor extracted from the growth rates of the simple-sum aggregate M1 and
from the growth rate of the Divisia M1 (MSI1) index is plotted in Figure 3
together with the probabilities of low monetary growth and NBER recessions
(DF1). During the 1960s and 1970s, the factor is mostly positive, with an average
quarterly growth of 1.2%. In the second half of the sample, there are times dur-
ing which money growth decreases substantially, reaching negative values. The
smoothed probabilities identify four phases of negative monetary growth during
this second half—1989:1–1989:4, 1994:4–1997:2, 2000:2–2000:4, and 2005:1–
20005:3—and a pulse change in 1980:2.

With correlation values of 0.988 for M1 and 0.998 for MSI1, respectively
(Table 2), the dynamic factor is highly correlated with its components. Note that
M1 and MSI1 are more correlated with the factor than with each other. Figure 4
plots these series and NBER recessions. Although the comparison of the series
suggests that they share very similar dynamics, there are important differences
during certain times and around turning points that cannot be evaluated by their
average behavior. The idiosyncratic terms reveal where the monetary indices differ.

The idiosyncratic term for MSI1 is highly autocorrelated (0.98) and smooth,
whereas the one for M1 is a lot less persistent (0.48) and more jagged (Table 1
and Figure 5). Both idiosyncratic terms display a business cycle pattern from
1980 on. In particular, they rise before the beginnings of recessions and fall
during recessions but subsequently converge to their average in the beginnings
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FIGURE 3. Dynamic factor ( ) and probabilities of high monetary growth based on M1
and MSI1 (---), and NBER recessions (shaded areas).

of expansions. During the 1980s and 1990s expansions, the idiosyncratic terms
increase steadily until they reach a peak in the middle of these expansions.

Figure 6 plots the squared difference between the idiosyncratic terms for M1 and
MSI1, NBER recessions, and phases of high inflation and interest rates. From 1960
until 1976, the difference between them is almost zero. However, analysis of the
second part of the sample uncovers some interesting divergent patterns. The major
differences take place right around the beginnings or ends of recessions. Note that
the beginnings of recessions are also the ends of high-interest-rate and inflation
phases. The largest differences occur at the end of the 1981–1982 recession and in

TABLE 2. Correlation coefficients between monetary indices and dynamic
factors

Parameter M1 MSI1 M2 MSI2 M3 MSI3

DFM1 0.988 0.998 0.337 0.423 0.150 0.265
DFM2 0.354 0.339 0.947 0.963 0.767 0.883
DFM3 0.120 0.128 0.793 0.732 0.987 0.902
M1 1 0.984 0.354 0.429 0.139 0.260
MSI1 0.984 1 0.332 0.418 0.151 0.261
M2 0.354 0.332 1 0.894 0.802 0.806
MSI2 0.429 0.418 0.894 1 0.693 0.904
M3 0.139 0.151 0.802 0.693 1 0.858
MSI3 0.260 0.261 0.806 0.904 0.858 1
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FIGURE 4. Dynamic factor ( ), rate of growth of M1 (---) and MSI1 (– – –), and NBER
recessions (shaded areas).

FIGURE 5. Idiosyncratic terms for M1 (---) and MSI1 growth ( ), high-interest-rate phases
( ), high inflation phases ( ), and NBER recessions (shaded areas).
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FIGURE 6. Difference between idiosyncratic terms for M1 and MSI1 growth without ( )
and with dummy (---), high-interest-rate phases ( ), high inflation phases ( ), and
NBER recessions (shaded areas).

2005:3, followed by divergences before the 1980–1981 and 1981–1982 recessions
and at the trough of the 1990–1991 recession. In addition, persistent differences
occur during phases of high inflation and interest rates. It can be observed that
differences also occur when there are some major changes in the magnitude of
monetary growth. This is especially the case between 1994:4 and 1997:2, when the
rate of growth both of M1 and of the Divisia index, MSI1, decrease substantially
to negative values. This period corresponds to a shift of monetary growth from
historically positive to negative.

This analysis confirms previous results [see, e.g., Belongia (1996)], which find
large differences between M1 and Divisia MSI1 between 1984 and 1987 and
between 1995 and 1997, with the former being greater than the latter.

