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SUMMARY

We have made a systematic study of the gait of a straight
leg planar passive walking model through simulations and
experiments. Three normalised parameters, which represent
the foot radius, the position of the mass centre and the
moment of inertia, are used to characterise the walking
model.

In the simulation, we have obtained the fixed points and
the basins of attraction of the walking models with different
parameter combinations by the aid of the cell mapping
method. With the results of fixed points, we investigated
the effects of parameter variations on the gait descriptors,
including step length, period, average speed and energy
inefficiency. A model that has a large basin of attraction
has been obtained, and it can start walking far from its fixed
point. However, the size of the basin of attraction is not a
good measurement of robustness. Thus, we proposed floors
with random slope angles or stairs with random heights to test
robustness. Five hundred times of simulations with 100 non-
dimensional time units were implemented for each parameter
combination. The times that the walker failed to arrive at the
end were recorded. The simulation results showed that the
model with a larger foot radius and higher position of mass
centre has a lower possibility of falling on uneven floors. A
large moment of inertia is helpful for walking on a random
slope angle floor, while low values of moment of inertia are
good for navigating random stairs.

Prototype experiments have validated the simulation
results, which showed that models with larger feet have
a longer step length and high speed. However, period
differences were difficult to obtain in the experiments
since the differences were very small. We have tested the
sensitivity with the initial conditions of the models with
different foot radii on a flat floor, and have also tested the
robustness of the models on a floor with random slope
angles. The times that the model reached the end of the floor
were recorded. The experimental results showed that a large
foot radius is good for improving the basin of attraction and
robustness on uneven floors. Finally, the exceptions of the
experiment are explained.

KEYWORDS: Passive dynamic walking; Cell mapping
method; Random perturbation; Experiment; Basins of
attraction; Robustness.

* Corresponding author. E-mail: tswang@tsinghua.edu.cn

1. Introduction

Biped robots are the most attractive type of robots since they
walk like humans. Many biped robots have been made, such
as the prototypes developed by Honda and Sony. However,
these biped robots have mechanical gaits and require great
amounts of energy. Passive walking might be a solution.
Pioneered by McGeer,1 many researchers have shown that
completely unactuated and uncontrolled machines could
walk stably downhill on a gentle slope, powered only
by gravity, both in numerical simulations and physical
experiments.2–6 Moreover, some actuated prototypes have
been constructed based on passive dynamics.7–9 In contrast
with their traditional cousins, biped robots based on passive
walking have good energy efficiency and can perform more
natural gaits. It seems that the mechanical parameters of these
walkers work better than the complicated control system
of the conventional robots in generating natural looking
gaits.

Many types of passive dynamic walkers have been studied
by researchers, from simple to complex. Garcia et al.
concocted the simplest 2D model, which has only one free
parameter, the slope angle. They studied the dynamics of
this model analytically and discussed the relationship of
the gait and the slope angle.10 Goswami et al.4 studied a
compass-like model that has point masses at the hip and on
each leg. They showed that each of the parameter, namely,
the slope angle, the mass ratio and the length ratio of
the biped model, affects the gait in the same qualitative
manner. Garcia3 also presented some mass distribution
conditions necessary for efficient walking. Wisse et al.11–13

implemented physical model experiments and validated their
method for preventing falling forward, adding an upper
body and compensating for the yaw and roll motion of a
3D model, and they also suggested conducting a decisive
study on the effect of round feet on the basin of attraction
of passive walkers.8,13,14 Asano and Luo15 discussed the
effect of semi-circular feet on the gait, but their model
was actuated, and some characteristics might be changed by
control laws and actuation. Hass et al.16 optimised the mass
distributions to obtain the maximum speed of a straight-
leg point-foot model. Limited experimental results of the
effects of the parameters on the gait have been reported.
Wu and Sabet17 studied the effects of changes in the ramp
angle, hip mass, friction of the ramp and foot length on
the walking patterns of a 2D straight-leg flat-footed model,
experimentally.
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For a passive walker, most of the arbitrary initial state
variables might lead to a fall. If periodical gait exists, it can be
treated as a Poincaré map, and Newton–Raphson iteration is
used by most researchers for searching fixed points. However,
the initial values of the iteration still must be guessed, and
an unlucky guess often leads to divergence.1,3,8 If a model
has a stable periodical gait, it can begin at any point of the
limit cycle. Furthermore, successful walking can start from
the neighbourhood of the limit cycle and the set of state
variables from which the walker can walk successfully is
called the basin of attraction of the cyclic motion. Schwab
and Wisse have obtained the basin of attraction of the
cyclic motion of the simplest model with the aid of the cell
mapping method. The basin of attraction of the simplest
model is very small according to an experiment in which
the prototype could only endure small disturbance.14 Many
researchers have reported that passive walkers have very
low tolerance for large disturbances. McGeer’s1 model can
absorb a perturbation of 150% of one initial angular velocity,
but at the same time, the angular velocity of the other leg can
only tolerate an error of a few percent. Goswami et al.4

gave an example in which the angular velocity can be
more than 100 deg/s, whereas the change of angle must be
limited to 2◦. Their reports focused on the disturbance of
the initial state variables of walking motions; however, the
robustness of passive models during the whole walking is
more significant.