4.6. Simple M2 Aggregate and Divisia M2

The dynamic factor obtained from the growth rates of the simple-sum aggregate
M2 and from the Divisia M2 (MSI2) is highly correlated with these series, with
correlations of 0.95 and 0.96, respectively (Table 2). Figure 7 shows this factor
(DF2) and the probabilities of high monetary growth. The most noticeable feature
of the factor (and of its components) is its rise during 1970–1973 and during 1975–
1978. These periods are captured by the smoothed probabilities, as well as the
fast–monetary growth phases following the 1980–1981 and 1981–1982 recessions
and during the 2001 recession. Other periods during which money growth was well
above average included 1985–1986 and 1998, as depicted by the probabilities.

https://doi.org/10.1017/S1365100509090166 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509090166


MEASUREMENT ERROR IN MONETARY AGGREGATES 401

FIGURE 7. Dynamic factor ( ) and probabilities of high monetary growth based on M2
and MSI2 (---), and NBER recessions (shaded areas).

The dynamics of the factor DM1 differs substantially from that of the factor
DM2, especially after 1990 (Figures 8 and 9), and the overall correlation between
them is only 0.34. First, the DM1 factor does not increase as substantially as the
DM2 factor in the 1970s. Second, the DM2 factor moves in the direction opposite
to the DM1 factor during 1991–1994, with DM2 reaching its highest level of
growth during this period. A divergent movement also takes place in 1995–1996,
when DM1 grows and DM2 falls. This same pattern is found by comparing the
growth rate of M1 and MSI1 with M2 and MSI2.

The idiosyncratic terms for M2 and MSI2 are shown in Figure 10. There are
marked differences between them. Although they generally move in the same
direction in the first part of the sample, they differ substantially around turning
points and in the second period. For example, the idiosyncratic term for M2
increased during the 1970 and 1974–1975 recessions, even when the interest rate
was already in a low phase. The idiosyncratic term for the MSI2, on the other
hand, decreased during these periods. From 1982 there are several instances in
which these series display divergent movements.

Figure 11 shows the squared difference between these two series, along with
NBER recessions and phases of high inflation and interest rates. For the most
part the discrepancies between the idiosyncratic terms take place during transition
times, such as around business cycle turning points or the beginnings and ends of
interest-rate or inflation phases. The largest differences were from the middles to
the troughs of the 1980–1981 and 1981–1982 recessions, at the end of the high-
interest-rate phase in 1989 (and the beginning of an economic slowdown), and
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FIGURE 8. Dynamic factor ( ), rate of growth of M2 (---) and MSI2 ( ), and NBER
recessions (shaded areas).

FIGURE 9. Dynamic factors from the pairs M1–MSI1 growth ( ), M2–MSI2 growth (---),
M3–MSI3 growth ( ), and NBER recessions (shaded areas).
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FIGURE 10. Idiosyncratic terms for M2 (---) and MSI2 growth ( ), high-interest-rate
phases ( ), high inflation phases ( ), and NBER recessions (shaded areas).

FIGURE 11. Difference between idiosyncratic terms for M2 and MSI2 growth ( ), high-
interest-rate phases ( ), high inflation phases ( ), and NBER recessions (shaded
areas).
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FIGURE 12. Dynamic factor ( ) and probabilities of low monetary growth based on M3
and MSI3 (---), and NBER recessions (shaded areas).

between 1991 and 1996. In this last period the differences not only were large, but
also were the longest in the sample, corresponding to cyclical movements of DM1
and DM2 in opposite directions as explained above. There were other important
divergences, such as the ones during the 1970 and 1990 recessions, and during the
transitions from tight to loose monetary policies.

4.7. Simple M3 Aggregate and Divisia M3

Figure 12 shows the dynamic factor (DF3) resulting from the growth rates of
the simple-sum aggregate M3 and from Divisia M3 (MSI3), whereas Figure 9
compares the three dynamic factors, DF1, DF2, and DF3. The factor DF1 moves
in the direction opposite to the factors DF2 and DF3 during some periods, whereas
in general DF2 and DF3 display very similar dynamics (Figure 9). However, DF3
growth (as well as M3 and MSI3 growth) was not as high in the 1970s as DF2
growth. Instead, the Markov probabilities for DF3 capture a large drop in the
underlying M3 and MSI3 growth between 1989:2 and 1995:1 as being the most
salient variation in the series. Other important low growth phases captured by the
probabilities are in 1966, between 1969and 1970, in 2002, and in 2004–2005.

The dynamic factor DF3 is highly correlated with M3 and MSI3 growth, but
more so with the former (0.98) than with the latter (0.90) (Table 2). However, the
correlation between the dynamic factor and the growth of MSI3 is a lot higher if
the period between 1978 and 1982 is excluded. During this time, MSI3 growth
oscillates substantially (Figure 13).

https://doi.org/10.1017/S1365100509090166 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509090166


MEASUREMENT ERROR IN MONETARY AGGREGATES 405

FIGURE 13. Dynamic factor ( ), rate of growth of M3 (---) and MSI3 ( ), and NBER
recessions (shaded areas).