McGeer1 has suggested that the resistance of jostling
can be used for measuring robustness. Byl and Tedrake18

have analysed the stability of passive compass gait walkers
on uneven (rough) downhill terrain. They introduced the
concept of the mean first passage time (MFPT) to quantify
walking stability. Su and Dingwell19 have examined how
orbital stability varies as the surface bumpiness increases, and
their results showed that orbital stability is not related to the
perturbation magnitude applied to the system. Currently most
commonly used robustness measurement is the maximal floor
height variation a walker can handle without falling. Most of
the actuated biped walkers based on passive walking can
deal with single step-down disturbance smaller than 5% of
leg length.20

After a systematic study of Goswami et al.,4 there is
still a need for an elaborate investigation on the effect of
parameter variations on the gait of a straight-leg model
with round feet. Moreover, there is not much experimental
work to validate the simulations. In the following sections,
we first introduce our passive model briefly, and then
describe the use of the cell mapping method to obtain the
fixed points and the basins of attraction of models with
different parameter combinations. In addition, the gaits are
also described by some descriptors such as the step length,
period, average speed and energy inefficiency. The effects
of the parameter variations on the gait are summarised
and a model that has a large basin of attraction has been
obtained. We used floors with random slope angles and
random stairs to test the robustness of the model and
describe the robustness by the fall ratio. Experiments on
models with different feet radii have validated some of our
simulation results, and the exceptions in the experiment are
discussed.

Fig. 1. Sketch of the model.

2. Modelling

Consider a planar model that consists of a pair of rigid legs
with round feet, interconnected through a frictionless hinge,
as shown in Fig. 1. We assume that there is no slip between
the foot of the stance leg and the rigid floor. The impact
between the foot of the swing leg and the floor is modelled
as fully inelastic and instantaneous, which means that no
slip and no bounce occur, and an exchange occurs between
the stance and the swing leg at the impact time. Due to the
oversimplification of the kneeless model, foot scuffing occurs
at mid stance and will be neglected in the simulation.

For simplicity, the model is set to be symmetrical, and
each of the legs has a mass of m, a length of l and a
moment of inertia of J, including the corresponding foot.
The distance between the centre of mass and the hip is c.
Each foot is a part of a circle and has a radius of r. In
order to reduce the number of parameters and generalize
the dynamic equations, we non-dimensionalise the model by
setting kr = r/ l, kc = c/l and kJ = J/ml2, and rescale the
time by

√
l/g. The slope angle γ is set as 0.02 rad.

We are interested in the effects of parameter variation
on the gait; thus, we need to determine the parameter
combinations. The interval of the non-dimensional foot
radius kr was set as [0.0, 0.5], and kc varies from 0.1 to
0.9; both of them have the spacing of 0.1. When the centre of
mass is determined, the boundary of the moment of inertia is
determined but can vary independently in this interval. For
example, when kc is 0.4, kJ can be any value in the interval
(0, 0.24). The values of kJ that we used in our simulation are
shown in Table I.

This model has two degrees of freedom and the variables
are set to be θ1 and θ2. The dynamic equations of the motion
between heelstrike can be derived by the Lagrange equation

Table I. Values of the moment of inertia and the centre of mass.

kc kJ

0.1 (0.9) 0.01 0.02 0.04 0.06 0.09 – – – – –
0.2 (0.8) 0.01 0.02 0.04 0.06 0.09 0.12 0.16 –
0.3 (0.7) 0.01 0.02 0.04 0.06 0.09 0.12 0.16 0.21 – –
0.4 (0.6) 0.01 0.02 0.04 0.06 0.09 0.12 0.16 0.21 0.24 –
0.5 0.01 0.02 0.04 0.06 0.09 0.12 0.16 0.21 0.24 0.25
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of the second kind in the form as follows:[
M11 M12

M21 M22

][
θ̈1

θ̈2

]
=

[
f1(θ, θ̇ )

f2(θ, θ̇ )

]
(1)

where

M11 = kJ + (2kr − 1)2 + (kc − 1)2 + 2kckr

− 2kr cos θ1(2kr + kc − 2),

M12 = M21 = kc[(kr − 1) cos(θ2 − θ1) − kr cos θ2],

M22 = k2
c + kJ ,

f1 = kr θ̇
2
1 sin θ1(2 − kc − 2kr ) + kcθ̇

2
2 sin(θ2 − θ1)(kr − 1)

− kckr θ̇
2
2 sin θ2 + g sin(θ1 − γi)(2 − kc − 2kr )

− 2gkr sin γi and

f2 = −kc(kr − 1)θ̇2
1 sin(θ2 − θ1) − gkc sin(θ2 − γi).

The heelstrike is regarded as a fully inelastic and
instantaneous impact, which means the roles of the stance
and the swing leg are exchanged at the heelstrike. Since the
general coordinates are consistent with the leg numbers, the
variables θ1 and θ2 will not change at the heelstrike but the
form of Eq. (1) needs to be modified. Because the model is
symmetric, the equations are modified by exchanging the θ1

and θ2 of Eq. (1). As mentioned earlier, the angles will not
change at heelstrike. Nevertheless, the angular velocities just
before collision, θ̇−

1 and θ̇−
2 , will change to θ̇+

1 and θ̇+
2 . These

can be obtained from the conservation of angular momentum
of the model about the contact point C and of the new swing
leg (old stance leg) about the hinge H, as follows:

L−
C (θ−

1 , θ−
2 , θ̇−

1 , θ̇−
2 ) = L+

C (θ+
1 , θ+

2 , θ̇+
1 , θ̇+

2 ),

L−
H (θ−

1 , θ−
2 , θ̇−

1 , θ̇−
2 ) = L+

H (θ+
1 , θ+

2 , θ̇+
1 , θ̇+

2 ).
(2)

Since θ−
1 = θ+

1 and θ−
2 = θ+

2 , from Eqs. (2) we can get

{
θ̇+

1 = g1(θ−
1 , θ−

2 , θ̇−
1 , θ̇−

2 ),

θ̇+
2 = g2(θ−

1 , θ−
2 , θ̇−

1 , θ̇−
2 ).

(3)

Thus, the mathematical model of the passive walker
has been built, which includes ordinary equations (1) and
algebraic equations (3). If a periodic gait exists, a Poincaré
map F can be formed by the equations of motion and the
transition of state variables. If the Poincaré section is defined
at the instant just after each heelstrike, following Garcia,3 the
number of state variables of θ0 = [θ10, θ20, θ̇10, θ̇20]T can be
reduced from four to three, because we have θ10 =−θ20 at
that time. Therefore, if the gait is periodical, the group of state
variables [θ10, θ̇10, θ̇20]T is a fixed point of the Poincaré map.
Newton–Raphson iteration has been used to find the fixed
point, and the stability of the fixed point can be quantified by
the eigenvalues of the Jacobian matrix.1,3,8 Interestingly, a
model with a given set of parameters on a slope with a given
angle may not have more than one stable gait.4 However,
there is a problem to be solved: the initial state variables of

the iteration have to be guessed which often do not converge
if the guessed values are not close enough to the fixed point.
Thus, we will determine the fixed point of the parameter
combinations by the use of the cell mapping method.

3. Cell Mapping Method

The cell mapping method is a global analysis tool, and can
be used for determining the basin of attraction of a non-
linear system.21 Schwab and Wisse8,14 have applied the cell
mapping method to the simplest passive model and obtained
a small, pointy boomerang-like basin of attraction. However,
investigating the basins of attraction of the general model in
Fig. 1 might be more significant for building a prototype. If
a model has a large basin of attraction, it will not be sensitive
to the initial conditions, and that means it is easy for the
prototype to walk. The state variable space is infinite, and we
cannot test each point in this space as an initial condition.
Thus, we have to discretise this space, using cells to describe
the group of points that have the same characteristics.

Before discretising the unlimited state variable space into
a finite number of cells, we should ensure the boundary of
the space, since the space has physical meaning. It is easy to
make certain that leg angle θ10 belongs to [0, π/2), but the
intervals of angular velocities are not easy to estimate. After
some trial computations, the feasible state space can be set
as follows: θ10 ∈ [0, 0.8], θ̇10 ∈ [−1, 0.2] and θ̇20 ∈ [−1, 1].
The feasible initial condition space will be subdivided into a
large number (N) of small cells called regular cells, and the
condition outside the feasible state space will be called the
sink cell.

The sink cell is numbered as 1 and the regular cells are
numbered from 2 to N + 1. All regular cells are classified
into three kinds of cells: virgin cells, cells under processing
and processed cells. All the regular cells are virgin cells
before a sequence of mapping. Processed cells that have the
same periodical characteristics will be assigned the same
positive integer group numbers. All virgin cells have 0 as
their group number before a sequence of mapping. Cells
under processing have a group number of −1 temporarily.
Cells will have positive integer group numbers after they
have been processed. The group number 1 is assigned to the
sink cell.21

Now, let us begin the cell mapping from any one of the
virgin cells, supposing the number is k. Using the centre of
cell k as the initial conditions of the mapping F, the following
sequence should be implemented:

k → F (k) → F (F (k)) → F (F (F (k))) → F 4(k) · · · . (4)

After each step, a cell will be mapped to another cell, and
the group number of the resultant cell should be checked. If
the group number of the resultant cell is 0, it is changed to
−1 and the mapping is continued. Otherwise, the sequence
is terminated. If a group number of a positive integer is
encountered, the group number of all the cells in this
sequence should be assigned to this positive integer. If a group
number of −1 is encountered, a new periodical motion is
found and all the cells in this sequence should be assigned to
a new group number of the positive integer. This sequence is
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Table II. Some results of cell mapping.

k F (k) θ10 θ̇10 θ̇20

1041 8977 0.02 −0.24 0.5
3196 6378 0.08 −0.14 0.38
6378 6378 0.18 −0.28 −0.26
7055 7055 0.2 −0.28 −0.22
7705 7055 0.22 −0.30 −0.22
8977 7705 0.26 −0.36 −0.30

continued until all the cells are processed. All the periodical
motion of the system can be found by the aid of the cell
mapping method, not only period-one, but also period-k.
The accuracy of the cell mapping method depends on the
discretisation of the state space.21 The cells that can be
mapped to themselves are called periodical cells. Setting
the state variables of periodical cells as the initial value of
iteration, a fixed point can be obtained. An example is given
in Table II. Setting the values of periodical cells numbered
6378 and 7055 as the iteration initial values, two fixed points
can be obtained. One is θfp1 = [0.169, −0.262, −0.248],
an unstable fixed point that has a maximum eigenvalue of
2.0977, and the other is θfp2 = [0.202, −0.284, −0.226], a
stable fixed point that has a maximum eigenvalue of 0.65439.

By the use of the cell mapping method, we have computed
the periodical cells of the parameter combinations of Table I.
Based on these periodical cells, fixed points were obtained,
and the leg angles of the results of kr = 0.2 are listed in
Table III. The results of other kr values are omitted.