The idiosyncratic terms for M3 and MSI3 growth are shown in Figure 14. The
term corresponding to M3 is smoother and has smaller fluctuations. Although they
have generally similar dynamics, the two idiosyncratic terms differ substantially
during some important periods. Figure 15 plots their squared difference. The
major divergences between M3 and MSI3 growth coincide in time and amplitude
with the differences between M2 and MSI2 growth. The largest discrepancies took
place during the high inflation phase between 1978 and 1981 and during the 1981–
1982 recession. Times of high uncertainty are associated with larger asynchronous
movements between M3 and MSI3 growth, such as during recessions or at interest-
rate turning points. This is the case, for example, between 1989 and 1990, when
the high-interest-rate phase ended, but inflation remained in a high phase until
right before the beginning of the 1990 recession. This is also the case in 1965–
1967, during the 1969–1970 and 1990–1991 recessions, and during the 1972–1974
period, which corresponds to a high inflation phase and recession.

5. SUMMARY OF FINDINGS

These differences are economically very important. If one of the aggregates cor-
responds to a better measure of economic monetary services in the economy than
the other, their differences add to the uncertainty about the economy and about
the effectiveness and appropriateness of monetary policy—exactly at times during
which information about the state of monetary growth is at a premium, such as
around business cycle turning points and changes in inflation phases.
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FIGURE 14. Idiosyncratic terms for M3 (---) and MSI3 growth ( ), high-interest-rate
phases ( ), high inflation phases ( ), and NBER recessions (shaded areas).

FIGURE 15. Difference between idiosyncratic terms for M3 and MSI3 growth without ( )
and with dummy (---), high-interest-rate phases ( ), high inflation phases ( ), and
NBER recessions (shaded areas).
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In general, the idiosyncratic terms for both the simple-sum aggregates and the
Divisia indices display a business cycle pattern, especially after 1980. Those terms
generally rise around the end of high-interest-rate phases (i.e., a couple of quar-
ters before the beginning of recessions), fall during recessions, and subsequently
converge to their average at the beginning of expansions.

We find that the major differences between the simple-sum aggregates and
Divisia indices occur around the beginnings and ends of economic recessions,
and during some high-interest-rate phases. This is particularly the case for the
period between 1977 and 1983, which includes a slowdown, two recessions,
two recoveries, and the change in the Federal Reserve’s operating procedure.
Notice that this period also corresponds to a high-interest-rate phase, which took
place from 1977:2 to 1981:2. Another period during which the indices diverge
substantially is around the 1990 recession.

In the case of M1 and MSI1, the main divergence between the two indices
is in 1983:1. The idiosyncratic term for M1 counterintuitively increased to its
highest level during a quarter that marked the beginning of a high-interest-rate
phase. The MSI1, on the other hand, had only a minor rise. At that time, Milton
Friedman, on the basis of the movements of the official simple-sum monetary
aggregates, warned in newspapers and magazines that this “monetary explosion”
was bound to be followed by a contractionary policy by the Federal Reserve, and
thereby would lead to another period of stagflation. William Barnett, on the other
hand, correctly predicted that there was no reason for concern, because monetary
growth was at its average rate, based on the Divisia index data. In fact, Barnett
correctly determined in real time that the large increase in simple-sum money was
a “statistical blip” produced by the defects in simple-sum monetary aggregation.
In fact, the two conflicting predictions appeared most dramatically on exactly the
same day: September 26, 1983, Newsweek (Friedman) and September 26, 1983,
Forbes (Barnett), both full-page articles.15

The differences and similarities between the pairs M2–MSI2 (Model 2) and
M3–MSI3 (Model 3) are closer than the ones for M1 and MSI1 (Model 1). First,
the Divisia indices MSI2 and MSI3 decrease a lot more before recessions (at
the peak of inflation phases) and increase substantially more during recessions
and recoveries (low-interest-rate phases) than the simple-sum aggregates M2 and
M3, respectively. That is, the dynamics of these Divisia indices correspond more
closely to the expected movements related to interest rates and inflation.

A noticeable difference between the Divisia MSI2 and the simple-sum aggregate
M2 is their movement in opposite directions between 1991 and 1995. During the
recovery after the 1990 recession, M2 increased more than MSI2, whereas interest
rates were falling. However, M2 continued to increase even during the high-
interest-rate phase that started in 1993:3 and ended in 1995:1. On the other hand,
MSI2 showed a movement more consistent with changes in interest rates, which
decreased during this period.