The basin of attraction is composed of all the cells that
can be mapped to the periodical cells. If the size of the
cell is small enough, the basin of attraction is sufficiently
accurate. Beginning from any point of the basin of attraction,
the motion can converge to the periodical cycles. Unlike the
simplest model, which has two state variables, our model has
three state variables when the Poincaré section is defined at
the instant just after each heelstrike. The discretisation of the
3D state space will result in a large number of cells and the
computation time will be too long. Therefore, FORTRAN
language was chosen instead of Matlab to increase the
computation speed. In addition, the feasible initial condition
space was tuned carefully to economise CPU time. The
accuracy of the cell mapping method is relevant to the size of
cells, but a small cell size conflicts with the computation
time. Thus, many trial computations were executed, and
a moderate cell size has been chosen. The comparison of
different cell numbers is shown in Fig. 2. The upper and the
lower panels were obtained from 251,992 cells and 1,234,322

cells, respectively. We can see that there is no significant
difference between the high cell numbers and relatively low
cell numbers. Therefore, we chose a relatively low number of
cells to speed up our computation, and the speed was about
150,000 cells per hour on a P4 2.40 GHz computer.

4. Effect of Parameter Variation on the Gait: Simulation

4.1. On some gait descriptors
From Fig. 3, we can see that the step length Lstep =
2C2C

′
1 = 2(C2C1 + C1C

′
1). Since we have |θ1| = |θ2| on the

Poincaré section, the step length can be expressed as
2(2(l − r)|sin(θ1)| + 2r|θ1|). In the interval of the leg angle
we discussed, the step length is the monotonic increasing
function of the leg angle θ1, which is the first element of
the fixed point. We use the leg angle to represent the step
length, and the trends of leg angles along the foot radius are
shown in Fig. 4. The vertical axis is the leg angle, and the
horizontal axis is the non-dimensional moment of inertia kJ .
For a given set of values of kc and kr , the leg angle of the
fixed point grows with the increasing kJ . This means the step
length of the model increases with the increasing moment
of inertia. However, period-doubling will occur when kJ

grows large enough. Moreover, if kc and kJ are fixed, the step
length grows with the increasing foot radius kr . Furthermore,
a larger kc may result in a small step length when kJ and kr are
fixed.

Since our dynamic equation is dimensionless, the period is
also non-dimensional. For small values of kJ , the periods of
the gaits decrease with the increasing kc when kc is small, but
later grow with the increasing kc, while the other parameters
are kept constant, as shown in Fig. 5. However, along with
the increase of kJ , the inflexion of the decreasing–increasing
trend of the period is postponed gradually, and eventually
reaches a steady decreasing trend. This increase of kJ will
result in a significant increase of the period, but the effect of
kr is not very clear. Thus, we show the period in the sequence
of kr , as shown in Fig. 6. In most cases, the period grows with
the increasing kr , while kc and kJ remain constant. However,
in some cases, the increase of kr does not have a significant
effect on the increase of the period, and some exceptions also
exist, especially when kJ is small. The trend of the period
along kr is not in accordance with the results of Asano and
Luo.15 From personal communications, we have agreed that
the difference is caused by the difference of models. Our
model is a pure passive model, and Asano’s model is an
actuated one.

Table III. Leg angles of fixed points of kr = 0.2.

kc\kJ 0.01 0.02 0.04 0.06 0.09 0.12 0.16

0.1 0.207 0.239 0.274 0.294 Pda at kJ = 0.082 – –
0.2 0.190 0.209 0.238 0.25 0.272 0.285 Pd at kJ = 0.13
0.3 0.182 0.194 0.213 0.228 0.245 0.257 Pd at kJ = 0.15
0.4 0.169 0.178 0.194 0.206 0.221 0.233 Pd at kJ = 0.14
0.5 0.151 0.159 0.173 0.184 0.198 Pd at kJ = 0.11 –
0.6 0.128 0.136 0.149 0.160 Pd at kJ = 0.08 – –
0.7 0.101 0.110 Pd at kJ = 0.034 – – – –

aPd indicates the occurrence of period-doubling.
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Fig. 2. Basin of attraction of different cell numbers.

The hip speed of the model along the slope varies every
time during walking, thus we let the models walk at the same
time, and recorded the displacement they moved along the
slope, and used the average speed to represent the velocities.
As shown in Fig. 7, it is clear that the speed increases with the
increasing kr . When kc and kJ are small, it seems to result in
a high average speed, but this is not very clear. We show the
average speed in the sequence of kc, as shown in Fig. 8. We
can see that the average speed decreases with the increasing
kJ , and increase with the growing kc, but exceptions occurred
when the kc was small.

For a passive walking model, energy loss only occurs at
the heelstrike. The common dimensionless measurement of
inefficiency21 for walking is

η = Energy dissipated per step

(Walker weight) × (Step length)
.

Fig. 3. Half step length of the model.

Table IV. Effect of parameters on the gait.

Step length Period Speed Inefficiency

When kc ↗ ↘ ↗∗ ↘a –

When kJ ↗ ↗ ↗ ↘ –

When kr ↗ ↗ ↗∗ ↗ –

aIndicates there are some exceptions.

Since the model is powered only by gravity, the energy
dissipated per step is (weight) × (height drop over one step).
Thus the inefficiency measure can be reduced to η = sin γ if
the step length is along the slope.3 Therefore, the inefficiency
measure η is independent of the parameters of kc, kJ and kr .
Our simulation results also indicate this.

We summarise the effect of parameters on the step length,
period, speed and inefficiency in Table IV.

4.2. On basins of attraction
A model with a stable gait that has a large basin of attraction
means that this gait can start from points far from the fixed
point. In other words, this model is not sensitive to the initial
conditions. Thus, models that have large basins of attraction
might be significant not only in simulations but also in
experimental settings. However, as mentioned earlier, using
the cell mapping method to obtain the basin of attraction
is time-consuming work. Thus, we did not process all the
combinations of the parameters as shown in Table I, but
chose some other ones. Since the state space is a 3D space,
we also drew the projections of the basins of attractions on
three-coordinate planes.

First, we investigate the effect on the basin of attraction
of the change of foot radius. We can see that the basin of
attraction grows larger with the increasing foot radius, when
kc = 0.25 and kJ = 0.02. Further computations also indicate
that the increasing foot radius has a positive effect on the
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Fig. 4. Leg angles at the fixed point of different parameters.

area of the basin of attraction when other parameters are
kept constant. In Fig. 9, the feasible region has reached the
boundary of the state variable space, and we will discuss a
larger state space later.

The increase of the moment of inertia seems to have a
negative effect on the area of the basin of attraction, as shown
in Fig. 10. However, in our results, the largest area of basin of
attraction does not appear at the minimum value of kJ , but at
the value of 0.02 or 0.04. When kJ approaches zero, the basin
of attraction vanishes quickly. When kJ grows much larger,
the basin of attraction gradually becomes sparse and small.
The basins of attraction of other parameter combinations also
indicate the same phenomenon.

The effect on the basin of attraction of the changing of the
centre of mass is a bit complex. For the point foot model, the
increase of kc may cause a decrease of the basin of attraction.
However, for models with round feet, the basin of attraction
grows with the increasing kc, as shown in Fig. 11. Similar
phenomena also appear during computations of models that
have different kJ or kr .

From the results discussed earlier, we summarise the rules
of tuning the parameters to enhance the basin of attraction:
(1) enlarging the radius of the round foot, (2) choosing a

relatively small dimensionless parameter of the moment of
inertia kJ , which is about 0.02 and (3) finding a moderate
dimensionless parameter of the centre of mass kc, for which
0.2 or 0.3 might be better.

According to these rules, we think that the model with
the parameters kr = 0.5, kJ = 0.02 and kc = 0.25 will work
well. Then, we investigate the basins of attractions of this
model on different slopes. From Fig. 12, we can see that
this model indeed has a relatively large basin of attraction on
different slopes. As the slope increases, the basin of attraction
decreases slowly.

Furthermore, we will see the basin of attraction of this
model without the limit of angular velocities. Based on
common sense, we set l = 1 m, and then the results will
be dimensional, as shown in Fig. 13. The stable fixed point
θfp = [0.2377, −1.2719, −0.9478] is marked by “∗,” and
some special points are marked by “�.” These special points
will now be discussed.

First, the periodical gait of the model can begin from a
point far away from the fixed point. As mentioned above,
McGeer’s model can absorb a perturbation of 150% of one
initial angular velocity, and at the same time, the other angular
velocity can only tolerate a few percent errors.1 Goswami
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Fig. 5. Gait periods of different parameters in the sequence of kc.

et al.4 have reported an example in which the angular velocity
can be more than 100 deg/s, whereas the change of angle
must be limited to 2◦. For our model, the coordinates of
point 1 is [1.2000, −3.0695, −3.2574]. Compared with the
fixed point [0.2377, −1.2719, −0.9478], the angle was more
than 400%, about 55◦. Both the angular velocities were more
than 100 deg/s. From Fig. 14 (upper panel) we can see the
development of the state variable from point 1. Second, the
repetitive steps can start from the state in which both legs
are perpendicular with the slope, represented by point 2 in
Fig. 13. Although the model will be statically unstable at this
position, it can realise a dynamical stable gait from certain
initial conditions, as shown in Fig. 14 (middle panel). Third,
when the stance leg falls backward just after heelstrike (θ̇1

is positive), represented by point 3 in Fig. 13, sometimes the
model can still walk if the swing leg moves forward fast,
as shown in Fig. 14 (lower panel). Although the problem
of avoiding falling backward is still unsolved, because the
feasible region is very small, this phenomenon might be
worth studying further.

4.3. On robustness
Although a model with a large basin of attraction may not be
sensitive to the initial conditions, the robustness of the model

is not clearly understood. Robustness is the characteristic
of a model during the whole act of walking. Hence, we
used random disturbance to discover the robustness of the
models. We used two types of random floors to introduce
disturbances; one was a random slope angle, and the other
was random stairs.

As shown in Fig. 15 (upper panel), the slope angle is
γ 0 at the initial position, and it changes to γi = (γ0 + δi)
after the ith step. The perturbation δi is obtained from δi =
|α|
α

· ε ·β[ra, rb], where α is a non-zero random number, β is
a random number from the interval [ra, rb] and ε is a scaling
coefficient (in radians). The initial value of the slope angle
is 0.02 rad. The constant ε is set as 0.001, and the interval of
random number β is first set as [0, 0.5]. Therefore, δi will be
a random value of the interval of [−0.0005, 0.0005] rad. It is
a very small disturbance. The floor of random height stairs is
shown in Fig. 15 (lower panel), the slope also has an initial
angle of 0.02 rad, and the height of steps varies stochastically.
These stairs are a general form of the stairs used by Ali
Tehrani Safa.22 The interval of hi is set as [−0.015, 0.015],
which is smaller than 1.5% of the leg length, but the
maximum height difference might reach 3% of the leg length.