Another difference that is observable in both pairs M2–MSI2 and M2–MSI3 is
their behavior at the end of the 1981 recession, when there was a large increase
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in the idiosyncratic terms from the Divisia indices and only a minor rise for the
simple-sum aggregates. Accordingly, the Divisia indices display a business cycle
pattern more consistent with monetary policy.

With respect to MSI3 and the simple-sum aggregate M3, the idiosyncratic terms
for these series move in opposite directions on several occasions. In particular,
this term for the Divisia index increases during the expansion in the early 1970s,
whereas the idiosyncratic term for M3 counterintuitively decreases. In addition,
the idiosyncratic term for M3 shows a steady increase, from the end of the 1981–
1982 recession until 1989, thereby showing no link with the high-interest-rate
phase that took place during 1986:4–1989:1. On the other hand, the term for MSI3
increased during the low inflation phase following the 1981–1982 recession, but
fell during this high-interest-rate phase. More recently, the idiosyncratic term from
the M3 has been counterintuitively high during the latest high-interest-rate phase
that started in 2004, whereas the Divisia MSI3 shows the expected decrease.

6. CONCLUSIONS

Microeconomic aggregation theory offers an appealing alternative to the dis-
reputable simple-sum method of aggregation. The quantity index under the
aggregation-theoretic approach passes through and measures income effects while
internalizing and removing substitution effects, which are at constant utility and
hence cannot reflect a change in perceived services. The simple-sum index, on
the other hand, confounds income and substitution effects, unless components are
one-to-one perfect substitutes, that is, indistinguishable goods. In this paper we
compare the dynamic empirical differences between the theory-based definition
of money, tracked nonparametrically by the Divisia index, and the simple-sum
monetary aggregates, traditionally used by central banks and currently in low
repute within the economics profession.

Our focus is not only on differences in their average behavior, but also on their
behavior during important periods of time, such as around business cycle turning
points and across high and low inflation and interest-rate phases. We propose
a factor model with regime switching to evaluate the common dynamics of the
indices, as well as their idiosyncratic movements.

The state-space time-series approach provides a highly promising direction for
research into aggregation theory, index number theory, and economic policy. In
this paper we have introduced the connection between the state-space time-series
approach to assessing measurement error and the aggregation-theoretic concept,
with emphasis on the relevance to monetary aggregation and monetary policy.

We find some interesting new results. The idiosyncratic terms for both indices
display a business cycle pattern, especially since 1980. The period between 1977
and 1983 is the one during which the most notable differences take place. This
period not only includes a slowdown, two recessions, two recoveries, and the
change in the Federal Reserve’s operating procedure, but also corresponds to a
high-interest-rate phase, which occurred from 1977:2 to 1981:2.
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In general, we find that the major differences between the simple-sum aggregates
and Divisia indices occur around the beginnings and ends of economic recessions
and during some high-interest-rate phases. These are times at which information
on monetary aggregates is at a premium for policymakers.

We would once again wish to draw attention to one especially clear figure:
Figure 14. Properly weighted broad aggregates are the best measures of monetary
service flows, as observed by Lucas (2000, p. 270), who wrote, “I share the widely
held opinion that M1 is too narrow an aggregate for this period [the 1990s], and
I think that the Divisia approach offers much the best prospects for resolving this
difficulty.” As a result, those measures that are specific to (i.e., idiosyncratic to)
simple-sum M3 and Divisia M3 are of particular interest. Compare Divisia M3’s
idiosyncratic downward spikes in Figure 14 with simple-sum M3’s idiosyncratic
behavior and then compare the relative predictive ability of the two extracted
idiosyncratic terms with respect to NBER recessions. Figure 14 speaks for itself.

NOTES

1. Other overviews of published theoretical and empirical results in this literature are available in
Barnett et al. (1992) and Serletis (2006).

2. In aggregation theory, measurement error refers to the tracking error in a nonparametric index
number’s approximation to the aggregator function of microeconomic theory, where the aggregator
function is the subutility or subproduction function that is weakly separable within tastes or technology
of an economic agent’s complete utility or production function. Consequently, aggregator functions are
increasing and concave and need to be estimated econometrically. On the other hand, state space models
use the term measurement error to mean unmodeled noise, which is not captured by the state variable.
In this paper, the idiosyncratic term—or measurement error—refers to this latter definition, which can
be expected to be correlated with the former, when the behavior of the data process is consistent with
microeconomic theory. But it should be acknowledged that neither concept of measurement error can
be directly derived from the other. In fact, the state space model concept of measurement error is more
directly connected with the statistical (“atomistic”) approach to index number theory than to the more
recent “economic approach,” which is at its best when data are not aggregated over economic agents.