The random disturbance will affect the gait. From Fig. 16
we can see that, on a flat slope, the model will walk stably
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Fig. 6. Gait periods of different parameters in the sequence of foot radius kr .

(a), or converge to the stable gait if it starts from a fixed point
nearby (b). If a random slope angle is introduced, the model
can still walk, but each step will not be equal (c), and it can
fall (d).

For a model of given parameters, we let it walk many times
on the uneven floor, and recorded the number of falls to obtain
the fall ratio. Our study was limited to models with stable
fixed points. For each model, we generated 500 simulations
of 100 non-dimensional time units, and all the simulations
started from the fixed point. The intervals of random slope
angle and step height were as mentioned earlier.

The fall ratios of the models of different parameters on
the floor with random slope angles are shown in Fig. 17, the
vertical axis is the percentage, and the horizontal axis is the
non-dimensional centre of mass kc and the non-dimensional
moment of inertia kJ . It is very clear that the models with kr

= 0 all have fall ratios of 100%; thus, they are not discussed
here. For the other charts, we can see that the increasing kr

has a positive effect on the robustness. In each chart, the fall
ratio decreases along the axis of kJ ; namely, a large kJ may
result in a low fall ratio. The changing of fall ratio along
the axis of kc is not monotonous, but a small kc is good for
robustness. A model with a large kr and kJ , along with a

small kc, will have a very low fall ratio, even as low as zero.
The effect of kJ seems more significant. All the models with
the value of kJ higher than 0.09, no matter what the values of
kr and kc are, have fall ratios smaller than 20%. On the other
hand, the models with kJ equal to 0.01 have extremely high
fall ratios, even if the kc is small and the kr is large.

The fall ratios of the models on the floor with random
stairs are shown in Fig. 18, in which the vertical axis is the
percentage, and the horizontal axis is the non-dimensional
centre of mass kc and non-dimensional moment of inertia kJ .
Models with pointed feet fell in all the simulations. Similar
to the test of random slope angles, enlarging the foot radius
and decreasing the kc has a positive effect on the robustness.
However, a small moment of inertia is needed to decrease
the fall ratio, and this phenomenon is opposite to the test of
random slope angles.

Therefore, we summarise the parameters of the model that
have a low fall ratio in our test: (1) It should have a small value
of kc; (2) a large foot radius might be good for enhancing
robustness; (3) the model with a large value of moment of
inertia worked well in the test of random slope angle, but in
contrast, the model with a small value of moment of inertia
had a low fall ratio in the test of random stairs.

https://doi.org/10.1017/S0263574708004906 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004906


Effects of parameter variation on the gaits of passive walking models 519

Fig. 7. Average hip speed of models of different parameters along the slope in the sequence of kr .

5. Experiment

To validate the simulation results, we carried out walking
experiments using a prototype. The aluminium-made
prototype is shown in Fig. 19. Four types of plastic feet were
made, and the centre of mass and moment of inertia could be
adjusted by adding or removing bolts on different positions
of the legs. To avoid foot scuffing, wood blocks were set on
a board 2 m long, and the prototype walked on the blocks.
Four bars 2 m in length were fixed on the board to secure the
blocks. To fit different step lengths, the distance along the
bars of the blocks could be adjusted manually. The friction
between the bars and the blocks made the blocks immovable
when the model was walking on them. The angle between the
board and the horizontal plane was 0.03 rad, a little different
from our simulation.

In order to test the model’s behaviour with different feet
radii, we adjusted the position and number of bolts to make
the models have the same kc and kJ , as shown in Table V. The
maximum parameter error between different models was less
than 0.5%. The feet were numbered from 1 to 4, from big to
small, and could be easily installed on the model. We also
used these numbers to distinguish models when different feet
were installed.

5.1. Effect of feet radius on the basin of attraction
We want to ensure the prototype can walk; thus the basin
of attraction is discussed first. According to our simulation
about the basin of attraction, a model with small values of
kc, kJ and a large value of kr will not be sensitive to the
initial conditions; it can easily walk by manual release. This
prototype has feet from moderate to large size, but the kJ is
large and the kc is not very small. We have tried to compute
the basin of attraction of the model with the parameters given
earlier by the cell mapping method; however, no good results
were obtained.

Surprisingly, during the experiment, it was not difficult for
this model to walk. After some exercises, an experienced
person (one of the authors) could operate it easily. We
hypothesised that if the same person releases the model
manually many times, the model that is not sensitive to the
initial conditions will have a high probability of walking a
long distance. For each type of model, 100 manual releases
were implemented continuously, and the number of steps the
models could walk were recorded. Since models with a larger
foot radius have a larger step length, Models 1 and 2 could
only walk 9 steps on the 2 m-long board, but Models 3 and 4
could walk 10 and 11 steps until they reached the end.
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Fig. 8. Average hip speed along the slope in the sequence of kc.