3. Subsequently Barnett (1987) derived the formula for the user cost of supplied monetary services.
A regulatory wedge can exist between the demand- and supply-side user costs if nonpayment of interest
on required reserves imposes an implicit tax on banks.

4. Our research in this paper is not dependent on this simple decision problem, as shown by Barnett
(1987), who proved that the same aggregator function and index number theory apply regardless of
whether the initial model has money in the utility function, money in a production function, or neither,
so long as there is intertemporal separability of structure and certain assumptions are satisfied for
aggregation over economic agents. The aggregator function is the derived function, which has been
shown in general equilibrium always to exist, if money has positive value at equilibrium, regardless
of the motive for holding money. See, for example, Arrow and Hahn (1971), Stanley Fischer (1974),
Phlips and Spinnewyn (1982), and Poterba and Rotemberg (1987). Analogously, Feenstra (1986,
p. 271) demonstrated “a functional equivalence between using real balances as an argument of the
utility function and entering money into liquidity costs which appear in the budget constraints.” The
converse mapping from the money in the aggregator (utility or production) function approach to the
explicit motive is not unique, but in this paper we are not seeking to identify the motives for holding
money.

5. The multilateral open economy extension is available in Barnett (2007).
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6. To be an admissible quantity aggregator function, the function u must be weakly separable
within the consumer’s complete utility function over all goods and services. Producing a reliable test
for weak separability is the subject of much intensive research, most recently by Barnett and Peretti
(2009).

7. In equation (4), it is understood that the result is in continuous time, so the time subscripts are a
shorthand for functions of time. We use t to be the time period in discrete time, but the instant of time
in continuous time.

8. Diewert (1976) defines a “superlative index number” to be one that is exactly correct for a
quadratic approximation to the aggregator function. The discretization (7) of the Divisia index is in the
superlative class, because it is exact for the quadratic translog specification of an aggregator function.

9. The Federal Reserve Bank of St. Louis Divisia database, which we use in this paper, is not
risk-corrected. In addition, it is not adjusted for differences in marginal taxation rates on different asset
returns or for sweeps, and its clustering of components into groups was not based on tests of weak
separability, but rather on the Federal Reserve’s official clustering. The St. Louis Federal Reserve
Bank is in the process of revising its MSI database, perhaps to incorporate some of those adjustments.
Regarding sweep adjustment, see Jones et al. (2005). In the present stage of this research, we felt it
was best to use data publicly available from the Federal Reserve, so we did not modify the St. Louis
Federal Reserve’s MSI database in any way.

10. The factor loading for the Divisia monetary index series is set equal to one to provide a scale for
the latent dynamic factor. This normalization is a necessary condition for identification of the factor,
and the choice of parameter scale does not affect any of the time series properties of the dynamic factor
or the correlation with its components.

11. The magnitude of the n eigenvalues for each factor reflects how much of the correlation among
the observable variables is explained by k ≤ n potential factors. For each of the three composite
indicators, there is only one eigenvalue greater than one, whereas the others are close to zero.

12. The model was estimated allowing either AR(1) or AR(0) processes for the idiosyncratic terms
vt . The likelihood ratio test favors the AR(1) specification at the 1% level.

13. The BDS test requires prior settings of two calibration parameters: embedding dimensions, m,
and norm bound, ε. We set m = 2, 3, 4, 5, 6 months and ε = standard deviation of the univariate
disturbance time series, assumed to have constant mean function and constant conditional variance.

14. The main steps of the B-B routine are as follows: (1) the data are smoothed after outliers
are discarded; (2) preliminary turning points are selected and compared with the ones in the original
series; (3) duration of the phases is checked, and if duration is below six months, the turning points are
disregarded; (4) an amplitude criterion is applied, based on a moving standard deviation of the series.
In the end, the program selects turning points that would be easily picked simply by visual inspection.

15. This is hardly the only such example of monetary policy puzzles associated with monetary
aggregation problems. For more examples, see Barnett (1997) and Barnett and Chauvet (2009). It is
perhaps paradoxical that Friedman was mislead by confidence in Federal Reserve monetary aggregates
data, because he was highly critical of the Federal Reserve, and because Friedman and Schwartz (1970,
pp. 151–152) were among the first to make clear the nature of the Federal Reserve’s data aggregation
error, when they wrote: “The [simple summation] procedure is a very special case of the more general
approach. In brief, the general approach consists of regarding each asset as a joint product having
different degrees of ‘moneyness,’ and defining the quantity of money as the weighted sum of the
aggregated value of all assets. . . . We conjecture that this approach deserves and will get much more
attention than it has so far received.”
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