From Fig. 20, we can see that models with all four types
of feet had high percentages of walking to the end of the
board. Interestingly, the model with the largest radius feet
did not have the highest percentage of reaching the end of
the board. For Model 1, only 48% of the 100 trials could
walk 9 steps. In contrast, Model 4 reached the end 69 times,
and Model 3 reached the end 73% of the time. It seems that
this result is not coincident with our simulation, in which the
model with a large foot radius has a large basin of attraction.
However, if we view it from another angle, Model 1 has a low
percentage of falling in the first five steps, but Model 4 has the

highest percentage of falling in the first five steps, as shown in
Table VI.

If a gait did not start from the fixed point but could converge
to the limit cycle, it often converged in the first several steps.
This phenomenon was proven by many walking simulations,
and can be found in Figs. 14 and 16(b). Thus, during
experiments, if the model walked five steps, we hypothesised
that it had converged to a stable gait. From Table VI, we can
see that, for Model 4, many falls occurred in the first five
steps. Therefore, a large foot radius is good for the model to
converge to a stable gait. However, we should try to explain

Table V. Parameters of the models with different foot radii.

Feet 1 2 3 4

Leg length (m) 0.324

Leg type Outer Inner Outer Inner Outer Inner Outer Inner

Foot radius (m) 0.15 0.12 0.09 0.06
kr 0.4630 0.3704 0.2778 0.1852
kc 0.4264 0.4269 0.4269 0.4265 0.4270 0.4267 0.4267 0.4268
kJ 0.1184 0.1188 0.1184 0.1185 0.1185 0.1183 0.1182 0.1182
Mean kc 0.42673
Mean kJ 0.11841
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Table VI. Step recording for walking experiments.

Foot & steps 1 2 3 4 5 6 7 8 9 10 11 Sum Times of falling in the first five steps

1 0 3 4 4 2 8 12 19 48 – – 100 13
2 2 1 3 7 3 11 4 9 60 – – 100 16
3 0 2 8 2 5 2 2 6 0 73 – 100 17
4 3 0 16 3 2 2 4 1 0 0 69 100 26

Fig. 9. Basins of attraction and their projections with the increase of foot radius.

Fig. 10. Basins of attraction and their projections with the increase of moment of inertia.
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Fig. 11. Basins of attraction and their projections with the increase of centre of mass.

why Model 1 fell many times just one or two steps before the
end.

When walking stably, the model with larger feet has a
larger leg angle at heelstrike, and the ground reaction force
acting on the feet has a larger arm relative to the joint between
the foot and the leg. This torque caused by the reactive force
may result in the feet rotating around the ankle, and the
model will not be symmetric, as shown in Fig. 21. During
the experiment, this design flaw appeared in every trial of
Model 1, and became serious in the final few steps. We had
to adjust the model manually after each trial. However, for

models with smaller feet, this problem was not very serious,
and the models only had to be adjusted after many times of
trials. We think this is the main reason that Model 1 fell many
times just before the end.

5.2. Effect of foot radius on other gait descriptors
As listed in Table IV, the simulation results indicate that
the increase of foot radius has a positive effect on the step
length, gait period and average speed. We selected the trials
in which the models had reached the end of the board to
record the gait data. From Table VII, we can see that the step

Fig. 12. Basins of attraction and their projections with different slope angles.
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Fig.13. Basin of attraction and its projections for the model without angular velocity limit.

lengths of experiment are not very consistent with those of
the simulation, especially for Model 1. We think the foot–leg
configuration change caused by the ground reaction force is
the reason for the difference between the experimental and
the simulation results. For Models 2–4, the effect of enlarging
the foot radius to increase the step length was validated by
experiments. The experimental results were smaller than the
simulation results. We used the board length divided by the
step numbers to obtain the mean step length; however, in the

trials, walking did not start exactly at one end of the board
and end at the other endpoint exactly; thus, the full walking
distance was shorter than 2 m.

We recorded the sounds of the steps to obtain the time of
walking to the end. The sound recording started from the
first time of heelstrike; thus, the time of the first step was
not included, and the mean time of walking to the end did
not represent the whole time of walking. If we neglect the
time differences of the first step among the four, the mean

Fig. 14. State variables and phase portraits of the model beginning from certain initial conditions.
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Table VII. Simulation and experimental results for the gaits of the prototype with different feet.

Model 1 2 3 4

Simulations Fixed point
θ1(rad) 0.3973 0.3351 0.2909 0.2573
θ̇1(rad/s) −2.6533 −2.3963 −2.1977 −2.0359
θ̇2(rad/s) −1.8758 −1.7548 −1.6447 −1.5468

Period (s) 0.5186 0.5082 0.5016 0.4974
Step length (m) 0.2538 0.2146 0.1866 0.1652
Average speed of 10 steps (m/s) 0.4704 0.4065 0.3550 0.3174

Experiments Number of steps when reaching the end 9 9 10 11
Mean step length (m) 0.2222 0.2222 0.2000 0.1818
Mean time of walking to the end (s) 4.0430 4.2264 4.4852 4.9684

time of walking to the end still indicates that the model
with the smallest foot radius walked the slowest. As listed in
Table VII, the period data of the simulations are close to each
other, and we cannot distinguish them from the experiment
data.

5.3. Experiment of robustness
In the simulation, we used floors of random slope angle
and random stairs to test the robustness of the models, and
set the fall ratio as a measurement. We have found that a
large foot radius may be beneficial for walking on uneven
floors. During the experiment on flat floors, there were many
random disturbances, such as the roughness of the blocks,
the asymmetry of the prototype, assembly errors and the
foot rotation about the ankle joint caused by ground reaction
forces. However, they were not too serious, except for the
last one, which affected Model 1. Disturbed by all of these

Fig. 15. Sketch maps of uneven floors.

perturbations, the models still reached the end of the flat floor
more than 45% of the times, and the highest percentage was
73%.

We pushed thumbtacks into the block to construct a random
slope angle floor, as shown in Fig. 22. The thickness of
the head of each thumbtack was 0.2 cm, which made the
block to have a slope angle of about 0.03 rad when the edge
touched the floor. However, the blocks were clamped tightly
by the bars and could not rotate freely unless some force
pushed them. Since we released the models manually, when
the model tread on the block, the position of the contact was
uncertain; thus the angle of the block could rest at any angle
equal to or smaller than 0.03 rad. After each walking trial,
we did not reposition the blocks. Therefore, in the next trial,
the feet may have tread on positions different from the last
time. We used this type of approximate random slope angle
floor to test the models.

In the experiment, the models were released manually, and
could not walk more than 12 steps, restricted by the length
of the board. We assumed that if the model could walk four
steps, it had converged to a stable gait; otherwise, the fall
might have been caused by a bad release. From the fifth
step, thumbtacks were tacked into the blocks, and random
disturbance was introduced. For each type of foot radius,
many walking trails were implemented, and 100 times of
walking trials that were more than four steps were recorded,
as shown in Fig. 23. The wedges representing the trials in
which the model reached the end of the board are magnified.
We can see that the step length was changed, and Models 2
and 3 could walk more steps until they reached the end than
when they were walking on a flat floor.

Model 1 does not have the highest pass ratio; however,
it has a significantly higher percentage of trials in which it
fell one step before the end. We think that the change of
configuration caused by the ground reaction force still plays
a key role. Model 2 has the highest ratio of reaching the end.
However, the ratio of reaching the end for Model 4 is a bit
higher than the ratio of Model 3. This phenomenon can be
explained as follows. As shown in Fig. 22, the distance of
foot 3 rolling on the block is longer than the distance of foot
4, from one side of the thumbtacks to the other side; thus, the
block may be forced to rotate. Therefore, the models with
larger feet have extra disturbances of block angle changes
when their feet are rolling on the blocks. In this test, the effect
of increasing the foot radius on enhancing the robustness of
the models has been validated.
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Fig. 16. Leg angles and phase portraits of models with and without slope angle change.

6. Conclusion and Future Work

We have made a systematic study of the effect of parameters
on the gait of a planar passive walker with straight legs and

Fig. 17. Fall ratios of models of different parameters on a floor with
random slope angles.

Fig. 18. Fall ratios of models with different parameters on a floor
with random stairs.
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Fig. 19. The prototype and different feet.

round feet. Our objective was to provide a guide for building
a robust prototype that can walk stably. Different from former
researchers, we chose three non-dimensional parameters, kc,
kJ and kr , representing the centre of mass, the moment
of inertia and the foot radius, respectively. We treated the
slope angle as the parameter of the environment that the

Fig. 21. Ground reaction force may cause the feet to rotate around
the joint.

model should deal with. Our work included simulations and
experiments.

By the aid of the cell mapping method, the fixed points
of the parameter combinations were determined. We have
found that the increase of the moment of inertia has a positive
effect on the step length and period, but a negative effect on
the average speed. Enlarging the foot radius can increase
all three descriptors; the only exception is the effect on the
period when the kJ is very small. The effect of increasing
the value of kc is a bit complex. The step length and average
speed decrease with the growth of kc, but the speed does not
decrease when the kc is small. The periods along kc show a
decreasing–increasing shape when kJ is small, but when kJ

increases, the inflection of the trend of the period is gradually
postponed, and begins to show a steady decreasing trend.
The basins of attraction of the fixed points are concerned
with the sensitivity of the initial conditions of the models.
A model with a large foot radius, small value of centre of
mass and a large value of the moment of inertia has a large
basin of attraction, and it can endure larger disturbance of
initial conditions than ever reported before. We have designed
uneven floors of random slope angle and random stairs to
test the robustness of the model and used the fall ratio as a
measure. A large foot radius and a small value of centre of

Fig. 20. Number of steps that the model with four types of feet could walk during 100 continuous manual releases.
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Fig. 22. Sketch map of the random angle floor.

Fig. 23. Number of steps that the model with four types of feet could walk on the floor with random slope angles.

mass are needed for a robust model. A large moment of inertia
is good for walking on floors with random slope angles, but
a model with a small moment of inertia works well on floors
with random stairs.

We have made a parameter-adjustable prototype to validate
our simulation results. However, because of the model’s
structure, the centre of mass and the moment of inertia could
not be adjusted in a large range, and thus we have only tested
the prototype with different feet. During the experiments,
the effects of increasing the foot radius on the step length,
average speed and basin of attraction have been validated, and
we think the exceptions were caused by the model asymmetry
induced by the ground reaction force of the heelstrike. We
designed a floor with approximate random slope angles to
test the robustness of the model with different feet, and

found that increasing the foot radius is also good for the
robustness.

For the next step of simulation study, optimising the three
parameters together to obtain a more robust pure passive
model needs to be considered. We think such a model might
be very significant for building an actuated model that can
endure large disturbance. Limited by the configuration of the
prototype, the moment of inertia and the centre of mass could
not be adjusted in a wide range; thus, we only validated the
simulation results related to the foot radius, and the remaining
work will be finished using a new prototype.
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